搜档网
当前位置:搜档网 › 高速线材在轧制过程中产生堆钢的原因及处理

高速线材在轧制过程中产生堆钢的原因及处理

高速线材在轧制过程中产生堆钢的原因及处理
高速线材在轧制过程中产生堆钢的原因及处理

高速线材堆钢的原因分析及处理

摘要:高速线材在轧制过程中有时会产生堆钢现象,本文介绍了一些常见的堆钢事故,并结合职工操作、工艺、设备等方面对这些堆钢事故产生的原因进行分析和总结,同时针对存在的问题提出了相应的措施。

关键词:高速线材;堆钢;产生原因;措施

1前言

首钢股份公司第一线材厂生产线设备仿摩根五代轧机设计,国内厂家生产,该生产线最大稳定轧制速度为88m/s。全线由28架轧机组成,粗、中轧共14架,预精轧4架,为平立交替布置,精轧机10架为顶交45°布置,精轧机后无减定径机组,直接是夹送辊及吐丝机。产品规格φ5.5—φ16mm,规格跨度较大,同时生产的品种较广。从目前的生产状况来看,φ6.5mm(包含6.5mm)以下的小规格线材产品因轧制速度快,断面尺寸小等原因,其堆钢事故率远超于其他规格。本文按照不同轧区分类,介绍了其产生的原因及解决办法。

2导致堆钢的原因分析及措施

2.1 粗中轧区域(1-14架)

2.1.1 轧件不能顺利咬入下一架次造成堆钢

造成此类事故的原因主要有:①轧件前头从上一架次出来后翘头;②上一支的后尾倒钢将出口导卫拉高;③进口导卫开口度调整不合适;④导卫与孔型不对中(轧制线不正);⑤槽孔打滑;⑥轧件尺寸不符合工艺要求;⑦因坯料原因造成的前头劈裂。

处理措施:①针对轧件翘头需要检查上下辊径及磨损情况、传动部件连接处的间隙、进出口导卫高低的一致性;②合理的调整进口导卫开口度及与轧辊之间的距离;③新换槽孔辊缝设定过小,对轧机辊缝做适当调整或重新打磨槽孔;④对轧机辊缝做适当调整;⑤认真检查坯料,加长1#剪剪切前头长度。

2.1.2轧件咬入后机架之间堆钢

主要原因:①人为原因造成轧制速度、轧辊直径等参数设定不正确;②换辊或槽孔后堆拉关系调整不合适;③钢坯温度波动太大;④因电控原因造成的某架轧机突然升速或降速;⑤主控台操作工在调整轧机转速时调错转数或架次;

处理措施:①正确的设定轧制速度、辊径、合理的调整轧机间堆拉关系。做好两人之间的确认工作;②通知加热炉调火工,同时保温待轧;③电气专业检查,倒备用柜。

2.1.3轧件后尾堆钢

主要原因是由于在上游机架处,轧件拉钢造成后尾脱离上游机架时,在下游机架堆钢。

处理措施:合理的调整堆拉关系及轧机尺寸。

2.2 预精轧区域(15-18架)

2.2.1 机架之间堆钢

主要原因:①辊缝、辊径、轧速等参数设定错误;②导卫安装不合适;③导卫打铁;④粗中轧拉钢造成轧件在预精轧甩后尾;⑤因电控原因造成某架轧机转速异常。

处理措施:①重新核对设定参数;②检查更换或调整进出口导卫;③调整预精轧内活套高度及加强巡检;④合理的调整连轧机的堆拉关系;⑤电气专业检查同时倒备用柜。

2.2.2预精轧某一架次跳车

主要原因:①预精轧冷却水压及润滑系统故障;②电机跳闸;③事故检测系统作用。

处理措施:①检查冷却水压力、机旁控制水阀;②设备专业检查润滑系统;③检查预精轧鱼线吊坠是否系紧,同时检查其接近开关。

2.3高速区域(精轧机至吐丝机)

2.3.1精轧机内机架间堆钢

主要原因:①导卫轮不转或轴承烧;②轧件劈头;③导卫或辊环装错;④辊缝设定不当或来料尺寸不合适;⑤辊环碎;⑥鱼线断导致轧线自动碎断。

处理措施:①更换导卫,同时加强导卫安装的正确性;②加强坯料检查及加长切头长度;③重新核对及调整辊缝;④更换辊环,同时检查冷却水管。⑤检查鱼线吊坠处的接近开关、检查精轧机内导卫处是否有废钢,若有则说明是前一支后尾在精轧机内堆钢,重新设定精轧机内辊缝。

2.3.2精轧机废钢箱处堆钢

分为两种情况,一是未吐丝而堆钢,二是吐丝若干圈后堆钢。

主要原因有:①水冷段的冷却水不能正常关闭或开启过早;②水冷段内有异物;③水冷导槽安装错位;④精轧机后首段水冷箱水阀开启过大或水压过大;⑤精轧机、夹送辊、吐丝机之间的速度匹配不好;

处理措施:①电控专业检查水阀控制系统并手动试水,主控台调整开启延时;②检查水冷喷嘴及导槽安装是否正确,有无松动,同时检查其中是否有异物,并用一根φ13mm的圆钢穿水冷段;

③检查核对三者之间的速度匹配;④可将水冷喷嘴及导槽的使用规格放大,如将φ12mm更换为φ16mm规格。

2.3.3夹送辊吐丝机处的堆钢

主要原因:①夹送辊进出口导管安装不正确、磨损严重或导管内有异物;②夹送辊前检测信号失灵,使夹送辊不能按时张开/闭合;③吐丝管磨损严重;④夹尾延时设定过短,造成丢后尾;⑤精轧机、吐丝机之间的速度不匹配;⑥线材内部质量缺陷(冶炼缺陷)或轧制缺陷(严重折叠或耳子)造成堆钢。

处理措施:①检查、更换进出口导管;②电气专业检查检测信号;③更换吐丝管;④将夹尾延时加长;⑤合理设定精轧机、吐丝机之间的速度匹配;

2.4飞剪处堆钢

主要原因:①飞剪剪切速度与上游轧机速度不匹配,切前头后有弯造成堆钢;②飞剪切后尾长度过短,造成后尾未完全切断,带入下一道轧机;③剪刃、转辙器磨损严重造成剪切位置不正确;

④中途飞剪误动作,剪切失控。

处理措施:①重新设定飞剪的超前系数;②调整切头尾长度;③检查剪刃和飞剪的前头导槽;

④检查光电管、热检信号。

2.5活套处堆钢

主要原因:①活套延时设定不正确;②活套高度设定不合适;③活套的起套辊、导向辊或导向板磨损严重;④活套扫描器故障;⑤前面的热检信号被挡;⑥水雾过大或阳光照射影响检查效果。

处理措施:①重新设定或调整参数;②更换工艺备件,或对导向板补焊;③更换活套扫描器并重新调整零位;④在水雾大处加吹雾风机,针对阳光照射在合适角度加遮挡板。

3 结束语

在生产过程中,发生堆钢事故时,由于受到时间及指标的限制,需要快速而准确的找到原因,这就需要对发生的事故进行综合考虑,多方面寻找原因,这样才能缩短处理时间避免重复性事故发生。更要求现场操作人员在日常生产中不断地、定时地对轧件尺寸、轧机堆拉关系、导卫情况等方面进行检查,这样才能更好的减少事故发生的频率。

作者简介:史昌,助理工程师,出生于1983年,2006年毕业于西安建筑科技大学(原西安冶金建筑学院)材料成型与控制工程专业,北京科技大学材料工程领域在读工程硕士。2006年7月到北京首钢股份公司第一线材厂工作,目前为高速线材车间工艺主管师。

高速线材在轧制过程中产生堆钢的原因及处理

高速线材堆钢的原因分析及处理 摘要:高速线材在轧制过程中有时会产生堆钢现象,本文介绍了一些常见的堆钢事故,并结合职工操作、工艺、设备等方面对这些堆钢事故产生的原因进行分析和总结,同时针对存在的问题提出了相应的措施。 关键词:高速线材;堆钢;产生原因;措施 1前言 首钢股份公司第一线材厂生产线设备仿摩根五代轧机设计,国内厂家生产,该生产线最大稳定轧制速度为88m/s。全线由28架轧机组成,粗、中轧共14架,预精轧4架,为平立交替布置,精轧机10架为顶交45°布置,精轧机后无减定径机组,直接是夹送辊及吐丝机。产品规格φ5.5—φ16mm,规格跨度较大,同时生产的品种较广。从目前的生产状况来看,φ6.5mm(包含6.5mm)以下的小规格线材产品因轧制速度快,断面尺寸小等原因,其堆钢事故率远超于其他规格。本文按照不同轧区分类,介绍了其产生的原因及解决办法。 2导致堆钢的原因分析及措施 2.1 粗中轧区域(1-14架) 2.1.1 轧件不能顺利咬入下一架次造成堆钢 造成此类事故的原因主要有:①轧件前头从上一架次出来后翘头;②上一支的后尾倒钢将出口导卫拉高;③进口导卫开口度调整不合适;④导卫与孔型不对中(轧制线不正);⑤槽孔打滑;⑥轧件尺寸不符合工艺要求;⑦因坯料原因造成的前头劈裂。 处理措施:①针对轧件翘头需要检查上下辊径及磨损情况、传动部件连接处的间隙、进出口导卫高低的一致性;②合理的调整进口导卫开口度及与轧辊之间的距离;③新换槽孔辊缝设定过小,对轧机辊缝做适当调整或重新打磨槽孔;④对轧机辊缝做适当调整;⑤认真检查坯料,加长1#剪剪切前头长度。 2.1.2轧件咬入后机架之间堆钢 主要原因:①人为原因造成轧制速度、轧辊直径等参数设定不正确;②换辊或槽孔后堆拉关系调整不合适;③钢坯温度波动太大;④因电控原因造成的某架轧机突然升速或降速;⑤主控台操作工在调整轧机转速时调错转数或架次; 处理措施:①正确的设定轧制速度、辊径、合理的调整轧机间堆拉关系。做好两人之间的确认工作;②通知加热炉调火工,同时保温待轧;③电气专业检查,倒备用柜。 2.1.3轧件后尾堆钢 主要原因是由于在上游机架处,轧件拉钢造成后尾脱离上游机架时,在下游机架堆钢。 处理措施:合理的调整堆拉关系及轧机尺寸。 2.2 预精轧区域(15-18架) 2.2.1 机架之间堆钢 主要原因:①辊缝、辊径、轧速等参数设定错误;②导卫安装不合适;③导卫打铁;④粗中轧拉钢造成轧件在预精轧甩后尾;⑤因电控原因造成某架轧机转速异常。 处理措施:①重新核对设定参数;②检查更换或调整进出口导卫;③调整预精轧内活套高度及加强巡检;④合理的调整连轧机的堆拉关系;⑤电气专业检查同时倒备用柜。 2.2.2预精轧某一架次跳车 主要原因:①预精轧冷却水压及润滑系统故障;②电机跳闸;③事故检测系统作用。 处理措施:①检查冷却水压力、机旁控制水阀;②设备专业检查润滑系统;③检查预精轧鱼线吊坠是否系紧,同时检查其接近开关。

各种缺陷分析与产生原因

锻造成形过程中的缺陷及其防止方法 一、钢锭的缺陷 钢锭有下列主要的缺陷: (1)缩孔和疏松 钢锭中缩孔和疏松是不可避免的缺陷,但它们出现的部位可以控制。钢锭中顶端的保温冒口,造成钢液缓慢冷却和最后凝固的条件,一方面使锭身可以得到冒口中钢液的补缩,另一方面使缩孔和疏松集中于此处,以便锻造时切除。 (2)偏析钢锭中各部分化学成分的不均匀性称为偏析。偏析分为枝晶偏析和区域偏析两种,前者可以通过锻造以及锻后热处理得到消除,后者只能通过锻造来减轻其影响,使杂质分散,使显微孔隙和疏松焊和。 (3)夹杂不溶于金属基体的非金属化合物称为夹杂。常见的夹杂如硫化物、氧化物、硅酸盐等。夹杂使钢锭锻造性能变化,例如当晶界处低熔点夹杂过多时,钢锭锻造时会因热脆而锻裂。夹杂无法消除,但可以通过适当的锻造工艺加以破碎,或使密集的夹杂分散,可以在一定程度上改善夹杂对锻件质量的影响。 (4)气体 钢液中溶解有大量气体,但在凝固过程中不可能完全析出,以不同形式残存在钢锭内部。例如氧与氮以氧化物、氮化物存在,成为钢锭中夹杂。氢是钢中危害最大的气体,它会引起“氢脆” ,使钢的塑性显著下降;或在大型锻件中造成“白点” ,使锻件报废。 (5)穿晶 当钢液浇注温度较高,钢锭冷却速度较大时,钢锭中柱状晶会得到充分的发展,在某些情况下甚至整个截面都形成柱状晶粒,这种组织称为穿晶。在柱状晶交界处(如方钢锭横截面对角线上),常聚集有易熔夹杂,形成“弱面” ,锻造时易于沿这些面破裂。在高合金钢锭中容易遇到这种缺陷。 (6)裂纹 由于浇注工艺或钢锭模具设计不当,钢锭表面会产生裂纹。锻造前应将裂纹消除,否则锻造时由于裂纹的发展导致锻件报废。 (7)溅疤 当钢锭用上注法浇注时,钢液冲击钢锭模底而飞溅到钢锭模壁上,这些附着的溅沫最后不能和钢锭凝固成一体,便成溅疤。溅疤锻造前必须铲除,否则会形成表面夹层。 二、轧制或锻制的钢材中的缺陷 轧制或锻制的钢材中往往存在如下缺陷: (1)裂纹和发裂 裂纹是由于钢锭缺陷未清除,经过轧制或锻造使之进一步发展造成的。由于轧制或锻造的工艺规范不当,在钢材内引起很大的内应力,也会造成裂纹。断面大、合金元素多的钢材容易产生裂纹。 发裂是深度为0.50~1.50mm 的发状裂纹,它是轧制或锻造时由于钢锭皮下气泡沿变形方向被拉长或夹杂物沿变形方向伸长而形成。发裂一般需经酸洗后才能发现。 (2)伤痕和折叠 伤痕是钢材表面上深约0.2~0.30mm 的擦伤、划伤细痕。折叠一般由于轧制或锻造工艺不当造成。 (3)非金属夹杂和疏松

活套在棒、线材轧制中的控制要点

活套在棒、线材轧制中的控制要点 活套在棒、线材连轧中对消除机架间张力起到至关重要的作用,要:活套在棒、线材连轧中对消除机架间张力起到至关重要的作用,活套控制不好,不但不能消除张力,反而会增加产品缺陷和堆钢事故。控制不好,不但不能消除张力,反而会增加产品缺陷和堆钢事故。本文总结出活套常见的故障及控制方法,对减少事故、总结出活套常见的故障及控制方法,对减少事故、提高产品质量很有帮助。 关键词:关键词:活套控制要点连轧在棒、线材轧制中得到普遍应用,为消除机架间张力、稳定轧制、前言:连轧在棒、线材轧制中得到普遍应用,为消除机架间张力、稳定轧制、保证成品尺寸,对活套的控制提出了更高的要求。通过大量生产实践,保证成品尺寸,对活套的控制提出了更高的要求。通过大量生产实践,反复比对,总结出了活套常见的控制方法以及如何快速排查活套故障,反复比对,总结出了活套常见的控制方法以及如何快速排查活套故障,从而使张力合适、成品尺寸稳定、减少活套堆钢。从而使张力合适、成品尺寸稳定、减少活套堆钢。 一、上游机架间张力大,活套反应的状态上游机架间张力大, 若活套上游机架间张力过大,活套机架间张力合适。套高会出现忽高忽低活套上游机架间张力过大,活套机架间张力合适。循环摆动,循环摆动,如图 1-1 套高趋势图,并在尾段起大套,A 点就是尾巴大套;活-套高趋势图,并在尾段起大套,点就是尾巴大套;套调节量也会出现对应的类似摆动,调节量趋势图;套调节量也会出现对应的类

似摆动,如图 1-2 活套调节量趋势图;在电流趋势对应的类似摆动-图上表现为见图 1-3。在成品上表现为两旁尺寸波动,尾巴尺寸肥大,尤其是-。在成品上表现为两旁尺寸波动,尾巴尺寸肥大,“脖子”部分两旁尺寸瘦。调整方法:不要仅仅只调整活套间机架的张力,若脖子” 部分两旁尺寸瘦。调整方法:不要仅仅只调整活套间机架的张力,这样红钢尾巴在活套处易起大套堆钢,应先调整活套上游机架间张力,并配合这样红钢尾巴在活套处易起大套堆钢,应先调整活套上游机架间张力,红钢尾巴在活套处易起大套堆钢电流趋势图和轧件入轧机的状态使张力合适,然后再调整活套间机架的张力再调整活套间机架的张力。 电流趋势图和轧件入轧机的状态使张力合适,然后再调整活套间机架的张力。最终使套高趋势图、活套调节量趋势图、电流趋势图分别为图 1-4、图 1-5、最终使套高趋势图、活套调节量趋势图、图 1-6 所示的状态就行了。所示的状态就行了。 二、活套间张力的调整 a)机架间活套张力过大,推套辊就不起;机架间张力较大时,活套就起不)机架间活套张力过大,推套辊就不起;机架间张力较大时,到消除张力的作用,并且对活套设备伤害较大。以下是活套张力大的判断方法是活套张力大的判断方法:到消除张力的作用,并且对活套设备伤害较大。以下是活套张力大的判断方法:第一,是肉眼观察起套情况,先保证推套辊升起;第二,通过套高趋势图、第一,是肉眼观察起套情况,先保证推套辊升起;第二,通过套高趋势图、套高实际

高速线材轧制过程中常见堆钢事故分析及处理措施

高速线材轧制过程中常见堆钢事故分析及处理措施 发表时间:2019-05-21T10:27:45.023Z 来源:《防护工程》2019年第3期作者:王建荣 [导读] 减少堆钢事故要从分析事故原因入手,及时找到故障点,总结经验,为以后的生产提供帮助。酒钢集团榆中钢铁有限责任公司甘肃兰州 730021 摘要:高速线材生产过程中由于工艺、设备等问题造成堆钢,影响轧线的机时产量、坯耗、动力能源指标,造成设备损坏。本文就轧制过程中的常见堆钢事故结合现场工艺和设备情况进行分析,总结经验,为以后的生产提供帮助。 关键词:张力;导卫;废品箱;导槽;活套;飞剪 1.简介 某公司高速轧机线材生产线生产的产品规格:φ6.0~14.Omm。轧机共28架,为全连续布置,其中粗轧机6架、中轧机6架、预精轧机6架、精轧机一6架,精轧机二4架,钢坯经粗轧机组轧制后1#飞剪切头、尾,中轧机组轧制6个道次,然后(中轧后设2#飞剪用于事故碎断)进入预精轧机组中继续轧制4~6道次,之后,经预精轧机组后水冷箱进行控制冷却,按不同钢种进行温度控制,然后,经飞剪切头后,进入精轧机组中轧制,根据不同成品规格,轧件在精轧机组中分别轧制4~10个道次,最终轧制成为要求的产品断面。轧线孔型系统除粗轧6架采用无孔型轧制,其余均采用椭-圆孔型系统。 粗、中轧机组间采用微张力控制轧制;在预精轧机组前、后以及预精轧机组各机架间设有水平活套和垂直活套,可实现活套无张控制轧制;精轧机组一、精轧机组二各机架间以及精轧机组一和精轧机组二之间实现微张力轧制。 2.堆钢原因分析 2.1粗轧区域堆钢事故分析 粗轧区域由于采用平立交替平辊轧制,且钢坯断面积较大,相对比较稳定,堆钢事故比较少。粗轧堆钢事故产生的主要原因有以下几点: (1)导卫影响:导卫松动或导卫底座松动、移位造成轧件翘头不能顺利咬入下一道次,或导卫掉落直接堆钢;(2)换辊换槽:换辊换槽后由于轧件打滑而堆钢,孔型高度设定超差或张力设置不当造成堆钢;(3)由于钢温过低造成断辊而堆钢。 预防措施: (1)轧制过程中岗位工要加强巡检,及时紧固导卫及导卫底座固定螺栓,控制好料型尺寸,减少由于料型不规则和尺寸严重超差对导卫的冲击; (2)换辊换槽后及时对新槽进行打磨,增加轧件和轧辊的摩擦力,按照要求设定孔型高度,主控台岗位做好换辊换槽速度调整;(3)加热炉按照工艺要求控制好出钢温度,严防低温钢。 2.2 中轧、预精轧区域堆钢事故分析 中轧7-14采用平立交替布置的闭口式二辊轧机轧机,15-18架采用平立交替悬臂辊轧机。中轧、预精轧主要堆钢原因:(1)料型不符合标准导致轧件头部挤在下一道次入口导卫处堆钢,钢坯头部变形不均匀,头部温度低及头部有夹杂等缺陷等造成轧件劈头堆钢; (2)滚动导卫开口随轧件磨损变大倒钢造成料型急剧变化,张力失控而堆钢;导卫处遗留前一根钢的翘皮导致下一根钢受阻堆钢;(3)轧件弯头:轧制线不对中,轧件在活套进出口、空过管碰弯头等堆钢,一般侧弯是由于进出口导卫和孔型不对中造成,上下弯的原因大概有三种:一是进出口导卫和孔型不对中造成,二是孔槽磨损不均导致上下辊工作辊径不一致,三是传动部件间隙大造成咬入瞬时上下辊速度不一致; (4)张力设定不当,实际处于堆钢轧制状态,轧件依靠前机架的微张力维持轧制,当尾部离开前机架时突然失去张力而堆钢;(5)该轧线有10架和11架之间、11架到12架之间,从主控台力矩反馈看没有堆钢,但实际已经堆钢的现象,主要原因是由于轧件断面尺寸比较小,当机架间拱钢时对力矩的影响不大,所以,从主控台力矩画面看不出张力变化或张力变化很小。预防措施: (6)轧制过程中根据孔槽磨损情况及时调整辊缝,保证料型在标准范围内。加热炉原料工做好入炉钢坯的质量把关,粗轧岗位工发现头部低温钢或头部缺陷钢坯用1#飞剪手动切除; (7)轧制过程对导卫要勤检查、勤调整,保证导卫开口度符合料型要求,发现导卫有拉翘皮的情况及时处理;(8)发现进出口导卫偏离轧制线或轧件有翘头迹象要及时停机检查、处理,对孔槽磨损不均的轧辊要及时换槽。如果传动部件存在间隙由设备组及时处理; (9)由于粗中轧采用轧机力矩和电流作为微张力控制的依据,自由力矩受轧件头部钢温、料型的影响,所以,微张力控制存在误差。对于断面比较大的轧件影响不大,对于断面比较小的轧件影响比较大。主控台岗位工要合理设置各机架间的张力,对于10架和11架之间、11架到12架之间的张力应要求中轧岗位工观察轧件的尺寸来判断张力的大小,配合主控台做好张力调整,如果轧件离开前一架后尺寸变大则说明前一机架和该机架间存在张力,根据轧件尺寸变化程度判断张力的大小。 2.3精轧区域堆钢事故分析 精轧机组共10架,为45°顶交型布置,其中精轧一6架,后设废品箱,精轧二4架,后设废品箱,吐圈直径3.018米。精轧区域由于轧件速度快、轧件尺寸小,受导卫磨损、导槽磨损、吐丝管磨损、冷却水阻力、设备运行参数、设备故障的影响,堆钢的原因比较复杂。轧机内机架间堆钢主要原因是辊缝设置不合理、轧件冲出口或导卫轮烧损倒钢造成;精轧一后废品箱堆钢主要是由于精轧一和减定径之间的张力过小。大部分的堆钢集中在减定径成品机架后的废品箱,主要有以下四种情况: 2.3.1 吐丝机吐约0-10圈堆钢(实际情况根据现场生产工艺情况): (1)水冷段气动阀、电器控制元件故障、轧件头尾信号未断开,造成常流水,轧件头部受阻堆钢;

所有钢材常见缺陷及原因

人生不能留遗憾 钢材常见缺陷及原因 一、圆钢 1 划伤 特征:一般呈直线型沟痕,可见沟底,长度由肉眼刚刚可见到几毫米不等,长度自几毫米至几米不等,可断续分布,也可能通长分布。 原因:导卫表面不光滑,有毛刺或磨损严重;滚动导轮不转或磨损严重;翻钢板表面不光滑刮伤;在运输过程中辊道盖板等刮伤。 2 折叠 特征:沿轧制方向呈直线状分布,外形似裂纹,边缘有时呈锯齿状,连续或断续分布,深浅不一,内有氧化铁皮,在横断面上看,一般呈折角。 原因:前某一道次出耳子;前某道次产生划伤、轴错、轧槽损坏或磨损严重、飞边等;原料表面有尖锐棱角或裂纹。 3 结疤 特征:一般呈舌形或指甲形,宽而厚的一端和基体相连;有时其外形呈一封闭的曲线,嵌在钢材表面上。 原因:前一孔型轧槽损坏破损或磨损严重;外界金属落在轧件上被带入孔型,压入钢材表面;前一道次轧件表面有深度较大的凹坑。 4 耳子 特征:出现于成品的两旁辊缝处,呈平行于轴线的突起条状。有两侧耳子、单侧耳子、全长出耳、局部出耳和周期出耳等。 原因:孔型设计不良,宽展估计过小;成品前料型高度较大;成品孔辊缝小;终轧温度低,宽展增加;成品导板安装不正、尺寸大或磨损严重;

横梁或导板盒松动;轧槽更换错误或轧机轴承损坏。 5 弯曲 特征:有头部弯曲、局部弯曲、全长弯曲等。 原因:出口导卫安装过高或过低;温度不均;上下辊径差过大;冷床不平,成品在冷床上排列不齐,移动速度不一致,翻钢设备不良;冷却水分布不均匀,成品冷却不均;精整操作不良。 6 翘皮 特征:呈鱼鳞状或分层翘起的薄皮,大部分是生根的,也有不生根的。 原因:导卫装置加工或安装不良,围盘有尖锐棱角,刮伤了轧件表面,再轧后,引起翘皮;输送辊道表面粗糙,刮起伤了轧件表面,再轧后造成翘皮;轧件带有薄耳子;轧槽磨损严重,轧件在孔型内打滑;连铸坯内部有较大的皮下气泡,轧后破裂形成翘皮。 7 表面夹杂 特征:一般呈点状、条状或块状分布,其颜色有暗红、暗黄、灰白等,机械地粘结在成品表面上,不易剥落,且有一定的深度。 原因:连铸坯表面带有非金属夹杂物;在加热过程中,炉内耐火砖、煤灰、煤渣等杂物粘附在原材料表面上,轧制时未能剥落;在轧制过程中,非金属夹杂物被带入孔型,被压入金属表面。 8 裂纹 特征:裂纹在钢材表面上,一般呈直线状,有的呈Y形,其方向多与轧制向一致,但也有横向或其他方向的。 原因:加热不均,轧制时各部分延伸不一致;轧制时,钢温过低,塑性变差;高碳钢和合金钢材冷却不当;连铸坯表面有裂缝未清除;连铸坯

带钢轧制常见缺陷原因分析

带钢轧制常见缺陷原因分析 结疤(M01) 图7-1-1 图7-1-2 1.缺陷特征 附着在钢带表面,形状不规则翘起的金属薄片称结疤。呈现叶状、羽状、条状、鱼鳞状、舌端状等。结疤分为两种,一种是与钢的本体相连结,并折合到板面上不易脱落;另一种是与钢的本体没有连结,但粘合到板面上,易于脱落,脱落后形成较光滑的凹坑。 2.产生原因及危害 产生原因: ①板坯表面原有的结疤、重皮等缺陷未清理干净,轧后残留在钢带表面上;②板坯表面留有火焰清理后的残渣,经轧制压入钢带表面。 危害: 导致后序加工使用过程中出现金属剥离或产生孔洞。 3.预防及消除方法 加强板坯质量验收,发现板坯表面存在结疤和火焰清理后残渣应清理干净。 4.检查判断 用肉眼检查; 不允许存在结疤缺陷,对局部结疤缺陷,允许修磨或切除带有结疤部分带钢的方法消除,如结疤已脱落,则比照压痕缺陷处理。 7.2气泡(M02)

图7-2-1闭合气泡 图7-2-2开口气泡 图7-2-3开口气泡 1.缺陷特征 钢带表面无规律分布的圆形或椭圆形凸包缺陷称气泡。其外缘较光滑,气泡轧破后,钢带表面出现破裂或起皮。某些气泡不凸起,经平整后,表面光亮,剪切断面呈分层状。 2.产生原因及危害 产生原因: ①因脱氧不良、吹氩不当等导致板坯内部聚集过多气体; ②板坯在炉时间长,皮下气泡暴露或聚集长大。 危害: 可能导致后序加工使用过程中产生分层或焊接不良。 3.预防及消除方法 ①加强板坯质量验收,不使用气泡缺陷暴露的板坯; ②严格按规程加热板坯,避免板坯在炉时间过长。 4.检查判断 用肉眼检查; 不允许存在气泡缺陷。 7.3表面夹杂(M03) 图7-3-1

高速线材厂实习报告

高速线材厂实习报告 本次毕业实习我们是去包钢天诚线材有限公司进行的,我们在这三个星期的实习过程中,参观了高速线材的生产线,并结合本专业的知识,了解了整个高线生产工艺流程,在电气车间对整个控制系统进行了解、学习。 线材有着广泛的用途,无论是在生产还是生活中,概括起来它的用途可以分为两方面:一方面是线材产品直接被应用,主要用在钢筋混凝土的配筋和焊接结构件方面;另一方面是将线材作为原料,经再加工后使用,主要是通过拉拔、热煅、冷镦或切削加工及热处理后,再经过捻制、编织、缠绕、成型等工序制成各类用途金属制品,等等。 下面对控制系统做一个介绍: 一、主控台: 主控台是控制全轧线生产的中心操作室,使全厂的中央信息处理站,在高速线材轧机的连扎控制中,主控台对轧制的正常顺利进行起着光键作用。 (一)、主控台管辖的区域设备: 1、粗轧机组、中轧机组、预精轧机组、精轧机组以及夹送辊、吐丝机。 2、粗轧机组后的回转飞剪、预精轧机组前的事故卡断剪、精轧机组前的回转飞剪、事故卡断剪及轧制平台下的事故碎断剪。 3、轧线上所有活套控制器。 4、轧制平台下载运废料的振动运输机。 二)、主控台的职能与控制对象: 1、设定、调用、修改轧制程序。 2、控制上述所有轧制区域设备的动作及运行。

3、监控轧制区的轧制过程,实现轧制工艺参数和程序控制最优化。 4、控制轧机各组的轧辊冷却水关与闭。 5、组织、协调轧制生产工艺、保证生产的正常运行。 6、担负轧制生产线的日常生产信息传递。 7、有关生产数据的报表的记录与汇总。 8、监视全线的机械、电气、能源介质供应系统的设备运行状况与故障显示。 (三)、主控台与各操作台: 一般来说,轧制生产线上配有五个操作台:入炉操作台、加热出钢操作台、主控台、冷却控制台、卸卷操作台。主控台对上述四个操作台有指挥与领导作用。 下附主控台(500 站)的流程图 注:H—为水平轧辊 V —为立式轧辊 S —为剪切机 二、下面分别介绍几个环节的控制: (一)、加热炉区域: 钢坯加热是线材生产工艺中的一个重要工序,加热的目的是提高钢坯的塑性,降低变形抗力。正确的加热工艺可以提高产品的质量、产量、降低成本,不正当的加热会给生产带来很大的危害。 加热炉区域主要有以下设备:钢坯上料台架、钢坯入炉辊道、称重桥、钢坯拉出辊、曲柄拉剪。在这主要是对这些设备的控制。 加热操作:点火前的准备工作;加热炉的吹扫:启动风机、吹扫炉膛、氮气吹

轧制缺陷分析

1.折叠是钢材表面形成的各种折线,这种缺陷往往贯穿整个产品的纵向。产生折叠的原因是由于轧制厂追求高效率,压下量偏大,产生耳子,下一道轧制时就产生折叠,折叠的产品折弯后就会开裂,钢材的强度大下降。 2.麻面是由于轧槽磨损严重引起钢材表面不规则的凹凸不平的缺陷。由于厂家要追求利润,经常出现轧槽轧制超标。 3.结疤原因有两点:1.钢材材质不均匀,杂质多。2。导卫设备简陋,容易粘钢,这些杂质咬人轧辊后易产生结疤。 4.裂纹,原因是它的坯料气孔多,在冷却的过程中由于受到热应力的作用,产生裂痕,经过轧制后就有裂纹。 5.刮伤,原因是设备简陋,易产生毛刺,刮伤钢材表面。深度刮伤降低钢材的强度。 6.伪劣钢材无金属光泽,呈淡红色或类似生铁的颜色,原因有两点二1、它的坯料是土坯。2、轧制的温度不标准,他们的钢温是通过目测的,这样无法按规定的奥氏体区域进行轧制,钢材的性能自然就无法达标。 7.伪劣钢材的横筋细而低,经常出现充不满的现象,原因是厂家为达到大的负公差,成品前几道的压下量偏大,铁型偏小,孔型充不满。 8.伪劣钢材的横截面呈椭圆形,原因是厂家为了节约材料,成品辊前二道的压下量偏大,这种螺纹钢的强度大大地下降,而且也不符合螺纹钢外形尺寸的标准。

9.优质钢材的成分均匀,冷剪机的吨位高,切头端面平滑而整齐,而伪劣材由于材质差,切头端面常常会有掉肉的现象,即凹凸不平,并且无金属光泽。而且由于伪劣材厂家产品切头少,头尾会出现大耳子。 10.伪劣钢材材质含杂质多,钢的密度偏小,而且尺寸超差严重,所以在没有游标卡尺的情况下,可以对它进行称量核对。比如对于螺纹钢20,国家标准中规定最大负公差为5%,定尺9M时它的单根理论重量为120公斤,它的最小的重量应该是:22 X(l-5%)=20.9公斤,称量出来单根的实际重量比20.9公斤小,则是伪劣钢材,原因是它负公差超过了5%。一般来说整相称量效果会更好,主要考虑到累积误差和概率论这个问题。 11.伪劣钢材的内径尺寸波动较大,原因是;l、钢温不稳定有阴阳面。2、钢的成分不均匀。3、由于设备简陋,地基强度低,轧机的弹跳大。会出现有同一周内内径变化较大,这样的钢筋受力不均匀易产生断裂。 12.优质材的商标和印字都比较规范。 13.三钢材直径16以上的大螺纹,两商标之间的间距都在IM以上。 14.伪劣钢材螺纹钢的纵筋经常呈波浪形。 15.伪劣钢材厂家由于没有行车,所以打包比较松散。侧面呈椭圆形。

棒、线材分类及用途

棒、线材分类及用途 棒材 发布时间:2008-6-5 阅读次数:3844 发表者: 棒材产品简介 棒材产品一览表 品种可供规格mm 用途 热轧带肋钢筋Φ10~Φ40 建筑 碳素结构钢和优质碳素结构钢圆钢Φ10~Φ100 金属制品、五金、建筑 合金结构钢圆钢Φ14~Φ70 金属制品、五金、汽车、机械 冷镦和冷挤压用热轧圆钢Φ14~Φ50紧固件 高强度圆环链用圆钢Φ14~Φ18 矿用高强度圆环链 弹簧圆钢和扁钢Φ14~Φ70汽车圆簧、汽车板簧 6~20×60~120 钎具用圆钢Φ50~Φ70 钎杆、钎套 一、热轧带肋钢筋 热轧带肋钢筋供货技术条件 品名牌号规格供货标准用途使用注意事项 mm 热轧带肋钢筋HRB335 Φ10~Φ40GB1499-1998 建筑Φ10~Φ25弯心直径d=3a Φ28~Φ40弯心直径d=4a HRB 400 Φ10~Φ36GB1499-1998 建筑Φ6~Φ25弯心直径d=4a Φ28~Φ40弯心直径d=5a 主要特点: 产品按内控标准组织生产,化学成分稳定,金相组织均匀,延伸性能和焊接性能良好,力学性能稳定。 采用全连铸全连轧生产工艺,高压水除鳞,全线高刚度短应力线轧机,实现无扭轧制,全自动数字控制系统,从美国MO淬透性RGAN公司引进4架减定径机组,生产的产品尺寸精度高。钢材包装采用自动打捆机,均匀捆扎,包装整齐、牢固、美观;钢材包装标牌采用电脑自动打牌机,内容齐全,标志清晰。 主要用途: 产品作为钢筋混凝土构件,主要用于各种工业厂房、高层建筑、桥梁、水库大坝等工程结构。先后用于葛州坝水利工程、三峡工程、广州地铁、京珠高速公路、上海市人民政府大楼、厦门跨海大桥等国家、省(市)重点工程。 一、碳素结构钢和优质碳素结构钢圆钢 碳素结构钢和优质碳素结构钢圆钢供货技术条件 牌号规格供货标准用途使用注意事项 mm Φ10~Φ100GB/T700-1988 Q235 GB/T702-2004 一般结构Φ10~Φ60弯心直径d=a GB/T14292-1992 >Φ60~Φ100弯心直径d=2a 20 Φ10~Φ100 35 Φ10~Φ100 40 Φ10~Φ100 45 Φ10~Φ100GB/T699-1999 用于制作紧固件、加工方法:(1)压力加工

日钢高线常见堆钢事故及处理措施

日钢高线轧钢常见堆钢事故及处理措施 霍军 日照钢铁有限公司276806 摘要:介绍了日钢高速线材厂生产线工艺生产过程,轧钢过程中前常见事故,并对这些事故的产生原因进行了分析和总结,同时针对存在的问题提出了相应的处理措施。 关键词:轧钢事故 引言 日照钢铁高速线材厂于2006年建成投产,该线广泛应用了国内外先进技术与装备,1#、2#线通过技术升级改造,先后增设了由意大利Danieli公司设计制造的双模块机组(TMB)、变频风机、高压水除磷等设备,生产效率及产品质量都有了很大程度的提升。生产钢种大部分为:普通碳素结构钢、优质碳素结构钢(包括钢帘线、预应力钢丝及钢绞线)、冷镦钢、弹簧钢、焊条钢,合金结构钢等。 1 生产工艺流程 高速线材车间生产规模为1×60万吨/年及2×70万吨/年,产品规格为:圆钢ф5.5-ф16mm 光面线材,螺纹钢ф6.0-ф14mm螺纹钢筋。生产钢种为碳素结构钢、优质碳素结构钢、低合金钢、冷镦钢、焊条钢、弹簧钢、合金结构钢等,成品均为一火成材。连铸坯90%以上热装。加热后的钢坯通过粗、中、预精、精轧机组20~32道次轧制后,被轧成成品尺寸,1#2#生产线速度最高可达120米/秒,3#生产线速度最高可达90米/秒。轧线主要设备包括粗轧机组(由6架平—立交替二辊轧机组成)、中轧机组(由6架平—立交替二辊轧机组成)、预精轧机组(由6架平—立交替二辊轧机组成)、精轧机组(由10架45o摩根轧机组成)。 2粗中轧区事故原因分析及对策 2.1轧件咬入后机架间堆钢 故障原因:(1)轧制速度、轧辊直径设定不正确;(2)换辊(槽)后张力设定过小;(3)钢温波动太大;(4)轧辊突然断裂;(5)由于电控系统原因引起某架轧机的电机突然升速或降速。 处理措施:(1)准确设定轧制速度、辊径和张力;(2)保温待轧,通知加热炉调火工;(3)更换断辊;(4)检查电气系统。 2.2轧件头部在机架咬入时堆钢 故障原因:(1)轧件尺寸不符合要求;(2)轧槽中有异物或打滑;(3)导卫安装不良、磨损严重或导卫中夹有氧化铁皮等异物;(4)坯料内部存在分层、夹杂或冶废等缺陷引起的轧件“劈头”;

高速线材生产的质量控制(DOC42页)

线材生产的质量控制及 缺陷说明书 线材的表面要求光洁和不得有妨碍使用的缺陷,即不得有耳子、裂纹、折叠、结疤、夹层等缺陷,允许有局部的压痕、凸块、凹坑,划伤和不严重的麻面。线材无论直接用于建筑还是深加工成各类制品,其耳子、裂纹、折叠、结疤、夹层等直接影响使用性能的缺陷都是绝对不允许有的。至于影响表面光洁度的一些缺陷可根据使用要求予以控制,直接用作钢筋的线材表面光洁程度影响不大。用于冷墩的线材对划伤比较敏感,凸块则影响拉拔。 几种线材表面缺陷的深度限量 5.5~9mm线材的表面缺陷深度限量,mm 线材的表面氧化铁皮越少越好,要求氧化铁皮的总量<10kg/t, 控制高价氧化铁皮(Fe 2O 3 、Fe 3 O 4 )的生成要严格控制终轧温度、吐 丝温度和线材在350℃以上温度停留的时间. 冷拉、冷墩用线材的脱碳层要求 缩孔、夹杂、分层、过烧等都是不允许存在的缺陷。

热轧盘条的质量控制 高速线材轧机生产的热轧盘条的质量通常包括两个方面的内容:一是盘条的尺寸外形,即尺寸精度及外表形貌;二是盘条的内在质量,即化学成分、微观组织和各种性能。前者主要由盘条轧制技术控制,后者除去轧制技术之外,还严重受上游工序的影响。 任何质量控制都要靠严格的完整的质量保证体系,靠工厂工序的保证能力,靠质量控制系统的科学、准确、及时的测量、分析和反馈。高速线材轧机是高度自动化的现代轧钢设备,其质量控制概念也必须着眼于全系统的各个质量环节。为了准确的判断和控制缺陷,首先要把缺陷产生的原因分析清楚,并设法将它控制消灭在最初工序。缺陷的清理或钢材的判废越早,损失越少。 (一)外形尺寸 高速线材轧机精轧机组的精度很高,轧辊质量很好,当速度控制系统灵敏,孔型轧制制度合理,并且调整技术熟练时,它生产的盘条精度可以大大超过老式盘条的精度。 热轧盘条尺寸精度允许的偏差(GB/T14981)

钢材缺陷、产生原因及处理办法

1、圆钢 1.1耳子 棒材表面沿轧制方向的连续条状凸起,肉眼即可辨别。 1.1.1产生原因 主要是轧件在孔型内过充满、导卫安装不正确、钢温低等造成的;过盈充满、减面率过大、辊缝调整不当、入口倒卫偏。 单耳多是由安装不正导致的,双耳多是由K2孔来料大,造成成品到此过充满引起的。 1.1.2解决办法 入口导板要对准孔型,安装牢靠;合理使用坯料,保证各槽钢尺寸及断面形状合格;使用适当的孔型,适当的压下量。 2.1折叠 棒材表面沿轧制方向平直或弯曲的曲线,在横截面呈小角度交角状的缺陷,这种折叠线很长,几乎通向整个产品的纵向,肉眼即可识别。 2.1.1产生原因 由于前道次产生耳子,也可能是其他纵向突起物扎入本体;方坯缺陷处理不当留下的深沟,轧制时可能形成折叠;切分带宽大形成折叠;钢坯质量切分形成折叠。判断是否轧钢原因:是否通条折叠或者连续批次都出现折叠。 2.1.2解决办法 进行适当的轧辊调整,合理使用各槽钢料;正确安装导卫板,对准孔型;

经常检查入口导卫板的磨损情况。 3.1裂纹 顺着轧制方向出现的比较深的连续的线状缺陷,肉眼即可辨别。 3.1.1产生原因 一是由于炼钢连铸坯的原因,一般裂纹内有夹杂物,因为坯料上有未消除的裂纹、皮下气泡、及金属夹杂物等在棒材表面形成裂纹缺陷;二是轧钢原因引起的,主要是加热和冷却制度的影响。在冷却过程中由于组织应力和热应力的原因,加热时,尤其是高碳钢和合金钢的导热性比较差,如果加热过快很容易造成钢坯内外温度不均而产生裂纹。 3.1.2解决办法 控制冷却制度,制定合理的加热制度。 4.1结巴 在棒材表面与棒材本体部分结合或者完全未结合的金属片状层,肉眼即可辨别。 4.1.1产生原因 在成品以前道次轧件上凸起物扎入本体形成;已脱离轧件的金属碎屑扎在轧件表面上形成;前道轧槽有掉肉现象。 4.1.2解决办法 清理坯料上的异物;及时清理导卫上的刮丝。

棒线材轧制新工艺研究

棒线材轧制新工艺研究 【摘要】为了适应市场经济的发展,我国的棒线材轧制技术已经不仅仅是要求产量上的提高,更在轧制的质量和成本的控制上有了更高的要求。棒线材的轧制技术在不断发展,本文围绕棒线材轧制的新技术、新工艺展开研究,讨论新技术的发展和应用,以提高生产效率,获得更大的经济利益。 【关键词】棒线材;无头轧制技术;低温轧制技术;高精度轧制 市场经济的飞速发展,钢铁工业也在不断的发展和进步,激烈的市场竞争使得棒线材轧制的生产制造从仅仅要求产量要满足市场需求,更在轧制的质量、精度上有更高的要求,同时还要充分考虑商品附加值的问题,从而获得更高的经济效益。企业要在激烈的市场竞争中提高自身的市场竞争力,对棒线材轧制的生产设备和技术进行更新换代是十分必要的。企业要勇于引进新设备,使用新技术和新工艺,这对加快企业的科技进步,提高生产效益具有重要意义。 1、线棒材轧制技术的发展 20世纪中期,线棒材的生产发展迅速,其生产技术的发展方向是高速性和连续性。以美国摩根公司的两辊水平式轧机和德国施曼公司的平、立交替轧机为代表。在20世纪60年代,微张力精轧机的开发,和散卷冷却技术的产生促进了高速线材轧机的诞生。现今轧制技术发展迅速,高精度轧制和低温轧制逐渐发展起来。控冷技术的发展,使中高碳钢的力学性能不断的发展进步。在线棒材轧制方面逐步将计算机控制应用其中,从而实现了高速高稳定的轧制。日渐激烈的市场竞争对棒线材产品质量有了更高的要求,棒线材生产企业要提高自身的市场竞争力,就要在棒线材的生产进行全方面的革新,无论从生产设备上、生产技术还是生产工艺方面,都要进行更新和改进。企业加大了设备投入和技术研发的力度,新的生产设备和生产技术应运而生。棒线材的轧制从单方面的追求高产量逐渐向产品高产量、高质量和高产品附加值的方向发展。面对新的经济形势,企业对棒线材的轧制,要保证其高精度,对产品的组织结构和表面质量都要满足性能的要求;面对市场日新月异的变化,随时能够对钢种及其规格的工艺进行更换;生产的产品覆盖范围广泛,技术上能够满足高附加值产品的开发需要;在生产效率和经济效益方面能够不断的开发新技术,满足不断发展的市场变化。 2、棒线材轧制的新工艺 2.1无头轧制技术 (1)焊接无头轧制EWR技术 焊接无头轧制EWR技术适用于长材的轧制,我国第一家适用改轧制技术的唐钢棒材厂,之后我国其他钢铁公司也先后订购了该设备。闪光焊机在加热工序设定之后由计算机对焊接过程进行控制,并在轧钢自动化系统中将焊接的过程纳

六西格玛管理及案例分析

六西格玛管理及案例分析 邵梦晨 摘要:此文从六西格玛的定义,起源,以及在现代企业生产运营中六西格玛管理理论是如何运用的,运用此项管理又有何好处,并通过案例分析,深入了解六西格玛理论。 关键词:六西格玛,6σ管理,武钢 (一)前言 在此论文中,我要研究的是六西格玛理论。它的定义,起源以及在当代企业中的运用。六西格玛(Six Sigma)六西格玛又称:6σ,6Sigma,6Σ西格玛(Σ,σ)[1][2]是希腊文的字母,是用来衡量一个总数里标准误差的统计单位。 其含义引申后是指:一般企业的瑕疵率大约是3到4个西格玛,以4西格玛而言,相当于每一百万个机会里,有6210次误差。如果企业不断追求品质改进,达到6西格玛的程度,绩效就几近于完美地达成顾客要求,在一百万个机会里,只找得出3.4个瑕疪。 六西格玛(6σ)概念作为品质管理概念,最早是由摩托罗拉公司的比尔·史密斯于1986年提出,其目的是设计一个目标:在生产过程中降低产品及流程的缺陷次数,防止产品变异,提升品质。 随着实践的经验积累,它已经从单纯的一个流程优化概念,衍生成为一种管理哲学思想。它不仅仅是一个衡量业务流程能力的标准,不仅仅是一套业务流程不断优化的方法。 (二)、文献综述 六西格玛真正流行并发展起来,是在通用电气公司的实践,即20世纪90年代发展起来的6σ(西格玛)管理是在总结了全面质量管理的成功经验,提炼了其中流程管理技巧的精华和最行之有效的方法,成为一种提高企业业绩与竞争力的管理模式。该管理法在摩托罗拉、通用电气、戴尔、惠普、西门子、索尼、东芝等众多跨国企业的实践证明是卓有成效的。为此,国内一些部门和机构在国内企业大力推6σ管理工作,引导企业开展6σ管理。 6σ管理法是一种统计评估法,核心是追求零缺陷生产,防范产品责任风险,降低成本,提高生产率和市场占有率,提高顾客满意度和忠诚度。6σ管理既着眼于产品、服务质量,又关注过程的改进。“σ”是希腊文的一个字母,在统计学上用来表示标准偏差值,用以描述总体中的个体离均值的偏离程度,测量出的σ表征着诸如单位缺陷、百万缺陷或错误的概率性,σ值越大,缺陷或错误就越少。6σ是一个目标,这个质量水平意味的是所有的过程和结果中,99.99966% 是无缺陷的,也就是说,做100万件事情,其中只有3.4件是有缺陷的,这几乎趋近到人类能够达到的最为完美的境界。6σ管理关注过程,特别是企业为市场和顾客提供价值的核心过程。因为过程能力用σ来度量后,σ越大,过程的波动越小,过程以最低的成本损失、最短的时间周期、满足顾客要求的能力就越强。6σ理论认为,大多数企业在3σ~4σ间运转,也就是说每百万次操作失误在6210~66800之间,这些缺陷要求经营者以销售额在15%~30%的资金进行事后的弥补或修正,而如果做到6σ,事后弥补的资金将降低到约为销售额的5%。 为了达到6σ,首先要制定标准,在管理中随时跟踪考核操作与标准的偏差,不断改进,最终达到6σ。现己形成一套使每个环节不断改进的简单的流程模式:界定、

高速线材表面质量缺陷的产生原因及排除方法

高速线材表面质量缺陷的产生原因及排除方法 摘要:对高速线材常见表面质量缺陷裂纹、折叠、耳子、划痕等进行了原因分析,并提出了相应排除方法。 关键词:高速线材、表面质量缺陷、原因分析、排除方法。 概述:在高速线材的生产中,成品的表面缺陷是影响产品质量的一个重要因素,其大致有以下几种:裂纹、折叠、耳子、划痕、碳化钨辊环的破裂和掉肉、麻面、结疤(翘皮或鳞皮)。 2原因分析及排除方法 2.1裂纹 裂纹是指线材表面沿轧制方向有平直或弯曲、折曲,或以一定角度向线材内部渗透的缺陷。裂纹长度和深度不同,在线材的长度方向上都能发现。有的裂纹内有夹杂物,两侧也有脱碳现象。 2.1.1线材表面产生裂纹的主要原因在于钢坯上未消除的裂纹(无论纵向或横向)、皮下气泡及非金属夹杂物都会在线材表面造成裂纹。连铸坯上的针孔如不消除,经轧制被延伸、氧化、溶解就会造成成品的线状发纹。针孔是连铸坯的重要缺陷之一,不显露时很难检查出来,应特别予以注意。高碳钢线材轧制后冷却速度过快,也可能造成成品裂纹,后者还能出现横向裂纹。轧后控冷不当形成的裂纹无脱碳现象伴生,裂纹中一般无氧化铁皮。另外坯料清理不好也会产生此类问题。轧制过程中形成裂纹的原因主要有以下几点: (1)轧槽不合适,主要是尖角和轧槽尺寸有问题。 (2)轧槽表面太粗糙或损坏。 (3)粗轧前几道导卫的划伤。 (4)粗大的氧化铁皮轧进轧件表面及内部,而且这通常在粗轧前几道产生。 (5)导卫使用不当主要是尺寸太大。 2.1.2若产生裂纹,应从以下几方面进行检查,排除故障: (1)高压水除鳞是否正常工作,是否某架轧机轧辊的冷却水路被堵塞或偏离轧槽。 (2)导卫是否偏离轧制线,有无氧化铁皮堵塞在某个导卫中。

钢在轧制中常见的缺陷总结

钢在轧制中常见的缺陷总结

结疤型钢表面上的疤状金属薄块。其大小、深浅不等,外形极不 规则,常呈指甲状、鱼鳞状、块状、舌头状无规律地分布在 钢材表面上,结疤下常有非金属夹杂物。 由于钢坯未清理,使原有的结疤轧后 仍残留在钢材表面上。 表面夹杂暴露在钢材表面上的非金属物质称为表面夹杂,一般呈 点状、块状和条状分布,其颜色有暗红、淡黄、灰白等,机 械的粘结在型钢表面上,夹杂脱落后出现一定深度的凹坑, 其大小、形状无一定规律。 (1)钢坯带来的表面非金属夹杂物。 (2)在加热或轧制过程中,偶然有非 金属夹杂韧(如加热炉的耐火材料及 炉渣等),炉附在钢坯表面上,轧制 时被压入钢材,冷却经矫直后部分脱 落 分层此缺陷在型钢的锯切断面上呈黑线或黑带状,严重的分离成 两层或多层,分层处伴随有夹杂物。 (1)主要是由于镇静钢的缩孔或沸腾 钢的气囊未切净。 (2)钢坯的皮下气泡,严重疏松,在 轧制时未焊台,严重的夹杂物也会造 成分层。 (3)钢坯的化学成份偏析严重,当轧 制较薄规格时,也可能形成分层。 气泡(凸包)型钢表面呈现的一种无规律分布的园形凸起称为凸包,凸起 部分的外缘比较园滑,凸包破裂后成鸡爪形裂口或舌形结 疤,叫气泡。多产生于型钢的角部及腿尖。 钢坯有皮下气泡,轧制时未焊合。 裂纹顺轧制方向出现在型钢表面上的线形开裂,一般呈直线形, 有时呈“Y”形,多为通长出现,有时局部出现。 (1)钢坯有裂缝或皮下气泡、非金属 夹杂物,经轧制破裂暴露。 (2)加热温度不均匀,温度过低,轧 件在轧制时各部延伸与宽展不一 致。 (3)加热速度过快、炉尾温度过高或 轧制后冷却不当,易形成裂纹, 情况多发生在高碳钢和低合金钢

高速线材在轧制过程中堆钢事故的分析与处理.

高速线材在轧制过程中堆钢事故的分析与处理 孙东海 (辽宁省本溪市北台钢铁集团北方高速线材 117000)摘要:高速线材在轧制过程中有时会发生堆钢现象,对线材产品的成材率和生产效率都有较大的影响。堆钢的种类有:直观性堆钢、多样性堆钢和复杂性堆钢。结合操作工艺、设备安装等方面对日常生产实践中所碰到的一些堆钢事故进行了分析,找出了堆钢产生的原因,并提出避免堆钢应采取的措施。从而有效控制堆钢事故的发生频率,不仅大大提高了成材率与设备利用系数,而且也提高了生产效率。 关键词:高速线材;堆钢;张力;活套;打滑;甩尾 Analysis and Treatment of Steel-Heaping Accidents In Rolling High Speed Wire Rod Sun dong hai ( Liaoning province,Benxi,beitai Steel Group, North High speed Line material 117000 ) Abstract: The phenomenon of piling-up of steel would happen sometimes while high speed wire rod is being rolled, which would greatly influence the product’s yield and production efficiency. It is pointed out in this article that steel-heaping has many forms, such as intuitionist one, multiplex one and complicated one. In combination with the operation process, equipment installation, etc., some steel-heaping accidents in daily production were analyzed, causes of steel-heaping were found out, measures taken to avert steel-heaping were put forward, and the frequency at which steel-heaping takes place were controlled effectively .All these greatly improve product’s yield, equipment utilization coefficient and productivity. Keywords: high speed wire rod;steel-heaping;tension;loop;slipping;tail-discarding 0 前言 二高线生产线主要轧制规格范围为:ф5.5—ф16mm光面高速线材,?8—?12mm螺纹高速线材。规格跨度大、钢种范围广。从目前的生产状态分析,?≤6.5mm的小规格线材产品,由于断面尺寸小、轧制速度快、轧制稳定性较差等原因,与中大规格相比,堆钢事故的发生率一直较高;而对于?>6.5mm的中大规格线材,在开轧稳定之后,中间过程产生堆钢事故的几率很小,大规格线材轧制需要注意的是高速区爆辊环事故的发生。本文分析了高速线材生产过程中一些典型堆钢事故的产生原因,并提出减少堆钢事故的相应控制措施。 1 线材的轧制工艺流程布置简图 线材的轧制工艺流程布置见图1。 轧件通过1H前的夹送辊顺利咬入1H后,依靠轧机的动力继续前进,经过粗轧机组轧制、S6飞剪切头切尾、中轧机组轧制、S12飞剪切头切尾、预精轧机组轧制、S18飞剪切头、精轧机组及减定径机组轧制后,一直到达夹送辊使轧件进入吐丝机并吐丝成圈。 2 堆钢事故的种类 在解决堆钢事故时,正确判断并分析堆钢的产生原因是非常重要的。准确地判断可以及时解决问题并避免以后重蹈覆辙。但是在实际生产中,由于影响因素的多样性,快速准 孙东海,男,无,无,从事轧钢,naihaihan@https://www.sodocs.net/doc/001505910.html,

相关主题