搜档网
当前位置:搜档网 › 概率论与数理统计课程报告:泊松分布及其在实际中的应用

概率论与数理统计课程报告:泊松分布及其在实际中的应用

概率论与数理统计课程报告:泊松分布及其在实际中的应用
概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用

摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变

泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识

1.1定义:

(1)若随机变量X 的分布列为 ),

?=>=

=-,2,1,0(0,!

)(k k e k X P k λλλ

则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。

(2)泊松流:

随机质点流:随机现象中源源不断出现的随机质点构成的序列。

若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质

(1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有

1!

!

)(0

=?====-∞

=-∞=∞

=-∑∑∑

λλλ

λ

λλe e k e

k e k X P k k

k o

k k .

(2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ.

(3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则

λλ--→

-e k p p C k

k

n k k n

!

)

1(对于k=0,1,2,…一致成立。

由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式

λλ--→

-=e k p p C k P k

k

n k k n

n !

)

1()(

2泊松分布的应用

对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。

以下具体举例说明泊松分布在实际中的重要应用。

(1)泊松分布在经济生活中的应用:

泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

货船期的调度等等都需要用到泊松分布。

例1:下面讨论一个泊松分布在商场现代化管理中的应用。

某商场一天内来的顾客数、一天内顾客购买的商品数等均服从或近似服从泊松分布 实例:若商场一天内来k 个顾客的概率服从参数为λ的泊松分布,而且每个到达商场的顾客购买商品是独立的,其概率为p 。

讨论一天内有顾客买东西的概率

设k A =“商场一天内来k 个顾客”(0,1,…r ,…),B=“商场一天内有r 个顾客购买商品”, 则!

)(k e A P k k λ

λ-=(k=0,1,…,r ,…); P(r k r

r k k p p C B A --=)1()|(k=r,…)

=

-==--∞

=∞=∑

∑r k r r k k r

k k k k p p C k e A B P A P B P )1(!

)|()()(0

λ

λ=-=

+-=+-=-+∑∑∑∑∞

=-∞

=+-∞

=-++∞

=-+0000

!)]1([!)()!()]1([)()!()]1([)()1()!(i i

r i i r r i r i i r r r i i

r

r

r

i i r l i p r e p r i P C e p r i e p p C p P C

r i e λλλλλλλλλ

λλ

!

)(!)()1(r e p e r e p p

r p r λλλλλ---=

讨论一天内买东西的顾客数的数学期望:

设商场内一天购买东西的顾客为X ,则!

)()(r e p r X P p

r λλ-==,(r=0,1,…),

即X ~)(p P λ,所以p X E λ=)(,所以商场一天内购买商品的平均顾客数为:p λ.

例2:接下来讨论泊松分布在事故发生预测的应用。

通过某路口的每辆汽车发生事故的概率为p =0.0001,假设在某路段时间内有1000辆汽车通过此路口,则求在此时间段内发生事故次数X 的概率分布。

通过路口的1000辆汽车发生事故与否,可以看成n =1000次伯努利试验,所以X 服从二项分布,由于n =1000很大,且p =0.0001很小,且np =0.1,所以X 服从泊松分布,

),,1,0(!

)

1()(n m e m np p p C m X P np m m

n m n

m n =≈-==--。 此段时间内发生2次以上事故的概率为:

0045.0!

11.0!01.01)2(1

.01.00=--=≥--e e x P

(2)泊松分布在生物学中的应用:

在生物学研究中, 服从泊松分布的随机变量是常见的,如每升饮水中大肠杆菌数, 计数器小方格中血球数, 单位空间中某些野生动物或昆虫数等都是服从泊松分布的。泊松分布在生物学领域中有着广阔的应用前景,对生物学中所涉及到的概率研究起到了重要的指导作用。

例:泊松分布在估计一个基因文库所需克隆数中的应用 判断基因克隆过程的分布情况:由于基因组DNA 是从大量细胞中提取的, 每个细胞中均含有全部基因组DNA, 那么每一种限制性片段的数目是大量的, 因此可以说各限制性片段的数目是相等的。在基因克隆中,基因组DNA 用限制性酶切割后与载体混合反应以及随后的过程均是随机的生化反应过程。一, 对克隆来说一限制性片段要么被克隆、要么不被克隆, 只有这两种结果;第二, 由于总体限制性片段是大量的, 被克隆的对总体影响很小; 第三, 在克隆中一片段被克隆的概率为f( f 较小) , 不被克隆的概率为1- ,f 且克隆时这两种概率都不变。综上所述, 基因克隆过程符合泊松分布。

设p 为基因被克隆的概率; N 为要求的克隆的概率为p 时一个基因文库所需含有重组DNA 的克隆数; f 为限制性片段的平均长度与基因组DNA 总长度之比, 若基因组DNA 被限制性酶切割成n 个DNA 片段,f 即

n

1

。则在克隆数为N 时,任一段被克隆一次或一次以上的概率为Nf e p p --=-=1)0(1,可推出

f

p N )

1ln(-=

,一般要求目的基因序列出现的概率p 的期望值定为99%,那么n n p n N 4605)99.01ln()1ln(

=--=--=。 在分子生物学中,上述一个完整的基因文库所需克隆数的估计对基因克隆实验方案的设

计具有重要意义。

(3)泊松分布在物理学中的应用:

泊松分布在物理学中的应用十分广泛,如热电子的放射,某些激光场的分布等等都服从泊松分布。 例:

对某一放射性物质而言, 各相邻原子群体之间, 其中一个原子核的衰变, 对相邻的原子核而言, 可视为外界的变化, 而这种外界的变化, 不会影响相邻原子核的衰变过程。即在某一放射性物质中, 各个原子核的衰变过程, 互不影响, 相互独立。因此衰变过程满足独立性。

放射性原子核的衰变过程是一个相互彼此无关的过程,所以放射性原子核衰变的统计计数可以看成是一种伯努利试验问题。若在一个原子核体系中,单位时间原子核发生衰变的概率为t

e

p λ--=1,则没有发生衰变的概率为t

e

p q λ-=-=1。由二项分布得到,在t 时间内

的核衰变数为n 的概率为n

N n N N p p C n P --=00

)1()(。 (1)

由于在放射性衰变中,原子核数目0N 很大,而p 相对很小,并且满足1<

上式可以近似化为泊松分布,因为此时00N p N m <<=,对于m 附近的n 值可得到:

000

)()1()1()2)(1(0

0000pN n N p n N n

n N e e p N n N N N N C ----=≈-≈+---=

带入(1)式中得到:0!

)(0pN n n

e p n N n p -=

令p N m 0=,得到:m

n e n m n p -=!

)(,即为泊松分布。并且有m m n E ==2,)(σ。

综上,泊松分布作为概率论中最重要的几个分布之一,具有很多特殊的性质和作用,在实际中有着广泛的应用。通过此次对泊松分布的性质及其应用的讨论,我深刻体会到,我们在学习概率论与数理统计这门课的过程中,不仅要注重相关公式的推导和理解,更要学会了解相关知识在现实生活和其他学科中的应用。

参考文献:

【1】王勇,田波平.概率论与数理统计.北京:科学出版社. 【2】赵瑛.关于泊松分布及其应用.辽宁省交通高等专科学校学报. 【3】庄军,林奇英.泊松分布在生物学中的应用.激光生物学报

spss多元回归分析报告案例

企业管理 对居民消费率影响因素的探究 ---以湖北省为例 改革开放以来,我国经济始终保持着高速增长的趋势,三十多年间综合国力得到显著增强,但我国居民消费率一直偏低,甚至一直有下降的趋势。居民消费率的偏低必然会导致我国内需的不足,进而会影响我国经济的长期健康发展。 本模型以湖北省1995年-2010年数据为例,探究各因素对居民消费率的影响及多元关系。(注:计算我国居民的消费率,用居民的人均消费除以人均GDP,得到居民的消费率)。通常来说,影响居民消费率的因素是多方面的,如:居民总 收入,人均GDP,人口结构状况1(儿童抚养系数,老年抚养系数),居民消费价格指数增长率等因素。 1.人口年龄结构一种比较精准的描述是:儿童抚养系数(0-14岁人口与 15-64岁人口的比值)、老年抚养系数(65岁及以上人口与15-64岁人口的比值〉或总抚养系数(儿童和老年抚养系数之和)。0-14岁人口比例与65岁及以上人口比例可由《湖北省统计年鉴》查得。

一、计量经济模型分析 (一)、数据搜集 根据以上分析,本模型在影响居民消费率因素中引入6个解释变量。X1:居民总收入(亿元),X2:人口增长率(‰),X3:居民消费价格指数增长率,X4:少儿抚养系数,X5:老年抚养系数,X6:居民消费占收入比重(%)。 Y:消费率(%)X1:总收入 (亿元) X2:人口增 长率(‰) X3:居民消 费价格指 数增长率 X4:少儿抚 养系数 X5:老年抚 养系数 X6:居民消 费比重(%) 1995 1997 200039 2001 2002 2003 2004 2005 2006 2007 2008 2009

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

应用数理统计课后习题参考答案

习题五 1 试检验不同日期生产的钢锭的平均重量有无显著差异?(=0.05) 解 根据问题,因素A 表示日期,试验指标为钢锭重量,水平为5. 假设样本观测值(1,2,3,4)ij y j =来源于正态总体2 ~(,),1,2,...,5i i Y N i μσ= . 检验的问题:01251:,:i H H μμμμ===不全相等 . 计算结果: 表5.1 单因素方差分析表 ‘*’ . 查表0.95(4,15) 3.06F =,因为0.953.9496(4,15)F F =>,或p = 0.02199<0.05, 所以拒绝0H ,认为不同日期生产的钢锭的平均重量有显著差异. 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 试检验在四种不同催化剂下平均得率有无显著差异?(=0.05) 解 根据问题,设因素A 表示催化剂,试验指标为化工产品的得率,水平为4 . 假设样本观测值(1,2,...,)ij i y j n =来源于正态总体2 ~(,),1,2,...,5i i Y N i μσ= .其中

样本容量不等,i n 分别取值为6,5,3,4 . 检验的问题:012341:,:i H H μμμμμ===不全相等 . 计算结果: 表5.2 单因素方差分析表 查表0.95(3,14) 3.34F =,因为0.952.4264(3,14)F F =<,或p = 0.1089 > 0.05, 所以接受0H ,认为在四种不同催化剂下平均得率无显著差异 . 3 试验某种钢的冲击值(kg ×m/cm2),影响该指标的因素有两个,一是含铜量A , 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异?(=0.05) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用. 设因素,A B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为12. 假设样本观测值(1,2,3,1,2,3,4)ij y i j ==来源于正态总体2 ~(,),1,2,3,ij ij Y N i μσ= 1,2,3,4j = .记i α?为对应于i A 的主效应;记j β?为对应于j B 的主效应; 检验的问题:(1)10:i H α?全部等于零,11 :i H α?不全等于零; (2)20:j H β?全部等于零,21:j H β?不全等于零; 计算结果: 表5.3 双因素无重复试验的方差分析表 查表0.95(2,6) 5.143F =,0.95(3,6) 4.757F =,显然计算值,A B F F 分别大于查表值, 或p = 0.0005,0.0009 均显著小于0.05,所以拒绝1020,H H ,认为含铜量和试验温度都会对钢的冲击值产生显著影响作用. 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量:

线性回归方程分析报告

环球雅思学科教师辅导讲义讲义编号:组长签字:签字日期:

所以将(176,176)代入A 、B 、C 、D 中检验知选C. 答案 C 3.(2011·陕西)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的 n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是 ( ). A .x 和y 的相关系数为直线l 的斜率 B .x 和y 的相关系数在0到1之间 C .当n 为偶数时,分布在l 两侧的样本点的个数一定相同 D .直线l 过点(x -,y - ) 解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的 绝对值越接近1,两个变量的线性相关程度越强,所以A 、B 错误.C 中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以C 错误.根据回 归直线方程一定经过样本中心点可知D 正确,所以选D. 答案 D 4.(2011·广东)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系: 时间x 1 2 3 4 5 命中率y 0.4 0.5 0.6 0.6 0.4 小李这5天的平均投篮命中率为________;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为________. 解析 小李这5天的平均投篮命中率 y - = 0.4+0.5+0.6+0.6+0.4 5 =0.5, 可求得小李这5天的平均打篮球时间x -=3.根据表中数据可求得b ^=0.01,a ^ = 0.47,故回归直线方程为y ^ =0.47+0.01x ,将x =6代入得6号打6小时篮球的 投篮命中率约为0.53. 答案 0.5 0.53 5.(2011·辽宁)调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入 x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:y ^ =0.254x +0.321.由回归 直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元. 解析 由题意知[0.254(x +1)+0.321]-(0.254x +0.321)=0.254. 答案 0.254

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

概率论与数理统计课程教学大纲

概率论与数理统计课程教学大纲 一、课程说明 (一)课程名称:概率论与数理统计 所属专业:物理学 课程性质:必修 学分:3 (二)课程简介、目标与任务; 《概率论与数理统计》是研究随机现象规律性的一门学科;它有着深刻的实际背景,在自然科学、社会科学、工程技术、军事和工农业生产等领域中有广泛的应用。通过本课程的学习,使学生掌握概率与数理统计的基本概念,并在一定程度上掌握概率论认识问题、解决问题的方法。同时这门课程的学习对培养学生的逻辑思维能力、分析解决问题能力也会起到一定的作用。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 先修课程:高等数学。后续相关课程:统计物理。《概率论与数理统计》需要用到高等数学中的微积分、级数、极限等数学知识与计算方法。它又为统计物理、量子力学等课程提供了数学基础,起了重要作用。 (四)教材与主要参考书。 教材: 同济大学数学系编,工程数学–概率统计简明教程(第二版),高等教 育出版社,2012. 主要参考书: 1.浙江大学盛骤,谢式千,潘承毅编,概率论与数理统计(第四版), 高等教育出版社,2008. 2.J.L. Devore, Probability and Statistics(fifth ed.)概率论与数 理统计(第5版)影印版,高等教育出版社,2004. 二、课程内容与安排 第一章随机事件 1.1 样本空间和随机事件; 1.2 事件关系和运算。

第二章事件的概率 2.1概率的概念;2.2 古典概型;2.3几何概型;2.4 概率的公理化定义。第三章条件概率与事件的独立性 3.1 条件概率; 3.2 全概率公式; 3.3贝叶斯公式;3.4 事件的独立性; 3.5 伯努利试验和二项概率。 第四章随机变量及其分布 4.1 随机变量及分布函数;4.2离散型随机变量;4.3连续型随机变量。 第五章二维随机变量及其分布 5.1 二维随机变量及分布函数;5.2 二维离散型随机变量;5.3 二维连续随机变量;5.4 边缘分布; 5.5随机变量的独立性。 第六章随机变量的函数及其分布 6.1 一维随机变量的函数及其分布;6.2 多元随机变量的函数的分布。 第七章随机变量的数字特征 7.1数学期望与中位数; 7.2 方差和标准差; 7.3协方差和相关系数; *7.4大数律; 7.5中心极限定理。 第八章统计量和抽样分布 8.1统计与统计学;8.2统计量;8.3抽样分布。 第九章点估计

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第六章 随机变量数字特征 一.填空题 1. 若随机变量X 的概率函数为 1 .03.03.01.02.04 3211p X -,则 =≤)2(X P ;=>)3(X P ;=>=)04(X X P . 2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413 ≈--e . 3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=?==-k c k X P k 则=c 15 16 . 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB 6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.( 13 ) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.( 12 ) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __. (k 3 3(=,0,1,2k! P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为1 40000 λ=的指数分布,则此种电器的平 均使用寿命为____________小时.(40000) 10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为 11.若随机变量X 的概率密度为)(,1)(2 +∞<<-∞+= x x a x f ,则=a π1 ;=>)0(X P ;==)0(X P 0 . 12.若随机变量)1,1(~-U X ,则X 的概率密度为 1 (1,1) ()2 x f x ?∈-? =???其它

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 02 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为元,最低的青海省仅为人均元,最高的上海市达人均元,上海是黑龙江的倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在

《概率论与数理统计》课程教学大纲

《概率论与数理统计》课程教学大纲 一、课程基本信息 课程编号:450006 课程名称:概率论与数理统计 课程类别:公共基础课(必修) 学时学分:理论48学时/3学分 适用专业:计算机、自动化、经管各专业 开课学期:第一学期 先修课程:高等数学 后续课程: 执笔人: 审核人: 制(修)订时间:2015.9 二、课程性质与任务 概率论与数理统计是研究随机现象客观规律性的数学学科,是高等学校理、工、管理类本科各专业的一门重要的基础理论课。通过本课程的教学,应使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机事件的基本思想和方法,培养学生运用概率统计方法分析和解决实际问题的能力。 三、课程教学基本要求 本课程以课堂讲授为主,致力于讲清楚基本的概率统计思想,使学生掌握基本的概率、统计计算方法。注意培养基本运算能力、分析问题和解决实际问题的能力。讲授中运用实例来说明本课程应用的广泛性和重要性。每节课布置适量的习题以巩固所学知识,使学生能够运用概率统计思想和方法解决一些实际问题。 四、课程教学内容及各教学环节要求 (一)概率论的基本概念

1、教学目的 理解随机现象、样本空间、随机事件、概率等概念,掌握事件的关系与运算,掌握古典概犁及其计算、条件概率的计算、全概率公式和贝叶斯公式的应用。 2、教学重点与难点 (1)教学重点 ① 概率、条件概率与独立性的概念; ② 加法公式;乘法公式;全概率公式;贝叶斯公式。 (2)教学难点 ① 古典概型的有关计算;② 全概率公式的应用; ③ 贝叶斯公式的应用。 3、教学方法 采用传统教学方式,以课堂讲授为主,课堂讨论、多媒体演示、课下辅导等为辅的教学方法。加强互动教学,学生对课程的某一学术问题通过检索资料、实际调查来提高自学能力和实践应用能力。 4、教学要求 (1)理解随机试验、样本空间、随机事件等基本概念;熟练掌握事件的关系及运算 (2)理解频率和概率定义;熟练掌握概率的基本性质 (3)理解等可能概型的定义性质;,会计算等可能概型的概率 (4)理解条件概率的定义;熟练掌握加法公式、乘法公式、全概率公式和贝叶斯公式(5)理解事件独立性概念,掌握应用独立性进行概率计算 (二)随机变量及其分布 1、教学目的 了解随机变量的概念;理解离散型随机变量的分布律和连续型随机变量的概率密度的概念及性质,会利用性质确定分布律和概率密度;理解分布函数的概念及性质,会利用此概念和性质确定分布函数,会利用概率分布计算有关事件的概率;掌握正态分布、均匀分布、指数分布、0-1分布、二项分布、泊松分布,会求简单的随机变量函数的分布 2、教学重点与难点 (1)教学重点 ① 随机变量及其概率分布的概念; ② 离散型随机变量分布律的求法;

回归分析报告报告材料地优缺点等

21、回归分析法有何优点?在使用该法时,应注意哪些问题? 答:优点:1、回归分析法在分析多因素模型时,更加简单和方便;2、运用回归模型,只要采用的模型和数据相同,通过标准的统计方法可以计算出唯一的结果,但在图和表的形式中,数据之间关系的解释往往因人而异,不同分析者画出的拟合曲线很可能也是不一样的;3、回归分析可以准确地计量各个因素之间的相关程度与回归拟合程度的高低,提高预测方程式的效果;在回归分析法时,由于实际一个变量仅受单个因素的影响的情况极少,要注意模式的适合范围,所以一元回归分析法适用确实存在一个对因变量影响作用明显高于其他因素的变量是使用。多元回归分析法比较适用于实际经济问题,受多因素综合影响时使用。 缺点: 有时候在回归分析中,选用何种因子和该因子采用何种表达 式只是一种推测,这影响了用电因子的多样性和某些因子的不可测性,使得回归分析在某些 情况下受到限制。

支持向量机能非常成功地处理回归问题(时间序列分析)和模式识别(分类问题、判别分析)等诸多问题,并可推广于预测和综合评价等领域,因此可应用于理科、工科和管理等多种学科.目前国际上支持向量机在理论研究和实际应用两方面都正处于飞速发展阶段 两个不足: (1) SVM算法对大规模训练样本难以实施 由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。针对以上问题的主要改进有有J.Platt的SMO算法、

T.Joachims的SVM、C.J.C.Burges等的PCGC、张学工的CSVM以及 O.L.Mangasarian等的SOR算法 (2) 用SVM解决多分类问题存在困难 经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。主要有一对多组合模式、一对一组合模式和SVM决策树;再就是通过构造多个分类器的组合来解决。主要原理是克服SVM固有的缺点,结合其他算法的优势,解决多类问题的分类精度。如:与粗集理论结合,形成一种优势互补的多类问题的组合分类器。

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

(完整版)概率论与数理统计课程标准

《概率论与数理统计》课程标准 一、课程概述 (一)课程定位 《概率论与数理统计》(Probability Theory and Mathematical Statistics),由概率论和数理统计两部分组成。它是研究随机现象并找出其统计规律的一门学科,是广泛应用于社会、经济、科学等各个领域的定量和定性分析的科学体系。从学科性质讲,它是一门基础性学科,它为建筑专业学生后继专业课程的学习提供方法论的指导。 (二)先修后续课程 《概率论与数理统计》的先修课程为《高等数学》、《线性代数》等,这些课程为本课程的学习奠定了理论基础。 《概率论与数理统计》的后续课程为《混凝土结构设计》、《地基与基础》等课程。通过该课程的学习可为这些课程中的模型建立等内容的知识学习奠定良好的基础,在教学中起到了承上启下的作用。 二.课程设计思路 本课程的基本设计思路是极力用较为通俗的语言阐释概率论的基本理论和数理统计思想方法;理论和方法相结合,以强调数理统计理论的应用价值。总之,强调理论与实际应用相结合的特点,力求在实际应用方面做些有益的探索,也为其它学科的

进一步学习打下一个良好的基础。 三、课程目标 《概率论与数理统计》是一门几乎遍及所有的科学技术领域以及工农业生产和国民经济各部门之中。通过学习该课程使学生掌握概率、统计的基本概念,熟悉数据处理、数据分析、数据推断的各种基本方法,并能用所掌握的方法具体解决工程实践中所遇到的各种问题。 (一)能力目标 力求在简洁的基础上使学生能从整体上了解和掌握该课程的内容体系,使学生能够在实际工作中、其它学科的学习中能灵活、自如地应用这些理论。 (二)知识目标 1.理解掌握概率论中的相关概念和公式定理; 2.学会应用概率论的知识解决一些基本的概率计算; 3.理解数理统计的基本思想和解决实际问题的方法。 (三)素质目标 1.培养学生乐于观察、分析、不断创新的精神; 2.培养具有较好的逻辑思维、较强的计划、组织和协调能力; 3.培养具有认真、细致严谨的职业能力。 四、课程内容 根据能力培养目标的要求,本课程的主要内容是随机事件、随机变量、随机向量、数字特征、极限定理。具体内容和学时分配见表4-1。 表4-1 课程内容和学时分配

应用数理统计课程小论文数据,结果,分析过程

1 聚类分析 我们利用Matlab6.5中的cluster 命令实现,具体程序如下 x={ {n,m}=size(x); Stdr=std(x); xx=x./stdr(ones(n,1),;); % 标准化变换 y=pdist(xx); %计算各样本间距离(这里为欧氏距离) z=linkage(y); %进行聚类(这里为最短距离法) h=dendrogram(z); %画聚类谱系图 t=cluster(z,3) % 将全部样本分为3类 find(t==2); %找出属于第2类的样品编号 执行后得到所要结果 聚类谱系图见图1 t={3,1,3,1,1,2,2} 即全部样本分为3类。结果见表1 从图 1可以看出:七条河流中, 二干河、横套河、四干河属于一类, 污染 较重, 主要是CODmn 、BOD5超标多; 华妙河、盐铁塘属于一类, 污染一般, 主要是氨氮、石油类超标; 张家港河、东横河属于一类,污染较轻, 总的来说,各河流都存在不同程度的污染,因此全市应对各河流严格监督管理, 着力实施水污染防治工作, 太湖流域水污染源应限期治理达标排放, 巩固水污染防治工作成果,加大投入,新建或改、 扩建废水治理工程, 确保达标排放。 3.14 5.47 3.1 5.67 6.81 6.21 4.87 8.41 9.57 4.31 9.54 9.05 7.08 8.97 23.78 26.48 21.2 10.23 16.18 21.05 26.54 25.79 23.79 22.48 20.87 24.56 31.56 34.56 4.17 6.42 5.34 4.2 5.2 6.15 5.58 6.47 5.58 6.54 6.8 5.45 8.21 8.07 }

《概率论与数理统计》课程重点与难点要记

《概率论与数理统计》课程重点与难点要记 第一章:随机事件及其概率 题型一:古典概型 1.房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,求最小号码为5的概率,及最大号码是5的概率。 2.设袋中有5个白球,3个黑球,从袋中随机摸取4个球,分别求出下列事件的概率: 1)采用有放回的方式摸球,则四球中至少有1个白球的概率; 2)采用无放回的方式摸球,则四球中有1个白球的概率。 3.一盒子中有10件产品,其中4件次品,每次随机地取一只进行检验, 1)求第二次检验到次品的概率; 2)求第二才次检验到次品的概率。 4.在1-2000的整数中随机的取一个数,问取到的整数既不能被6整除,又不能被8整除 的概率是多少?(合理的设置事件,通过概率的性质解题也很重要) 课后习题:P16:2,3,4,5, 7,9,10,11,12,13,14 P30:8,9,10,16 题型二:利用条件概率、乘法公式及事件的独立性计算事件的概率 1。3人独立去破译一个密码,他们能译出的概率分别为1/5、1/4、1/3,问能将此密码译出的概率。 2。设口袋有2n-1只白球,2n 只黑球,一次取出n 只球,如果已知取出的球都是同一种颜色,试计算该颜色是黑色的概率。 3。设袋中装有a 只红球,b 只白球,每次自袋中任取一只球,观察颜色后放回,并同时放入m 只与所取出的那只同色的球,连续在袋中取球四次,试求第一、第二次取到红球且第三次取到白球,第四次取到红球的概率。 课后习题:P23:1,2,3,4,6,10,11 P28:1,2,4,5,6,7,9,10,12, 13 题型三:全概率与贝叶斯公式 1.在一个每题有4个备选答案的测验中,假设有一个选项是正确的,如果一个学生不知道问题的正确答案,他就作随机选择。知道正确答案的学生占参加测验者的90%,试求: (1)学生回答正确的概率; (2)假如某学生回答此问题正确,那么他是随机猜出的概率。 2.一通讯通道,使用信号“0”和“1”传输信息。以A 记事件收到信号“1”,以B 记事件发出信号“1”。已知()0.4,(/)0.95,(/)0.90P B P A B P A B ===。 1)求收到信号“1”的概率? 2)现已收到信号“1”,求发出信号是“1”的概率? 课后习题:P23:7,8,9,12 P31:19,26,27,28 第二章:随机变量及其分布 题型一:关于基本概念:概率分布律、分布函数、密度函数 1.一房间有三扇同样大小的窗子,其中只有一扇是打开的。有一只鸟自开着的窗子飞入了

Logistic回归分析报告结果解读分析

Logistic 回归分析报告结果解读分析 Logistic 回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。比较常用的情形是分析危险因素与是否发生某疾病相关联。例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是” 或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。自变量既可以是连续变量,也可以为分类变量。通过Logistic 回归分析,就可以大致了解胃癌的危险因素。 Logistic 回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。多元线性回归的因变量为连续变量;Logistic 回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。 1. Logistic 回归的用法 一般而言,Logistic 回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic 回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。 2. 用Logistic回归估计危险度 所谓相对危险度(risk ratio , RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的 比值。Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。如不同性别的

胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,

概率论与数理统计结课论文

概率论与数理统计课程总结报告——概率论与数理统计在日常生活中的应用 姓名: 学号: 专业:电子信息工程

摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与 数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式 基本知识 §1.1 概率的重要性质 1.1.1定义 设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。 概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) 1.1.2 概率的一些重要性质 (i ) 0)(=φP (ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) (iii )设A ,B 是两个事件若B A ?,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -= (逆事件的概率) (vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=?

应用数理统计课后习题参考答案

习题五 1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g) 日期重旦量 1 5500 5800 5740 5710 2 5440 5680 5240 5600 4 5400 5410 5430 5400 9 5640 5700 5660 5700 10 5610 5700 5610 5400 试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05) 解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5. 2 假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5 检验的问题:H。:i 2 L 5, H i : i不全相等. 计算结果: 注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为 查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所 以拒绝H。,认为不同日期生产的钢锭的平均重量有显著差异 2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验 解 根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 . 2 假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .

日产量 操作工 查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。,认为在四种不同催化剂下平均得率无显著差异 3 试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另 一个是温度 试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 ) 解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用 设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12. 2 假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j , ),i 1,2,3, j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应; 检验的问题:(1) H i 。: i 全部等于零,H i — i 不全等于零; (2) H 20 : j 全部等于零,H 21: j 不全等于零; 计算结果: 查表F 0.95(2,6) 5.143 ,局.95(3,6) 4.757 ,显然计算值F A , F B 分别大于查表值, 或p = 0.0005 , 0.0009均显著小于0.05,所以拒绝H i°,H 20,认为含铜量和试验温度 都会对钢的冲击值产生显著影响作用 . 4 下面记录了三位操作工分别在四台不同的机器上操作三天的日产量: 检验的问题:H 0: 1 计算结果: H i : i 不全相等

统计回归分析报告

一、分析 第一步:解:设居住面积为 X1, 房屋税为X2,是否配有游泳池 为X3. 模型为: 第二步:估计参数建立模型 (Analyze Regression Linear) Variables Entered/Removed b 游泳池, 房屋税, 居住面积 a . Enter Model 1 Variables Entered Variables R emov ed Method All requested v ariables entered.a. D ependent Variable: 销售价格 b. Model Summary .885a .783 .691 25.15902 Model 1 R R Square Adjusted R Square Std. Error of the Estimate Predictors: (Constant), 游泳池, 房屋税, 居住面积 a. 0112233?y X X X ββββ=+++

ANOVA b 16028.8013 5342.9348.441.010a 4430.8367632.977 20459.636 10 Regression Residual Total Model 1 Sum of Squares df Mean Square F Sig.Predictors: (Constant), 游泳池, 房屋税, 居住面积a. Dependent Variable: 销售价格 b. Coefficien ts a 12.69831.507.403.6993.529 1.298.532 2.719.03033.85111.617.555 2.914.0239.77017.697 .101 .552.598 (Constant)居住面积房屋税游泳池 Model 1 B Std. Error Unstandardized Coef f icients Beta Standardized Coef f icients t Sig.Dependent Variable: 销售价格 a. 通过SPSS 线性回归分析: ? 取显著性水平α=0.05, sig 必须小于0.05才能t 值检验合格, ? (1)、拟合优度检验:由可决系数R2=0.885,大于0.7,说明模型对数据的拟合程度一般。 ? (2)、F 检验: 由F=8.441,检验P=0.010<0.05,即可认为回归系数具有显著意义。这说明原先的线性模型假设是对的。

相关主题