搜档网
当前位置:搜档网 › EN71-1A2-2013声学,

EN71-1A2-2013声学,

EN71-1A2-2013声学,
EN71-1A2-2013声学,

塞音格局和擦音格局做法讲义

2011/10/17
目录
一、塞音格局的做法
实验原理(略) 实验材料与被试 实验步骤 基于MiniSpeechLab的操作 李幸河 南开大学语音实验室
二、擦音格局的做法
实验原理(略) 实验材料与被试 实验步骤 擦音声学空间图的做法
图1 辅音语图基本模式示意图
语图模式
闭塞段 浊音杠 冲直条 乱纹 共振峰 Mini Speech Lab的主界面 浊辅音
调音作用
塞音、塞擦音闭塞段
备注
与元音共振峰相似,但频率很低 舌根音可能不只一条 擦音乱纹能量比送气音更大,特别是在高频区
塞音、塞擦音爆发瞬间 擦音、送气段 元音
表1 语图模式与调音作用
塞音格局—实验材料与被试
以一名韩国留学生汉语塞音习得情况为例
被试:韩国男性青年,南开大学汉语言文化学院基础班 学生,学习汉语时间为半年 材料:汉语6个塞音的60个双音节词,正常语速发音, 如下:
塞音格局—实验步骤一
录音(桌上语音工作室)
开始录音(自动停止):有一定强度的声音则录音自动 开始,开始后,无声约一秒后自动停止录音。 开始录音(非自动停止):有一定强度的声音则录音自 动开始,手动选择“停止录音”或按T键,才能使录音 停止 停止录音(或按T键) 参数设置:录音前;采样率(22050Hz,辅音),语图 显示(二维深浅图)
其它录音设备:CoolEdit Pro,Praat
其他参数设置:采样率,单声道,采样精度(16位)
1

2011/10/17
塞音格局—实验步骤二
数据测量(基于桌上语音工作室) GAP——闭塞段时长:
波形:起点:第一音节的末点 终点:第二音节的开始 语图:起点:第一音节元音共振峰的明显下降 终点:第二音节辅音冲直条的前端 注意:波形与语图互相参考
波形 图
宽带 谱图
波形 图
VOT——嗓音起始时间
波形:起点:第二音节的开始 终点:元音周期性波形开始前 语图:起点:塞音冲直条 终点:元音共振峰开始前 注意:波形与谱图互相参考
谱图
Office 2003 excel 塞 音格局图制作
首先: 在Excel中选中VOT 和GAP平均值单元格, 此处的数据同样只保 留整数位。 然后: 点击主菜单栏中“插 入”菜单下的“图 表”,在跳出的“图 表向导”对话框中选 择将图表类型选择为 “XY散点图”,如右:
图表向导 - 图表类型
? 统计数据与作图
数据统计:excel,spss 图表:XY散点图 示范:office 2007 制图
2

音响系统声环境测试报告声学特性精编版

XXXXXXXXX礼堂扩声系统声学特性 测 量 报 告 测量: 审核: XXXXXXXXX 2015年10月日

受委托,对扩声系统的声学特性,按《厅堂扩声特性测量方法》国家标准,对最大声压级、传输频率特性、声场不均度、传声增益、系统总噪声级等五项声学特性指标进行了实地空场测量。并对有关建声指标混响时间,背景噪声也进行了实地空场测量。现把测量情况归纳如下: 一、XXXXXXXXX礼堂概况 该礼堂长约32m、宽约18m、高约9m,总面积576平方米,总容积5184 m3。可容纳观众470人左右,有吸音材料的软座,地面铺设塑料板,左右墙壁及后墙均装有吸声材料。 舞台宽约14.2m、深约8.5m、高约8m,容积965.6m3,墙壁为吸引材料,舞台上装有观看3D电影用的金属电影幕。 舞台口宽约16.5m、高约6m。在舞台口中线上方装有一组(两只)QSC K12 (全频)扬声器和一只KW181超重低音音箱,(每只K12全频扬声器的覆盖角度为75°圆锥形),舞台两侧八字墙下方各嵌入安装K12(全频)扬声器一只和KW181超低音音箱一只,两组之间水平间距约为15.5m。台唇处各装有三只K8(全频)扬声器(每只K8全频扬声器的覆盖角度为105°圆锥形),以用作补声,三只扬声器之间相距约3m,共计4只K12和3只K8全频扬声器及三只超低频扬声器以不同的角度覆盖观众区,使观众厅前半区的声场得到均匀的覆盖。另外在观众区中部及后部共计安装有四只K12扬声器,覆盖观众厅中后区,以满足多用途类扩声系统声学特性的要求。以上扬声器品牌均为QSC。

二、测量标准及条件 1、测量方法按GB/T4959-95《厅堂扩声特性测量方法》国家标准; 2、性能指标按GB50371-2006《厅堂扩声系统设计规范》标准中多用途类 扩声系统一级指标要求; 3、测量仪器:美国TERRASONDE,TOOLBOX,ATB-PLUS型音频分析仪 及配套用的标准测量用传声器。 4、测试点位置: 按国家标准GB/T4959-95《厅堂扩声特性测量方法》声场测量点规 定应为:听众区座位的1/60。该厅堂听众区座位约为470个,测试应选 8个测量点。由于场地是对称的,按规定部分项目可以只测量中轴线一 侧的区域(4个测量点即可)。为了能够更为精确地获取测试数据,我们 共计选取了8个测量点,其分布如下图1: 图1测量点位分布图

歌剧院、音乐厅的声学设计要点

歌剧院、音乐厅的声学设计要点 专业来讲,歌剧院、音乐厅、戏剧院等观演空间实际上是音质第一的听音场所,而这些文化建筑往往投资巨大,若音质效果不佳,实乃资源、经费的巨大浪费。广州赛宾认为,注重表演厅堂的形体、容量、地面起坡、边界面的布置和表面处理等要点的设计,是保证剧院室内声学效果的重要支持。例如:要保持声音响度,需要合理的厅堂体型、观众席起坡设计及充足早期反射声;要保持声音的均匀分布,除了合理的体型还需恰当的声扩散处理配合;控制适当的每座容积及吸声、反声的正确选择、布置则是最佳混响的保证。 观众区平面设计 歌剧院、音乐厅的声学设计要点?作为表演厅堂最基本的组成部分--观众区,其体型设计是厅堂内部优良音质的先决条件。欧洲古典的歌剧院,多采用古典风格的马蹄形或接近马蹄形的“U”形平面。其特点是容量大、视距短,而设置于周边的层层包厢、繁琐浮雕装饰起到良好的声扩散作用。维也纳国家歌剧院、巴黎伽涅尔歌剧院、伦敦考文特花园皇家歌剧院等均为马蹄形平面。但其缺陷是声学处理较麻烦,容易造成沿边反射,甚至出现声聚焦,且台口两侧的观众视觉效果较差。现在使用的马蹄形是改进版,台口两侧不再设观众席,会处理成斜面,增强中前区观众席的侧墙早期反射声。美国的肯尼迪演艺中心便是采用此种方式。 现代风格剧院的观众区平面形式则有更多的选择--矩形、钟形、扇形、多边形及复合形等。如:法国巴士底歌剧院采用的是钟形;东京新国立歌剧院是矩形和扇形的结合。矩形平面的优点是规整、结构简单,声能分布均匀;但两平行侧墙之间容易产生颤动回声,不过,可通过墙面处理解决。如杭州大剧院便将矩形观众区的两侧墙面做成锯齿形状,避免可能产生的颤动回声。扇形平面的观众容量较大,但偏远座较多,后排座视距较远,难以接收直达声,且池座大部分座席几乎得不到侧墙的早期反射声。钟形平面与矩形平面基本相似,也可以说是矩形的一种改进形式。其偏座区比扇形平面少而结构可按矩形的处理(相同容量情况下)。台口两侧逐渐收拢的斜墙面为观众区提供了早期反射声。法国巴士底歌剧院、上海大剧院即是这方面的典型例子。 随着音乐、剧目的多样化发展,对剧院表演厅的要求日趋多功能化,要求有灵活变化观众厅容量空间及符合多种需要的声学效果等。由此产生的复合式平面利用高科技实现厅堂进行灵活多变的组合或拆分。但复合形平面多变的空间模式除了建声之外还需要电声系统的配合,且设备和结构等比较复杂,造价昂贵。国外很多现代多功能剧院为适应多种剧目、音乐会的表演需求,多采用此形式。 观众区容积、起坡、挑台设计 歌剧院、音乐厅的声学设计要点?自然声演出的厅堂,由于自然声源声功率有限,为确保达到一定的音节清晰度,要控制适当的厅堂容积量。当然,不同类别的声源声功率及厅堂用途,其最大容积量也不同。厅堂的总容积量也决定着观众的吸声量,进而对混响时间产生影响。适当的每座容积既可减少吸声材料的使用,也保证了最佳的混响效果。 而针对观众区容易出现的掠射吸收现象,就必须重视观众席的起坡度尺寸设置。一般情况下,池座前后排高差不小于8cm,楼座前后排高差不小于10cm。如果出于功能需求,观众席必须是水平的,可考虑抬高声源位置减少掠射吸收,并利用反射面给后排提供前次反射声,弥补后排声压级的不足;或做成可升降地面。 观众区的挑台容易对顶棚的反射声构成遮挡,虽然在声波衍射作用下,挑台下部空间在开口附近可接收到低频反射声,但缺乏高频反射声。挑台下空间深处的反射声则更少,这导致声音丰满度欠佳,这种音质缺陷称声影区。控制挑台下部空间开口高度和深度的比值,在挑台下顶棚及将后墙倾斜做反射面,补充早期反射声可以改善此缺陷,但效果有限。 反射面及扩散体的运用 当混响时间较长,声音的丰满度上升,其清晰度便会下降,这是音质设计常会遇到的矛盾。选择最佳混响时间是解决的方法之一,而设置反射面制造反射声加强直达声是另一种两全方法,这同时满足了观众对声音的丰满度与清晰度的要求。但要注意尽可能制造有益于音质表现的早期反射声,减少延时反射声,还有保证观众区的前中座接收到充足的早期反射声。 顶棚算是观众区较大的反射面。从声线分布看,锯齿式、扩散体式、浮云式三类顶棚能给全区尤其是前中座提供充足的早期反射声,其平面形状的选择自由度也较大。而平面式、折线式、弧面式三类顶棚则会将大部分声音反射至后中座,令前排缺少反射声。因此,此三类顶棚需要加入侧墙的反射声作用。除了顶棚,反射面也可设置于侧墙下部、后墙上部等位置。有需要时,跌落式挑台的栏板、观众区分割隔断也可作为专设侧向反射板。善用各方位反射面可以满足对音质要求同样严格却体型各异的厅堂。 然而,各反射面提供的定向反射声容易造成音质生硬感。这便需要扩散体进行多方位的散射,既减轻音质生硬感,又保证观众区每个座位之间不存在明显声压级差,保持了室内声场均匀。扩散体可以设置在侧墙上或悬挂在天花上,一般为大小不一的体块或是凹凸不平的墙面。例如:锯齿形墙面或墙面装饰、凸出的包厢,甚至外露的结构部件等等。像前文提到的欧洲古典剧院,其优美的音质,除了得益于厅堂的体型设计,也得益于其室内的装修处理(包厢、繁复装饰)所产生的声扩散。 细节处的噪声控制 歌剧院、音乐厅的声学设计要点?音乐厅、剧院的表演厅堂对室内背景噪声的要求很严格,因为不同程度的噪声会影响低频声的传播。观演建筑的噪声控制分为建筑噪声控制及室内噪声控制。建筑噪声控制首先涉及到建筑位置的选择,一是尽可能远离噪声与振动源;二是要进行选地环境噪声、振动测量及仿真预测。赛宾,观演建筑建设领导品牌。如此,能为建筑围护结构的隔声需要提供设计依据,达到控制室内噪声的需要及标准。而室内噪声控制是针对表演厅堂内部噪声振动源的处理。主要包括空调设备、给排水设备、变压器、机电房,

第三章海洋的声学特性教材

第三章 海洋的声学特性 本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。 3.1 海水中的声速 声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。 海洋中声波为弹性纵波,声速为: s c ρβ1 = 式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。 1、声速经验公式 海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。 经验公式是许多海上测量实验的总结得到的,常用的经验公式为: 较为准确的经验公式: STP P S T c c c c c ????++++=22.1449 式中,4734221007.510822.2104585.56233.4T T T T c T ---?-?+?-=? ()()2235108.735391.1-?--=-S S c S ? 4123925110503.310451.3100279.11060518.1P P P P c P ----?-?+?+?=? ()[ ][][]T P T T P T T T P PT P P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------?-?+?-+?-?+?-+?-?-?+?--=? 上式适用范围:-3℃

长沙音乐厅的声学设计

龙源期刊网 https://www.sodocs.net/doc/01247618.html, 长沙音乐厅的声学设计 作者:文立森杨志刚李佳菊 来源:《演艺科技》2016年第04期 [摘要]介绍长沙音乐厅交响乐大厅的建筑声学设计及音质效果,分析其主要的声学音质参量指标,并通过音质计算、音质模拟以及缩尺模型实验的结果与实际验收测试结果的对比,分析不同设计验证方式的特性及准确性。 [关键词]建筑声学;混响时间;音质参量;缩尺模型 文章编号:10.3969/j.issn.1674—8239.2016.04.006 长沙音乐厅位于湘江与浏阳河交汇的新河三角洲滨江文化园内,是滨江文化园的灵魂建筑,按照正规音乐厅标准建设,于2006年8月21日奠基施工,并于2015年12月28日首 演。音乐厅以“经典艺术的斤欠赏殿堂、群众艺术的展示舞台、高雅艺术的教育基地、文化艺术的交流平台”为目标定位,力争打造成为湖南省内顶尖、国内一流、国际知名的音乐厅。因此,其优良的音质效果是至关重要的环节。 1.建筑概述 长沙音乐厅总建筑面积约28 000 m2,建筑高度约28m,主要包括1 400余座交响乐大厅(湘江大厅)、490座多功能厅及198座室内乐厅。 主厅即交响乐大厅,1446座、总面积约1790 m2,厅内形制为不等边多边形(见图1);长约47m,最宽处约41m,最高处约17m;最远座位距离舞台指挥位置30m(见图2)。楼座呈梯田形散布在舞台四周(见图3),能满足大型多编制交响乐团的演出。下文以该厅为例介绍建筑声学的设计。 2.建筑声学设计 2.1混响时间 混响时间是建筑声学设计中最主要的声学参量。根据音乐厅主要演出大型交响乐的功能定位以及观众厅的规模和容积,中频(500H7~1000H7)混响时间(满场)RT应达到 1.9s±O.1s,且要求混响时间频率特性为中高频基本平直,但高频允许下降10%~20%,低频混响要求有10%~20%的提升,低音比BR值为1.1~1.25。各频带混响时间设计值见表1。 2.2其他主要音质参数

海洋声学基础讲义-吴立新

海洋声学基础——水声学原理 绪论 各种能量形式中,声传播性能最好。在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。 声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。 §0-1节水声学简史 01490年,意大利达芬奇利用插入水中长管而听到航船声记载。 11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。 21840年焦耳发现磁致伸缩效应 1880年居里发现压电效应 31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。 4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。(200米外装甲板,1500米远潜艇) 5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。(二战中被击沉潜艇,60%靠的是声呐设备) 6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。对海中声传播机理的认识是二次大战间取得的最大成就。 7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。 81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质 影响声传播的介质模型。 2、1946年,Bergman提出声场求解的射线理论。 3、1948年,Perkeris应用简正波理论解声波导传播问题。

气泡的声学特性分析

气泡的声学特性分析 2.2.1 气泡的散射特性 上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从Urick 和Hoover 在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误!未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关[9]。因此,对于水声探测来说,目标散射场特性的研究尤为重要。沿x 轴方向传播的平面声波入射到半径为R 的软球边界上,观察点(,)S r θ处的声场。如图2.1所示,x 轴方向为零度方向。 ) ,(t x p i θ (,) S r θx R O 图2.1 平面声波在软球球面上的散射 入射平面声波表达式为: )cos (0)(0),(θωωkr t j kx t j i e p e p t x p --== (2-1) 其中,λ为波长,c 为介质声速,ω为角频率,λπω2==c k 为波数,),(θr 为点S 的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即 0 (r )i s R p p +== (2-2) 声场关于x 轴对称,所以取满足以x 轴对称的球坐标系的波动方程的解为 (2)0(cos )()j t s m m m m p R P h kr e ωθ∞==∑ (2-3) 其中,m R 为常数, )()2(x h m 为第二类m 阶汉克尔(Hankel )函数,为 m 阶勒让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为球函数的和: ∑∞=+-=00)()(cos )12()(),,(m m m m t j i kr j P m j e p t r p θθω (2-4) 其中,)(kr j m 为m 阶球贝塞尔(Bessel )函数。将(2-2),(2-3)和(2-4)式合并,解出m a ,则s p 为:

气泡的声学特性分析

气泡的声学特性分析 221 气泡的散射特性 上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从UriCk和HOOVer在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关[9]。因此, 对于水声探测来说,目标散射场特性的研究尤为重要。沿X轴方向传播的平面声 波入射到半径为R的软球边界上,观察点S(rc)处的声场。如图2.1所示,X轴方向为零度方向。 图2.1平面声波在软球球面上的散射 入射平面声波表达式为: P i(x,t)=p°e j(Z) = P O e j g rCO S e)(2-1)其中,,为波长,C为介质声速,「为角频率,C=二,为波数,(r,d)为点S的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即 P i P S=O (^ R) (2-2)声场关于X轴对称,所以取满足以X轴对称的球坐标系的波动方程的解为 Oel P s =Σ R m P m(CoS日)h m2>(kr)e jκt(2-3) m z0 其中,R m为常数,h r mυ(x)为第二类m阶汉克尔(Hankel)函数,「:?为m阶勒 让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为 球函数的和: Oa P i(r,8,t) =p°e j°5∑ (―j)m(2m+1)P m(cos日)j m(kr) (2-4) m =0 其中,j m(kr)为m阶球贝塞尔(BeSSe)函数。将(2-2),(2-3)和(2-4)式合并,解出a m ,则P S为:

音乐厅吸音声学设计分析

音乐厅吸音声学设计分析 音乐厅吸音声学设计的室内吸音程度,是以吸音力或平均吸音率来表示,吸音力是以将材料的吸音率除以材料的使用面积所求得之值来表示,平均吸音率在因墙壁、天花板等材料之不同。而使吸音率因场所不同而产生差异时,则以各自吸音力加总后的总吸音除以总面积之值来表示。赛宾:音乐厅声学建设专家。 音乐厅吸音声学设计分析。在隔音计划中吸音之任务为,吸收噪音以免其影响到其他方面,例如,在噪音产生源之周围配置吸音材时,能谋求噪音水平之降低;音乐厅吸音。或者在房间的壁面上使用吸音材时,能降低从外部侵入的噪音。但是,须注意的是仅仅使用吸音材时无法完全达到隔音的效果。 例如,在打开窗户的那一面,由于完全不反射它所碰到的声音能源,因而吸音率为100%,亦即该面为完全吸音面,但同时也可能有完全无法隔音的面存在。室内之吸音程度大时,即能压制室内的扩散音幷降低噪音水平。此方法是远离噪声源和影响点时会有效果,但若室内各处都有噪声源且和影响点之距离相近时,例如窗边的座位对由窗户入侵的声音,因为噪音的直接影响太大,故而其借由吸音所产生的隔音效果不会太显着。 音乐厅吸音声学设计分析。同时音乐厅设计要考虑: 1.混响时间:混响时间设计合理,观众听起来声音厚重雄浑。音质丰富饱满。 2.结构吸音:材料和结构、构造吸音,避免回声。吸收噪声。 3.设计力求圆形,使声音达到个个席位距离基本接近。 4.音乐厅设计,要追求光线明亮,照度合理。使观众能看得亲切。 5.要设计观众席噪声尽可能被就地吸收。或被结构反射,避免向舞台和其他观众方向传播。 6.座位垫加橡胶垫,避免噪声。 7.设置休息室,会朋友或场间休息,有旁厅、耳厅。 8.要设置自然通风,避免集中空调噪声干扰。 9.舞台设计要有现代理念,要能运用现代电子技术,达到多层次、多功能全方位的舞台自动化系统。

唐山方言语音和语调的实验分析

第40卷第1期 唐山师范学院学报 2018年1月 Vol.40 No.1 Journal of Tangshan Normal University Jan. 2018 ────────── 基金项目:河北省社会科学基金项目(HB17YY004) 收稿日期:2017-10-15 修回日期:2017-11-25 作者简介:及转转(1989-),女,河北沧州人,博士研究生,研究方向为语音习得。 -5- 唐山方言语音和语调的实验分析 及转转1,阎锦婷2 (1. 北京语言大学 信息科学学院,北京 100083;2. 沧州师范学院 齐越传媒学院,河北 沧州 061001) 摘 要:对唐山市区方言语音语调进行实验研究,结合传统方言学的研究成果,分析唐山话声韵调及句子语调的声学特征。结果表明:唐山话除去声外,声调与普通话差异较大;元音格局中各音位分布均衡有序,基本无中元音,舌尖元音和央元音比普通话舌位高;塞音根据音类不同分布在格局图左右两侧,但格局及各音类内部音位的排序与普通话不同;陈述句句尾音高略微上升,听起来语调上扬,疑问句句尾音高大幅上扬,与陈述句不同,疑问语气特征明显。 关键词:唐山话;声调;元音;塞音;语调 中图分类号:H014 文献标识码: A 文章编号:1009-9115(2018)01-0005-05 DOI :10.3969/j.issn.1009-9115.2018.01.002 The Experimental Analysis of Tone and Intonation in Tangshan Dialect JI Zhuan-zhuan 1, YAN Jin-ting 2 (1. Faculty of Information Science, Beijing Language and Culture University, Beijing 100083, China; 2. College of Qiyue Media, Cangzhou Normal University, Cangzhou 061001, China) Abstract: The tone and intonation in Tangshan dialect is studied by combining the research results of traditional linguistics. By analyzing the acoustic characteristics of Tangshan dialect and sentence intonation, the results show that: 1) Tone of Tangshan is quite different from mandarin, except for the falling tone; 2) In the pattern of vowel sound, the distribution of each phoneme is in a balance, with generally no middle vowel. Apical vowels and central vowels are higher than the mandarin; 3) According to the different distribution in pattern, the plosives are located in two sides. But the pattern and the inner phoneme of each voice are different from that of mandarin; 4) The end of declarative sentence is slightly higher, which sounds like it’s going up. Interrogative sentence is raised sharply, which sounds obviously the question intonation. Key Words: Tangshan dialect; tone; vowel; plosive; intonation 一、引言 唐山话是指现在唐山行政区域内流行并使用的现代汉语方言。唐山话属于北方方言冀鲁次方言区中的一个方言分支[1,p50]。近年来,许多文艺作品因使用唐山话而增加了不少艺术魅力[2]。唐山市虽然毗邻北京,近百年来一直位于官话区的要冲之地,但是唐山话却一直保持着自己的特色[1,p50]。 这种特色在语音语调方面与普通话差异最大,“语音方面,声母和韵母的差异不大,且 有一定的规律性;声调的差异普遍而明显” [1,p50] ,语调则是形成“唐山味”的重要原因。 本文基于石锋先生提出的语音格局的理念,研究唐山话声调、元音、辅音和语调,对发音人的发音语料进行实验计算,按照归一化后的数据作出表格图形,把隐性的语言框架变为显性的格局。语音格局包括声调格局、元音格局和辅音格局。唐山话中的全部字调可以构成一个特定的声调格局;本文所分析的元音格局是一级元音的格局,是元音系统性的表现,包括的内容可以有元

音乐厅吸音声学设计

音乐厅吸音声学设计 的室內的吸音程度,是以吸音力或平均吸音率來表示,吸音力是以将材料的吸音率除以材料的使用面积所求得之值来表示,平均吸音率在因墙壁、天花板等材料之不同,音乐厅吸音。而使吸音率因场所不同而产生差异时,则以各自吸音力加总后的总吸音除以总面积之值来表示。音乐厅吸音。在隔音计划中吸音之任务为,吸收噪音以免其影响到其他方面,例如,在噪音产生源之周围配置吸音材时,能谋求噪音水平之降低;音乐厅吸音。或者在房間的壁面上使用吸音材时,能降低从外部侵入的噪音。音乐厅吸音。但是,须注意的是仅仅使用吸音材时无法完全达到隔音的效果。音乐厅吸音。例如,在打开窗戶的那一面,于完全不反射它所碰到的声音能源,因而吸音率為100%,亦即该面为完全吸音面,但同时也可能有完全无法隔音的面存在。室內之吸音程度大时,即能压制室內的扩散音並降低噪音水平。音乐厅吸音。此方法是远离噪音源和影响点时会有效果,但若室內各处都有噪音源且和影响点之距离相近时,例如窗边的座位对窗戶入侵的声音,因为噪音的直接影响太大,故而其借吸音所产生的隔音效果不会太显著。天津润生。 1 、的台口 音乐厅的舞台口对厅内池座前中座席获得早期反射声

起到重要作用。音乐厅吸音。台口前侧墙和顶板所构成的反射面应针对池座前中区获得反射声进行设计,这是厅内其他界面所无法替代的。 2、楼座和包厢栏板 音乐厅通常要兼顾自然声和扩声演出的两种形式,声源处于舞台上和台口上部声桥两个不同的位置,音乐厅吸音。楼座栏板通常又是凹弧形。音乐厅吸音。因此,栏板上应做扩散设计,形式可采用凸弧形的圆挂面、三角形体、锥状体等。 3、楼座下的天花 . 楼座下的座席,通常离舞台较远,为了获得均匀的声场分布,在自然声演出的条件下,开花应起到加强后座声强的作用;音乐厅吸音。当采用扩声时,天花应使扬声器组的声音顺利进入楼座下的空间。 4、音乐场馆的后墙 音乐厅后墙的装修要根据厅堂的使用功能和演出方式而定。音乐厅吸音。对于自然声演出的音乐厅和歌剧院,后墙应作声反射和扩散处理,而采用扩声系统的厅堂,可以选用吸声构造,同时要防止产生回声。 5、扬声器组的装修饰面 音乐场馆扬声器组的饰面构造要满足透声和美观两方面的要求。音乐厅吸音。 饰面构造必须有尽可能大的透声率,不得小于50%;内衬喇叭布应尽可能薄,以免影响高频声的输出;构造必须有足够的刚度,不致引起共振。

河南省艺术中心建筑设计理念

河南艺术中心 一、建筑概况 河南艺术中心是河南省委、省政府确定的“十五”期间重点项目,是建国以来河南省投资最多、规模最大、设计水平最高的公益文化设施。位于郑州市郑东新区CBD核心区,占地面积10公顷,投资总概算9.39亿元人民币,总建筑面积77396平方米。建筑密度23.6%,可绿化面积42578平方米,绿化度43%,可停机动车辆471辆,非机动车辆400辆。建筑方案由加拿大OTT/PPA 建筑师事务所国际著名设计大师卡洛斯?奥特先生设计。施工图设计由中国航空工业规划设计研究院完成。施工总承包单位为北京建工集团有限责任公司,施工监理单位为上海建科监理咨询有限公司,建筑方案由1800席大剧院、800席音乐厅、380席多功能小剧场、美术馆、艺术馆五个椭圆体和两片翻卷上升的艺术墙组成,造型独特,规模宏大,设备先进,功能齐全。河南艺术中心在建设中,运用了27项全国首创的新技术、新工法,写下了全国同类文化项目建设史上功能最全、施工难度最大、单位面积造价最低的新记录。比如钢结构滑动支座、标志塔阻尼器均为新的专利发明技术;大剧院基坑支护采用了目前所有的支护手段才得以确保基坑安全,是目前国内最为复杂的基坑,因为河南艺术中心基坑支护工程,国家基坑支护规范正在修改;屋面防水系统为国内首次采用直立锁边系统,并申请了建设部行政许可。大面积艺术墙钢结构—索驳结构体系也在国内首次使用;整个建筑群为不规则椭球体,斜

梁斜柱倾斜角度均不相同,艺术墙玻璃和金属屋面外饰板没有一块尺寸完全相同等。河南艺术中心的落成启用,结束了河南省没有国际一流标准超大型专业剧院、没有专业音乐厅的历史,使人民群众拥有了自己的欣赏高雅音乐的艺术殿堂,艺术家们拥有了自己展示才华的广阔舞台,它的落成启用,必将成为河南省乃至全国的标志性文化建筑,成为镶嵌在中原大地上的一颗璀璨的文化艺术明珠。 二、各个单体基本功能 1.大剧院——建筑面积24864平方米,设1806席观众席,分池座、椅座和包厢三部分。是艺术中心核心功能建筑,以演出中外歌剧、舞剧、大型歌舞为主,同时亦可满足芭蕾舞、话剧等各种艺术形式需要。舞台设计为国际通用的品字形舞台,设备采用国际先进的舞台机械,舞台具有升降±4.00m、侧台对开、后舞台旋转及开向前台功能;三种大幕自动开启方式、升降乐池;布置53道灯光和布景吊杆;其声学设计、灯光系统都达到国内一流水平,演员休息、残疾人观众服务设施等一应俱全。 2.音乐厅——建筑面积5685平方米,可容纳观众802人。是设计为建筑声学扩声的演出大型交响乐的专用音乐厅,具有接待世界著名交响乐团演出的能力,配有39栓管风琴、12英尺钢琴等大型乐器,声学设计、灯光系统均达到国内一流水平。 3.小剧场——建筑面积3919平方米,可容纳观众384多名,设有六种形式变化的舞台及可活动的座席,舞台部分设地下台仓,可满足舞台升降和座椅存放要求,并适应不同演出形式和不同观众区布置。厅堂的空间为“黑匣子”,适用于多种形式的表演活动,如小型话剧、小型音乐演奏,实验艺术表演、时装表演及产品和广告发布等。 4.美术馆——建筑面积11133平方米,设有大中小各类展厅、同声传译学术报告厅藏品库房、培训中心等,担负着对河南艺术珍品的收藏、研究、展示及对公民进行素质教育、促进对外文化交流、推动河南省美术事业发展的社会责任和历史使命。主要收藏和展示近现代美术珍品及雕塑作品,并充分发挥其展览、交流、收藏、培训等社会功能。 5.艺术馆——建筑面积6670平方米,设有动态艺术表演厅、非物质文化展示厅、民间艺术品展厅、藏品库、研究制作室等,是展示、交流、研究河南群众文化艺术精品和非物质文化遗产保护的场所,承担国内外捐赠艺术

汉语普通话塞音的声学研究

汉语普通话塞音的声学研究 A Phonetic Study on Plosives of Mandarin Chinese 尹基德 Abstract The system of Chinese plosives is relatively simple, showing the contrast between the aspirated and the unaspirated. Also, there is little interaction between the syllables, which means that the variants of the plosives are little observed in Mandarin Chinese. Many Korean students, nevertheless, have some problems with natural pronunciation of Chinese plosives. It is natural that the different phonology system between two languages is the main reason of these interventions. But the ploblem is that the description of phonology system is not enough to help foreign students’ natural Chinese acquisition. Here, the aim of this paper is the phonetic experiment on Chinese plosives and discussion of the differences which could result in every possible intervention in the point of Korean students’ view. It is known that the F0 plays a big role in discriminating Korean 3 plosives, Lenis, Aspirated and Fortis. Then, we can assume that, as for Korean students, 4 tones might well influence their recognition and pronunciation of Mandarin Chinese plosives. Actually, it is reported that a number of Korean students have trouble not only in discriminating between the aspirated and the unaspirated, but in producing them, especially under the circumstances varying from high(1,4 tone) and low(2,3 tone) tones. So it is rather meaningful, at least for the Koran students, to examine the relationship between VOT which is the main parameter for the aspiration, and F0 which is varying from 4 tones in Mandarin Chinese. The experiment has findings below. First, for the u naspirated plosives, VOT has little relationship with F0, showing 1.3% difference. But, for the aspirated plos ives, VOT shows 20% increase according to differe nt height of F0, which means that 4 tones has signific ant influence on the aspiration of aspirated plosives. All these findings are consistent with those from other languages and with the description of phonology sy s t e m. It is natural assumption, then, that the pronunciation trouble of Korean students is mainly caused by the unique plosive system of Korean, which is not offered in this paper. So, the subject treated in this paper deserves a further study with more extended and actual data from Korean students. 1. 引言 1.1 塞音VOT和F0的关系 1) VOT(Voice Onset Time) VOT 主要是指塞音除阻和声带震动之间的时间,能比较明确地说明塞音的清浊和送气的情况。各个语言的塞音具有独特的VOT特征,在汉语普通话里主要指是送气不送气的对立 。 2)Vowel F0 Lisker & Abramson(1967) 在英语塞音研究中,发现重音的音节上塞音的 VOT 比较长,反而不受重音的弱音节里比较短了。这意味 着音节的音高可能作用为塞音的一个重要参数。以后的研究也发现韩语和日语的塞音受 音高的影响。(Kim 2004, 片桐 2004) 1.2 研究简介 汉语普通话的塞音是比较简单的音段系统。

高端酒店声学设计

高端酒店声学设计一、酒店建筑声学设计的工作范围表1高端酒店声学设计的工作范围

二、建筑声学设计介入的时机建筑声学专业最佳的介入时机是建筑初步设计尚可以看出,在高端酒店项目中,从表1不少业主都聘请声学设计师做声随着建筑声学的重要性日渐深入人心,未完成时。近年来,。但是,由于对声学专业介入的时机把握不好,却在建筑主体施工快完时学设计(或顾问)换言面对的是已经难以修改的建筑设计。才请声学专业介入。这种时候介入的声学设计师,这时提出方案的效果面对的已经是个改造项目。即使经验再丰富,之,对声学设计师而言,也只能是事半功倍,花钱达不到最佳效果,因此就给人造成了一个错觉:声学工程太费钱。如果声学专业在项目建筑初步设计阶段就介入:)正确评估各种设备的噪声对各种功能房间的影响,帮助建筑设计师、机电设计师提1 供噪声控制费用最低的酒店各种设备平面布置的方案,可节省大量的噪声控制工程费用;)帮结构设计师和业主设计好各种隔墙的墙体构造,在建筑设计前期准确计算出各种2在保证墙体隔声量达到隔声要求的前提下帮项目节省大量的内隔墙的墙体构造和墙体密度,工程构造造价;)对宴会厅、大厅等公共空间的体型设计,给建筑师提出有益建议,减少或者杜绝声3 聚焦等建筑声学缺陷的出现,降低装修工程中的声学缺陷处理费用;)帮室内设计师合理选用各种内装修材料,在达到室内装饰效果的前提下,既实现了4 良好声环境,又可降低室内装修工程费用。优异将使项目既具备精湛的建筑风格、在建筑初步设计阶段就让声学专业介入,总之,对项目还具有怡人的听觉效果和舒适的声环境,的视觉效果、其工程造价还会大幅度降低,如果声学设计是在建筑设计施工图已经确定至装修施工单位即将将是事倍功半。总体而言,施工的阶段介入,其项目效果将是事倍功半。. 三、酒店声学设计标准 1、酒店的声学设计需要符合下列中国国家标准 (1)《城市区域环境振动标准》GB10070-1988; (2)《建筑隔声评价标准》GB/T 50121-2005; (3)《社会生活环境噪声评价标准》GB 22337-2008; (4)《声环境质量标准》GB 3096-2008; (5)《民用建筑隔声设计规范》GB 50118-2010; (6)《剧场、电影院和多用途厅堂建筑设计规范》GB/T 50356-2005; 还需要符合国家有关防火规范、环保规范等。 2、酒店的声学设计还需要符合酒店管理公司提出的声学设计标准 一般的酒店管理公司都会制定高于国家标准的酒店声学设计标准。(1)背景噪音指标 隔声指标(2) 3高端酒店声学设计隔声指标表

驾驶室低频噪声的声学特性分析与控制

V ol 35No.1 Feb.2015 噪 声与振动控制NOISE AND VIBRATION CONTROL 第35卷第1期2015年2月 文章编号:1006-1355(2015)01-0145-06 驾驶室低频噪声的声学特性分析与控制 朱晓东1沈忠亮2汪一峰2 1.江淮汽车股份有限公司技术中心,合肥230022 2.合肥工业大学噪声振动工程研究所,合肥230009 摘要:在某卡车驾驶室结构有限元与声学有限元计算以及驾驶室声固耦合建模的基础上,进行结构模态计算分析以及试验验证。再进行声学模态分析以及声固耦合系统模态分析。考虑声—固耦合作用,利用耦合声学有限元进行了驾驶室内部声学特性研究,识别出主要噪声频率。继而进行面板声学和模态贡献量分析,找到了峰值声压产生的主要原因,确定了贡献显著的面板。通过结构改进,提升了板件刚度,抑制了结构振动,试验结果表明,驾驶室内部噪声得到较明显下降。 关键词:声学;低频噪声;有限元法;面板贡献量;结构优化中图分类号:TB132;O422.6 文献标识码:A DOI 编码:10.3969/j.issn.1006-1335.2015.01.030 Analysis and Optimization of Acoustic Characteristics of Low-frequency Noise in a Cab ZHU Xiao-dong 1,SHEN Zhong-liang 2,WANG Yi-feng 2 (1.Center of Technology,Jianghuai Automobile Co.Ltd.,Hefei 230022,China; 2.Institute of Sound and Vibration Research,Hefei University of Technology,Hefei 230009,China ) Abstract :The structural finite element model,acoustic finite element model and the structural-acoustic coupling finite element model for a cab were established respectively.The modal analyses of the three models were carried out and verified by testing.The acoustic properties of the internal cavity of the cab were analyzed using the structural-acoustic coupling finite element model,and the main noise frequencies were https://www.sodocs.net/doc/01247618.html,bining the panel acoustic contribution analysis method with the modal contribution analysis method,the major factors causing peak sound pressure were discovered,and the panel with significant contribution to the noise at the main noise frequencies was identified.The stiffness of the panel was raised and its vibration was controlled through the structural modification.The experimental result shows that the internal noise of the cab is reduced obviously. Key words :acoustics ;low frequency noise ;finite element method ;panel contribution ;structure optimization 驾驶室的NVH 性能是影响驾驶室乘坐舒适性的主要因素,随着生活水平的提高,人们对驾驶室乘坐舒适性有了更高的要求。当前,世界各大汽车制造商已将车内噪声控制作为提升其产品市场竞争力的一种有效途径,车内噪声的分析和控制已经渗透到整车的开发流程中。因此,对驾驶室内部低频噪声的分析与控制研究具有十分重要的意义。 车内部噪声主要包括空气噪声和结构噪声,其中空气噪声主要分布在中高频,而低频则主要以结 收稿日期:2014-06-30 作者简介:沈忠亮(1989-),男,硕士研究生,主要研究方向: 汽车NVH 与CAE 分析。E-mail:szl943192147@https://www.sodocs.net/doc/01247618.html, 构噪声为主[1],所以对车内低频噪声分析,主要集中 在车内结构噪声。近年来,在车内部噪声分析和控制研究方面,国内外学者进行了不懈努力和探索。如Citarella R 等[2]应用边界元法研究了车内声学响应和车身板块贡献。张志飞等[3]以某商用车驾驶室为例,进行了利用阻尼材料改善驾驶室声学特性中的研究,成功降低了目标频率声压幅值。文献[4]在建立某轿车有限元与边界元模型的基础上,结合边界元法和声传递向量法,进行了车身板件声学贡献量研究。文献[5]利用声学有限元法,开展了某驾驶室声学特性分析,找到了峰值声压的主要来源。 本文针对某中卡驾驶室,在建立了驾驶室结构有限元模型和声固耦合模型,进行了驾驶室结构模

相关主题