搜档网
当前位置:搜档网 › PWM控制电路的基本构成及工作原理

PWM控制电路的基本构成及工作原理

PWM控制电路的基本构成及工作原理
PWM控制电路的基本构成及工作原理

PWM控制电路的基本构成及工作原理

开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高,效率高,功率密度高,可靠性高。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是一电磁骚扰(EMD)源,它产生的EMI信号有很宽的频率范围,又有一定的幅度。若把这种电源直接用于数字设备,则设备产生的EMI信号会变得更加强烈和复杂。本文从开关电源的工作原理出发,探讨抑制传导干扰的EMI滤波器的设计以及对辐射EMI的抑制。[点击在新窗口查看原始图片] 1 开关电源产生EMI的机理数字设备中的逻辑关系是用脉冲信号来表示的。为便于分析,把这种脉冲信号适当简化,用图1所示的脉冲串表示。根据傅里叶级数展开的方法,可用式(1)计算出信号所有各次谐波的电平。[点击在新窗口查看原始图片] 式中:An为脉冲中第n次谐波的电平;Vo为脉冲的电平;T为脉冲串的周期;tw为脉冲宽度;tr为脉冲的上升时间和下降时间。开关电源具有各式各样的电路形式,但它们的核心部分都是一个高电压、大电流的受控脉冲信号源。假定某PWM开关电源脉冲信号的主要参数为:Vo=500V,T=2×10-5s,tw=10-5s,tr=0.4×10-6s,则其谐波电平如图2所示。图2中开关电源内脉冲信号产生的谐波电平,对于其他电子设备来说即是EMI信号,这些谐波电平可以从对电源线的传导干扰(频率范围为0.15~30MHz)和电场辐射干扰(频率范围为30~1000MHz)的测量中反映出来。在图2中,基波电平约

160dBμV,500MHz约30dBμV,所以,要把开关电源的EMI电平都控制在标准规定的限值内,是有一定难度的。[点击在新窗口查看原始图片] 2 开关电源EMI滤波器的电路设计当开关电源的谐波电平在低频段(频率范围0.15~30MHz)表现在电源线上时,称之为传导干扰。要抑制传导干扰相对比较容易,只要使用适当的EMI滤波器,就能将其在电源线上的EMI信号电平抑制在相关标准规定的限值内。要使EMI滤波器对EMI信号有最佳的衰减性能,则滤波器阻抗应与电源阻抗失配,失配越厉害,实现的衰减越理想,得到的插入损耗特性就越好。也就是说,如果噪音源内阻是低阻抗的,则与之对接的EMI滤波器的输入阻抗应该是高阻抗(如电感量很大的串联电感);如果噪音源内阻是高阻抗的,则EMI 滤波器的输入阻抗应该是低阻抗(如容量很大的并联电容)。这个原则也是设计抑制开关电源EMI滤波器必须遵循的。几乎所有设备的传导干扰都包含共模噪音和差模噪音,开关电源也不例外。共模干扰是由于载流导体与大地之间的电位差产生的,其特点是两条线上的杂讯电压是同电位同向的;而差模干扰则是由于载流导体之间的电位差产生的,其特点是两条线上的杂讯电压是同电位反向的。通常,线路上干扰电压的这两种分量是同时存在的。由于线路阻抗的不平衡,两种分量在传输中会互相转变,情况十分复杂。典型的EMI滤波器包含了共模杂讯和差模杂讯两部分的抑制电路,如图3所示。[点击在新窗口查看原始图片] 图中:差模抑制电容Cx1,Cx20.1~0.47μF;差模抑制电感L1,L2100~130μH;共模抑制电容Cy1,Cy2<10000pF;共模抑制电感L15~25mH。设计时,必须使共模滤波电路和差模滤波电路的谐振频率明显低于开关电源的工作频率,一般要低于10kHz,即[点击在新窗口查看原始图片] 在实际使用中,由于设备所产生的共模和差模的成分不一样,可适当增加或减少滤波元件。具体电路的调整一般要经过EMI试验后才能有满意的结果,安装滤波电路时一定要保证接地良好,并且输入端和输出端要良好隔离,否则,起不到滤波的效果。开关电源所产生的干扰以共模干扰为主,在设计滤波电路时可尝试去掉差模电感,再增加一级共模滤波电感。常采用如图4所示的滤波电路,可使开关电源的传导干扰下降了近30dB,比CISOR22标准的限值低了近6dB以上。还有一个设计原则是不要过于追求滤波效果而造成成本过高,只要达到EMC标准的限值要求并有一定的余量(一般可控制

在6dB左右)即可。 3 辐射EMI的抑制措施如前所述,开关电源是一个很强的骚扰源,它来源于开关器件的高频通断和输出整流二极管反向恢复。很强的电磁骚扰信号通过空间辐射和电源线的传导而干扰邻近的敏感设备。除了功率开关管和高频整流二极管外,产生辐射干扰的主要元器件还有脉冲变压器及滤波电感等。虽然,功率开关管的快速通断给开关电源带来了更高的效益,但是,也带来了更强的高频辐射。要降低辐射干扰,可应用电压缓冲电路,如在开关管两端并联RCD缓冲电路,或电流缓冲电路,如在开关管的集电极上串联20~80μH的电感。电感在功率开关管导通时能避免集电极电流突然增大,同时也可以减少整流电路中冲击电流的影响。功率开关管的集电极是一个强干扰源,开关管的散热片应接到开关管的发射极上,以确保集电极与散热片之间由于分布电容而产生的电流流入主电路中。为减少散热片和机壳的分布电容,散热片应尽量远离机壳,如有条件的话,可采用有屏蔽措施的开关管散热片。整流二极管应采用恢复电荷小,且反向恢复时间短的,如肖特基管,最好是选用反向恢复呈软特性的。另外在肖特基管两端套磁珠和并联RC吸收网络均可减少干扰,电阻、电容的取值可为几Ω和数千pF,电容引线应尽可能短,以减少引线电感。实际使用中一般采用具有软恢复特性的整流二极管,并在二极管两端并接小电容来消除电路的寄生振荡。[点击在新窗口查看原始图片] 负载电流越大,续流结束时流经整流二极管的电流也越大,二极管反向恢复的时间也越长,则尖峰电流的影响也越大。采用多个整流二极管并联来分担负载电流,可以降低短路尖峰电流的影响。开关电源必须屏蔽,采用模块式全密封结构,建议用1mm以上厚度的镀锌钢板,屏蔽层必须良好接地。在高频脉冲变压器初、次级之间加一屏蔽层并接地,可以抑制干扰的电场耦合。将高频脉冲变压器、输出滤波电感等磁性元件加上屏蔽罩,可以将磁力线限制在磁阻小的屏蔽体内。根据以上设计思路,对辐射干扰超过标准限值20dB左右的某开关电源,采用了一些在实验室容易实现的措施,进行了如下的改进:——在所有整流二极管两端并470pF电容;——在开关管G极的输入端并50pF电容,与原有的39Ω电阻形成一RC低通滤波器;——在各输出滤波电容(电解电容)上并一0.01μF电容;——在整流二极管管脚上套一小磁珠;——改善屏蔽体的接地。经过上述改进后,该电源就可以通过辐射干扰测试的限值要求。 4 结语随着电子产品的电磁兼容性日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关标准或规范,已成为电子产品设计者越来越关注的问题。本文是在分析干扰产生机理、以及大量实践的基础上,提出了行之有效的抑制措施。

PWM控制电路的基本构成及工作原理

基于DSP的三相SPWM变频电源的设计 变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。 本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、 系统扩展能力强等优点。 系统总体介绍 根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。本文所研究的变频电源采用间接变频结构即交-直-交变换过程。首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28 335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。系统总体框图如 图1所示。 图1 系统总体框图 (1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。 (2)三相桥式逆变器模块:把直流电压变换成交流电。其中功率级采用智能型IPM功率模块,具有电路简单、可 靠性高等特点。 (3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。 (4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生SPWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。捕获单元完 成对输出信号的测频。 (5)电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流检测电路。所有的检测信号都经过电压跟随器隔离后由TMS320F28335的A/D通道输入。

三相电压型PWM整流器及仿真

三相电压型PWM整流器及仿真

————————————————————————————————作者:————————————————————————————————日期:

电力电子课程设计课程设计报告 题目:三相电压型PWM整流器与仿真 专业、班级: 学生姓名: 学号: 指导教师: 2015年 1 月 6 日 内容得分 1、三相桥式电路的基本原理(10分) 2、整流电路基本原理(10分) 3、pwm控制的基本原理(10分 4、三相电压型pwm整流电路仿真模型(30分) 5、结果分析(30分) 6、程序文件(10分) 总分

摘要:叙述了建立三相电压型PWM整流器的数学模型。在此基础上,使用功能强大的MATLAB软件进行了仿真,仿真结果证明了方法的可行性。 关键词:整流器;PWM;simulink

目录 一任务书 (1) 1.1 题目 (1) 1.2 设计内容及要求 (1) 1.3 报告要求 (1) 二基础资料 (2) 2.1 三相桥式电路的基本原理 (2) 2.2 整流电路基本原理 (4) 2.3 pwm控制的基本原理 (6) 2.4 PWM整流器的发展现状 (6) 三设计内容 (8) 3.1 仿真模型 (8) 3.2 各个元件参数 (11) 3.3 仿真结果 (13) 3.4 结果分析 (15) 四总结 (15) 五参考文献 (15)

一任务书 1.1 题目 三相电压型PWM整流器仿真 1.2 设计内容及要求 设计三相电压型PWM整流器及其控制电路的主要参数,并使用MATLAB软件搭建其仿真模型并验证。 设计要求(pwm整流器仿真模型参数): (1)交流电源电压600V,60HZ (2)短路电容30MVA (3)外接负载500kVar,1MW (4)变压器变比 600/240V (5)0.05s前,直流负载200kw,直流电压500V,0.05s后,通过断路器并联一个相同大小的电阻。 1.3 报告要求 (1)叙述三相桥式电路的基本原理 (2)叙述整流电路基本原理 (3)叙述pwm控制的基本原理 (4)记录参数(截图) (5)记录仿真结果,分析滤波结果 (6)撰写设计报告 (7)提交程序源文件

PWM控制原理要点

PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异

PWM控制电路设计

PWM控制电路设计 CYBERNET 应用系统事业部 LED照明作为新一代照明受到了广泛的关注。仅仅依靠LED封装并不能制作出好的照明灯具。本文主要从电子电路、热分析、光学方面阐述了如何运用LED特性进行设计。 在上一期的“LED驱动电路设计-基础篇”中,介绍了LED的电子特性和基本的驱动电路。遗憾的是,阻抗型驱动电路和恒电流源型驱动电路,大围输入电压和大电流中性能并不强,有时并不能发挥出LED的性能。相反,用脉冲调制方法驱动LED电路,能够发挥LED的多个优点。这次主要针对运用脉冲调制的驱动电路进行说明。 PWM是什么? 脉冲调制英文表示是Pulse Width Modulation,简称PWM。PWM是调节脉冲波占空比的一种方式。如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time表示,如下公式:占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time) Tsw(一周期)可以是开关周期,也可以是Fsw=1/Tsw的开关频率。

图1 Pulse Width Modulation (PWM) 在运用PWM的驱动电路中,可以通过增减占空比,控制脉冲一个周期的平均值。运用该原理,如果能控制电路上的开关设计(半导体管、MOSFET、IGBT等)的打开时间(关闭时间),就能够调节LED电流的效率。这就是接下来要介绍的PWM控制。PWM信号的应用 PWM控制电路的一个特征是只要改变脉冲幅度就能控制各种输出。图2的降压电路帮助理解PWM的控制原理。在这个电路中,将24V的输入电压转换成12V,需要增加负载。负载就是单纯的阻抗。电压转换电路的方法有很多,运用PWM信号的效果如何呢?

PWM控制电路的基本构成及工作原理

PWM控制电路的基本构成及工作原理 于开关器件的高频通断和输出整流二极管反向恢复。很强的电磁骚扰信号通过空间辐射和电源线的传导而干扰邻近的敏感设备。除了功率开关管和高频整流二极管外,产生辐射干扰的主要元器件还有脉冲变压器及滤波电感等。 虽然,功率开关管的快速通断给开关电源带来了更高的效益,但是,也带来了更强的高频辐射。要降低辐射干扰,可应用电压缓冲电路,如在开关管两端并联RCD缓冲电路,或电流缓冲电路,如在开关管的集电极上串联 20~80μH的电感。电感在功率开关管导通时能避免集电极电流突然增大,同时也可以减少整流电路中冲击电流的影响。 功率开关管的集电极是一个强干扰源,开关管的散热片应接到开关管的发射极上,以确保集电极与散热片之间由于分布电容而产生的电流流入主电路中。为减少散热片和机壳的分布电容,散热片应尽量远离机壳,如有条件的话,可采用有屏蔽措施的开关管散热片。 整流二极管应采用恢复电荷小,且反向恢复时间短的,如肖特基管,最好是选用反向恢复呈软特性的。另外在肖特基管两端套磁珠和并联RC吸收网络均可减少干扰,电阻、电容的取值可为几Ω和数千pF,电容引线应尽可能短,以减少引线电感。实际使用中一般采用具有软恢复特性的整流二极管,并在二极管两端并接小电容来消除电路的寄生振荡。 负载电流越大,续流结束时流经整流二极管的电流也越大,二极管反向恢复的时间也越长,则尖峰电流的影响也越大。采用多个整流二极管并联来分担负载电流,可以降低短路尖峰电流的影响。 开关电源必须屏蔽,采用模块式全密封结构,建议用1mm以上厚度的 镀锌钢板,屏蔽层必须良好接地。在高频脉冲变压器初、次级之间加一屏蔽层

单相PWM整流电路设计(电力电子课程设计)..

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

PWM驱动电路

PWM是什么? 脉冲调制英文表示是Pulse Width Modulation,简称PWM。PWM是调节脉冲波占空比的一种方式。如图1所示,脉冲的占空比可以用脉冲周期、On-time、Off-time 表示,如下公式: 占空比=On-time(脉冲的High时间)/ 脉冲的一个周期(On-time + Off-time) Tsw(一周期)可以是开关周期,也可以是Fsw=1/Tsw的开关频率。 图1 Pulse Width Modulation (PWM) 在运用PWM的驱动电路中,可以通过增减占空比,控制脉冲一个周期的平均值。运用该原理,如果能控制电路上的开关设计(半导体管、MOSFET、IGBT等)的打开时间(关闭时间),就能够调节LED电流的效率。这就是接下来要介绍的PWM控制。PWM信号的应用 PWM控制电路的一个特征是只要改变脉冲幅度就能控制各种输出。图2的降压电路帮助理解PWM的控制原理。在这个电路中,将24V的输入电压转换成12V,需要增加负载。负载就是单纯的阻抗。电压转换电路的方法有很多,运用PWM信号的效果如何呢?

图2 降压电路 在图2的降压电路中取PWM控制电路,如图3所示。MOSFEL作为开关设计使用。当PWM信号的转换频率数为20kHz时,转换周期为50μs。PWM信号为High的时候,开关为On,电流从输入端流经负载。当PWM信号处于Low状态时,开关Off,没有输入和输出,电流也断掉。 这里尝试将PWM信号的占空比固定在50%,施加在开关中。 开关开着的时候电流和电压施加到负载上。开关关着的时候因为没有电流,所以负载的供给电压为零。如图4绿色的波形、V(OUT)可在负载中看到输出电压。 图3 运用PWM信号的降压电路

PWM整流电路概述

PWM整流电路概述 1引言 在电力系统中,电压和电流应是完好的正弦波。但是在实际的电力系统中,由于非线性负载的影响,实际的电网电压和电流波形总是存在不同程度的畸变,给电力输配电系统及附近的其它电气设备带来许多问题,因而就有必要采取措施限制其对电网和其它设备的影响。随着电力电子技术的迅速发展,各种电力电子装置在电力系统、工业、交通、家庭等众多领域中的应用日益广泛,大量的非线性负载被引入电网,导致了日趋严重的谐波污染。电网谐波污染的根本原因在于电力电子装置的开关工作方式,引起网侧电流、电压波形的严重畸变。目前,随着功率半导体器件研制与生产水平的不断提高,各种新型电力电子变流装置不断涌现,特别是用于交流电机调速传动的变频器性能的逐步完善,为工业领域节能和改善生产工艺提供了十分广阔的应用前景。相关资料表明,电力电子装置生产量在未来的十年中将以每年不低于10%的速度递增,同时,由这类装置所产生的高次谐波约占总谐波源的70%以上。 在我国,当前主要的谐波源主要是一些整流设备,如化工、冶金行业的整流设备和各种调速、调压设备以及电力机车。传统的整流方式通常采用二极管整流或相控整流方式,采用二极管整流方式的整流器存在从电网吸取畸变电流,造成电网的谐波污染,而且直流侧能量无法回馈电网等缺点。采用相控方式的整流器也存在深度相控下交流侧功率因数很低,因换流引起电网电压波形畸变等缺点。这些整流器从电网汲取电流的非线性特征,给周围用电设备和公用电网都会带来不利影响。 为了抑制电力电子装置产生的谐波,其中的一种方法就是对整流器本身进行改进,使其尽量不产生谐波,且电流和电压同相位。这种整流器称为高功率因数变流器或高功率因数整流器。高功率因数变流器主要采用PWM整流技术,一般需要使用自关断器件。对电流型整流器,可直接对各个电力半导体器件的通断进行PWM调制,使输入电流成为接近正弦且与电源电压同相的PWM波形,从而得到接近1的功率因数。对电压型整流器,需要将整流器通过电抗器与电源相连。只要对整流器各开关器件施以适当的PWM控制,就可以对整流器网侧交流电流的大小和相位进行控制,不仅可实现交流电流接近正弦波,而且可使交流电流的相位与电源电压同相,即系统的功率因数总是接近于1。本文主要对与PWM整流器相关的功率开关器件、主电路拓扑结构和控制方式等进行详细说明,在此基础上对PWM整流技术的发展方向加以探讨。 2功率开关器件 PWM整流器的基础是电力电子器件,其与普通整流器和相控整流器的不同之处是其中用到了全控型器件,器件性能的好坏决定了PWM整流器的性能。优质的电力电子器件必须具有如下特点:(1)能够控制通断,确保在必要时可靠导通或截止;(2)能够承受一定的电压和电流,阻断状态时能承受一定电压,导通时匀许通过一定的电流;(3)具有较高的开关频率,在开关状态转换时具有足够短的导通时间和关断时间,并能承受高的di/dt 和dv/dt。目前在PWM整流器中得到广泛应用的电力电子器件主要有如下几种:

PWM整流工作原理

PWM整流工作原理

图6-28 单相PWM 整流电路 整流电路也可分为电压型和电流型两大类,目前半桥电路直流侧电容必须由两个电容串联,其中点和交流电源单相半桥电路 交流侧电感电感和交流电源内部电感,是电全桥电路直流侧电容只要一个就可以。 单相全桥电路 6-8 电力电子技术 (1)单相全桥PWM 整流电路的工作原理 正弦信号波和三角波相比较的方法对图6-28b 中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。 u AB 中含有和正弦信号波同频率且幅值成比例的基波分量,以及和三角波载波有关的频率很高的谐波,不含有低次谐波。 由于L s 的滤波作用,谐波电压只使i s 产生很小的脉动。 当正弦信号波频率和电源频率相同时,i s 也为与电源频率相同的正弦波。 u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。 改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 6.4.1 PWM 整流电路的工作原理

6-12 电力电子技术 (2)对单相全桥PWM 整流电路工作原理的进一步说明 整流状态下: u s > 0时,(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s < 0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 6.4.1 PWM 整流电路的工作原理

PWM信号发生电路

1.P W M信号概述 脉冲宽度调制(PWM)信号广泛使用在电力变流技术中,以其作为控制信号可完成DC-DC 变换(开关电源)、DC-AC变换(逆变电源)、AC-AC变换(斩控调压)和AC-DC变换(功率因数校正)。 产生PWM信号的方法有多种,现分别论述如下: 1)普通电子元件构成PWM发生器电路 基本原理是由三角波或锯齿波发生器产生高频调制波,经比较器产生PWM信号。三角波或锯齿波与可调直流电压比较,产生可调占空比PWM信号;与正弦基波比较,产生占空比按正弦规律变化的SPWM信号。 此方法优点是成本低、各环节波形和电压值可观测、易于扩展应用电路等。缺点是电路集成度低,不利于产品化。 2)单片机自动生成PWM信号 基本原理是由单片机内部集成PWM发生器模块在程序控制下产生PWM信号。 优点是电路简单、便于程序控制。缺点是不利于学生观测PWM产生过程,闭环控制复杂和使用时受单片机性能制约。 3)可编程逻辑器件编程产生PWM信号 基本原理是以复杂可编程逻辑器件(CPLD)或现场可编程门阵列器件(FPGA)为硬件基础,设计专用程序产生PWM信号。 优点是电路简单、PWM频率和占空比定量准确。缺点是闭环控制复杂,产生SPWM信号难度大。 4)专用芯片产生PWM信号 是生产厂家设计、生产的特定功能芯片。 优点是使用方便、安全,便于应用到产品设计中。缺点是不利于学生观测PWM产生过程和灵活调节各项参数。 2.电子元件构成PWM发生器电路 图1电子元件构成PWM发生器电路 3.集成芯片SG3525构成PWM发生器电路 一、PWM信号发生电路说明 实验电路中,驱动开关管的PWM信号由专用PWM控制集成芯片SG3525产生(美国

pwm控制原理

1.PWM的技术背景 随着CPU技术的发展,更多的晶体管和更高的主频,以及纳米级的工艺,都造成了CPU功率的飙升。尤其是第一个走进90纳米的Intel。更高的功率,就需要更好的散热设备。Intel为了对付prescott核心,开始从多方面加强散热,比如38度机箱比如BTX,比如 9CM风扇的主流应用,其中PWM技术,是最重要的技术之一。 Intel对散热器的评定标准非常严格,其最恶劣的环境条件在普通应用中很难出现。如果采用定转速风扇,在用户普通应用中,风扇的噪音根本让人无法忍受。传统的温控风扇是利用风扇轴承附近的测温探头侦测风扇的进风口温度,从而对风扇的转速进行调节。这种温控虽然解决了一定的问题,但是存在着精度粗糙,而且温控的转速只能做到高速低速两极变速。 PWM是脉宽调制电路的简称,它本身并不是一个新技术,在工业控制,单片机上早已经广泛的应用。而Intel将他和主板的CPU温度侦测相结合,将其应用于散热器风扇的转速精确控制上,取得了良好的效果。 2.PWM智能温控风扇的功能特点 首先,PWM风扇调节风扇转速是直接从CPU获取温度信息,在风扇上无任何测温装置。根据不同的CPU温度,温控风扇会有不同的转速调节与之对应,并且风扇的转速变化可以做到四级五级,甚至更多,基本上是无极变速的感觉。由于是脉宽信号的实时调节,风扇转速的变化非常灵敏,转速和CPU温度的变化几乎是同步的。 第二,PWM风扇在计算机待机的时候,可以保持在一个非常低的转速上。例如原包的Intel风扇,在待机时候,CPU温度在四五十度以下,其转速仅为一千多转,大大降低了运转的噪音。而设计的最高转速,四千多转,只有在CPU温度接近极限温度即65-67度时候,才会出现。相比传统的温控风扇有着更大的转速控制范围,更好的解决了噪音和性能的问题。

PWM控制的基本原理

PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对 一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM 型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电 子技术中的重要地位。 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如 图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图2 冲量相同的各种窄脉冲的响应波形

用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。

PWM整流电路控制原理及技术研究_杨红举

317 华章 二 ○一一年第十八期 Magnificent Writing 杨红举,张玉珍,淅川县电业局。 作者简介:PWM 整流电路控制原理及技术研究 杨红举,张玉珍 (淅川县电业局,河南淅川474450) [摘要]PWM控制技术是在电力电子领域有着广泛的应用,使电力电子技术的性能大大的提高,并对电力电子技 术产生了十分深远影响的一项技术。笔者就PWM整流电路的工作原理和PWM整流电路的控制方法进行了详细的阐述,以供读者参考。 [关键词]PWM整流电路;原理;控制方法PWM (Pulse Width Modulation )控制就是脉宽调制技术:即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。如图1所示。PWM 的一个优点是从处理器到被控系统信号都是数字形式的,无需进行数模转换。让信号保持为数字形式可将噪声影响降到最小。噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。对噪声抵抗能力的增强是PWM 相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM 用于通信的主要原因。从模拟信号转向PWM 可以极大地延长通信距离。在接收端,通过适当的RC 或LC 网络可以滤除调制高频方波并将信号还原为模拟形式。PWM 控制技术一直是变频技术的核心技术之一。1964年A.Schonung 和H.stemmler 首先提出把这项通讯技术应用到交流传动中,从此为交流传动的推广应用开辟了新的局面。 目前,实用的整流电路几乎都是晶闸管整流或二极管整流。晶闸管相控整流电路输入电流滞后于电压,且其中谐波分量大,因此功率因数很低。而二极管整流电路虽位移因数接近1,但输入电流中谐波分量很大,所以功率因数也很低。把逆变电路中的SPWM 控制技术用于整流电路,就形成了PWM 整流电路。控制PWM 整流电路,使其输入电流非常接近正弦波,且和输入电压同相位,功率因数近似为1,也称单位功率因数变流器,或高功率因数整流器。下面就PWM 整流电路及其控制方法进行详细的阐述。 1、PWM 整流电路的工作原理 PWM 整流电路也可分为电压型和电流型两大类,目前电压型的较多。 1.1单相PWM 整流电路。半桥电路直流侧电容必须由两个电容串联,其中点和交流电源连接。交流侧电感包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的。 全桥电路直流侧电容只要一个就可以。 1.1.1单相全桥PWM 整流电路的工作原理。正弦信号波和三角波相比较的方法对图2中的V 1~V 4进行SPWM 控制,就可以在桥的交流输入端AB 产生一个SPWM 波u AB 。u s 一定时,i s 幅值和相位仅由u AB 中基波u ABf 的幅值及其与u s 的相位差决定。改变u ABf 的幅值和相位,可使i s 和u s 同相或反相,i s 比u s 超前90°,或使i s 与u s 相位差为所需角度。 1.1.2对单相全桥PWM 整流电路工作原理的进一步说明整流状态下: u s >0时,如图2所示。(V 2、VD 4、VD 1、L s )和(V 3、VD 1、VD 4、L s )分别组成两个升压斩波电路,以(V 2、VD 4、VD 1、L s )为例。V 2通时,u s 通过V 2、VD 4向L s 储能。 V 2关断时,L s 中的储能通过VD 1、VD 4向C 充电。u s <0时,(V 1、VD 3、VD 2、L s )和(V 4、VD 2、VD 3、L s )分别组成两个升压斩波电路。 1.2三相PWM 整流电路。三相桥式PWM 整流电路,是最基本的PWM 整流电路之一,应用最广。工作原理和前述的单相全桥电路相似,只是从单相扩展到三相。如图3所示。进行SPWM 控制,在交流输入端A 、B 和C 可得SPWM 电压,按图4a 的相量图控制,可使i a 、i b 、i c 为正弦波且和电压同相且功率因数近似为1 。 2、PWM 整流电路的控制方法 2.1间接电流控制。间接电流控制也称为相位和幅值控制。图5 为间接电流控制的系统结构图。 图中的PWM 整流电路为图4的三相桥式电路,控制系统的闭环是整流器直流侧电压控制环。 2.2直接电流控制。通过运算求出交流输入电流指令值,再引入交流电流反馈,通过对交流电流的直接控制而使其跟踪指令电流值。有不同的电流跟踪控制方法,图6给出一种最常用 的采用电流滞环比较方式的控制系统结构图。 3、结语 综上所述,PWM 控制技术用于整流电路即构成PWM 整流电路,也可看成逆变电路中的PWM 技术向整流电路的延伸,其控制系统结构简单,电流响应速度快,系统鲁棒性好,目前在电力电子行业已获得了一些应用,并有良好的应用前景。 【参考文献】 [1]刘海云,韩继征,李玉仓,张浩,胡雪生.交直交变频三电平矢量脉宽调制模式的原理及调制算法探讨[A ].第十一届全国自动化应用技术学 术交流会论文集[C ].2006. [2]姚旺,王京.基于VxWorks 下的三电平PWM 整流器的控制研究[A ].自动化技术与冶金流程节能减排——全国冶金自动化信息网2008 年会论文集[C ].2008.

PWM控制原理

PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状与幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处: 4、1节斩控式交流调压电路,4、4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分就是PWM型,PWM控制技术正就是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,就是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以瞧出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也就是周期性的。用傅里叶级数分解后将可瞧出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。

PWM整流电路工作原理

PWM整流电路的原理分析 摘要:无论是不控整流电路,还是相控整流电路,功率因数低都是难以克服的缺点.PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,本文以《电力电子技术》教材为基础,详细分析了单相电压型桥式PWM整流电路的工作原理和四种工作模式。通过对PWM整流电路进行控制,选择适当的工作模式和工作时间间隔,交流侧的电流可以按规定目标变化,使得能量在交流侧和直流侧实现双向流动,且交流侧电流非常接近正弦波,和交流侧电压同相位,可使变流装置获得较高的功率因数。 1 概述 传统的整流电路中,晶闸管相控整流电路的输人电流滞后于电压,其滞后角随着触发角的增大而增大,位移因数也随之降低。同时输人中谐波分量也相当大,因此功率因数很低。而二极管不控整流电路虽然位移因数接近于1,但输人电流中谐波分量很大,功率因数也较低。 PWM整流电路是采用PWM控制方式和全控型器件组成的整流电路,它能在不同程度上解决传统整流电路存在的问题。把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路。通过对PWM整流电路进行控制,使其输人电流非常接近正弦波,且和输人电压同相位,则功率因数近似为1。因此,PWM整流电路也称单位功率因数变流器。 参考文献[1]在第6章“PWM控制技术”中增添了“PWM整流电路及其控制方法”这一部分内容。但在PWM整流电路的工作原理中介绍篇幅较少,只是针对PWM整流电路的运行方式相量图进行分析,没有分析其工作过程。对PWM 整流电路不熟悉的教师在了解这部分内容时普遍感觉吃力。 1 单相电压型桥式PWM整流电路 电压型单相桥式PWM整流电路最早用于交流机车传动系统,为间接式变频电源提供直流中间环节,其电路如图I所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L为交流侧附加的电抗器,在PWM整流电路中是一个重要的元件,起平衡电压、支撑无功功率和储存能量的作用。为简化分析,可以忽略L的电阻。 图 1 电压型单相桥式PWM整流电路 除必须具有输人电感外,PWM整流器的电路结构和PWM逆变电路是相同的。按照

单相电压型PWM整流电路原理分析与仿真

单相电压型PWM整流电路原理分析与仿真 0 引言众所周知,在传统的整流电路中,晶闸管可控整流装置的功率因数会随着其触发角的增加而变坏,这不但使得电力电子类装置成为电网中的主要谐波因素,也增加了电网中无功功率的消耗。PWM 整流电路是采用脉宽调制技术和全控型器件组成的整流电路,能有效地解决传统整流电路存在的问题。通过对PWM 整流电路进行有效的控制,选择合适的工作模式和工作时序,从而调节了交流侧电流的大小和相位,使之接近正弦波并与电网电压同相或反相,不但有效地控制了电力电子装置的谐波问题,同时也使得变流装置获得良好的功率因数。 1 单相电压型桥式PWM 整流电路的结构单相电压型桥式PWM 整流电路最初出现在交流机车传动系统中,为间接式变频电源提供直流中间环节,电路结构如图1 所示。每个桥臂由一个全控器件和反并联的整流二极管组成。L 为交流侧附加的电抗器,起平衡电压,支撑无功功率和储存能量的作用。图1 中 uN(t)是正弦波电网电压;Ud 是整流器的直流侧输出电压;us(t)是交流侧输入 电压,为PWM 控制方式下的脉冲波,其基波与电网电压同频率,幅值和相位可控;iN(t)是PWM 整流器从电网吸收的电流。由图1 所示,能量可以通过构成桥式整流的整流二极管VD1~VD4 完成从交流侧向直流侧的传递,也可以经全控器件VT1~VT4 从直流侧逆变为交流,反馈给电网。所以PWM 整流器的能量变换是可逆的,而能量的传递趋势是整流还是逆变,主要视VT1~VT4 的脉宽调制方式而定。 因为PWM 整流器从交流电网吸取跟电网电压同相位的正弦电流,其输入端的功率是电网频率脉动的两倍。由于理想状况下输出电压恒定,所以此时的输出电流id 与输入功率一样也是网频脉动的两倍,于是设置串联型谐振滤波器

直流电机的PWM控制

直流电机的P W M控制 The Standardization Office was revised on the afternoon of December 13, 2020

设计报告 课程名称在系统编程技术 任课教师 设计题目直流电机的PWM控制班级 姓名 学号 日期 2011年6月13日

一、题目分析 本实验设计的直流电机的PWM控制系统需要满足以下两点要求: ○1直流电机的转速具有4个档位可供调节; ○2通过按键控制直流电机的转向。 二、方案选择 方案一:采用AT89S52单片机控制产生PWM信号。一般的,通过模拟比较器产生PWM波,比较器的一端接给定的参考电压,另一端接周期性线性增加的锯齿波电压。当锯齿波的电压小于比较器的参考电压(阈值电压)时输出低电平,反之输出高电平。通过改变比较器的参考电压来改变PWM波形中高电平的宽度,即占空比。系统具体框图如下图所示: 图1单片机实现PWM控制系统框图 方案二:利用FPGA内部资源实现产生PWM波。用VHDL语言描述设计数字比较器,数字比较器的一端接设定值计数器输出,另一端接线性递增计数器输出端。当线性计数器的计数值小于设定值时输出低电平,反之输出高电平。 方案一需要通过D/A转换器产生锯齿波电压和设置参考电压,通过外接模拟比较器输出PWM波形,因此外围电路比较复杂。方案二省去了外接D/A转

化器和模拟比较器,FPGA外部连线很少,电路更加简单、便于控制。所以本系统选择方案二。 三、系统细化框图 基于FPGA的直流电机PWM控制电路主要由以下三个部分组成: (1)FPGA中PWM脉宽调制信号产生电路。 (2)FPGA中的正/反转方向控制电路。 (3)H桥功率驱动电路。

PWM控制技术(深度剖析)

第6章PWM控制技术 主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。 重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。 难点:PWM波形的生成方法,PWM逆变电路的谐波分析。 基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM 逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。第3、4章已涉及这方面内容: 第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。 本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。 本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM整流电路 1 PWM控制的基本原理 理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图6-1 形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异

PWM控制原理

1.1、PWM 原理与DSC 实现算法 1.1.1、PWM 原理 脉冲宽度调制(PWM ,Pulse Width Modulation )控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形(含形状和幅值)。PWM 技术在逆变电路中应用最为广泛,对逆变电路的影响最为深刻,PWM 控制技术有赖于在逆变电路中的应用,才发展成熟,才确定了在电力电子技术中的重要地位。 在采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上,其效果基本相同。冲量是指窄脉冲的面积,效果基本相同是说环节的输出响应波形基本相同。如果把各输出波形用傅里叶变换分析,其低频段非常接近,仅在高频段略有差异。这种原理称之为面积等效原理,是PWM 控制技术的重要理论基础。 下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦波。 图1、SPWM 原理 把图1中的正弦波分成2N 等份,就可以把正弦波看成是由2N 个彼此相连的脉冲序列所组成的波形。这些脉冲宽度相等,都等于N ,但幅值不相等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把上述脉冲序列利用相同数量的等幅不等宽的矩形脉冲代替,使矩形脉冲和相应的正弦波部分的中心重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就可以得到如图1所示的脉冲序列,这就是PWM 波形。根据面积等效原理,PWM 波形与正弦波是等效的。像这种脉冲的宽度按正弦规律变化而和正弦波等效的PWM 波形,也称SPWM (Sinusoidal PSM )波形。要改变等效输出正弦波的幅值

时,只要按照同一比例系数改变上述脉冲的宽度即可。 根据PWM控制的基本原理,如果给出逆变电路的正弦波输出频率、幅值和一个周期内的脉冲数,PWM波形中各脉冲的宽度和间隔就可以准确计算出来。按照计算结果控制开关器件的通断,就可以得到需要的PWM波形。这种方法称之为计算法。与计算法对应的是调试法,即把希望输出的波形作为调制信号,把接受调试的信号作为载波,通过信号波的调制得到所希望的PWM波形。通常采用等腰三角形或锯齿波作为载波,其中等腰三角形应用最多。因为等腰三角形上任一点的水平宽度和高度成线性关系且左右对称,当它与任何一个平缓变化的调制信号相交时,如果在交点时刻对电力电子器件通断控制,就可以得到宽度正不语信号波幅值的脉冲,这正好符合PWM控制的要求。 1.1.2、数字化PWM实现方法 按照SPWM控制的基本原理,在正弦波与三角波的自然交点时刻控制开关器件的通断,如图2(a)所示。这种生成SPWM波形的方法称为自然采样法。自然采样法是最基本的方法,所得到的SPWM波形很接近正弦波,但这种方法要求解复杂的超越方程,用微机控制技术是很难实现的,工程上很少采用。 a)自然采样法与规则采样法1 b)规则采样法2 c)TI公司DSC事件管理器PWM 图2、数字化PWM实现方法 规则采样法是一种应用广泛的工程实用方法,其效果接近自然采样法,但计算量要比自然采样法小很多。如图2(a)所示,在载波负峰值点(A点)计算需要的调制波幅值,计算确认与三角载波左右对称的交点(B点和C点),进而控制下一个开关周期的开关通断,定义为规则采样法1。 规则采样法也可以在三角载波的正峰值点计算调制波幅值,如图2(b)所示。在三角波正峰值处计算需要调制的调制波,进而根据载波幅值计算出控制开关导通的时间长度,其它时间为控制开关关断的时间长度,定义为规则采样法2。 TI公司24xx或28xx系列DSC内部集成了事件管理器,可以产生PWM波形。

相关主题