搜档网
当前位置:搜档网 › Tailoring CuO nanostructures for enhanced photocatalytic property

Tailoring CuO nanostructures for enhanced photocatalytic property

Tailoring CuO nanostructures for enhanced photocatalytic property
Tailoring CuO nanostructures for enhanced photocatalytic property

Tailoring CuO nanostructures for enhanced photocatalytic property

Jing Liu a ,1,Jun Jin a ,1,Zhao Deng a ,Shao-Zhuan Huang a ,Zhi-Yi Hu a ,Li Wang a ,Chao Wang a ,Li-Hua Chen b ,Yu Li a ,?,G.Van Tendeloo c ,Bao-Lian Su a ,b ,d ,?

a

Laboratory of Living Materials at State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,122Luoshi Road,430070Wuhan,Hubei,China b

Laboratory of Inorganic Materials Chemistry (CMI),The University of Namur (FUNDP),61rue de Bruxelles,B-5000Namur,Belgium c

EMAT,University of Antwerp,Groenenborgerlaan 171,B-2020Antwerpen,Belgium d

Department of Chemistry,University of Cambridge,Lens?eld Road,Cambridge CB21EW,UK

a r t i c l e i n f o Article history:

Received 26March 2012Accepted 18June 2012

Available online 26June 2012Keywords:

CuO nanostructures Photocatalytic activity PEG200

Rhodamine B

a b s t r a c t

We report on one-pot synthesis of various morphologies of CuO nanostructures.PEG200as a structure directing reagent under the synergism of alkalinity by hydrothermal method has been employed to tailor the morphology of CuO nanostructures.The CuO products have been characterized by XRD,SEM,and TEM.The morphologies of the CuO nanostructures can be tuned from 1D (nanoseeds,nanoribbons)to 2D (nanoleaves)and to 3D (shuttle-like,shrimp-like,and nano?owers)by changing the volume of PEG200and the alkalinity in the reaction system.At neutral and relatively low alkalinity (OH à/Cu 2+63),the addition of PEG200can strongly in?uence the morphologies of the CuO nanostructures.At high alkalinity (OH à/Cu 2+P 4),PEG200has no in?uence on the morphology of the CuO nanostructure.The different morphologies of the CuO nanostructures have been used for the photodecomposition of the pollutant rhodamine B (RhB)in water.The photocatalytic activity has been correlated with the different nanostructures of CuO.The 1D CuO nanoribbons exhibit the best performance on the RhB photodecom-position because of the exposed high surface energy {à121}crystal plane.The photocatalytic results show that the high energy surface planes of the CuO nanostructures mostly affect the photocatalytic activity rather than the morphology of the CuO nanostructures.Our synthesis method also shows it is possible to control the morphologies of nanostructures in a simple way.

ó2012Elsevier Inc.All rights reserved.

1.Introduction

Metal oxide nanomaterials with different morphologies have drawn particular attention because of their outstanding structural ?exibility combined with a variety of properties with a wide range of potential applications [1–5].Such metal oxides nanostructures can not only inherit the properties from their bulk form such as piezoelectricity,chemical sensing,and photodetection,but also possess unique properties associated with their highly anisotropic geometry and size con?nement [6–8].The combination of new and conventional properties makes the study of novel metal oxide nanostructures a very important issue,both from fundamental and industrial point of view.An important issue is to directly syn-thesize nanostructured materials with a particular morphology and desired functionality for speci?c applications [9–14].For example,the one dimensional CeO 2and Co 3O 4nanorods have excellent CO oxidation at low temperature because of their speci?c exposed facets [9,14];Mn 3O 4nano-octahedra demonstrate anom-alous magnetic properties and novel photocatalytic properties [11];TiO 2nanosheets exhibit excellent photocatalytic degradation of methyl orange (MO)[12].

Copper oxide (CuO)has a narrow band gap of 1.2eV and has been widely used as a heterogeneous catalyst in many important chemical processes,such as the degradation of nitrous oxide,selec-tive catalytic reduction of nitric oxide with ammonia,oxidation of carbon monoxide,hydrocarbon,and phenol in supercritical water [15–18].At present,its applications have been broadened into gas sensoring,electronics,magnetic storage media,semiconductor,and solar cells owing to its photoconductive and photochemical properties [19–23].Very recently,this oxide has been explored to be a new class of electrode material for rechargeable lithium-ion batteries [24–26]and photocatalysts [27].

The synthesis method of CuO nanostructures varies from case to case.The solution-phase synthesis approach,due to its low cost,high yield,and high quality production,is considered as one of the promising routes to the synthesis of CuO nanostructures with different morphologies [5].Among the synthesis methods for

0021-9797/$-see front matter ó2012Elsevier Inc.All rights reserved.https://www.sodocs.net/doc/08480361.html,/10.1016/j.jcis.2012.06.044

?Corresponding authors.Addresses:Laboratory of Living Materials at State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology,122Luoshi Road ,430070Wuhan,Hubei,China.Fax:+862787879468(Y.Li),Laboratory of Inorganic Materials Chemistry (CMI),The University of Namur (FUNDP),61rue de Bruxelles,B-5000Namur,Belgium.Fax:+3281725414(B.-L.Su).

E-mail addresses:yu.li@https://www.sodocs.net/doc/08480361.html, (Y.Li),bao-lian.su@fundp.ac.be ,baoliansu@https://www.sodocs.net/doc/08480361.html, (B.-L.Su).1

These authors contributed equally to this work.

nanostructured CuO,the soft template(surfactants,polymers,and capping agents)assisted method has successfully been employed to synthesize the CuO nanostructures as it provides a powerful tool not only for the size,shape,and composition control but also for the dispersion in various media.Several CuO nanostructures have been synthesized this way[27–36].Typical examples are nanowire bundles[27],nanoribbons[28],nanosheets[29],nanotubes[30], and nanorods[30–33].However,most of these reaction systems can only produce one or two morphologies.In particular,the ob-tained CuO nanostructures are mostly used to enhance the cur-rently existing applications.A systematic study on one-pot way synthesis of various morphologies CuO nanostructures is limited, and CuO nanostructures for waste water treatment are still lacking.

In a previous study,it is found that the addition of PEG200can enhance the formation of polycrystalline CuO nanowire bundles, which exhibit enhanced photocatalytic properties[27].In the pres-ent work,we follow the footsteps of previous work to control the synthesis of various CuO morphologies.We will systematically study PEG200as a directing structure reagent to synthesize differ-ent morphologies from one dimensional(1D)to two dimensional

(2D)and to three dimensional(3D)through a hydrothermal meth-od.To the best of our knowledge,it is the?rst time that PEG200is being used as a structure directing reagent to synthesize different morphologies of CuO nanostructures in such a simple way at low temperature.Furthermore,we will explore the effect of the mor-phology,the size,and the crystallographic aspects on the photocat-alytic activity of the CuO structures.The present work also sheds light on the role of the PEG200molecule as a growth directing agent in CuO nanostructure formation.We will try to understand the correlation between the crystal faceting(type of surface layer) and the photocatalytic activity on treatment of waste water.

2.Experimental section

2.1.Materials and synthesis

Cu(NO3)2á3H2O,PEG200(polyethylene glycol,average molecule weight200),NaOH pellets,CuO powders,and rhodamine B base (RhB,C28H30N2O3)were purchased from Aldrich and used‘‘as received’’.For a typical CuO nanostructure synthesis, 1.2g (0.005mol)of Cu(NO3)2á3H2O was dissolved in58ml deionized water.2ml PEG200was poured into the aqueous Cu(NO3)2solu-tion.The total volume of the solution is60ml.After the PEG200 was uniformly dispersed in the solution,0.4g(0.01mol)of NaOH pellets was put into the above blue solution and blue precipitates appeared.After30min stirring,the blue suspension was trans-ferred to a Te?on-lined stainless steel autoclave,which was subse-quently sealed and maintained at80°C for12h,then allowed to cool to room temperature.Next,the as-formed black precipitates were?ltered and washed with water to purify the product.During the puri?cation,ethanol was used to dissolve the unreacted PEG200several times.Finally,the product was dried in air at 60°C for24h.Different molar ratios of OHàto Cu2+are listed in Table1.

2.2.Photocatalytic properties

The photocatalytic activity of the CuO nanostructures with dif-ferent morphologies was evaluated by the degradation of a model pollutant RhB.For the photodegradation of RhB,the reactor was placed in a sealed black box of which the top was open and was irra-diated by black light blue(BLB)UV light(350nm6k6400nm).In each experiment,0.1g of catalyst was added into100ml of RhB solution(10à5mol/L).Before irradiation,the solution was stirred for1h in the dark in order to establish the adsorption–desorption equilibrium between the catalysts and RhB.At every1h interval, a2ml suspension was taken out and centrifuged to remove the cat-alysts.The adsorption spectrum of the solution was then recorded with a Lambda-35(Perkin-Elmer)UV–Vis spectrometer.

2.3.Characterization

X-ray diffraction patterns(XRD)were obtained with a Bruker D8 Advanced diffractometer using Cu K a radiation(k=1.54056?). Field emission scanning electron microscopy(FESEM)experiments were performed on a Hitachi S-4800electron microscope.Trans-mission electron microscopy(TEM)experiments were performed on a Philips CM20with an acceleration voltage of200kV.High res-olution transmission electron microscopy(HRTEM)experiments were performed on a JEM-4000EX.Infrared measurements were conducted on a Bruker VERTEX80V FTIR spectrometer.The N2 adsorption–desorption data were collected on a Micromeritics Tri-star II3020analyzer at77K.The speci?c surface areas(BET)were calculated by the Brunauer–Emmett–Teller(BET)method using adsorption data.Before the BET measurement,all the samples were degased under150°C for12h.

3.Results and discussion

3.1.CuO nanostructures characterizations

The blue precipitates were?rst characterized by XRD(Fig.1a) as the orthorhombic phase of Cu(OH)2(JCPDS13-0420).The broad-ened peaks in the XRD pattern indicate that the product has nano-scale dimensions.Field emission scanning electron microscopy (FESEM)observations con?rm that the precipitates are Cu(OH)2 nanoparticles(Fig.1b).Fig.2shows part of the XRD patterns of the products under different reaction conditions after hydrother-mal treatment.All the peaks?t well with the monoclinic phase of CuO(JCPDS No.45-0937).Table1lists the different morpholo-gies of the CuO nanostructures obtained under different reaction conditions.

3.1.1.CuO nanostructures produced under OHà/Cu2+=2

When no PEG200is added in the reaction system,CuO nano-seeds with a uniform size are produced as shown in Fig.3a.HRTEM observations(Fig.3b)reveal that the nanoseeds are single crystal-line and grow along the(011)crystal plane,which is different from the previous reported polycrystalline CuO nanoseeds[37].The in-set in Fig.3b shows a low magni?cation of a single nanoseed. Table1

The morphologies of the synthesized CuO nanostructures and the BET surface areas of the products.

OHà/

Cu2+

The volume of

PEG200(ml)

Morphologies BET surface area

(m2gà1) 20Nanoseeds9

1Shuttle-like8

2Shrimp-like8

3Nano?owers13

6Nanoribbons12 30Nanoleaves13

1Nanoleaves+nano?owers12

3Nanoribbons13 40Nanoleaves13

1Nanoleaves15 50Nanosheets14

1Nanosheets13 60Nanosheets14

1Nanosheets11 100Nanosheets12

1Nanosheets11

2J.Liu et al./Journal of Colloid and Interface Science384(2012)1–9

When1ml of PEG200is added in the reaction system,a large number of shuttle-like nanostructures can be obtained(Fig.3c). TEM observations clearly show the shuttle-like nanostructures consisted by small CuO nanorod bundles(inset in Fig.3c).The HRTEM image(Fig.3d)of a single nanorod reveals the single crys-talline structure.As the amount of PEG200is increased to2ml,a large number of shrimp-like CuO nanostructures can be obtained (Fig.3e),which also consist of small nanorods.The HRTEM obser-vation shows that the shrimp-like nanostructures are CuO single crystals(Fig.3f).Both HRTEM images show that the nanorods grow along(011)plane and then attach together through side-assembly along the(200)planes to form shuttle-like and shrimp-like structures.

When the volume of PEG is between3ml and5ml,3D CuO nano?owers can be obtained.The nano?owers are constructed by nanorods based on SEM observations(Fig.3g).Fig.3h shows two single crystal nanorods with an epitaxial relationship.

image shows that the nanorods grow along the(011)

HRTEM data demonstrate that the nanoseeds,the structures,the shrimp-like structures,and the nano?owers

side surfaces of the{100}type.

As the volume of PEG200is5ml,some1D nanoribbons

found next to the CuO nano?owers.When the volume

6ml or higher,only1D nanoribbons can be obtained nanoribbons are single crystal and grow along the

with an exposed side surface of the{à121}type,

Fig.3j.The high Miller index of the exposed side surface

PEG200added(Fig.4d).

When3ml or more of PEG is added,only CuO nanoribbons are obtained.Fig.4e shows the synthesized nanoribbons with5ml PEG200added.No other shapes of CuO appear indicating the high purity of the product.The HRTEM image(Fig.4f)shows that the nanoribbons grow along the[101]direction with exposed lateral side surfaces of the type{à121},which is the same as for the nanoribbons prepared under OHà/Cu2+=2.

3.1.3.CuO nanostructures produced under OHà/Cu2+P4

When no PEG200is added in the reaction system of OHà/ Cu2+=4,only CuO nanoleaves can be obtained(Fig.5a).HRTEM image(Fig.5b)reveals that the single crystal nanoleaves grow along the[010]plane with exposed side surfaces of the type {200}.When different amounts of PEG200are added in the reac-tion system of OHà/Cu2+=4,all the products remain CuO nano-leaves.The diameter and growth direction of the nanoleaves are

Fig.1.(a)The XRD patterns and(b)SEM image of the blue precipitates before hydrothermal method.

2.XRD patterns of the CuO nanostructures under different reaction conditions.

Nanoseeds,(b)shuttle-like nanostructures,(c)shrimp-like nanostructures,

nano?owers,(e)nanoribbons,(f)nanoleaves,(g)nano?owers,and(h)nanosheets.

(a)–(e)Are obtained under OHà/Cu2+=2with different volume of PEG200at

2ml,3ml,and5ml,respectively.(f)and(g)are obtained under OHà/Cu

different volume of PEG200at0ml and3ml,respectively.(h)Is obtained

under OHà/Cu2+=6with a volume of PEG200at2ml.

images of the products obtained under OHà/Cu2+=2.(a)SEM image and(b)HRTEM image of nanoseeds with(0 image of one nanoseed.(c)SEM image and(d)HRTEM image of the shuttle-like structure with(011)growth plane magni?cation TEM image of one shuttle-like structure.(e)SEM image and(f)HRTEM image of a shrimp-like structure with and(f)are low magni?cation SEM and TEM images of a single shrimp-like structure,respectively.(g)SEM

plane,the inset in(h)is a low magni?cation TEM image of one nano?ower.(i)SEM image and(j)HRTEM image

lateral surface,the inset in(j)is a low magni?cation TEM image of one nanoribbon.

similar to the nanoleaves obtained without PEG200.Fig.5c and d shows low magni?cation TEM image and HRTEM image of the nanoleaves obtained with 5ml PEG200.

It is interesting to note that the products are always CuO nano-sheets without PEG200added under OH à/Cu 2+P 5.The higher the OH à/Cu 2+ratio,the shorter the nanosheets.When OH à/Cu 2+reaches 6,quasi-square nanosheets are obtained,that is,length and width are almost equal (Fig.5e).Increasing the OH à/Cu 2+above 6has no further in?uence on the shape and size of the nanosheets.

When different amounts of PEG200are added under OH à/Cu 2+P 5,all the products remain CuO nanosheets.The dimensions of the nanosheets are similar to the ones synthesized without PEG200.Fig.5f is a HRTEM image of one nanosheet synthesized under OH à/Cu 2+=10with PEG added;the nanosheets still grow along the [010]plane.

These characterizations clearly show that various morphologies of CuO nanostructures can be produced (from 1D nanoribbons to 2D nanoleaves and to 3D nano?owers)under a different molar ra-tio of OH à/Cu 2+with a different volume of PEG200added in the reaction system.The results display that the CuO nanostructures

can be tuned from 1D to 3D by the PEG200structure directing re-agent under different alkalinity and indicate a possibility of the synergism of PEG200and alkalinity in the reaction system leading to different morphologies.

3.2.Formation mechanism of CuO nanostructures

The experimental process shows that the CuO nanostructures are formed from the Cu(OH)2precipitates.It has been reported that pure Cu(OH)2can be stable in pure water for several months [38,39].However,this is quite different under alkaline conditions.Especially,under concentrated alkaline conditions,the transforma-tion of Cu(OH)2into CuO is fast [28,36,40].As the phase transfor-mation is thermodynamically controlled [38],it prefers to go to CuO under hydrothermal conditions.The kinetics of the transfor-mation is very fast under concentrated alkaline solutions because Cu 2+ions are in the form of tetrahydroxocuprate (II)anions

Cu eOH T2à

4,which are stabilized by a strong Jahn–Teller effect [38,39].The anion can be considered as the precursor entity for the formation of CuO [36,40].Besides the phase transformation,the alkaline concentration apparently also has a

signi?cant

images of the products obtained under OH à/Cu 2+=3.(a)SEM image and (b)HRTEM image of nanoleaves with [01(a)is a low magni?cation TEM image of the nanoleaves.(c)SEM image and (d)HRTEM image of nano?owers with inset in (c)is a low magni?cation TEM image of one nano?ower.(e)SEM image and (f)HRTEM image of nanoribbons the inset in (e)is a low magni?cation TEM image of the nanoribbons.The inset in (b),(d),and (f)are the corresponding nanostructures.

products obtained under OHà/Cu2+P4.(a)TEM image and(b)HRTEM image of the nanoleaves obtained under OH growth plane and(200)lateral surface.(c)TEM image and(d)HRTEM image of the nanoleaves obtained under OHà/Cu2+ plane and(200)lateral surface.(e)TEM image of the nanosheets obtained under OHà/Cu2+=6without PEG200.(f)HRTEM 10with2ml PEG200,which shows the(010)growth plane and(200)lateral surface.

Fig.6.The schematic growth process of the various morphologies of CuO nanostructures.

in?uence on the morphology and the growth of CuO nanostruc-tures with or without PEG200.

Fig.6shows an overview of the different CuO morphologies that can be obtained with or without PEG200.Without PEG200,nano-seeds can be obtained at OH à/Cu 2+=2.The slow phase transforma-tion makes the nanoparticles self-assembly to

CuO with seed-shape (Fig.S1);then the nanoparticles disappear,resulting in a (Fig.3b),which demonstrates a well growth [27].Upon increasing the alkaline Cu 2+=3),nanoleaves can be obtained because tion results in a quick aggregation of the the (010)crystal plane to decrease the in agreement with previous work that shows stable crystal plane [41,42].This process attachment growth mechanism [27,43].The that at higher alkaline concentration (OH ànanosheets can be obtained.Upon the SEM it seems that a high alkaline concentration ticles aggregate quickly and it can also gation.Nanoleaves and nanosheets are the both effects.

Previous work has demonstrated that can modulate the kinetic growth and morphologies of the ?nal products [44–46].PEG200as a structure directing reagent,the surface of the Cu(OH)2nanoparticles slows formation as well as the CuO nanoparticle to different morphologies and growth tion,the nanorods grow along the (011)tle-like and shrimp-like structures,while the (101)planes with the help of PEG200.At tration (OH à/Cu 2+=3),different nano?owers constructed by 1D nanoleaves can be obtained.However,the nanoleaves and the nanoribbons grow along (101).The the effect of PEG directing the morphology It is well known that the concentration of its dispersion in solvent.When the is low (normally less than 0.5%),the without entanglements.When the polymer creased,the polymer chains begin to low volume of PEG 200(1–2ml),the can act as a structure directing agent cles,which are then arranged one by one in attachment to decrease their surface CuO nanostructures.When increasing the the reaction system,more PEG200molecules surface of the Cu(OH)2nanoparticles;they nanoparticle formation and aggregation,and surface energy and tend to form CuO However,under a higher alkaline PEG200is losing the role of structure fect on the Cu(OH)2nanoparticle phase gation is low.

The feeding order of the PEG and NaOH was added after the NaOH pellets in this TEM observations show that the CuO morphology as those without PEG added.The con?rm that both the Cu(OH)phase nanoparticle aggregation are very fast.The cannot make it ef?ciently adsorbed on the nanoparticles and lose the function of a The above information con?rms that the tures are actually the synergism of PEG and tion system.

3.3.Photocatalytic properties

As the morphologies and the exposed high energy surfaces can affect the properties of metal oxide nanostructures [5,9–14],it is worth exploring other potential applicabilities of the different J.Liu et al./Journal of Colloid and Interface Science 384(2012)1–97

(BET)surface area results based on the N 2adsorption isotherms of the CuO nanostructures are shown in Table 1,which displays that the surface area of all the samples is around 8–15m 2/g and the nanoseeds,shuttle-like structures,and shrimp-like structures showing a little lower surface area than the others.

In this experiment,morphologically different CuO nanostruc-tures were ?rst selected.For the same morphology,only the sam-ples with the highest surface area were selected.It has been reported that the PEG200molecules are apt to be oxidized into car-boxylic acids and modi?ed on nanoparticle surfaces in the pres-ence of excess alkali [48],which may affect the photocatalytic activity of the CuO nanostructures.IR spectroscopy was used to determine the existence of organic species in the ?nal products (Fig.7).Fig.7a is the spectrum of PEG200.The peaks at 2868,1454,1350,1250,933,and 885cm à1are the typical C A H vibration bands.The peaks at 1060cm à1and 1099cm à1belong to the C A O A (H)vibration and C A O A (C)vibration,respectively.Fig.7b is the spectrum of CuO nanoseeds obtained without PEG200.Three peaks at 769,611,and 487cm à1have been seen in this sample,which is the same as those of the CuO nanostructures with PEG200in the reaction system (Fig.7c–i).The results clearly show the disappearance of C @O vibration band indicating that there is no PEG200molecules oxidized into carboxylic acids and modi?ed on the surface of the CuO nanostructures.

The photodegradation of a model pollutant RhB,which shows an adsorption band at 554nm,was carried out at room tempera-ture.The intensity of the RhB could be taken as an indication of the amount of RhB left.The results are shown in Fig.8.In the ab-sence of catalysts,only a slight degradation (less than 3%)of RhB can be observed after 8h irradiation.The nanoribbons show the best performance,which demonstrates a 92%decrease of RhB after 8h irradiation.The structures with the same exposed {100}facets (the nano?owers,nanoleaves,and nanosheets)demonstrate higher photocatalytic activity than the nanoseeds,shuttle-like and shrimp-like structures because of the larger surface area.The nano?owers constructed by nanoleaves exhibit a slightly higher activity because of the higher surface area.However,the high pho-tocatalytic activity of CuO nanoribbons is hard to understand,be-cause it has a smaller surface area than the nano?owers and nanoleaves.To eliminate the surface area effect,nanostructures with the same surface area have also been selected and investi-gated on their photocatalytic activity (data not shown).The results still show that the nanoribbons exhibit the best photocatalytic activity.

Based on the HRTEM characterizations,it seems that the high photocatalytic activity of the CuO nanoribbons should be related to the exposed high surface-energy facet,which has a higher chem-ical activity than that of the low surface-energy facet.Only the CuO nanoribbons have high Miller index facets of the type {à121},

whereas the other CuO structures all have {100}facets.This result is similar to our previous work of CuO nanowire bundles on waste water treatment.The photocatalytic activity of CuO nanowire bun-dles with exposed high energy surface of {001}facets is higher than that of CuO commercial powders and CuO nanoleaves with {100}facets [27].

The monoclinic structure of CuO (space group C2/C (No.15))is illustrated in Fig.9a.In this structure,Cu 2+ions are located at the position of (0.25,0.25,0)and O 2àions are at the position of (0,0.42,0.25).The local atom arrangement of a side-view on the {100}and the {à121}plane is shown in Fig.9b and c,respectively.Fig.9b demonstrates that there are two possible as-cleaved termi-nations for a {100}termination:either a Cu terminating layer or an oxygen terminating layer.However,the termination for the {à121}plane is more complex as shown in Fig.9c.It shows mixed O A Cu A O layers.This complicated atomic stacking of {à121}fac-ets can make the O atoms at the surface more highly polarized than the ones at the {100}facets,resulting in a higher chemical activity of the {à121}facets.4.Conclusion

Various CuO nanostructures have been synthesized using PEG200as a structure directing reagent in a synergy with the alka-linity in the reaction system.The morphology of the CuO nano-structures can be tuned from 1D to 3D by changing the volume of PEG200and the alkalinity in the reaction system.XRD,SEM,and TEM have been used to characterize the CuO nanostructures.The different morphologies of CuO structures demonstrate differ-ent photocatalytic activity on the photodecomposition of RhB aqueous solution.Our results show that the photocatalytic activity is not greatly in?uenced by the morphology but rather by the ex-posed high energy surface of the CuO nanostructures.The CuO nanoribbons exhibit the best performance on RhB photodecompo-sition because of the high surface energy {à121}plane,which is in consistence with our previous work [27].Our experiments provide a simple way to transform 1D nanostructures into 2D and 3D nanostructures.Acknowledgments

This work is realized in the frame of a ‘‘Changjiang’’Innovative Research Team (IRT1169)?nancially supported by the Chinese Ministry of Education and the Wallon government in the frame of Interreg IV (France-Wallonie).B.L.Su acknowledges the Chinese Central Government for an ‘‘Expert of the State’’position in the program of ‘‘Thousand Talents’’,the Chinese Ministry of Education for a Changjiang Scholar position located at the Wuhan University of Technology.Y.Li acknowledges Hubei Provincial Department

of

monoclinic CuO with the unit cell outlined.(b)A side-view of the atomic arrangement of the {100}Deep red circles are O and pink circles are Cu atoms,respectively.(For interpretation of the references version of this article.)

Education for the‘‘Chutian Scholar’’program.GVT thanks funding from the European Research Council under the7th Framework Pro-gram(FP7),ERC Advanced Grant N246791-COUNTATOMS.This work is also?nancially supported by Hubei Provincial Natural Sci-ence Foundation(2011CDB425),Self-determined and Innovative Research Funds of WUT(2011-IV-031)and Self-determined and Innovative Research Funds of SKLWUT(2011-PY-2and2011-PY-3). References

[1]J.Hu,T.W.Odom,C.Lieber,Acc.Chem.Res.32(1999)435.

[2]Z.L.Wang,Mater.Today7(2004)26.

[3]X.B.Chen,S.S.Mao,Chem.Rev.107(2007)2891.

[4]J.Liu,F.Liu,K.Gao,J.Wu,D.Xue,J.Mater.Chem.19(2009)6073.

[5]Y.Li,X.Y.Yang,Y.Feng,Z.Y.Yuan,B.L.Su,Crit.Rev.Solid State Mat.Sci.37

(2012)1.

[6]Z.L.Wang,ACS Nano2(2008)1987.

[7]C.Liu,F.Li,L.P.Ma,H.M.Cheng,Adv.Mater.22(2010)E28.

[8]Q.F.Zhang,C.S.Dandeneau,X.Y.Zhou,G.Z.Cao,Adv.Mater.21(2009)4087.

[9]K.Zhou,X.Wang,X.M.Sun,Q.Peng,Y.D.Li,J.Catal.229(2005)206.

[10]X.W.Xie,Y.Li,Z.Q.Liu,M.Haruta,W.J.Shen,Nature458(2009)1746.

[11]Y.Li,H.Tan,X.Y.Yang,B.Goris,J.Verbeeck,S.Bals,P.Colson,R.Cloots,G.Van

Tendeloo,B.L.Su,Small7(2011)475.

[12]X.Han,Q.Kuang,M.Jin,Z.Xie,L.Zheng,J.Am.Chem.Soc.131(2009)3152.

[13]K.Zhu,J.Hu,C.Kübel,R.Richards,Angew.Chem.Int.Ed.45(2006)7277.

[14]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C.Smith,H.M.Cheng,G.Q.Lu,

Nature453(2008)638.

[15]J.B.Reitz,E.I.Solomon,J.Am.Chem.Soc.120(1998)11467.

[16]S.E.Oritz,P.Bosch,Appl.Surf.Sci.174(2001)177.

[17]H.Wang,J.Z.Xu,J.J.Zhu,H.Y.Chen,J.Cryst.Growth244(2002)88.

[18]W.Wang,Y.Zhan,X.Wang,Y.Liu,C.Zheng,G.Wang,Mater.Res.Bull.37

(2002)1093.

[19]M.R.Norman,A.Freeman,Rev.B:Condens.Matter Mater.Phys.33(1986)

8896.

[20]R.V.Kumar,Y.Diamant,A.Gedanken,Chem.Mater.12(2000)2301.

[21]J.Ziolo,F.Borsa,M.Corti,E.Suzuki,J.Appl.Phys.67(1990)5864.

[22]H.Cao,S.L.Suib,J.Am.Chem.Soc.116(1994)5334.

[23]P.Poizot,https://www.sodocs.net/doc/08480361.html,ruelle,S.Grugeon,L.Dupont,J.M.Tarascon,Nature407(2000)

496.[24]S.Grugeon,https://www.sodocs.net/doc/08480361.html,ruelle,R.Herrera-Urbina,L.Dupont,P.Poizot,J.M.Tarascon,J.

Electrochem.Soc.148(2001)285.

[25]A.Debart,L.Dupont,P.Poizot,J.B.Leriche,J.M.Tarascon,J.Electrochem.Soc.

148(2001)1266.

[26]D.W.Zhang,C.H.Chen,J.Zhang,F.Ren,Chem.Mater.17(2005)5242.

[27]Y.Li,X.Y.Yang,J.Rooke,G.Van Tendeloo,B.L.Su,J.Colloid Interface Sci.348

(2010)303.

[28]X.Q.Wang,G.C.Xi,S.L.Xiong,Y.K.Liu,B.J.Xi,W.C.Yu,Y.T.Qian,Cryst.Growth

Des.7(2007)930.

[29]W.W.Wang,Y.J.Zhu,G.F.Cheng,Y.H.Huang,Mater.Lett.60(2006)609.

[30]M.H.Cao,C.W.Hu,Y.H.Wang,Y.H.Guo,C.X.Guo,E.B.Wang,https://www.sodocs.net/doc/08480361.html,mun.

(2003)1884.

[31]Q.Liu,Y.Y.Liang,H.J.Liu,J.M.Hong,Z.Xu,Mater.Chem.Phys.98(2006)519.

[32]W.Z.Wang,Y.J.Zhan,G.H.Wang,https://www.sodocs.net/doc/08480361.html,mun.(2001)727.

[33]W.Wang,Z.Liu,Y.Liu,C.Xu,C.Zheng,G.Wang,Appl.Phys.A.76(2003)417.

[34]S.C.Yan,K.Shen,Y.Zhang,Y.P.Zhang,Z.D.Xiao,J.Nanosci.Nanotechnol.9

(2009)4886.

[35]Y.Liu,Y.Chu,Y.J.Zhuo,M.Y.Li,L.L.Li,L.Dong,Cryst.Growth Des.7(2007)467.

[36]D.P.Singh,A.K.Ojha,O.N.Srivastava,J.Phys.Chem.C113(2009)3409.

[37]X.Zhang,G.Wang,X.Liu,J.Wu,M.Li,J.Gu,H.Liu,B.Fang,J.Phys.Chem.C112

(2008)16845.

[38]Y.Cudennec,A.Lecerf,Y.Gérault,Eur.J.Solid State Inorg.Chem.32(1995)

1013.

[39]Y.Cudennec,A.Riou,A.Lecerf,Y.C.R.Gérault,Acad.Sci.Paris,Ser.Iic3(2000)

661.

[40]C.H.Lu,L.M.Qi,J.H.Yang,D.Y.Zhang,N.Z.Wu,J.M.Ma,J.Phys.Chem.B108

(2004)17825.

[41]Z.P.Zhang,H.P.Sun,X.Q.Shao,D.F.Li,H.D.Yu,M.Y.Han,Adv.Mater.17(2005)

42.

[42]J.Liu,X.Huang,Y.Li,K.M.Sulieman,X.He,F.Sun,Cryst.Growth Des.6(2006)

1690.

[43]Y.Li,H.Y.Tan,O.Lebedev,J.Verbeeck,E.Biermans,G.Van Tendeloo,B.L.Su,

Cryst.Growth&Des.10(2010)2969.

[44]H.Colfen,S.Mann,Angew.Chem.Int.Ed.42(2003)2350.

[45]H.Colfen,M.Antonietti,Angew.Chem.Int.Ed.44(2005)5576.

[46]Y.Peng,A.W.Xu,B.Deng,M.Antonietti,H.Colfen,J.Phys.Chem.B110(2006)

2988.

[47]M.J.He,W.X.Chen,X.X.Dong,Polymer Physics,revised ed.,Fudan University

Publisher,2005(chapter3).

[48]H.M.Xiong,R.Z.Ma,S.F.Wang,Y.Y.Xia,J.Mater.Chem.21(2011)3178.

J.Liu et al./Journal of Colloid and Interface Science384(2012)1–99

典型无机物小结-因反应条件不同而生成不同产物举例(精)

(一反应物相对量大小影响产物举例: 1多元碱与酸或多元酸与碱反应因相对量的多少有生成酸式盐、正盐、碱式盐的不同 2磷与氯气反应,因量的比例不同而分别得三氯化磷或五氯化磷 3硫化氢燃烧因反应物量的比例不同而分别得硫单质或二氧化硫 4氢氧化钙跟二氧化碳反应,因反应物量的比例不同而得碳酸钙沉淀或碳酸氢钙溶液 5碳燃烧因氧气充足与否而生成一氧化碳或二氧化碳 6铁与稀硝酸反应因铁的过量或不足生成二价铁盐或三价铁盐 7铝盐与氢氧化钠反应据量的不同而生成氢氧化铝或偏铝酸钠 8偏铝酸钠与盐酸反应,据量的不同而可生成氢氧化铝或氯化铝溶液 9硝酸银溶液与氨水反应,因氨水的不足或过量而生成氧化银沉淀或银氨溶液 10碳酸钠跟盐酸反应,因滴加的盐酸稀而少或过量,有生成碳酸氢钠或二氧化碳的不同 以上7、8、9、10四条都是溶液间反应,因而有“滴加顺序不同,现象不同”的实验效果,常用于“不用其它试剂加以鉴别”的题解. (二温度不同产物不同举例: 11钠与氧气反应因温度不同而产物不同(氧化钠或过氧化钠

12氯化钠与浓硫酸反应除生成氯化氢外,温度不同会生成不同的盐(微热时为硫酸氢钠,强热时为硫酸钠 13乙醇与浓硫酸共热,140度生成物主要为乙醚,170度主要为乙烯。 (三浓度不同产物不同举例: 14硝酸与铜反应,因硝酸的浓度不同而还原产物不同(浓硝酸还原成NO2,稀硝酸还原成NO (四催化剂不同反应不同举例 15甲苯与氯气反应,铁催化时取代反应发生在苯环上,光照时取代反应发生在甲基上。 (五溶剂不同反应不同举例 16*卤代烃与氢氧化钠的水溶液共热发生取代反应(水解反应;与氢氧化钠的醇溶液共热,发生消去反应。

实验二填料精馏塔等板高度的测定

实验二填料精馏塔等板高度的测定 精馏是化工生产中一个很重要的操作过程。在化工厂和实验室中,精馏操作通常被用来分离均相液体混合物。无论是原料的准备或是产品的精制,往往需要应用精馏操作。精馏塔一般分两大类:填料塔和板式塔。实验室精密分馏采用填料精馏柱。评价精馏设备的分离能力,对于板式塔多采用塔板效率;对于填料塔常以单位高度填料层内所具有的理论板数(亦称理论级数)来表示,或以相当于一层理论板的填料层高度,即所谓的等板高度(亦称理论级当量高度)来表示。本实验是在玻璃精馏柱中,填以玻璃填料,以乙醇一水混合物为工作介质,测定填料的分离能力(即测定玻璃球填料的等板高度)。 一、实验目的及任务 了解填料精馏塔的结构。 掌握精密分馏的操作方法。 测定在一定汽、液相负荷条件下,全回流时的全塔效率及等板高度。 二、实验基本原理 通常采用在全回流条件下,当塔内达到传质、传热平衡时,测定其最小理论板数,进而求出等板高度HETP,来评价精馏柱和填料性能。采用全回流操作条件,达到给定分离目的所需要的理论板数最少,即设备的分离能力达到最大,测定时,免去了回流比等的影响。 精馏过程就是依据混合物中两组分挥发度不同,使未达到平衡的汽、液两相进行充分的接触,最终达到平衡状态。从而使汽相中富含易挥发组分,液相中富含难挥发组分,从而达到分离的目的。在实际操作中,由于接触时间有限且汽、液两相接触不可能十分充足,所以最终的相平衡是不易达到的,相平衡只是过程的极限状态。因此,在开发和设计分离设备时, 应使设备的分离能力尽量提高。对于二元物系可以根据相平衡数据及实验,测定设备的这种分离能力(或效率)。 对于本实验所涉及的乙醇一水二元物系,由相平衡数据在直角坐标纸上绘出相图(x-y相图)。由实验测定全回流条件下的釜液浓度xw及塔顶流出液浓度xD (均为摩尔分数),在相图上图解理论级数NT。根据等板高度的定义,便可以计算出填料的等板高度:

0616化学反应工程知识点

化学反应工程知识点 —郭锴主编 1、化学反应工程学不仅研究化学反应速率与反应条件之间的关系,即化学反应动力学,而且着重研究传递过程对宏观化学反应速率的影响,研究不同类型反应器的特点及其与化学反应结果之间的关系。 2、任何化工生产,从原料到产品都可以概括为原料的预处理、化学反应过程和产物的后处理这三个部分,而化学反应过程是整个化工生产的核心。 3.化学反应工程的基本研究方法是数学模型法。数学模型法是对复杂的、难以用数学全面描述的客观实体,人为地做某些假定,设想出一个简化模型,并通过对简化模型的数学求解,达到利用简单数学方程描述复杂物理过程的目的。模型必须具有等效性,而且要与被描述的实体的那一方面的特性相似;模型必须进行合理简化,简化模型既要反映客观实体,又有便于数学求解和使用。 4.反应器按型式来分类可以分为管式反应器、槽式反应器(釜式反应器)和塔式反应器。 5反应器按传热条件分类,分为等温反应器、绝热反应器和非等温非绝热反应器。 第一章 均相单一反应动力学和理想反应器 1、目前普遍使用关键组分A 的转化率来描述一个化学反应进行的程度,其定义为:0 0A A A A A A n n n x -==组分的起始量组分量转化了的 2、化学反应速率定义(严格定义)为单位反应体系内反应程度随时

间的变化率。其数学表达式为dt d V r ξ1=。 3、对于反应D C B A 432+=+,反应物A 的消耗速率表达式为dt dn V r A A 1-=-;反应产物C 的生成速率表达式为:dt dn V r C C 1= 4.反应动力学方程:定量描述反应速率与影响反应速率之间的关系式称为反应动力学方程。大量的实验表明,均相反应的速率是反应物系的组成、温度和压力的函数。 5.阿累尼乌斯关系式为RT E C C e k k -=0,其中活化能反应了反应速率对温 度变化的敏感程度。 6、半衰期:是指转化率从0变为50%所需时间为该反应的半衰期。 7、反应器的开发大致有下述三个任务:①根据化学反应动力学特性来选择合适的反应器型式;②结合动力学和反应器两方面特性来确定操作方式和优化操条件;③根据给定的产量对反应装置进行设计计算,确定反应器的几何尺寸并进行评价。 8.在停留时间相同的物料之间的均匀化过程,称之为简单混合。而停留时间不同的物料之间的均匀化过程,称之为返混。 9.根据返混情况不同反应器被分为以下类型:间歇反应器、理想置换反应器(又称平推流反应器或活塞流反应器)、全混流反应器(又称为连续操作的充分搅拌槽式反应器)。 10.反应器设计计算所涉及的基础方程式就是动力学方程式、物料衡算方程式和热量衡算方程式,其中物料衡算所针对的具体体系称为体积元。 11、停留时间又称接触时间,用于连续流动反应器,指流体微元从反

填料精馏塔理论塔板数的测定(精)

实验五 填料精馏塔理论塔板数的测定 精馏操作是分离、精制化工产品的重要操作。塔的理论塔板数决定混合物 的分离程度,因此,理论板数的实际测定是极其重要的。在实验室内由精馏装 置测取某些数据,通过计算得到该值。这种方法同样可以用于大型装置的理论 板数校核。目前包括实验室在内使用最多的是填料精馏塔。其理论板数与塔结 构、填料形状及尺寸有关。测定时要在固定结构的塔内以一定组成的混合物进 行。 一. 实验目的 1.了解实验室填料塔的结构,学会安装、测试的操作技术。 2.掌握精馏理论,了解精馏操作的影响因素,学会填料精馏塔理论板 数的测定方法 3.掌握高纯度物质的提纯制备方法。 二. 实验原理 精馏是基于汽液平衡理论的一种分离方法。对于双组分理想溶液,平衡时 气相中易挥发组分浓度要比液相中的高;气相冷凝后再次进行汽液平衡,则气 相中易挥发组分浓度又相对提高,此种操作即是平衡蒸馏。经过多次重复的平 衡蒸馏可以使两种组分分离。平衡蒸馏中每次平衡都被看作是一块理论板。精 馏塔就是由许多块理论板组成的,理论板越多,塔的分离效率就越高。板式塔 的理论板数即为该塔的板数,而填料塔的理论板数用当量高度表示。填料精馏 塔的理论板与实际板数未必一致,其中存在塔效率问题。实验室测定填料精馏 塔的理论板数是采用间歇操作,可在回流或非回流条件下进行测定。最常用的 测定方法是在全回流条件下操作,可免去加回流比、馏出速度及其它变量影响,而且试剂能反复使用。不过要在稳定条件下同时测出塔顶、塔釜组成,再由该 组成通过计算或图解法进行求解。具体方法如下: 1.计算法 二元组份在塔内具有n 块理论板的第一块板的汽液平衡关系符合平衡方 程式为: 1 11y y -=w w N m x x -+11α (1) y 1——第一块板的气相组成 x w ——塔釜液的组成 m α——全塔(包括再沸器)α(相对挥发度)的几何平均值m α=w p αα N ——理论板数

大气课设填料塔设计计算

课程设计说明书 题 目:S H S 20-25型锅炉低硫烟煤 烟 气袋式除尘湿式脱硫系统设计 学生姓名: 周永博 学 院: 能源与动力工程学院 班 级: 环工13-1 指导教师:曹英楠

2016年7 月 1 日 内蒙古工业大学课程设计(论文)任务书 课程名称:大气污染控制工程学院:能源与动力工程学院班级:环工13-1 学生姓名:周永博学号:201320303014 指导教师:曹英楠

技术参数: 锅炉型号:SHS20-25 即,双锅筒横置式室燃炉(煤粉炉),蒸发量20t/h,出口蒸汽压力25MPa 设计耗煤量:2.4t/h 设计煤成分:C Y=75.2% H Y=3% O Y=4% N Y=1% S Y=0.8% A Y=10% W Y=6%; V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.25 飞灰率=29% 烟气在锅炉出口前阻力800Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度150m,90°弯头30个。

参考文献: 《大气污染控制工程》郝吉明、马广大; 《环保设备设计与应用》罗辉..北京.高等教育出版社.1997; 《除尘技术》高香林..华北电力大学.2001.3; 《环保设备?设计?应用》郑铭..北京.化学工业出版社.2001.4; 《火电厂除尘技术》胡志光、胡满银..北京.中国水利水电出版社.2005; 《除尘设备》金国淼..北京.化学工业出版社.2002; 《火力发电厂除尘技术》原永涛..北京.化学工业出版社.2004.10; 《环境保护设备选用手册》鹿政理..北京.化学工业出版社.2002.5; 《工业通风》孙一坚主编..中国建筑工业出版社,1994; 《锅炉及锅炉房设备》奚士光等主编..中国建筑工业出版社,1994; 《除尘设备设计》金国淼主编..上海科学技术出版社,1985; 《环境与工业气体净化技术》. 朱世勇主编.化学工业出版社,2001; 《湿法烟气脱硫系统的安全性及优化》曾庭华,杨华等主编..中国电力出版社;《燃煤烟气脱硫脱硝技术及工程实例》. 钟秦主编.化学工业出版社,2004; 《环保工作者使用手册》. 杨丽芬,李友琥主编.冶金工业出版社,2001; 《工业锅炉房设计手册》航天部第七研究设计院编.中国建筑工业出版社,1986;《火电厂烟气湿法脱硫装置吸收塔的设计》王祖培编.化学工业第二设计院,1995;《大气污染控制工程》. 吴忠标编.科学出版社,2002; 《湿法烟气脱硫吸收塔系统的设计和运行分析》. 曾培华著.电力环境保护,2002。

有机反应的常用条件

有机反应的常用条件 李 文 志 一、能使)(4+H KMnO 褪色的物质(氧化反应) 1、含碳碳双键、碳碳三键等不饱和键的物质。 2、苯的同系物 3、醇、酚、醛 二、能与溴水或2Br 的4ccl 反应的物质。 1、含碳碳双键、碳碳三键不饱和键的物质(加成反应) 2、有尽 2Br +(液)??→?3FeBr 化气 Br +HBr (取代反应) 3、苯酚与浓溴水(取代反应) 4、醛基使溴水褪色(氧化反应) HBr COOH CH O H Br CHO CH 23223+→++ 三、与2H 加成反应(Ni 作催化剂)(还原反应) 1、33222CH CH H CH CH Ni ?→?+= 2、3322CH CH H CH CH Ni ?→?+≡ 3、苯环与氢气加成 4、OH CH CH H CHO CH Ni 2323?→?+ 5、33233COHCH CH H COCH CH Ni -?→?+ 四、在NaOH 溶液条件下的反应 (一)卤代烃的水解反应和消去反应 1、NaBr OH CH CH NaOH Br CH CH 、+???→?+2323加热水 2、O H NaBr CH CH CH NaOH Br CH CH 、22323++=-???→?+加热乙醇 (二)酯的水解反应 3、OH CH COONa CH NaOH COOCH CH 3333+→+

(三)酚与NaOH 反应 4、 →+N a O H OH O H O N a 2+ (四)羧酸与NaOH 反应 O H COONa CH NaOH COOH CH 233+→+ 五、在浓硫酸、加热条件下的反应(一般有水生成,浓硫酸作用的催化剂、吸水剂) 1、 +????→?加热浓、SO H HNO 423 O H NO 22+ 取代反应 2、O H CH CH C HSO OH CH CH 222423170+↑=?浓 消去反应 3、乙酸与乙醇在浓硫酸、加热条件下发生反应 酯化反应 六、在稀硫酸条件下的反应 (一)酯的水解 O H CH COOCH CH 2323+OH CH CH COOH CH 233+ (二)糖的水解 1、O H O H C 2112212+???→?42SO H 稀 61266126O H C O H C + 蔗糖 葡萄糖 果糖 2、O H O H C 2112212+612624O H C ??→?酸或酯 麦芽糖 葡萄糖 3、612625106(O H nC O nH n O H C ??→?+酸或酯) 淀粉 葡萄糖 稀硫酸 △

化学反应的限度以及反应条件的控制

化学反应的限度以及反应条件的控制 一、选择题 1.下列关于化学反应限度的说法中正确的是( ) A.改变外界条件不能改变化学反应限度 B.当某反应在一定条件下达到反应限度时即达到了化学平衡状态 C.当某反应体系中气体的压强不再改变时,该反应一定达到了反应限度 D.当某反应达到反应限度时,反应物和生成物的浓度一定相等 【答案】 B 2.(2015·河南省内黄县一中分校高一下学期月考)在密闭容器中进行X2(g)+ 2Y2(g)Z(g)的反应,X2、Y2、Z的起始浓度依次为0.2 mol/L、0.3 mol/L、0.3 mol/L,当反应达到其最大限度(即化学平衡状态)时,各物质的浓度有可能的是( ) A.c(Z)=0.45 mol/L B.c(X2)=0.3 mol/L c(Z)=0.1 mol/L C.c(X2)=0.5 mol/L D.c(Y2)=0.5 mol/L 【解析】A.如果c(Z)=0.45 mol/L,则相应消耗0.3 mol/L的Y2,但Y2的起始浓度是0.3 mol/L,反应是可逆反应,反应物不能完全转化,A错误;B.如果c(X2)=0.3 mol/L,则相应于消耗0.1 mol/L的Z,则剩余Z是0.2 mol/L,B错误;C.如果c(X2)=0.5 mol/L,则需要消耗0.3 mol/L的Z,反应是可逆反应,则Z的浓度不可能为0,C错误;D.如果c(Y2)=0.5 mol/L,则需要消耗0.1 mol/L的Z,剩余0.2 mol/L的Z,所以D正确,答案选D。 【答案】 D 3.在体积为1 L的密闭容器中(体积不变)充入1 mol CO2和3 mol H2,一定条件下发生反应:CO2(g)+3H2(g)CH3OH(g)+H2O(g)。测得CO2和CH3OH(g)的浓度随时间变化如图所示。下列说法正确的是( ) A.进行到3分钟时,正反应速率和逆反应速率相等 B.10分钟后容器中各物质浓度不再改变 C.达到平衡后,升高温度,正反应速率增大、逆反应速率减小 D.3 min前v(正)>v(逆),3 min后v(正)<v(逆) 【解析】A.进行到3分钟时,物质的浓度仍然是变化的,则正反应速率和逆反应速率不相等,A错误;B.10分钟后反应达到平衡状态,则容器中各物质浓度不再改变,B正确;C.达

填料塔工艺尺寸的计算

填料塔工艺尺寸的计算 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第三节 填料塔工艺尺寸的计算 填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段 塔径的计算 1. 空塔气速的确定——泛点气速法 对于散装填料,其泛点率的经验值u/u f =~ 贝恩(Bain )—霍根(Hougen )关联式 ,即: 2213lg V F L L u a g ρμερ?? ?????? ? ???????=A-K 14 18 V L V L w w ρρ???? ? ??? ?? (3-1) 即:1124 8 0.23100 1.18363202.59 1.1836lg[ ()1]0.0942 1.759.810.917998.24734.4998.2F u ?????? =- ? ? ??????? 所以:2 F u /(100/3)()= UF=3.974574742m/s 其中: f u ——泛点气速,m/s; g ——重力加速度,9.81m/s 2 W L =㎏/h W V =7056.6kg/h A=; K=; 取u= F u =2.78220m/s 0.7631D = = = (3-2) 圆整塔径后 D=0.8m 1. 泛点速率校核:2 6000 3.31740.7850.83600 u = =?? m/s 则 F u u 在允许范围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核: (1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。

(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ?为。 ()32min min 0.081008/w t U L m m h α==?=? (3-3) 22 5358.8957 10.6858min 0.75998.20.7850.8L L w U D ρ= ==>=???? (3-4) 经过以上校验,填料塔直径设计为D=800mm 合理。 填料层高度的计算及分段 *110.049850.75320.03755Y mX ==?= (3-5) *220Y mX == (3-6) 3.2.1 传质单元数的计算 用对数平均推动力法求传质单元数 12 OG M Y Y N Y -= ? (3-7) ()* *1 1 22*11*22 () ln M Y Y Y Y Y Y Y Y Y ---?= -- (3-8) = 0.063830.00063830.03755 0.02627ln 0.0006383 -- = 3.2.2 质单元高度的计算 气相总传质单元高度采用修正的恩田关联式计算: () 0.75 0.10.05 2 0.2 2 21exp 1.45/t c l L t L L V t w l t l L U U U g ασαρσαασαμρ-????????? ? =--?? ? ? ??? ????? ?? ? (3-9) 即:αw/αt =0. 液体质量通量为:L u =WL/××=10666.5918kg/(㎡?h ) 气体质量通量为: V u =60000×=14045.78025kg/(㎡?h)

齐逸翎 112017316002126 “蓝瓶子实验”最佳反应条件的探究

《化学实验教学研究》实验报告 实验项目“蓝瓶子实验”最佳反应条件的探究实验日期星期四上午□√下午□晚上□姓名学号同组人台号 实验目的: 1.了解“蓝瓶子实验”的反应原理 2.初步学习用简单比较法探究“蓝瓶子实验”的最佳反应条件实验教学目标: 知识与技能: 1.了解亚甲基蓝的变色原理及蓝瓶子实验的实验基本原理;2.知道简单比较法的原理并能够较为熟练地运用; 3.掌握“蓝瓶子实验”的最佳反应条件。 过程与方法: 1.学习通过简单比较法对实验最佳条件进行探索的方法;2.通过设计实验培养学生的实验探索能力、逻辑思维能力以及动手能力。 情感态度与价值观: 1. 通过团队合作培养学生的团队合作意识,提高科学素养; 2. 通过化学知识点的应用,增强学生学习化学的兴趣,感受化 学的神奇魅力。

实验原理: 亚甲蓝是一种氧化还原指示剂,易溶于水,能溶于乙醇。在碱性条件下,盛放在锥形瓶中的蓝色的亚甲蓝溶液可以被葡萄糖还原成无色的亚甲白溶液。亚甲蓝与亚甲白的结构式分别如图1和图2所示: 振荡锥形瓶中的混合液时,使其溶入空气或氧气后,亚甲白被氧气氧化成亚甲蓝,致使该混合液又呈现蓝色。若静置混合液,亚甲蓝又被葡萄糖原成无色的亚甲白。如此反复振荡、静置锥形瓶,其混合液在蓝色与无色之间互变,故称为蓝瓶子实验。其变色原理为: 这种现象又称为亚甲蓝的化学振荡。由蓝色出现至变成无色所需要的时间称之为振荡周期,振荡周期的长短受反应条件如亚甲蓝溶液的最佳溶剂选择、反应温度、氢氧化钠的用量等因素的影响。其中,亚甲蓝在葡萄糖与氧气反应中起着催化作用。

实验设计(或改进)思路: 在125ml的锥形瓶中加入一定量的3%的葡萄糖溶液、30%的氢氧化钠溶液,再滴加一定量的0.1%的亚甲基蓝溶液后精致,观察溶液颜色由蓝色变为无色后,在一定时间内以一定频率震荡锥形瓶至溶液的颜色又变为蓝色,如此反复,记录经历5个震荡周期所需要的时间。 第一,教材中给出的记录方式是记录在5min或10min内的震荡周期,但是在实际操作中,我们是记录5个震荡周期所需要的时间,我认为这样的方法更加方便直观,而且主观性没有那么强;第二,在进行实验操作时,因为本实验设计颜色变化,在震荡锥形瓶时应该以一张白色的A4纸为背景,这样方便观察颜色变化。这两点是对教材实验设计内容的改进。 在本实验中,影响震荡周期有这几个主要因素:亚甲基蓝的用量、葡萄糖溶液的用量、氢氧化钠溶液的用量、温度等等。此次实验我们探究的是前三个影响因素对震荡周期的影响。 实验研究的主要内容: 1.3%的葡萄糖溶液用量的探究; 2. 30%的氢氧化钠溶液用量的探究; 3.0.1%的亚甲基蓝溶液用量的探究 实验研究方案及实验记录: 实验内容:应用简单比较法,在3%葡萄糖溶液用量、30%氢氧化钠溶液用量、0.1%亚甲基蓝溶液这三个变量中,固定两个因素、改变一个因素的方法,通过记录5个振荡周期所需要的时间来探索蓝瓶子实验的最佳条件。(本实验周期记为溶液由“蓝色——无色——蓝色”为一个周期)具体实验设计如下: 一、葡萄糖浓度探究 序号3% C6H12O6 /mL 3% NaOH /mL 0.1% 亚甲基蓝 /滴 5个振荡周期所需要的 时间/s 1 30 3 6 150 2 20+10 ml蒸馏水179 3 10+20 ml蒸馏水187 结论加入30ml 30%葡萄糖时,变色周期最短。 二、氢氧化钠浓度探究 序号3% C6H12O6 /mL 3% NaOH /mL 0.1% 亚甲基蓝 /滴 5个振荡周期所需要的 时间/s 1 30 3 6 152 2 2 159 3 1 183 结论加入3ml 3%氢氧化钠溶液时,变色周期最短。 三、亚甲基蓝浓度探究 序号3% C6H12O6 /mL 3% NaOH /mL 0.1% 亚甲基蓝 /滴 5个振荡周期所需要的 时间/s 1 30 3 6 152 2 4 133 3 2 129 结论加入2滴亚甲基蓝溶液时,变色周期最短。

化学反应条件的优化(教案)

第4节化学反应条件的优化———工业合成氨 【三维目标】 知识与技能: 1. 使学生理解如何应用化学反应速率和化学平衡原理,选择合成氨的适宜条件。 2. 使学生了解应用化学原理选择化工生产条件的思路和方法。 过程与方法: 1. 教学时应以化学反应速率和化学平衡原理为主线,以合成氨知识为中心,结合工业 生产的实际情况,将知识串联、拓展、延伸,培养学生的归纳思维能力。 2. 在运用理论的过程中,可以进一步加深学生对所学理论的理解和提高知识的实际应 用能力。 情感态度与价值观: 1. 通过了解合成氨的全过程,可以激发学生爱科学、探索科学的热情。 2. 通过合成氨前景的展望,激发学生学习兴趣。. 【教学过程】 [引入] 首先问大家一个问题:大家想不想当老板? (为什么想当老板?) [板书] 第4节化学反应条件的优化——工业合成氨 [学生活动] 了解学习目标,内容框架 [提问] 1. 在化学必修—2中我们已经学习了工业合成氨的反应原理,是什么呢? 2. 合成氨反应的特点? 3. 选择生产条件的目的是什么? 4. 选择生产条件的依据是什么? 答案: 1 原理:N 2 + 3H2 2NH3(正反应为放热反应) 2 反应特点:①可逆反应 ②正反应是放热反应 ③正反应气体体积缩小 3尽可能加快反应速率和提高产物产率 4外界条件对化学反应速率和化学平衡的影响 [学生活动] 请根据正反应的焓变和熵变分析298K下合成氨反应能否自发进行? (只需要估算即可) [知识回顾] 运用所学有关知识填写下表: 化学反应速率化学平衡 温度 压强 催化剂 浓度 [教师引导并总结] 请同学们根据合成氨反应的特点,利用影响化学平衡移动的因素,分析什么条件有利于

填料塔课程设计

目录 1.前言 (4) 2.设计任务 (6) 3.设计方案说明 (6) 4.基础物性数据 (6) 5.物料衡算 (6) 6.填料塔的工艺尺寸计算 (8) 7.附属设备的选型及设备 (14) 8.参考文献 (19) 9.后记及其他 (20)

1.前言 填料塔是以塔内的填料作为气液两相间接触构件的传质设备,它是化工类企业中最常用的气液传质设备之一。而塔填料塔内件及工艺流程又是填料塔技术发展的关键。聚丙烯材质填料作为塔填料的重要一类,在化工上应用较为广泛,与其他材质的填料相比,聚丙烯填料具有质轻、价廉、耐蚀、不易破碎及加工方便等优点,但其明显的缺点是表面润湿性能。 1.1填料塔技术 填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。填料的上方安装填料压板,以防被上升气流吹动。液体从塔顶经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设气体分布装置)分布后,与液体呈逆流连续通过填料层的空隙,在填料表面上,气液两相密切接触进行传质。填料塔属于连续接触式气液传质设备,两相组成沿塔高连续变化,在正常操作状态下,气相为连续相,液相为分散相。 当液体沿填料层向下流动时,有逐渐向塔壁集中的趋势,使得塔壁附近的液流量逐渐增大,这种现象称为壁流。壁流效应造成气液两相在填料层中分布不均,从而使传质效率下降。因此,当填料层较高时,需要进行分段,中间设置再分布装置。液体再分布装置包括液体收集器和液体再分布器两部分,上层填料流下的液体经液体收集器收集后,送到液体再分布器,经重新分布后喷淋到下层填料上。 填料塔具有生产能力大,分离效率高,压降小,持液量小,操作弹性大等优点。填料塔也有一些不足之处,如填料造价高;当液体负荷较小时不能有效地润湿填料表面,使传质效率降低;不能直接用于有悬浮物或容易聚合的物料;对侧线进料和出料等复杂精馏不太适合等。 1.2 填料的类型 填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料。 散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,又可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

填料塔计算部分

填料塔计算部分 This manuscript was revised by the office on December 10, 2020.

二 基础物性参数的确定 1 液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。由手册查得,2 气相物性参数 设计压力: ,温度:20C ? 氨气在水中的扩散系数:92621.7610/ 6.33610/L D cm s m h --=?=? 氨气在空气中的扩散系数: 查表得,氨气在0°C ,在空气中的扩散系数为 2/cm s , 根据关系式换算出20C ?时的空气中的扩散系数: 3 32 2 00022293.150.171273.150.189/0.06804/V P T D D P T cm s m h ?????? ==?? ? ? ??????? == 混合气体的平均摩尔质量为 m i 0.05170.982929.27V i M y M ==?+?=∑ 混合气体的平均密度为 3m 101.329.27 1.2178.314293.15 V Vm PM kg m RT ρ?===? 混合气体的粘度可近似取空气的粘度,查手册得20C ?空气粘度为 51.81100.065()V Pa s kg m h μ-=??=? 3 气液相平衡数据

由手册查得,常压下20C ?时,氨气在水中的亨利系数 76.3a E kP = 相平衡常数 76.30.7532101.3 E m P === 溶解度系数 3s 998.2 0.726076.318.02 L H kmol kPa m EM ρ= = =?? 4 物料衡算 进塔气相摩尔比 1= 110.05 0.05263110.05 y Y y ==-- 出塔气相摩尔比 321(1)0.05263(10.98) 1.05310A Y Y ?-=-=-=? 混合气体流量 330.1013(273.1520) 16.10100.1013273.15 V N Q Q m h ? ?+==?? 惰性气体摩尔流量 273.15(10.05)636.1622.4273.1520 V Q V kmol h =?-=+ 该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算: 1212 L Y Y V Y m X -??= ? -?? 对于纯溶剂吸收过程,进塔液相组成 20X = min 0.052630.0010530.73810.052630.7532L V -??== ??? 取操作液气比为 min 1.4L L V V ?? = ??? 1.40.7381 1.0333L V =?= 1.0333636.16657.34L kmol h =?= 1212()636.16(0.052630.001053) 0.0499657.34 V Y Y X X L -?-=+==

填料塔计算和设计

填料塔计算和设计

填料塔计算和设计 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;

3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据它的特点进行技术经济评价,使所选用的填料既能满足生产要求,又能使设备的投资和操作费最低。 (1)填料种类的选择 填料的传质效率要高:传质效率即分离效率,一般以每个理论级当量填料层高度表示,即HETP值; 填料的通量要大:在同样的液体负荷下,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料; 填料层的压降要低:填料层压降越低,塔的动力消耗越低,操作费越小;对热敏性物系尤为重要;

填料塔设计

1.填料塔的一般结构 填料塔可用于吸收气体等。填料塔的主要组件是:流体分配器,填料板或床限制板,填料,填料支架,液体收集器,液体再分配器等。 2.填料塔的设计步骤 (1)确定气液负荷,气液物理参数和特性,根据工艺要求确定出气口上述参数(2)填料的正确选择对塔的经济效果有重要影响。对于给定的设计条件,有多种填充物可供选择。因此,有必要对各种填料进行综合比较,限制床层,以选择理想的填料。 (3)塔径的计算:根据填料特性数据,系统物理参数和液气比计算出驱替速度,再乘以适当的系数,得出集液器设计的空塔气速度,以计算塔径。;或者直接使用从经验中获得的气体动能因子的设计值来计算塔的直径。 (4)填充层的总高度通过传质单位高度法或等板高度法算出。

(5)计算填料层的压降。如果压降超过极限值,则应调整填料的类型和尺寸或降低工作气体的速度,然后再重复计算直至满足条件。 (6)为了确保填料塔的预期性能,填料塔的其他内部组件(分配器,填料支座,再分配器,填料限位板等)必须具有适当的设计和结构。结构设计包括两部分:塔身设计和塔内构件设计。填料塔的内部组件包括:液体分配装置,液体再分配装置,填料支撑装置,填料压板或床限制板等。这些内部构件的合理设计是确保正常运行和预期性能的重要条件。 废气处理设备 第六章小型吸收塔的设计32参考文献33设计师:武汉工程大学环境工程学院08级环境工程去除工艺气体中更多的有害成分以净化气体以进一步处理或去除工业废气中的更多有害物质,以免造成空气污染。1.2吸收塔的应用塔式设备是气液传质设备,广泛用于炼油,化工,石家庄汕头化工等生产。根部列车塔中气液接触部分的结构类型可分为板式塔和填料塔。根据气体和液体的接触方式的不同,吸收设备可分为两类:阶

填料塔计算和设计

填料塔计算和设计文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

填料塔设计 2012-11-20 一、填料塔结构 填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。在填料的上方安装填料压板,以限制填料随上升气流的运动。液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。 二、填料的类型及性能评价 填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料; 填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。

1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优; 2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低; 3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。 三、填料塔设计基本步骤 1.根据给定的设计条件,合理地选择填料; 2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸; 3.计算填料层的压降; 4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。? 四、填料塔设计 1.填料的选择 填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。应尽量选用技术资料齐备,适用性能成熟的新型填料。对性能相近的填料,应根据

酶切反应条件的优化

当建立内切酶酶切反应体系时有几个关键因素需要考虑。比如如何在正确的反应体系中,加入适量的DNA、内切酶和缓冲液,就可以获得最佳酶切效果。根据定义,在50μl体系中,1单位的限制性内切酶可以在60分钟内完全切割1μg的底物DNA。上述酶、DNA与总反应体积的比值可以做为建立反应体系的参考数据。但是,目前大多数科研人员会遵循下表中所列的标准反应条件,使用5-10倍的过量酶切割DNA,这样有利于克服由于DNA来源不同、质量和纯度不同而造成的实验失败。 “标准”反应体系 内切酶 ?从冰箱取出后请一直置于冰上。 ?酶最后加入到反应体系中。 ?加入酶之前将反应混合物混匀,可以用移液枪上下吹打或轻弹管壁,然后在离心机中快速离心。切忌振荡混匀! ?当切割超螺旋质粒和琼脂糖包埋DNA时,通常需要超过1unit/μg的酶量以达到完全酶切。DNA ?避免酚、氯仿、酒精、EDTA、变性剂或过多盐离子的污染。 ?甲基化的DNA会抑制某些酶的切割效率。 缓冲液 ?使用终浓度为1X的缓冲液。 ?根据实验需要加入终浓度为100μg/ml的BSA(1:100稀释)。 ?在不需要BSA即可达到最佳活性的酶切反应中如果加入BSA也不会影响酶切效果。 反应总体积 ?建议在50μl反应体系中消化1μg底物DNA。 ?为避免星号活性,甘油浓度应<5%。 ?加入内切酶(贮存于50%甘油中)的量应不超过总体积的10%。 ?使用以下技术,内切酶的反应条件可能未达到最佳反应条件:克隆、基因分型、突变检测、基因定位、探针制备、测序和甲基化检测等。 ?内切酶贮存液中的添加物(如:甘油和盐)和底物溶液中尚存的残余物(如:盐、EDTA 或乙醇)会导致小体积反应体系出现问题。NEB提供了一系列高保真内切酶(方便建立反应体系。下述为小体积反应体系反应指南。 酶切反应体系的选择

填料塔的计算

一、 设计方案的确定 (一) 操作条件的确定 1.1吸收剂的选择 1.2装置流程的确定 1.3填料的类型与选择 1.4操作温度与压力的确定 45℃ 常压 (二)填料吸收塔的工艺尺寸的计算 2.1基础物性数据 ①液相物性数据 对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据 7.熔 根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数 表面张力б=72.6dyn/cm=940896kg/h 3 ②气相物性数据 混合气体的平均摩尔质量为 M vm = y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347 混合气体的平均密度ρvm = =??=301 314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3

混合气体粘度近似取空气粘度,手册28℃空气粘度为 μV =1.78×10-5Pa ·s=0.064kg/(m?h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2 /h 由文献时CO 2在MEA 中的亨利常数: 在水中亨利系数E=2.6?105kPa 相平衡常数为m=1.25596 .101106.25 =?=P E 溶解度系数为H= )/(1013.218 106.22.997345kPa m kmol E M s ??=??=-ρ 2.2物料衡算 进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即 2121min /X m Y Y Y )V L ( --= 对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L ( --==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581 ①塔径计算 采用Eckert 通用关联图计算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量计算 即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为 0.011799 查埃克特通用关联图得226.02.0=??L L V F F g u μρρ?φ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ Uf=3.964272m/s 取u=0.8u F =0.8×3.352=2.6816m/s

化学反应发生条件

①金属+氧气→金属氧化物 除Ag、Pt、Au外的金属,一般都可以和氧气发生化合反应,金属越活泼,与氧化合就越容易,反应就越剧烈。金属氧化物大多是碱性氧化物。 ②碱性氧化物+水→可溶性碱 可溶性碱对应的碱性氧化物能与水反应生成对应的碱,K2O、Na2O、BaO都能跟水反应。Ca(OH)2微溶于水,它对应的CaO也能与水反应。其余的碱性氧化物一般与水不反应或不易反应。 ③碱→碱性氧化物+水 不溶性的碱在加热的条件下,一般可分解为对应的碱性氧化物和水。碱中的金属越不活泼,则该碱越容易分解。 ④非金属+氧气→非金属氧化物 除F2、CI2、Br2、I2外的非金属一般都可直接与O2反应生成非金属氧化物。非金属氧化物大多是酸性氧化物。 ⑤酸性氧化物+水→含氧酸 除不溶性的SiO2外,常见的酸性氧化物都可与水反应生成对应的含氧酸。 ⑥含氧酸→酸性氧化物+水 在一定条件下,含氧酸分解可生成酸性氧化物(酸酐)和水 ⑦金属+非金属→无氧酸盐 此处的非金属H2、O2 除外。当金属越活泼,非金属也越活泼时,反应就越容易进行。 ⑧酸性氧化物+碱性氧化物→含氧酸盐 强酸(H2SO4、HNO3)的酸酐与活泼金属的氧化物在常温下即可反应,其余的需要在加热或高温条件下才能发生反应。

⑨碱性氧化物+酸→盐+水 强酸(H2SO4、HNO3、HCI)可与所有碱性氧化物反应,弱酸(H2CO3、H2S等)只能和活泼金属的氧化物反应。 ⑩酸性氧化物+碱→盐+水 酸性氧化物在一般条件下都可与强碱溶液反应,但SiO2与NaOH固体(或KOH 固体)需在强热条件下才发生反应。 ⑾酸+碱→盐+水 参加反应的酸和碱至少有一种是易溶于水的。 ⑿碱+盐→另一种碱+另一种盐 参加反应的碱和盐必须都能溶于水,同时生成物必须有难溶物或者易挥发的碱(NH3·H2O) ⒀酸+盐→另一种酸+另一种盐 酸和盐反应的前提条件比较复杂,在现阶段应掌握以下几点: 这里所说的酸和盐的反应是在水溶液中发生的复分解反应,必须符合复分解反应发生的条件,酸与盐才能发生反应。 如果反应物中的盐是难溶的,那么生成物必须都是可溶的,否则反应将不能继续进行。在实验室用石灰石制取CO2时,只能选用盐酸而不能用硫酸,就是这个道理。 必须掌握弱酸盐(如Na2CO3、CaCO3)跟强酸HCI、H2SO4、HNO3的反应,和生成BaSO4、AgCI的反应。 ⒁盐+盐→另两种盐 参加反应的两种盐必须都能溶于水,若生成物中有一种是难溶性的盐时,则反应可以进行。 ⒂金属+酸→盐+氢气 在金属活动性顺序里, 排在氢前的金属能从酸溶液中把氢置换出来。 这里的酸主要是指盐酸 和稀硫酸。浓硫酸和硝酸因有强氧化性,跟金属反应时不会生成氢气,而是生成盐、水、和 其他气体。

相关主题