搜档网
当前位置:搜档网 › 光学仪器分辨率

光学仪器分辨率

四大光学仪器在生活中各领域的应用

四大光学仪器在生活中各领域的应用 摘要:现代光学已经发展成为一门相互交叉相互渗透,涉及到各个领域的综合性学科。成为现代科学技术最活跃前沿领域之一[1]。光学的应用是与光学实验仪器的不断改进和光学理论的逐渐完善同步产生的。本文对紫外—可见分光光度计、红外光谱和Raman光谱仪、原子发射光谱仪、原子吸收光谱仪在生活中各领域的应用一一进行了介绍。 关键词: 一、紫外—可见分光光度计的应用 紫外可见分光光度法从问世以来,在应用方面有了很大的发展,尤其是在相关学科发展的基础上,促使分光光度计仪器的不断创新,功能更加齐全,使得光度法的应用更拓宽了范围[2]。目前,分光光度法已为工农业各个部门和科学研究的各个领域所广泛采用,成为人们从事生产和科研的有力测试手段。 1.结构 一般地,紫外可见分光光度计主要由光源系统、单色器系统、样品室、检测系统组成。光源发出的复合光通过单色器被分解成单色光,当单色光通过样品室时,一部分被样品吸收,其余未被吸收的光到达检测器,被转变为电信号,经电子电路的放大和数据处理后通过显示系统给出测量结果[3]。 2.原理 由于各种物质具有各自不同的分子、原子和不同的分子空间结构,其吸收光能量的情况也就不会相同。因此,每种物质都有其特有的、固定的吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或测定该物质的含量,这就是分光光度定性和定量分析的基础[3]。 3.特点 分光光度法对于分析人员来说,可以说是最常用和有效的工具之一。因为分光光度法具有灵敏度高、选择性好、准确度高、适用浓度范围广的特点[4]。 4.应用 4.1纯度检验 紫外吸收光谱能测定化合物中含有微量的具有紫外吸收的杂质。如果化合物的紫外可见光区没有明显的吸收峰,而它的杂质在紫外区内有较强的吸收峰,就可以检测出化合物中的杂质[4]。 4.2与标准物及标准图谱对照 将分析样品和标准样品以相同浓度配制在同一溶剂中,在同一条件下分别测定紫外可见吸收光谱。若两者是同一物质,则两者的光谱图应完全一致。如果没有标样,也可以和现成的标准谱图对照进行比较。这种方法要求仪器准确,精密度高,且测定条件要相同[2]。 4.3氢键强度的测定 不同的极性溶剂产生氢键的强度也不同。这可以利用紫外光谱来判断化合物在不同溶剂中氢键强度,以确定选择哪一种溶剂。 4.4反应动力学研究 借助于分光光度法可以得出一些化学反应速度常数,并从两个或两个以上温度条件下得到的速度数据,得出反应活化能。 4.5络合物组成及稳定常数的测定 金属离子常与有机物形成络合物,多数络合物在紫外可见区是有吸收的,我们可以利用分光光度法来研究其组成。 除此之外,紫外—可见分光光度计还常常应用于比较最大吸收波长吸收系数的一致性、检定物质等方面的研究[3]。 二、红外光谱和Raman光谱仪 红外光谱广泛应用于分子结构的基础研究和化学组成的分析领域,对有机化合物的定性分析具有鲜明的特征性。由于其专属性强各种基因吸收带信息多,固可用于固体、液体和气体定性和定量分析[4]。又由于用红外光谱作样品分析时基本不需要处理,且不破坏和消耗样品,自身又无环境污染,因而被广泛运用。 1.结构

用光学仪器测量放大率和微小长度

实验二 用光学仪器测量放大率和微小长度 实验目的 1.熟悉显微镜和望远镜的构造及其放大原理。 2.学会测定显微镜和望远镜放大率的方法。 3.掌握显微镜的正确使用方法;学会利用显微镜测量微小长度。 4.理解光学仪器分辨本领的物理意义。 实验仪器 读数显微镜,望远镜,测微目镜,目镜测微尺,标准石英尺,十字叉丝光阑,圆孔光阑,准直光阑,分辨率板,辅助显微镜,米尺,标尺,待测样品等。 实验原理 1.测定显微镜和望远镜的放大率 在前面的基础知识中,我们已经对显微镜和望远镜的光学系统有所了解,在用显微镜或望远镜观察物体时,一般因视角均甚小,因此视角之比可用其正切之比来代替,于是,显微镜和望远镜的放大率可近似地写成 e o tg tg M αα= (1)显微镜的放大率 测定显微镜放大率最简便的方法是按图5—2—1来完成的。现以显微镜为例,设长为0l 的目的物PQ 直接置于观察者的明视距离处,其视角为0α,从显微镜中最后看到虚像""Q P 亦在明视距离处,其长度为l ?,视 角为e α?,于是 00l l tg tg M e ==αα (5-2-1) 因此,如用一刻度尺作目的物,取其一段 分度长为0l ,把观察到的尺的像投影到尺面 上,设被投影后像在刻度尺上的长度是l ,就可求得显微镜的放大率。 (2)望远镜的放大率 当望远镜对无穷远调焦时,望远镜筒的长度(即物镜与目镜之间的距离)就可认为是' '0e f f +,这时如将望远镜的物镜卸下,在它原来的位置放一长度为1l 的目的物 125——图?p

(十字叉丝光阑);于是,在离目镜d 处,得到该物经目镜所成的实像。设其像长为2l ?,则根据透镜成像公式有 d f f l l e /)()/(''021+=? (5-2-2) 及 ' ''0111e e f f f d =++ (5-2-3) 将(5-2-2)和(5-2-3)两式消去d ,得 2 1''0l l f f M e =?= (5-2-4) 由(5-2-4)式可知,只要测出光阑的长度1l 及其像长2l ,即可算出望远镜的放大率。 2.用生物显微镜测量微小长度 (1)生物显微镜的构造原理与使用 显微镜的种类很多,实验中常用的是生物显微镜。它的构造和外形如图5—2-2所示。 1)光学部分的成像系统 光学部分的成像系统由目镜1和物镜7组成。 目镜由两块透镜装置在目镜镜筒中构成,筒上标 有放大率,常用的有×5、×10、×15(或 ×5.12)。物镜由多块透镜复合而成,装置在物镜转换器6上,转动转换器可调换使用。通常配有物镜三个,放大器率分别为×10、×40、×100、(或是×8、×45、×100)。可以看出,物镜和目镜的相互组合,可得九种不同的放大率。 2)光学部分的照明系统 光学部分的照明系统由聚光镜10和可变光阑 11及反射镜12组成。反射镜将外来光线导入聚光 镜,并由聚光镜聚焦,以照亮被观察物。可变光阑可改变孔径,用来调节照明亮度,以便使用不 同数值孔径的物镜观察时获得清晰的像。 3)机械部分 机械部分由镜筒2、镜架3、镜座13等组成。物镜转换器6 装有三个物镜,可借助转3 22——图5

光学仪器的像分辨本领

4.光学仪器的像分辨本领 1.在50公里远处有两只弧光灯,今用一通光孔径为40mm 的望远镜观察它们,并在物镜前置一宽度可调的缝,缝的宽度方向和两弧光灯连线方向一致。观察发现,当缝宽减至30mm 时,两光源恰可被分辨,缝再窄就分辨不清了。取波长为600nm,试问两弧光灯之间的距离是多少? 解:恰可分辨时,满足瑞利判据,一个灯的中央衍射极大恰与另一灯的第一衍射极小相重,即最小分辨角为。故两灯的间距为 ()a /sin 1λθ?=m L l 1=?=?θ2.一直径为2mm 的氦氖激光管,发出波长为632.8nm 的氦氖激光,问:射向远离我们公里的月球,则月球上的光斑有多大?若先将激光束扩束51076.3×成直径为5m 的光束,则射向月球在月球上的光斑又是多大? 解:激光管直径为2mm 时,月球上光斑直径为m a L D 5109.2222.1×=×?=λ月地将激光扩束至5m 直径,增大了2500倍,则月球上光斑直径也缩小2500倍,为m 21016.1×3.一对双星的角距离为,要用多大口径的望远镜才能把它们分辨开?''05.0这样的望远镜的正常放大率是多少? 解:望远镜最小分辨角,已知,,故望远镜D /22.1λθ=μλ55.0=''05.0=θ物镜的口径直径为 m D 77.222 .1==θ λ瞳孔直径d 在夜间可取成6mm,故望远镜正常放大率为倍 462=D 4.宇航员声称他恰能分辨在他下面100公里地面上两个黄绿点光源。若瞳孔直径为4mm,试估算这两个点光源的间距。解:两个点光源的间距为 m d L l 8.1622.1=×=λ

5.一架光圈数最大为2.8的优质照相机,现在用它来拍摄天上的星点,试计算其像面上的像点有多大? 解:已知,,像点大小就是艾里斑直径,它是,μλ55.0=8.2/'==D f F l 2而 μ λ88.1/22.1'=×=D f l 故直径为3.76微米。 若光圈数增大一倍,即F=5.6,意味着物镜口径缩成一半,则艾里斑直径也增大一倍,成为7.52微米。 6.一架生物显微镜,使用的物镜为0.25×10,即数值孔径N.A.=0.25,物镜放大率为10;目镜为10×。光波波长以550nm 计算,试问可分辨的最小间隔是多大?目镜焦面上恰可辨两物点的艾里斑中心间距有多大? 解:显微镜最小可分辨两物点的间距为 μ λδ34.1../61.0==A N r 物镜放大率,故目镜焦面上和恰可分辨两物点对应的艾里斑中心间距10=β为1.34微米 7.光学系统(望远镜或者显微镜)所成发光点的象是一组衍射环。按照瑞利判据,成象刚能分辨的两邻近点之间的最小距离这样确定:第一发光点衍射环的中央亮斑应在第二发光点所给出的衍射图象的第一暗环处。大体上可认为:若两邻近点的几何成象处照度的极大值超过其中间强度15%以上,眼晴既能分辨这两点。用这一说法来验证当瑞利判据成立时是否确实得到两独立发光点的分开的象。 解:在两个独自发光点的情况下.其辐射波不相干。两波的强度相加就是屏上的总强度。设两点对于主光轴对称分布。我们讨论沿X 轴(图122)的强度分布。在该轴观察点的位置可用坐标表示。根据瑞利判据,衍射圆环中心之a x λ πξ2=间的最小距离对应的坐标差为(见361题解)。在图122中,虚线表示所πξ=?探讨的每个独自发光点的强度分布,而实线表示总强度。我们看到,衍射图形的中心强度几乎比每个发光点的最大强度即强度极大值小20%。因此,满足瑞利判

2015版光学仪器及眼镜制造行业发展研究报告

2015版光学仪器及眼镜制造行业发展研究报告

目录 1. 2009-2014年光学仪器及眼镜制造行业分析 (1) 1.1.光学仪器及眼镜制造行业定义 (1) 1.2.2009-2014年光学仪器及眼镜制造行业产值占GDP比重 (1) 1.3.光学仪器及眼镜制造行业企业规模分析 (2) 2. 2009-2014年光学仪器及眼镜制造行业资产、负债分析 (4) 2.1.2009-2014年光学仪器及眼镜制造行业资产分析 (4) 2.1.1. 2009-2014年光学仪器及眼镜制造行业流动资产分析 (5) 2.2.2009-2014年光学仪器及眼镜制造行业负债分析 (6) 3. 2009-2014年光学仪器及眼镜制造行业利润分析 (8) 3.1.2009-2014年光学仪器及眼镜制造行业利润总额分析 (8) 3.2.2009-2014年光学仪器及眼镜制造行业主营业务利润分析 (9) 4. 2009-2014年光学仪器及眼镜制造行业成本分析 (11) 4.1.2014年行业总成本构成情况 (11) 4.2.2009-2014年行业成本费用分项分析 (12) 4.2.1. 2009-2014年行业产品销售成本分析 (12) 4.2.2. 2009-2014年行业产品销售成本率分析 (13) 4.2.3. 2009-2014年行业产品销售费用分析 (14) 4.2.4. 2009-2014年行业产品销售费用率分析 (16) 4.2.5. 2009-2014年行业管理费用分析 (17) 4.2.6. 2009-2014年行业管理费用率分析 (18)

4.2.7. 2009-2014年行业财务费用分析 (19) 4.2.8. 2009-2014年行业财务费用率分析 (20) 4.2.9. 2009-2014年行业产品销售税金及附加分析 (21) 5. 2009-2014年光学仪器及眼镜制造行业盈利能力分析 (23) 5.1.2014年光学仪器及眼镜制造行业经营业务能力分析 (23) 5.2.2009-2014年光学仪器及眼镜制造行业成本费用利润率分析 (24) 5.3.2009-2014年光学仪器及眼镜制造行业销售利润率分析 (25) 5.4.2009-2014年光学仪器及眼镜制造行业毛利率分析 (26) 5.5.2009-2014年光学仪器及眼镜制造行业资本保值增值率分析 (28) 6. 2009-2014年光学仪器及眼镜制造行业偿债能力分析 (30) 6.1.2009-2014年光学仪器及眼镜制造行业资产负债率分析 (30) 6.2.2009-2014年光学仪器及眼镜制造行业产权比率分析 (31) 7. 2009-2014年光学仪器及眼镜制造行业发展能力分析 (33) 7.1.2009-2014年光学仪器及眼镜制造行业销售收入增长率分析 (33) 7.2.2009-2014年光学仪器及眼镜制造行业销售利润增长率分析 (34) 7.3.2009-2014年光学仪器及眼镜制造行业总资产增长率分析 (35) 7.2.2009-2014年光学仪器及眼镜制造行业利润总额增长率分析 (36) 8. 2009-2014年光学仪器及眼镜制造行业资产质量状况分析 (38) 8.1.2009-2014年光学仪器及眼镜制造行业应收账款周转率分析 (38) 8.2.2009-2014年光学仪器及眼镜制造行业流动资产周转率分析 (39) 8.3.2009-2014年光学仪器及眼镜制造行业总资产周转率分析 (40) 8.4.2009-2014年光学仪器及眼镜制造行业产成品资金占用率分析 (41)

2016年中国智能制造行业发展现状及特点

2016年中国智能制造行业发展现状及特点 一、智能制造行业发展阶段 中国智能制造处于初级发展阶段,同样也是大部分处于研发阶段,仅16%的企业进入智能制造应用阶段;从智能制造的经济效益来看,52%的企业其智能制造收入贡献率低于10%,60%的企业其智能制造利润贡献低于10%。而90%的中小企业智能制造实现程度较低的原因在于,智能化升级成本抑制了企业需求,其中缺乏融资渠道影响最大。年收入小于5亿元人民币的企业中,50%的企业在智能化升级过程中采用自有资金,25%为政府补贴,银行贷款和资本市场融资各占11%。而企业收入规模大于50亿元人民币的企业,其智能化升级资金来源中自有资金占67%,银行贷款占比25%。整体而言,中小微型企业的银行贷款比例低于大中型企业,占企业数量绝大多数的中小企业只能依靠自有资金进行智能化改造。 不过,智能制造水平较低,意味着夯实发展基础的必要性,同样也意味着后续发展潜力的巨大。近年来,全国多个地方都在谋划智能制造发展,包括上海、浙江、江苏、天津、安徽、重庆、河南、辽宁、四川、青岛、北京、广东、黑龙江等省市都在摩拳擦掌,或成立机器人、工业4.0或工业互联网等与智能制造相关的联盟,或出台具体产业规划。 二、智能制造行业运行特征 (一)制造强国战略出台并实施,各级地方政府积极推进地区规划政策落实 我国制造业步入新常态下的攻坚阶段,制造强国战略开始推进实施。经过多年迅猛发展,我国已稳居世界制造业第一大国,对全球制造业的影响力不断提升。但随着全球经济结构深度调整,我国制造业面临“前后夹击”的双重挑战。从国内来看,经济发展正处于增速换档和结构调整阵痛的关键节点,制造业潜在增长率趋于下降。总体来看,我国经济发展已进入以中高速、优结构、多挑战、新动力为特征的新常态阶段。2015年5月8日,国务院出台制造强国中长期发展战略规划《中国制造2025》,全面部署推进制造强国战略实施,坚持创新驱动、智能转型、强化基础、绿色发展,加快从制造大国转向制造强国。 以《中国制造2025》为总纲,各地方陆续出台智能制造领域的扶持政策。在《中国制造2025》这一国家战略的指导下,各级地方政府因地制宜,陆续出台相关行动计划,全面对接《中国制造2025》。江苏、广东、福建、四川、安徽等省份借助《中国制造2025》战略支点,分别出台了《江苏行动纲要》、《广东省智能制造发展规划(2015-2025)》、《福建省实施行动计划》、《四川行动计划》、《中国制造2025安徽篇》等政策,以抢占未来产业竞争制高点,加快制造强省的建设步伐。佛山、南京等在国家制造强国战略以及省级行动计划的指导下,进一步分析产业特色,陆续制定与《中国制造2025》相衔接的制造业发展计划,找准转型升级基础,引领制造业向中高端迈进。 (二)随着互联网技术及理念加快渗透,制造企业着手推动商业模式、组织方式等多方

我国光电分析仪器行业研究

我国光电分析仪器行业研究 (一)行业概述 仪器仪表制造业包含的领域非常广泛,根据《国民经济行业分类》标准,仪 器仪表行业包括光学仪器制造业、实验分析仪器制造业、环境监测专用仪器仪表制造等十几个子行业。 光机电一体化技术是基于光与物质的相互作用对物质具体化学进行定性和 定量检测的一种高科技技术。光机电一体化技术将电控、传感、软件等现代技术有机地结合到传统光学仪器中形成的整机仪器设备,电子技术、计算机及其软件成为光电分析仪器不可分割的重要组成部分。与光学元件类似,光学仪器历史悠久,但光机电一体化技术最近几十年才开始兴起。随着CCD/CMOS探测器技术、计算机技术、大规模集成电路技术的出现和发展,传统光学仪器逐步演变为现代光电仪器并实现了跨越式发展。在各类探测器、驱动器和智能化软件的支持下, 现代光电仪器可以实现的功能越来越丰富,并呈现出小型化、智能化的特点,极大地提高了各领域的工业水平。光机电一体化技术将光学技术与现代电子技术相 结合,大大拓展了分析仪器的应用范围。光电分析技术和分析仪器已经从过往以

服务工农业生产监控、产品质量检测为主发展为具备服务科研、生物、环保、医 学和空间科学技术等应用领域能力的高科技行业,是科技研究中不可缺少的观察、测试、分析、控制、记录和传递的工具,其功能已成为人脑神经功能的延伸和拓展。 仪器仪表制造业的技术水平反映了一个国家科学技术和工业化的发展水平, 是一国产业发达程度的重要体现,仪器仪表制造业的光电分析检测技术的应用领 域十分广泛。当今最为前沿的科技领域如电子制造、环境科学、生命工程、医药 制造、新材料、国防科技等领域的基础研究与工业应用都离不开光电分析检测技术。具体来说,在基础科学研究方面,光电分析检测技术可以用于基础物理和基 础化学研究、新能源新材料研究、生命科学应用研究。在工业生产方面,光电分 析检测技术可以用于工业生产过程检测、制药原辅料检测、光通讯器件及设备研发检测、超高真空检测、发动机研发检测、LED和平板显示器光电检测、光伏器件的各项物理性能检测等。在其他应用领域,光电分析检测技术可以用于环保监测及分析;毒品、危化品、爆炸物等管制品快速现场筛查;食品添加剂、农药残留、抗生素检测;刑侦鉴定;考古与艺术品鉴定;地质勘探选矿等,其在国民经 济建设各行各业的运行过程中承担着把关者和指导者的任务。

中国智能制造行业市场分析报告

中国智能制造行业市场分析报告

目录 第一节智能制造:中国制造由大转强的核心战略 (6) 一、宏观角度:智能制造是各国战略必争的制高点 (6) 二、微观角度:智能制造是企业增强竞争力的必由之路 (10) 第二节寻找制造业智能化升级中的薄弱环节 (13) 一、中国制造业的自动化水平发展不均衡 (13) 1.1流程工业的自动化水平相对较高 (13) 1.2离散工业自动化水平较低 (16) 二、离散工业:从普及自动化到发展智能化前景广阔 (17) 2.1智能制造通用装备 (20) 2.2自动化部件 (25) 2.3智能化生产线 (27) 三、过程控制:进口替代是核心 (28) 四、制造执行(MES):实现自动化的难点和痛点 (30) 五、生产管理:自动化水平最高的环节 (32) 第三节寻找智能化改造需求旺盛的细分行业 (35) 一、寻找自动化程度较低的细分行业 (35) 二、3C 制造行业(电子) (37) 三、汽车和汽车零部件行业 (43) 四、包装行业 (47) 五、物流行业 (50)

图表目录 图表1:第四次工业革命 (6) 图表2:全球制造业竞争新时代 (7) 图表3:中国制造全球第一 (8) 图表4:细分产品全球领先 (8) 图表5:中国出口占比较高 (9) 图表6:中国更多的是中低端机械设备领域出口占全球第一 (9) 图表7:中国已经进入国际产能供应饱和区间 (10) 图表8:提升生产效率是重要方向 (10) 图表9:中国制造的成本优势减少,美国仅高于中国5%,中国工作时长较长 .. 11图表10:个性化需求时代的到来 (12) 图表11:流程制造行业的两化融合水平普遍高于离散制造业 (14) 图表12:冶金工业自动化市场 (15) 图表13:电力行业自动化市场 (15) 图表14:石化行业自动化市场 (15) 图表15:化工行业自动化市场 (16) 图表16:离散制造业的生产设备数字化率和联网率、以及关键工序数控化率较低 (17) 图表17:数字化工厂构成 (17) 图表18:离散和流程工业的数字化车间数字化水平 (18) 图表19:离散制造业的固定资产投资及设备工器具购臵及固定资产投资行业占比 (18) 图表20:2014 年中国制造业工业机器人密度仍然低 (19) 图表21:中国机器人密度不断提升,但仍低于全球水平 (20) 图表22:我国数控机床市场规模616 亿 (21) 图表23:我国数控机床进口额约30 亿美元 (21) 图表24:国内高端多关节机器人主要由外资把持 (22) 图表25:我国3D 打印市场规模约78.8 亿元 (23)

光学仪器分辨率的解释以及分析

光学仪器分辨率的解释以及分析 2015级生命科学方向薛峣 515080910024 众所周知,光学仪器的分辨率决定了其显示的物体的清晰程度。然而,对于不同的光学仪器,其分辨率的物理意义是不同的。更进一步,由于到最后的接收系统的是眼睛,因此若不考虑眼睛本身的分辨极限,好的分辨率也可能是无效的。本文中,先对眼睛这一光学成像系统进行分析;再阐释某些典型光学仪器的分辨率的物理意义;最后再挑选一些例子进行计算,决定其分辨率是否有效。 一.眼睛的成像: 眼睛的结构 如果把眼睛类比于光学仪器,那么有这么几个眼睛的部分对应于光学仪器中的结构:1.瞳孔——光阑: 瞳孔决定了眼睛能看到的视场以及进光量,以及更重要地,艾里斑的大小。然而,由于人的头部和眼球是可以随意转动的,所以瞳孔的存在仅仅是调节进光量。我们也可以因此认为,人的视场是任意大的。 2.晶状体——透镜: 晶状体中包含了折射率不均匀的液体。而眼镜和普通透镜最不一样的地方,在于它是可以调焦的。调焦是由肌肉压缩晶状体来改变其曲率半径来实现的。然而,眼睛能够调焦的范围是有限的。正常人的眼睛物方焦距范围为(17.1-14.2)mm,像方焦距范围为(22.8-18.9)mm。然而,由于眼睛肌肉紧张(像方焦距变小)时,人容易感到疲劳,因此我们人为地将明视距离定为25cm,即眼睛聚焦于25cm处的物体时,眼睛最为放松。当然,人的聚焦范围并没有这么小。出生的婴儿,其能够聚焦的最短距离是10cm。在以后计算时,我们将适当引用这个聚焦距离。 3.视网膜——光屏: 本来视网膜上有高分辨率的区域只有一个称之为黄斑的地方,即靠近光轴的一小块地方,但由于人可以任意转动其头部及眼球,这件事并不妨碍。 由于瞳孔以及晶状体有有限的大小,所以成像时不可避免地会发生衍射。菲涅耳衍射的条件是物点到孔径距离与孔径大小可以相比拟。但是对于眼睛来说,若取聚焦距离为10cm,取瞳孔最大直径为8mm,那么也只有8%的大小。因此,我们认为可以近似为夫琅禾费圆孔衍射。应用夫琅禾费圆孔衍射的公式,即可知在此假设下人的最小分辨角约为0.75’。

分辨本领

分辨本领 1. 选择题 题号:41512001 分值:3分 难度系数等级:2 根据瑞利判据,光学仪器的分辨本领由下列哪些因素决定 (A) 被观察物体发出光的波长及其亮度。 (B) 光学仪器的透光孔径及折射率。 (C) 被观察物体的亮度及其与光学仪器的距离。 (D) 被观察物体发出的波长及光学仪器的透光孔径。 [ ] 答案:(D ) 题号:41513002 分值:3分 难度系数等级:3 由于光学系统要受到衍射的影响,即使是一个几何点,通过光学仪器也会呈现一个衍射光斑,瑞利提出一个分辨标准,对于两个强度相等的不相干的点光源(物点),恰能被光学仪器分辨时 (A) 两个点光源的衍射主极大重合。 (B) 两个点光源的衍射第一极小重合。 (C) 一个点光源衍射主极大与另一个第一极小重合。 (D) 一个点光源的衍射第一极小与另一个第一极小重合。 [ ] 答:(C ) 题号:41512003 分值:3分 难度系数等级:2 一般光学仪器,如望远镜、人眼等的像点都可以认为是物镜光孔(直径为d )的爱里斑。对于两个张角为δφ 的光源点(物点),其像点中心对物镜的张角也是δφ.根据瑞利判据可知光学仪器能够分辨出两个物点的最小张角是 (A) d λ δφ61.0≈。 (B) d λ δφ≈ 。 (C) λ δφd 22 .1≈。 (D) d λ δφ22 .1≈。 [ ] 答:(D ) 题号:41512004 分值:3分 难度系数等级:2 孔径相同的微波望远镜和光学望远镜相比较,前者的分辨本领较小的原因是 (A) 星体发出的微波能量比可见光能量小。 (B) 微波更易被大气所吸收。

(C) 大气对微波的折射率较小。 (D) 微波波长比可见光波长大。[] 答:(D) 题号:41513005 分值:3分 难度系数等级:3 一束直径为2mm的氦氖激光其波长为632.8nm(1 nm = 10-9 m)自地球发向月球,月球与地球的距离约为3.84×105km,由于衍射,激光束到达月球表面时的光斑约为 (A) 148km (B) 74km (C) 296km (D) 121km [] 答:(C) 题号:41512006 分值:3分 难度系数等级:2 若星光的波长按550 nm (1 nm = 10-9 m)计算,孔径为127 cm的大型望远镜所能分辨的两颗星的最小角距离δθ(从地上一点看两星的视线间夹角)是 (A) 3.2×10-3 rad.(B) 1.8×10-4 rad. (C) 5.3×10-5 rad.(D) 5.3×10-7 rad.[] 答:(D) 题号:41512007 分值:3分 难度系数等级:2 设星光的有效波长为550 nm (1 nm = 10-9 m),用一台物镜直径为1.20 m的望远镜观察双星时,能分辨的双星的最小角间隔δθ 是 (A) 3.2 ×10-3 rad. (B) 5.4 ×10-5 rad. (C) 1.8 ×10-5 rad. (D) 5.6 ×10-7 rad. [] 答:(D) 题号:41512008 分值:3分 难度系数等级:2 美国波多黎各阿里西坡谷地的无线天文望远镜的“物镜”镜面孔径为300m,曲率半径也是300m。它工作时的最短波长是4cm。对此波长,这条望远镜的角分辨率是 (A) 8.0 ×10-5 rad. (B) 3.5 ×10-3 rad. (C) 1.3 ×10-4 rad. (D) 1.6 ×10-4 rad. [] 答:(D) 题号:41512009 分值:3分 难度系数等级:2 正常人眼的瞳孔直径约3mm,月地距离约3.84×105km,月光波长按550nm计算(1 nm =

2020年智能制造行业分析报告

2020年智能制造行业分析报告 2020年4月

目录 1. 智能制造推动新旧动能转换 (5) 1.1. 行业机遇带来良好的发展趋势 (5) 1.2. 智能制造行业下游拉动需求增长 (6) 1.3. 机器人市场快速增长,科技促进行业智能化突破 (7) 2. 智能制造发力行业应用 (9) 2.1. 中国汽车市场为智能制造带来增长空间 (9) 2.2. 汽车行业电子化程度提升,带动智能制造渗透率提升 (10) 2.3. 科技突破将带动汽车电子在核心应用领域整体提升 (12) 2.4. 医疗健康市场发展迅速,未来智能化改造具备一定空间 (13) 2.5. 新能源电池产能扩张,技术升级带动智能化改造需求 (14) 3. 智能制造的核心竞争力在于技术 (16) 3.1. 核心技术研发筑就行业壁垒 (16) 3.2. 行业公司研发投入较大,技术储备充足 (16) 3.3. 行业公司专注汽车领域 (19) 3.4. 海外公司具备技术和先发优势 (20) 3.5. 国内公司纷纷走向国际化 (22) 3.6. 国内公司与头部客户深度绑定 (23)

1. 智能制造推动新旧动能转换 1.1. 行业机遇带来良好的发展趋势 人口红利消退助推经济结构转型升级,智能制造成为新旧动能转换的必由之路。自 改革开放以来,我国制造业凭借人口红利而高速发展,但与人口红利相伴随的是劳 动密集、资源消耗大、自主创新能力低、信息化智能化水平不高等特征。近年来, 我国人口老龄化速度明显加快,人口红利逐步消退,劳动力成本持续上涨。根据国 家统计局数据,中国65 岁以上老年人口已经从1990 年的6300 万迅速增长到2018 年的1.67 亿,占总人口比例的11.94%。我国劳动力单位成本也不断上升,我国制 造业职工平均工资从2008 年的24404 元增长到2018 年的72088 元。在人口红利 消退、劳动力成本快速上升的情形下,通过发展智能制造装备行业,实现机器换人 能有效节约劳动力成本,提升生产效率,是经济结构转型、新旧动能转换的必由之 路。 图1:1990-2018 年中国65 岁及以上人口数及比重图2:2008-2018 年中国制造业职工平均工资65岁及以上人口数(万人)65岁及以上人口比重(%)制造业职工平均工资(元)增幅(%) 18,000 16,000 14,000 12,000 10,000 8,000 12% 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 22% 20% 18% 16% 14% 12% 10% 8% 11% 10% 9% 8% 7% 6,000 6% 4,000 5% 6% 数据来源:国家统计局,市场部数据来源:国家统计局,市场部 近年来国家产业政策的不断出台,有力支持智能制造装备行业发展。为了实现制造 强国的战略目标,智能制造工程作为五大工程之一,成为国家全力打造制造强国的 重要抓手。2015 年5 月,国务院发布的《中国制造2025》在主要目标中明确提出: “十三五”期间通过数字化制造的普及,智能化制造的试点示范,推动传统制造业 重点领域基本实现数字化制造,有条件、有基础的重点产业全面启动并逐步实现智 能转型;“十四五”期间加大智能制造实施力度,关键技术装备、智能制造标准/工 业互联网/信息安全、核心软件支撑能力显著增强,构建新型制造体系,重点产业逐 步实现智能转型。

2015版光学仪器制造行业发展研究报告

2015版光学仪器制造行业发展 研究报告

目录 1. 2009-2014年光学仪器制造行业分析 (1) 1.1.光学仪器制造行业定义 (1) 1.2.2009-2014年光学仪器制造行业产值占GDP比重 (1) 1.3.光学仪器制造行业企业规模分析 (2) 2. 2009-2014年光学仪器制造行业资产、负债分析 (4) 2.1.2009-2014年光学仪器制造行业资产分析 (4) 2.1.1. 2009-2014年光学仪器制造行业流动资产分析 (5) 2.2.2009-2014年光学仪器制造行业负债分析 (6) 3. 2009-2014年光学仪器制造行业利润分析 (8) 3.1.2009-2014年光学仪器制造行业利润总额分析 (8) 3.2.2009-2014年光学仪器制造行业主营业务利润分析 (9) 4. 2009-2014年光学仪器制造行业成本分析 (11) 4.1.2014年行业总成本构成情况 (11) 4.2.2009-2014年行业成本费用分项分析 (12) 4.2.1. 2009-2014年行业产品销售成本分析 (12) 4.2.2. 2009-2014年行业产品销售成本率分析 (13) 4.2.3. 2009-2014年行业产品销售费用分析 (14) 4.2.4. 2009-2014年行业产品销售费用率分析 (15) 4.2.5. 2009-2014年行业管理费用分析 (16) 4.2.6. 2009-2014年行业管理费用率分析 (17)

4.2.7. 2009-2014年行业财务费用分析 (18) 4.2.8. 2009-2014年行业财务费用率分析 (19) 4.2.9. 2009-2014年行业产品销售税金及附加分析 (21) 5. 2009-2014年光学仪器制造行业盈利能力分析 (23) 5.1.2014年光学仪器制造行业经营业务能力分析 (23) 5.2.2009-2014年光学仪器制造行业成本费用利润率分析 (24) 5.3.2009-2014年光学仪器制造行业销售利润率分析 (25) 5.4.2009-2014年光学仪器制造行业毛利率分析 (26) 5.5.2009-2014年光学仪器制造行业资本保值增值率分析 (27) 6. 2009-2014年光学仪器制造行业偿债能力分析 (29) 6.1.2009-2014年光学仪器制造行业资产负债率分析 (29) 6.2.2009-2014年光学仪器制造行业产权比率分析 (30) 7. 2009-2014年光学仪器制造行业发展能力分析 (32) 7.1.2009-2014年光学仪器制造行业销售收入增长率分析 (32) 7.2.2009-2014年光学仪器制造行业销售利润增长率分析 (33) 7.3.2009-2014年光学仪器制造行业总资产增长率分析 (34) 7.2.2009-2014年光学仪器制造行业利润总额增长率分析 (35) 8. 2009-2014年光学仪器制造行业资产质量状况分析 (37) 8.1.2009-2014年光学仪器制造行业应收账款周转率分析 (37) 8.2.2009-2014年光学仪器制造行业流动资产周转率分析 (38) 8.3.2009-2014年光学仪器制造行业总资产周转率分析 (39) 8.4.2009-2014年光学仪器制造行业产成品资金占用率分析 (40)

我国智能制造装备产业发展现状及未来趋势分析

我国智能制造装备产业发展现状及未来趋势分析 中国智能制造装备产业发展分析 (一)产业发展状况 1、核心智能测控装置与部件进入产业化阶段 目前,我国智能测控装置和部件在仪器仪表、包装和食品机械、工程机械、环保机械、重机、印机等 智能制造装备产业重点领域取得突破性进展,核心智能测控装置与部件进入产业化阶段。其中,仪器仪表 领域、包装和食品机械领域发展较为突出,但智能测控装置与部件整体技术水平依然较低,关键核心部件 亟待突破。以工业机器人为例,我国工业机器人产业发展尚处于起步阶段,因缺少核心技术,使之仍处于 单件小批量的生产状态,产品性价比较低。 2、重大智能制造成套设备取得标志性成果 我国在石油石化、机械加工、食品制造等领域的重大智能制造成套设备取得标志性成果。如,在石油 石化智能成套设备领域,国产全自动油田固井车研制成功、国内首套褐煤提水装置试验成功、国内首套年 产1万吨烷基化废酸再生装置实现高水平中交、自主研发“千万吨级炼油加氢装置循环氢压缩机高压干气 密封及其控制系统”和“大型煤化工煤制丙烯装置丙烯制冷压缩机大轴径干气密封”两项科技成果问世。 在智能化食品制造生产线领域,乳品无菌化数字示范车间年产无菌包装乳品9000万瓶,减少乳品加工环节 的原料及成品损耗约15%,节省加工过程中的能源消耗约20%,降低消毒液用量约70%。无菌化饮料吹灌 旋数字化车间可为客户产品质量提升约10%,生产效率提高约15%,降低能源消耗约20%,降低人工约20%,降低设备成本、占地成本约20%。在智能化纺织成套装备领域,我国开发出现场“无人化”操作的染色工 艺、智能染色系统、筒子纱微波烘干机、元明粉自动称量系统、装卸纱机器人、自动物流系统、中央控制 软件系统等,研制出新产品三类18种84台/套。 3、智能制造装备产业正积极寻求创新发展 近年来,智能制造装备产业重点领域已初步建立了产学研用相结合的产业创新体系。电工电器、液压 气动密封件、工程机械和重机等重点领域已建立六个公共服务平台。同时,江苏、上海、广东、洛阳等一 些省市相继成立工业机器人产业技术创新联盟。2013年4月,由中国机械工业联合会牵头的“中国机器人 产业联盟”成立。另外,骨干企业的研发经费逐年提升,重点企业研发经费占销售收入的比重已超过5%。如,湖北力帝机床、中国重型机械研究院、深圳精密达、上海派芬自动控制技术和深圳正弦电气的研发经 费占销售收入比重均达8%以上。北人集团、上海电气、辽宁大族冠华、杭州科雷机电、湖北力帝机床、西 安西电电力等企业新产品产值率达80%以上。 (二)产业布局

我国光学玻璃行业概况

中国光学玻璃行业概况 (1)光学玻璃概述 光学玻璃是能改变光的传播方向,并能改变紫外、可见或红外光的相对光谱分布的玻璃,是生产光学仪器的基础产品。狭义的光学玻璃是指无色光学玻璃;广义的光学玻璃还包括有色光学玻璃、激光玻璃、石英光学玻璃、抗辐射玻璃、紫外红外光学玻璃、纤维光学玻璃、声光玻璃、磁光玻璃和光变色玻璃。光学玻璃可用于制造透镜、棱镜、反射镜等光学仪器中的关键性部件。 光学玻璃品种繁多,镧系光学玻璃是特种玻璃的主要品种之一,其组成成分中含有较多的稀土氧化镧(La2O3),具有高折射、低色散的特性,能有效地简化光学成像系统,扩大镜头视角,使产品轻量化、小型化,是目前在投影仪、单反相机、数码相机、车载镜头、扫描仪、数码复印机等光学仪器中广泛应用的高端光学电子信息材料。 (2)光学玻璃行业概述 光学玻璃的发展和光学仪器的发展是密不可分的。光学仪器的发展往往向光学玻璃提出新的要求,进而推动了光学玻璃的发展,同样,新品种玻璃的试制成功也往往反过来促进了光学仪器的发展。随着光学、信息技术、能源、航空航天技术、生物技术以及军事技术等学科的迅速发展,光学玻璃由传统意义上的光学仪器用成像介质逐渐向新的应用领域迅速发展。由于军事上的需要,光学玻璃及

其制造技术一直被各国视为关键技术,并严格保密。 ①中国光学玻璃的发展迅速历程 20 世纪60 年代,高档光学玻璃由国外几家大公司生产,如日本小原(OHARA)、日本豪雅(HOYA)、日本住田(SUMITA)、德国肖特(SCHOTT),而中国的光学玻璃企业仅处于传统光学玻璃生产阶段,产品技术含量相对较低。 20 世纪80 年代末期,随着中国光学玻璃熔炼技术的逐步成熟,以及实行市场经济体制后,企业制造成本大幅降低,光学玻璃生产基地逐渐由德国、日本等发达国家向中国境内转移,使中国光学玻璃制造业得到了迅猛发展。 20世纪90年代末期以前,中国光学玻璃产品主要市场是望远镜、显微镜、瞄准镜、中低档照相机、测量仪、分析仪等传统光学器材。之后,中国光学玻璃行业随着国防事业的发展而不断进步,出现了一批像北方光电股份有限公司、成都光明光电科技股份有限公司等优秀的光学玻璃生产企业。 ②中国光学玻璃的技术水平与国外已基本保持一致 随着信息产业的崛起,光学与电子学更加紧密结合。光电产品从信息的采集、传输、存贮、转换、显示都紧紧与光学玻璃的物理特性息息相关,光学玻璃的终端应用不断拓宽。中国光学玻璃生产厂商逐步进行产品、技术的优化升级,不断推出与国外玻璃牌号相匹敌的产品,部分产品已达到国际水平,在生产技术、产品质量的稳定性以及新产品开发等方面与国外基本保持一致。 未来,随着光学产业与社会发展的不断融合,光电仪器产业将继续保持快速发展。下游终端产品应用的多元化,也必将带动产业链上游光学玻璃行业的发展,

中国智能制造系统解决方案市场研究报告

中国智能制造系统解决方案市场研究报告System Solution Market Research Report on Smart Manufacturing Industries 2017 中国智能制造系统解决方案供应商联盟 2017年11月

致谢 本报告由工业和信息化部指导,中国电子技术标准化研究院牵头编写,得到了来自中国工程院、中国工控网、机械工业第六设计研究院有限公司、北京机械工业自动化研究所、中国信息通信研究院、西门子中国研究院等单位专家的大力支持和帮助。 II

编撰成员 指导委员会 主任:辛国斌 副主任:张相木李东王瑞华赵波 工作委员会 杨建军汪宏邸霖胡静宜郭楠吕鹏董挺耿力张通邓宇 报告编制顾问 朱森第屈贤明董景辰朱恺真谢兵兵朱学新陈江宁徐静鞠恩民刘默 III

总序 党的十九大报告指出:“建设现代化经济体系,必须把发展经济的着力点放在实体经济上,把提高供给体系质量作为主攻方向,显著增强我国经济质量优势。”发展实体经济,重点在制造业,难点也在制造业。《中国制造2025》明确提出“以推进智能制造为主攻方向“,这是构建新型制造体系、打造制造强国的重要战略举措,对于推动我国制造业转型升级,实现制造业由大变强的历史跨越具有重要意义。 智能制造的核心是新一代信息通信技术与先进制造技术的深度融合,推进智能制造是一项复杂而庞大的系统工程,既需要单一技术与装备的突破应用,同时还需要系统化的集成创新。因此,系统解决方案在推进智能制造的过程中发挥着重要作用。《智能制造发展规划(2016-2020)》明确提出要培育一批具有较强竞争力的系统解决方案供应商。 为落实《智能制造发展规划(2016-2020)》要求,2016年11月,在工业和信息化部指导下,中国智能制造系统解决方案供应商联盟正式成立。联盟以需求为牵引、产业链为纽带,旨在培育壮大智能制造系统解决方案供应商,搭建智能制造系统集成技术研发、行业应用和市场推广的一体化公共 IV

光学仪器制造

2015-2020年中国光学仪器制造市场现状及投资趋势分析报告 Special Statenent特别声明 本报告由华经视点独家撰写并出版发行,报告版权归华经视点所有。本报告是华经视点专家、分析师调研、统计、分析整理而得,具有独立自主知识产权,报告仅为有偿提供给购买报告的客户使用。未经授权,任何网站或媒体不得转载或引用本报告内容,华经视点有权依法追究其法律责任。如需订阅研究报告,请直接联系本网站客服人员 (8610-56188812 56188813),以便获得全程优质完善服务。 华经视点是中国拥有研究人员数量最多,规模最大,综合实力最强的研究咨询机构(欢迎客户上门考察),公司长期跟踪各大行业最新动态、资讯,并且每日发表独家观点。 目前华经视点业务范围主要覆盖市场研究报告、投资咨询报告、行业研究报告、市场预测报告、市场调查报告、征信报告、项目可行性研究报告、商业计划书、IPO上市咨询等领域,同时也为个阶层人士提供论文、报告等指导服务,是一家多层次、多维度的综合性信息研究咨询服务机构。 Report Description报告描述 本研究报告由华经视点公司领衔撰写。报告以行业为研究对象,基于行业的现状,行业运行数据,行业供需,行业竞争格局,重点企业经营分析,行业产业链进行分析,对市场的发展状况、供需状况、竞争格局、赢利水平、发展趋势等进行了分析,预测行业的发展前景和投资价值。在周密的市场调研基础上,通过最深入的数据挖掘,从多个角度去评估企业市场地位,准确挖掘企业的成长性,为企业提供新的投资机会和可借鉴的操作模式,对欲在行业从事资本运作的经济实体等单位准确了解目前行业发展动态,把握企业定位和发展方向有重要参考价值。报告还对下游行业的发展进行了探讨,是企业、投资部门、研究机构准确了解目前中国市场发展动态,把握行业发展方向,为企业经营决策提供重要参考的依据。 Report Directory报告目录 第一章光学仪器制造行业发展综述 第一节光学仪器制造行业相关概念概述 一、概念及定义 二、主要产品分类

相关主题