搜档网
当前位置:搜档网 › 常见的勾股数及公式

常见的勾股数及公式

常见的勾股数及公式
常见的勾股数及公式

常见的勾股数及公式

武安市黄冈实验学校 翟升华搜集整理

我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边

a 、

b 、

c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种:

一、三数为连续整数的勾股数

(3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢?

设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x =

4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。

二、后两数为连续整数的勾股数

易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢?

a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1).

分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),…

三、前两数为连续整数的勾股数

你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。

设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22

21y x x =++(*) 整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++()

y x 212-+=-1, 又()()2121-+=-1,∴()122

1++n ()1221+-n =-1(n∈N), 故取()y x 212++=()1221++n ,()y x 212-+=()1

221+-n , 解之,得x =41〔()1221++n +()1221+-n -2〕,y =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(4

1〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕).

四、后两数为连续奇数的勾股数

如(8,15,17), (12,35,37) …其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数) .

五、其它的勾股数组公式:

1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数).

2.a=21(m 2-n 2),b=mn,c= 21(m 2+n 2

)(其中m>n 且是互质的奇数).

3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数).

下面我们把100以内的勾股数组列出来,供同学们参考:

3 4 5;5 12 13;6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60 61;12 16 20; 12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65 17 144 145;18 24 30;18 80 82;19 180 181;20 21 29;20 48 52;20 99 101;21 28 35 21 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 45 51;24 70 74;24 143 145

25 60 65;25 312 313;26 168 170;27 36 45;27 120 123;27 364 365;28 45 53;28 96 100 28 195 197;29 420 421;30 40 50;30 72 78;30 224 226;31 480 481;32 60 68;32 126 130 32 255 257;33 44 55;33 56 65;33 180 183;33 544 545;34 288 290;35 84 91;35 120 125 35 612 613;36 48 60;36 77 85;36 105 111;36 160 164;36 323 325;37 684 685;38 360 362

39 52 65;39 80 89;39 252 255;39 760 761;40 42 58;40 75 85;40 96 104;40 198 202

40 399 401;41 840 841;42 56 70;42 144 150;42 440 442;43 924 925;44 117 125;44 240 244 44 483 485;45 60 75;45 108 117;45 200 205;45 336 339;46 528 530;48 55 73;48 64 80 48 90 102;48 140 148;48 189 195;48 286 290;48 575 577;49 168 175;50 120 130;50 624 626 51 68 85;51 140 149;51 432 435;52 165 173;52 336 340;52 675 677;54 72 90;54 240 246 54 728 730;55 132 143;55 300 305;56 90 106;56 105 119;56 192 200;56 390 394;56 783 785 57 76 95;57 176 185;57 540 543;58 840 842;60 63 87;60 80 100;60 91 109;60 144 156 60 175 185;60 221 229;60 297 303;60 448 452;60 899 901;62 960 962;63 84 105;63 216 225 63 280 287;63 660 663;64 120 136;64 252 260;64 510 514;65 72 97;65 156 169;65 420 425 66 88 110;66 112 130;66 360 366;68 285 293;68 576 580;69 92 115;69 260 269;69 792 795 70 168 182;70 240 250;72 96 120;72 135 153;72 154 170;72 210 222;72 320 328;72 429 435 72 646 650;75 100 125;75 180 195;75 308 317;75 560 565;75 936 939;76 357 365;76 720 724 77 264 275;77 420 427;78 104 130;78 160 178;78 504 510;80 84 116;80 150 170;80 192 208 80 315 325;80 396 404;80 798 802;81 108 135;81 360 369;84 112 140;84 135 159;84 187 205 84 245 259;84 288 300;84 437 445;84 585 591;84 880 884;85 132 157;85 204 221;85 720 725 87 116 145;87 416 425;88 105 137;88 165 187;88 234 250;88 480 488;88 966 970;90 120 150 90 216 234;90 400 410;90 672 678;91 312 325;91 588 595;92 525 533;93 124 155;93 476 485

95 168 193;95 228 247;95 900 905;96 110 146;96 128 160;96 180 204;96 247 265;96 280 296

96 378 390;96 572 580;96 765 771;98 336 350;99 132 165;99 168 195;99 440 451;99 540 549 100 105 145;100 240 260;100 495 505;100 621 629.

以下是大于100的勾股数:

第223组: 102 136 170

第224组: 102 280 298

第225组: 102 864 870

第226组: 104 153 185

第227组: 104 195 221

第228组: 104 330 346

第229组: 104 672 680

第230组: 105 140 175

第231组: 105 208 233

第232组: 105 252 273

第233组: 105 360 375

第234组: 105 608 617

第235组: 105 784 791

第236组: 108 144 180

第237组: 108 231 255

第238组: 108 315 333

第239组: 108 480 492

第240组: 108 725 733

第241组: 108 969 975

第242组: 110 264 286

第243组: 110 600 610

第244组: 111 148 185

第248组: 112 384 400 第249组: 112 441 455 第250组: 112 780 788 第251组: 114 152 190 第252组: 114 352 370 第253组: 115 252 277 第254组: 115 276 299 第255组: 116 837 845 第256组: 117 156 195 第257组: 117 240 267 第258组: 117 520 533 第259组: 117 756 765 第260组: 119 120 169 第261组: 119 408 425 第262组: 120 126 174 第263组: 120 160 200 第264组: 120 182 218 第265组: 120 209 241 第266组: 120 225 255 第267组: 120 288 312 第268组: 120 350 370 第269组: 120 391 409 第270组: 120 442 458 第271组: 120 594 606 第272组: 120 715 725 第273组: 120 896 904 第274组: 121 660 671 第275组: 123 164 205 第276组: 123 836 845 第277组: 124 957 965 第278组: 125 300 325 第279组: 126 168 210 第280组: 126 432 450 第281组: 126 560 574 第282组: 128 240 272 第283组: 128 504 520 第284组: 129 172 215 第285组: 129 920 929 第286组: 130 144 194 第287组: 130 312 338 第288组: 130 840 850 第289组: 132 176 220 第290组: 132 224 260 第291组: 132 351 375

第295组: 133 156 205 第296组: 133 456 475 第297组: 135 180 225 第298组: 135 324 351 第299组: 135 352 377 第300组: 135 600 615 第301组: 136 255 289 第302组: 136 273 305 第303组: 136 570 586 第304组: 138 184 230 第305组: 138 520 538 第306组: 140 147 203 第307组: 140 171 221 第308组: 140 225 265 第309组: 140 336 364 第310组: 140 480 500 第311组: 140 693 707 第312组: 140 975 985 第313组: 141 188 235 第314组: 143 780 793 第315组: 143 924 935 第316组: 144 165 219 第317组: 144 192 240 第318组: 144 270 306 第319组: 144 308 340 第320组: 144 420 444 第321组: 144 567 585 第322组: 144 640 656 第323组: 144 858 870 第324组: 145 348 377 第325组: 145 408 433 第326组: 147 196 245 第327组: 147 504 525 第328组: 150 200 250 第329组: 150 360 390 第330组: 150 616 634 第331组: 152 285 323 第332组: 152 345 377 第333组: 152 714 730 第334组: 153 204 255 第335组: 153 420 447 第336组: 153 680 697 第337组: 154 528 550 第338组: 154 840 854

第342组: 156 320 356 第343组: 156 455 481 第344组: 156 495 519 第345组: 156 667 685 第346组: 159 212 265 第347组: 160 168 232 第348组: 160 231 281 第349组: 160 300 340 第350组: 160 384 416 第351组: 160 630 650 第352组: 160 792 808 第353组: 161 240 289 第354组: 161 552 575 第355组: 162 216 270 第356组: 162 720 738 第357组: 165 220 275 第358组: 165 280 325 第359组: 165 396 429 第360组: 165 532 557 第361组: 165 900 915 第362组: 168 224 280 第363组: 168 270 318 第364组: 168 315 357 第365组: 168 374 410 第366组: 168 425 457 第367组: 168 490 518 第368组: 168 576 600 第369组: 168 775 793 第370组: 168 874 890 第371组: 170 264 314 第372组: 170 408 442 第373组: 171 228 285 第374组: 171 528 555 第375组: 171 760 779 第376组: 174 232 290 第377组: 174 832 850 第378组: 175 288 337 第379组: 175 420 455 第380组: 175 600 625 第381组: 176 210 274 第382组: 176 330 374 第383组: 176 468 500 第384组: 176 693 715 第385组: 176 960 976

第389组: 180 273 327 第390组: 180 299 349 第391组: 180 385 425 第392组: 180 432 468 第393组: 180 525 555 第394组: 180 663 687 第395组: 180 800 820 第396组: 180 891 909 第397组: 182 624 650 第398组: 183 244 305 第399组: 184 345 391 第400组: 184 513 545 第401组: 185 444 481 第402组: 185 672 697 第403组: 186 248 310 第404组: 186 952 970 第405组: 189 252 315 第406组: 189 340 389 第407组: 189 648 675 第408组: 189 840 861 第409组: 190 336 386 第410组: 190 456 494 第411组: 192 220 292 第412组: 192 256 320 第413组: 192 360 408 第414组: 192 494 530 第415组: 192 560 592 第416组: 192 756 780 第417组: 195 216 291 第418组: 195 260 325 第419组: 195 400 445 第420组: 195 468 507 第421组: 195 748 773 第422组: 196 315 371 第423组: 196 672 700 第424组: 198 264 330 第425组: 198 336 390 第426组: 198 880 902 第427组: 200 210 290 第428组: 200 375 425 第429组: 200 480 520 第430组: 200 609 641 第431组: 201 268 335 第432组: 203 396 445

第436组: 204 560 596 第437组: 204 595 629 第438组: 204 855 879 第439组: 205 492 533 第440组: 205 828 853 第441组: 207 224 305 第442组: 207 276 345 第443组: 207 780 807 第444组: 207 920 943 第445组: 208 306 370 第446组: 208 390 442 第447组: 208 660 692 第448组: 208 819 845 第449组: 210 280 350 第450组: 210 416 466 第451组: 210 504 546 第452组: 210 720 750 第453组: 213 284 355 第454组: 215 516 559 第455组: 215 912 937 第456组: 216 288 360 第457组: 216 405 459 第458组: 216 462 510 第459组: 216 630 666 第460组: 216 713 745 第461组: 216 960 984 第462组: 217 456 505 第463组: 217 744 775 第464组: 219 292 365 第465组: 220 231 319 第466组: 220 459 509 第467组: 220 528 572 第468组: 220 585 625 第469组: 222 296 370 第470组: 224 360 424 第471组: 224 420 476 第472组: 224 768 800 第473组: 224 882 910 第474组: 225 272 353 第475组: 225 300 375 第476组: 225 540 585 第477组: 225 924 951 第478组: 228 304 380 第479组: 228 325 397

第483组: 230 552 598 第484组: 231 308 385 第485组: 231 392 455 第486组: 231 520 569 第487组: 231 792 825 第488组: 232 435 493 第489组: 232 825 857 第490组: 234 312 390 第491组: 234 480 534 第492组: 235 564 611 第493组: 237 316 395 第494组: 238 240 338 第495组: 238 816 850 第496组: 240 252 348 第497组: 240 275 365 第498组: 240 320 400 第499组: 240 364 436 第500组: 240 418 482 第501组: 240 450 510 第502组: 240 551 601 第503组: 240 576 624 第504组: 240 700 740 第505组: 240 782 818 第506组: 240 884 916 第507组: 240 945 975 第508组: 243 324 405 第509组: 245 588 637 第510组: 245 840 875 第511组: 246 328 410 第512组: 248 465 527 第513组: 248 945 977 第514组: 249 332 415 第515组: 250 600 650 第516组: 252 275 373 第517组: 252 336 420 第518组: 252 405 477 第519组: 252 539 595 第520组: 252 561 615 第521组: 252 735 777 第522组: 252 864 900 第523组: 255 340 425 第524组: 255 396 471 第525组: 255 612 663 第526组: 255 700 745

第530组: 259 888 925 第531组: 260 273 377 第532组: 260 288 388 第533组: 260 624 676 第534组: 260 651 701 第535组: 260 825 865 第536组: 261 348 435 第537组: 261 380 461 第538组: 264 315 411 第539组: 264 352 440 第540组: 264 448 520 第541组: 264 495 561 第542组: 264 702 750 第543组: 264 770 814 第544组: 264 950 986 第545组: 265 636 689 第546组: 266 312 410 第547组: 266 912 950 第548组: 267 356 445 第549组: 270 360 450 第550组: 270 648 702 第551组: 270 704 754 第552组: 272 510 578 第553组: 272 546 610 第554组: 273 364 455 第555组: 273 560 623 第556组: 273 736 785 第557组: 273 936 975 第558组: 275 660 715 第559组: 276 368 460 第560组: 276 493 565 第561组: 276 805 851 第562组: 279 372 465 第563组: 279 440 521 第564组: 280 294 406 第565组: 280 342 442 第566组: 280 351 449 第567组: 280 450 530 第568组: 280 525 595 第569组: 280 672 728 第570组: 280 759 809 第571组: 280 960 1000 第572组: 282 376 470 第573组: 285 380 475

第577组: 287 816 865 第578组: 288 330 438 第579组: 288 384 480 第580组: 288 540 612 第581组: 288 616 680 第582组: 288 741 795 第583组: 288 840 888 第584组: 290 696 754 第585组: 290 816 866 第586组: 291 388 485 第587组: 294 392 490 第588组: 295 708 767 第589组: 296 555 629 第590组: 297 304 425 第591组: 297 396 495 第592组: 297 504 585 第593组: 300 315 435 第594组: 300 400 500 第595组: 300 455 545 第596组: 300 589 661 第597组: 300 720 780 第598组: 300 875 925 第599组: 301 900 949 第600组: 303 404 505 第601组: 304 570 646 第602组: 304 690 754 第603组: 305 732 793 第604组: 306 408 510 第605组: 306 840 894 第606组: 308 435 533 第607组: 308 495 583 第608组: 308 819 875 第609组: 309 412 515 第610组: 310 744 806 第611组: 310 936 986 第612组: 312 416 520 第613组: 312 459 555 第614组: 312 585 663 第615组: 312 640 712 第616组: 312 910 962 第617组: 315 420 525 第618组: 315 572 653 第619组: 315 624 699 第620组: 315 756 819

第624组: 320 462 562 第625组: 320 600 680 第626组: 320 768 832 第627组: 321 428 535 第628组: 322 480 578 第629组: 324 432 540 第630组: 324 693 765 第631组: 324 945 999 第632组: 325 360 485 第633组: 325 780 845 第634组: 327 436 545 第635组: 328 615 697 第636组: 330 440 550 第637组: 330 560 650 第638组: 330 792 858 第639组: 333 444 555 第640组: 333 644 725 第641组: 335 804 871 第642组: 336 377 505 第643组: 336 385 511 第644组: 336 448 560 第645组: 336 527 625 第646组: 336 540 636 第647组: 336 630 714 第648组: 336 748 820 第649组: 336 850 914 第650组: 339 452 565 第651组: 340 357 493 第652组: 340 528 628 第653组: 340 816 884 第654组: 341 420 541 第655组: 342 456 570 第656组: 344 645 731 第657组: 345 460 575 第658组: 345 756 831 第659组: 345 828 897 第660组: 348 464 580 第661组: 348 805 877 第662组: 350 576 674 第663组: 350 840 910 第664组: 351 468 585 第665组: 351 720 801 第666组: 352 420 548 第667组: 352 660 748

第671组: 357 360 507 第672组: 357 476 595 第673组: 360 378 522 第674组: 360 480 600 第675组: 360 546 654 第676组: 360 598 698 第677组: 360 627 723 第678组: 360 675 765 第679组: 360 770 850 第680组: 360 864 936 第681组: 363 484 605 第682组: 363 616 715 第683组: 364 585 689 第684组: 364 627 725 第685组: 365 876 949 第686组: 366 488 610 第687组: 368 465 593 第688组: 368 690 782 第689组: 369 492 615 第690组: 369 800 881 第691组: 370 888 962 第692组: 372 496 620 第693组: 372 925 997 第694组: 375 500 625 第695组: 375 900 975 第696组: 376 705 799 第697组: 378 504 630 第698组: 378 680 778 第699组: 380 399 551 第700组: 380 672 772 第701组: 380 912 988 第702组: 381 508 635 第703组: 384 440 584 第704组: 384 512 640 第705组: 384 720 816 第706组: 385 552 673 第707组: 387 516 645 第708组: 387 884 965 第709组: 390 432 582 第710组: 390 520 650 第711组: 390 800 890 第712组: 392 630 742 第713组: 392 735 833 第714组: 393 524 655

第718组: 396 847 935 第719组: 399 468 615 第720组: 399 532 665 第721组: 400 420 580 第722组: 400 561 689 第723组: 400 750 850 第724组: 402 536 670 第725组: 405 540 675 第726组: 406 792 890 第727组: 407 624 745 第728组: 408 506 650 第729组: 408 544 680 第730组: 408 765 867 第731组: 408 819 915 第732组: 411 548 685 第733组: 414 448 610 第734组: 414 552 690 第735组: 416 612 740 第736组: 416 780 884 第737组: 417 556 695 第738组: 420 441 609 第739组: 420 513 663 第740组: 420 560 700 第741组: 420 637 763 第742组: 420 675 795 第743组: 420 832 932 第744组: 420 851 949 第745组: 423 564 705 第746组: 424 795 901 第747组: 425 660 785 第748组: 426 568 710 第749组: 429 460 629 第750组: 429 572 715 第751组: 429 700 821 第752组: 429 728 845 第753组: 429 880 979 第754组: 432 495 657 第755组: 432 576 720 第756组: 432 665 793 第757组: 432 810 918 第758组: 435 580 725 第759组: 438 584 730 第760组: 440 462 638 第761组: 440 525 685

第765组: 447 596 745 第766组: 448 720 848 第767组: 448 840 952 第768组: 450 544 706 第769组: 450 600 750 第770组: 451 780 901 第771组: 453 604 755 第772组: 455 504 679 第773组: 455 528 697 第774组: 456 608 760 第775组: 456 650 794 第776组: 456 855 969 第777组: 459 612 765 第778组: 460 483 667 第779组: 462 616 770 第780组: 462 784 910 第781组: 464 777 905 第782组: 464 870 986 第783组: 465 620 775 第784组: 468 595 757 第785组: 468 624 780 第786组: 471 628 785 第787组: 473 864 985 第788组: 474 632 790 第789组: 475 840 965 第790组: 476 480 676 第791组: 476 765 901 第792组: 477 636 795 第793组: 480 504 696 第794组: 480 550 730 第795组: 480 640 800 第796组: 480 693 843 第797组: 480 728 872 第798组: 480 836 964 第799组: 481 600 769 第800组: 483 644 805 第801组: 483 720 867 第802组: 486 648 810 第803组: 489 652 815 第804组: 492 656 820 第805组: 495 660 825 第806组: 495 840 975 第807组: 498 664 830 第808组: 500 525 725

第812组: 504 703 865 第813组: 504 810 954 第814组: 507 676 845 第815组: 510 680 850 第816组: 510 792 942 第817组: 513 684 855 第818组: 516 688 860 第819组: 519 692 865 第820组: 520 546 754 第821组: 520 576 776 第822组: 520 765 925 第823组: 522 696 870 第824组: 522 760 922 第825组: 525 700 875 第826组: 528 605 803 第827组: 528 630 822 第828组: 528 704 880 第829组: 531 708 885 第830组: 532 624 820 第831组: 533 756 925 第832组: 534 712 890 第833组: 537 716 895 第834组: 540 567 783 第835组: 540 629 829 第836组: 540 720 900 第837组: 540 819 981 第838组: 543 724 905 第839组: 546 728 910 第840组: 549 732 915 第841组: 552 736 920 第842组: 555 572 797 第843组: 555 740 925 第844组: 558 744 930 第845组: 560 588 812 第846组: 560 684 884 第847组: 560 702 898 第848组: 561 748 935 第849组: 564 752 940 第850组: 567 756 945 第851组: 570 760 950 第852组: 573 764 955 第853组: 576 660 876 第854组: 576 768 960 第855组: 579 772 965

第859组: 585 648 873 第860组: 585 780 975 第861组: 588 784 980 第862组: 591 788 985 第863组: 594 608 850 第864组: 594 792 990 第865组: 595 600 845 第866组: 597 796 995 第867组: 600 630 870 第868组: 600 800 1000 第869组: 612 759 975 第870组: 615 728 953 第871组: 616 663 905 第872组: 616 735 959 第873组: 620 651 899 第874组: 621 672 915 第875组: 624 715 949 第876组: 638 720 962 第877组: 640 672 928 第878组: 650 720 970 第879组: 660 693 957 第880组: 680 714 986 第881组: 696 697 985

常见的勾股数及公式

常见的勾股数及公式 武安市黄冈实验学校 翟升华搜集整理 我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边 a 、 b 、 c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x = 4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1). 分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。 设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22 21y x x =++(*) 整理,得1222++x x =2y ,化为()121222-=-+y x ,即()y x 212++() y x 212-+=-1, 又()()2121-+=-1,∴()122 1++n ()1221+-n =-1(n∈N), 故取()y x 212++=()1221++n ,()y x 212-+=()1 221+-n , 解之,得x =41〔()1221++n +()1221+-n -2〕,y =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(4 1〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕). 四、后两数为连续奇数的勾股数 如(8,15,17), (12,35,37) …其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数) . 五、其它的勾股数组公式: 1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数). 2.a=21(m 2-n 2),b=mn,c= 21(m 2+n 2 )(其中m>n 且是互质的奇数). 3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数). 下面我们把100以内的勾股数组列出来,供同学们参考: 3 4 5;5 12 13;6 8 10;7 24 25;8 15 17;9 12 15;9 40 41;10 24 26;11 60 61;12 16 20; 12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15 112 113;16 30 34;16 63 65 17 144 145;18 24 30;18 80 82;19 180 181;20 21 29;20 48 52;20 99 101;21 28 35 21 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 45 51;24 70 74;24 143 145

勾股数的规律

精选范本 所谓勾股数,就是当组成一个直角三角形的三边长都 为正整数时,我们就称这一组数为勾股数 那么,组成一组勾股数的三个正整数之间, 是否具有一定的规律 可寻呢?下面我们一起来观察几组勾股数: 规律一:在勾股数(3, 4, 5)、( 5,12,13)、( 7, 24, 25)( 9, 40,41)中,我们发现 由(3, 4, 5)有: 3 2=9=4+5 由(5, 12, 13)有: 5 =25=12+13 由(7, 24, 25)有: 7 =49=24+25 由(9, 40, 41)有: 92=81=40+41. 即在一组勾股数中,当最小边为奇数时,它的平方刚好 等于 另外两个连续的正整数之和。 因此,我们把它推广到一般,从而 可得出以下公式: 2 2 2 2 ???(2n+1) =4n+4n+仁(2n +2n ) + (2n+2n+1) 2 2 2 2 2 ???(2n+1) + (2n+2n ) = (2n+2n+1) (n 为正整数) 勾股数公式一:(2n+1, 2n 2+2n , 2n 2+2n+1)(n 为正整数) 等于两个连续整数之和的二倍,推广到一般,从而可得出另一公式: 2 2 2 2 ???(2n ) =4n =2[ (n-1 ) + (n+1)] ???(2n ) + (n-1 ) = (n +1) (n 》2 且 n 为正整数) 勾股数公式二:(2n , n 2-1 , n 2+1)( n 》2且n 为正整 数) 禾U 用以上两个公式,我们可以快速写出各组勾股数。 规律二:在勾股数(6, 8, 26)中,我们发现 由(6, 8, 10)有: 由(8, 15, 17)有: 由(10, 24, 26)有: 即在 一组勾股数中, 10)、( 8, 15, 17)、( 10, 24, 2 6 =36=2X( 8+10) 82=64=2X( 15+17) 2 10 =100=2X( 24+26) 当最小边为偶数时,它的平方刚好

勾股数

勾股数 勾股数 勾股数又名毕氏三元数凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数。 目录 常用套路 简介 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a2+b2=c2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 第一套路 当a为大于1的奇数2n+1时,b=2n^2+2n, c=2n^2+2n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 第二套路 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如:

n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4n2-1, c=4n2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... 公式证明 证明 a=2mn b=m^2-n^2 c=m^2+n^2 证: 假设a^2+b^2=c^2,这里研究(a,b)=1的情况(如果不等于1则(a,b)|c,两边除以(a,b)即可)如果a,b均奇数,则a^2 + b^2 = 2(mod 4)(奇数mod4余1),而2不是模4的二次剩余,矛盾,所以必定存在一个偶数。不妨设a=2k 等式化为4k^2 = (c+b)(c-b) 显然b,c同奇偶(否则右边等于奇数矛盾) 作代换:M=(c+b)/2, N=(c-b)/2,显然M,N为正整数 现在往证:(M,N)=1 如果存在质数p,使得p|M,p|N, 那么p|M+N(=c), p|M-N(=b), 从而p|c, p|b, 从而p|a,这与(a,b)=1矛盾 所以(M,N)=1得证。 依照算术基本定理,k^2 = p1^a1 * p2^a2 * p3^a3 * ...,其中a1,a2...均为偶数,p1,p2,p3...均为质数 如果对于某个pi,M的pi因子个数为奇数个,那N对应的pi因子必为奇数个(否则加起来不为偶数),从而pi|M, pi|N,(M,N)=pi>1与刚才的证明矛盾所以对于所有质因子,pi^2|M, pi^2|N,即M,N都是平方数。 设M = m^2, N = n^2 从而有c+b = 2m^2, c-b = 2n^2,解得c=m^2+n^2, b=m^2-n^2, 从而a=2mn 局限 目前,关于勾股数的公式还是有局限的。勾股数公式可以得到所有的基本勾股数,但是不可能得到所有的派生勾股数。比如3,4,5;6,8,10;9,12,15...,就不能全部有公式计算出来。 完全公式

常见的勾股数及公式

常见的勾股数及公式

常见的勾股数及公式 武安市黄冈实验学校 翟升华搜集整理 我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边a 、b 、c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得(x+1)2+x 2=(x+1)2,解得x =4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n (n 是正整数)都是勾股数 。 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢 a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1). 分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(x ,x +1,1222++x x )(x 为正整数)。 设前两数为连续整数的勾股数组为(x ,x +1,y ),y=1222++x x 则()22 21y x x =++(*)

勾股数规律的探究

勾股数的规律 能够组成一个直角三角形的三边长的正整数,叫做勾股数。如“勾三股四弦为五”(3,4,5)再如常见的(6,8,10)(5,12,13)、(7,24,25),熟记一些勾股数利于我们更快、更准的解决于直角三角形有关的实际问题。下面就勾股数的三个正整数之间的规律进行探究: 规律一:在勾股数(3,4,5)、(5,12,13)、(7,24,25)(9,40,41)中,我们发现 由(3,4,5)有: 32=9=4+5 由(5,12,13)有: 52=25=12+13 由(7,24,25)有: 72=49=24+25 由(9,40,41)有: 92=81=40+41. 即在一组勾股数中,当最小边为奇数时,它的平方刚好等于另外两个连续的正整数之和。 其论证如下:数a为大于1的正数,则2a+1为奇数数,则有 ∵(2a+1)2=4a2+4a+1=(2a2+2a)+(2a2+2a+1) ∴(2a +1)2+(2a 2+2a)2=(2a2+2a+1)2 因此,我们把它推广到一般,从而可得出勾股数公式一: (2a+1,2a2+2a,2a2+2a+1)(a为正整数) 或整理为:对于一个大于1的整奇数m,构成的勾股数为(m,,)

规律二:在勾股数(6,8,10)、(8,15,17)、(10,24,26)中,我们发现 由(6,8,10)有: 62=36=2×(8+10) 由(8,15,17)有: 82=64=2×(15+17) 由(10,24,26)有: 102=100=2×(24+26) 即在一组勾股数中,当最小边为偶数时,它的平方刚好等于两个连续且相差为2的整数之和的二倍。 其论证如下:数a为大于1的正数,则2a为偶数,则有 ∵(2a)2=4a2=2[(a2-1)+(a2+1)] ∴(2a)2+(a2-1)2=(a2+1)2(a≥2且a为正整数) 因此,我们把它推广到一般,从而可得出勾股数公式二: (2a,a2-1,a2+1)(a≥2且a为正整数) 或整理为:对于一个大于1的整偶数m,构成的勾股数为 (m,,)

三种常见的勾股数

三种常见的勾股数 我们知道,如果a 、b 、c 是直角三角形的三边,则由勾股定理,得222c b a =+,反之,若三角形的三边a 、b 、c 满足222c b a =+,则该三角形是直角三角形.与此相类似,如果三个正整数a 、b 、c 满足222c b a =+,则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍三种: 一、三数为连续整数的勾股数 (3,4, 5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(x -1,x ,x +1),则由勾股数的定义,得()()2 2211+=+-x x x ,解得x =4或x =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5); 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? 设后两数为连续整数的勾股数组为(x ,y ,y +1),则 ()2 221+=+y y x , 整理,得122=-y x ,(*) 显然,x 不能是偶数,否则,当x 为偶数时,(*)式的左边是偶数,而右边是奇数,矛盾.故x 不能是偶数,因此, 取x =2m +1,则y =m m 222+(m ∈N), 故后两数为连续整数的勾股数组是 (2m +1,m m 222+,m m 222 ++1); 分别取m =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些前两数为连续整数的勾股数组是怎样构造出来的吗?下面我们仿照后两数为连续整数的勾股数组的导出老进行推导. 设前两数为连续整数的勾股数组为(x ,x +1,y ),则 ()2221y x x =++(*) 整理,得1222++x x =2 y ,化为 ()121222-=-+y x ,即

勾股数序列

勾股数序列 山东定陶一中刘述省 序言 两千多年前,中国人和希腊人发现了勾股定理,当是数学史上的伟大创举。a=2mn,b=m2-n2,c=m2+n2 则是近代中国人在数论领域的又一重大成就,它将勾股数的一般求法表述得如此简捷。然而迄今为止,未见一个具体详细的勾股数序列表。这是因为,用现代数学家的眼光来看,找素勾股数是一件很困难的事,更不用说全部勾股数的序列表了。 2002年,本人找到了一种极其初等的方法。初中学生即可做,可以将所有勾股数按照一定的顺序一个不漏地列出来,制作成表。(当然,由于勾股数的无限多, 只能列出一定范围内的)。此成果获得中国管理科学研究院颁发的中国新时期人文科学优秀成果一等奖。 学校有了自己的网站,给我们广大师生建立了互相交流的平台。自己多年的一点点积累,也很想与大家一起交流学习。下面的正文力图深入浅出,另有勾股数序列表一并附上。并指望有一天,看到有高手通过编程法打印出可观的勾股数序列表,学生人手一册。真正让勾股定理走进普通人之中。 正文 先找素勾股数,即勾a,股b,弦c三数互质(无公约数)的勾股数。故约定:a<b<c . a2 + b2 = c2且a b c 互质。因a2 = (c-b) (c+b) ,突破口选在 c-b上。并记满足c-b=k的素勾股数为d k 勾股数。(论文在后面将d k勾股数的倍数形成的勾股数叫做d k倍勾股数) 以下将按照k的取值从小到大依次探求结论。 k=1时,a2=k(b+c)=b+c=2b+1.知a是大于1的奇数。设a = 2m +1,则b = (a2 -1) / 2 , c=b+1.m依次从1开始取值,即得到d1 素勾股数序列如下: a b c 说明:1. a列从上到下依次多 2 ,b列从上到下依次多加4 . 3 4 5 5 12 13 2. 各列个位数五个数一循环。 7 24 25 9 40 41 3. 拟人法比喻,c为姐,b为弟,a为妹。可编口诀如下: 11 60 61 13 84 85 妹妹方一方,姐弟和相当; 15 112 113 17 144 145 姐大弟一年,三人勾股弦。 19 180 181 .。。。。。。。。。。。。。。。。。。。。。。。。 k=2时,a2=2(b+c)=2(2b+2)=4(b+1).设a=2m,则b=m2-1,c=b+2.得出通项公式后,还要注意考虑两点。第一, 要保证a b c 互质。这里a 已经确定是偶数,b 就不能再是偶数,所以知m 是偶数。第二,要保证b >a 。这里换算为m2 —1 >2m 。得到m >1+2。

探究勾股数

探究勾股数两例 满足a 2+b 2=c 2的三个正整数,称为勾股数.对于给定的三个正整数,若能验证其中最大数的平方等于其他两数的平方和,这组数就一定是勾股数,否则不是.可以验证若a 、b 、c 是一组勾股数,则ka 、kb 、kc (k 为正整数)也是勾股数. 以下几个都可构成勾股数: 1.设n 为正整数,且n >1,a =2n ,b =n 2-1,c =n 2+1; 2.设n 为正整数,a =2n +1,b =2n 2+2n ,c =2n 2+2n +1; 3.设m 、n 为正整数,且m >n ,则a =m 2-n 2,b =2mn ,c =m 2+n 2; 例1 据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连结得一个直角三角形,如果勾是三,股是四,那么弦就等于五.后人概括为:“勾三、股四、弦五”. (1)观察:3、4、5;5、12、13;7、24、25;…发现这些勾股数的“勾”都是奇数,且从3起就没有间断过,计算 21(9-1),21(9+1)与21(25-1),2 1 (25+1),并根据你发现的规律,分别写出能(用勾)表示7、24、25的股和弦的算式; (2)根据(1)的规律,用n (n 为奇数且n ≥3)的代数式来表示所有这些勾股数的勾、股、弦.猜想它们之间的两种相等关系,并对其中一种猜想加以说明; (3)继续观察4、3、5;6、8、10;8、15、17;….可以发现各组的第一个数都是偶数,且从4起也没有间断过,运用类似上述探索的方法,直接用m (m 为偶数且m >4)的代数式来表示它们的股和弦. 分析:本题是一个勾股数的探索问题,考查观察、分析、类比、猜想和论证等能力.第(2)、(3)两小题都具有开放性,能较好地考查大家的创新意识和能力. 解:(1)因为 21(9-1)=21(32-1)=4, 21(9+1)=21(32+1)=5,21(25-1)=2 1 (52-1)=12, 21(25+1)=2 1 (52+1)=13, 对于3、4、5和5、12、13两组勾股数来说,可以表示为: 股= 21(勾2-1),弦=2 1 (勾2+1). 所以7、24、25的股24的算式为21(49-1)=21 (72-1), 7、24、25的弦25的算式为21(49+1)=2 1 (72+1);

勾股定理及其应用总结归纳

精心整理第五次课勾股定理及其应用 本章知识要点 A. 勾股定理及其逆定理。 B. 验证、证明勾股定理及其依据(面积法)。

重点知识勾股定理的验证

重点知识确定几何体上的最短路线 例1 B A

图 AC=c ,请利用四边形D C BC ''的面积验证勾股定理222c b a =+. (2)如图1-1-9(2),台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部 8m 处,已知旗杆原长16 m ,你能求出旗杆在离底部多少米的位置断裂吗? 例7 如图1-2-6,A 、B 两个小镇在河流CD 同侧,到河的距离分别为AC =10千米,BD =30千米, 图 图1-2-9

且CD=30千米,现在要在河岸上修建一个自来水厂,分别向A、B两镇供水.铺设水管的费用为每千米3万元,请你在河岸上选择自来水厂的位置,使铺设水管的总费用最低,并求出最低总费用. 例8 如图1-2-7,一架长2.5m的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m,如果 家庭作业 =,CH=,5.△ABC中,AB=25,BC=20,CA=15,CM和CH分别是中线和高。那么S △ABC MH= 图 6.已知直角三角形两边的长为3和4,则此三角形的周长为__________.

7.△ABC 中,AB=AC=17cm ,BC=16cm ,AD ⊥BC 于D ,则AD= . 8.如图1-1-2,D 为△ABC 的边BC 上的一点,已知AB=13,AD=12, AC=15,BD=5,则BC 的长为 9.如图1-1-5,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米, 且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万 元,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少? 10.如图1-1-6,一架梯子的长度为25米,如图斜靠在墙上,梯子顶端离墙底端为7米。 这个梯子顶端离地面有多高? 如果梯子的顶端下滑了4 11.如图1-2-11,长方体的长为15cm ,宽为10果要沿着长方体的表面从点A 爬到点B 图1-1-2 B 图

勾股数填空选择及详解中考题

一、填空题(共20小题) 1、附加题:观察以下几组勾股数,并寻找规律: ①3,4,5; ②5,12,13; ③7,24,25; ④9,40,41;… 请你写出有以上规律的第⑤组勾股数:_________ . 2、观察下列一组数: 列举:3、4、5,猜想:32=4+5; 列举:5、12、13,猜想:52=12+13; 列举:7、24、25,猜想:72=24+25; … 列举:13、b、c,猜想:132=b+c; 请你分析上述数据的规律,结合相关知识求得b= _________ ,c= _________ . 3、满足a2+b2=c2的三个正整数,称为_________ . 4、观察下列一类勾股数:3,4,5;5,12,13;7,24,25;…请你根据规律写出第4组勾股数为_________ . 5、观察右面几组勾股数,①3,4,5;②5,12,13;③7,24,25;④9,40,41;并寻找规律,请你写出有以上规律的第⑤组勾股数:_________ ,第n组勾股数是_________ . 6、能够成为直角三角形三条边长的三个正整数,称为勾股数,试写出两种勾股数_________ ,_________ . 7、在数3,5,12,13四个数中,构成勾股数的三个数是_________ . 8、将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我 们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数_________ ,_________ ,_________ . 9、有一组勾股数,最大的一个是37,最小的一个是12,则另一个是_________ . 10、观察下列各式:32+42=52;82+62=102;152+82=172;242+102=262;…;你有没有发现其中的规律?请用你 发现的规律写出接下来的式子:_________ . 11、一个直角三角形的三边长是不大于10的偶数,则它的周长为_________ . 12、观察下面几组勾股数,并寻找规律: 市菁优网络科技

勾股定理常见题型

1 .如图(16),大正方形的面积可以表示为 ,又可以表示为 ,由此可得等量关系 ABCD 正方形EFGH .ACB=90 , AB=4,分别以AC , BC 为直径作半圆,面积分别记为 专题一:勾股定理与面积 知识点精讲: 类型一 “勾股树”及其拓展类型求面积 典型例题: 3 .“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角 边的长分别是3和6,则大正方形与小正方形的面积差是 ( ) 4 .如图所示的大正方形是由八个全等的直角三角形和一个小正方形拼接而成,记图中正方形 正方形MNKT 勺面积分别为 S 、S 2、S.若正方形EFGH 勺边长为2,贝U S + S 2+ S 3 = _____________________________________ . 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知 Si = 4, S 2= 9, S 3 = 8, S= 10,则S =( ) A. 25 B . 31 C . 32 D . 40 7?如图,已知直角厶ABC 的两直角边分别为 6, 8,分别以其三边为直径作半圆, 则图中阴影部分的面积是 ____________ 8.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形, 然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为 64,则正方形⑤的面积 _________________________ ,整理后可得: _______________ C 6 .如图,已知在Rt A ABC 中, C 6 8 ①

勾股数的探索

勾股数的探索 活动准备:计算器1只、火柴盒1只 活动内容:能够构成直角三角形三条边的边长的3个正整数,称为勾股数,我国古老的数学和天文著作《周髀算经》中,记载的“勾三股四弦五”中的(3,4,5)就是一组最简单的勾股数,显然,这组数的整数倍,如(6,8,10)(9,12,15),(12,16,20)等都是勾股数 当然,勾股数远远不止这些,如(5,12,13)、(8,15,17)等也都是勾股数。 怎样探索勾股数呢?即怎样的一组正整数(a,b,c)才能满足关系式a2+b2=c2? 活动1: 设(a,b,c)为一组勾股数 1.填表: 表1 表2 2.在表1中,a为奇数,正整数b和c之间的数量关系是 c=b+1 ,b、c与a2之间的关系式是 根据以上规律,当a=13时,b=84,c=85 一般地,当a为奇数时,用a分别表示b、c,则b= , c= . 3.表2中,a为大于4的偶数,正整数b、c之间的数量关系是 c =b+2 ,b、c与a2之间的数量关系是a2+b2=c2 根据以上规律,当a=14时,b=48,c=50 一般地,当a为大于4的偶数时,用a分别表示b、c,则b=____________,c=_____________ 4.正整数9、12、15是一组勾股数吗?这组数据满足上述规律吗?这说明了什么问题? 活动2;计算与验证 a=m2-n2 1.已知数据b=2mn ① c=m2+n2 其中m>n,,m、n为正整数.a、b、c为勾股数吗?为什么? 如果a、b、c是一组勾股数,写出你的证明;如果不是勾股数,请说明理由

2.公元前580年~公元前500年。古希腊人毕达哥拉斯给出勾股数的计算公式: 你能证明吗? a=2n+1 b=2n2+2n (n为正整数)② c=2n2+2n+1 3.公元前427年~公元前347年.古希腊哲学家柏拉图又给出了勾股数计算公式: a=n2-1 b=2n (n>1的正整数) ③ c= n2+1 请你给出证明 利用以上3个勾股数的计算公式,我们可以求出无数组勾股数.但这里需要强调的是,用它们求出的勾股数不是所有的勾股数.如公式①不能求出勾股数(9,12,15),公式②不能求出勾股数(8,15,17),公式③不能求出(5,12,13). 活动创新活动3:联想与拓展. 1.如图1,已知四边形ABCD是长方形,AC为对角线,则有AB2+BC2=AC2,即AB、BC、AC满足勾股定理. D A 1 图1 图2 如图2,ABCD-A1B1C1D1是长方体.图1中的线段AB、BC、AC分别对应图2中的面ABB1A1、面BCC1B1、面ACC1A1.若长方体的面ABB1A1、面BCC1B1、面ACC1A1的面积分别用γ β α、 、表示,则是否有2 2 2γ β α= +仍然成立?请说明理由. 2.如图3,已知四边形ABCD为长方形,直线l分别截AB、CB于点E、F,则有BE2+BF2=EF2. D A 1 图3 图4 如图4, ABCD-A1B1C1D1为长方体,一个平面分别截长方体的棱AB、BC、BB1于点M、

100以内各数开方、100以内各数平方、常见勾股数

100以内各数开方 √1 = 1 √2 = 1.41421 √3 = 1.73205 √4 = 2 √5 = 2.23607 √6 = 2.44949 √7= 2.64575 √8 = 2.82843 √9 = 3 √10 = 3.16228 √11 = 3.31662 √12 = 3.4641 √13 = 3.60555 √14 = 3.74166 √15 = 3.87298 √16 = 4 √17 = 4.12311 √18 = 4.24264 √19 = 4.3589 √20 = 4.47214 √21 = 4.58258 √22 = 4.69042 √23 =4.79583 √24 = 4.89898 √25 = 5 √26 = 5.09902 √27 = 5.19615 √28 = 5.2915 √29 = 5.38516 √30 = 5.47723 √31 = 5.56776 √32 = 5.65685 √33 = 5.74456 √34 =5.83095 √35 = 5.91608 √36 = 6 √37 = 6.08276 √38 = 6.16441 √39 = 6.245 √40 = 6.32456 √41 = 6.40312 √42 = 6.48074 √43 = 6.55744 √44 = 6.63325 √45 = 6.7082 √46 = 6.78233 √47 = 6.85565 √48 = 6.9282 √49 = 7 √50 = 7.07107 √51 = 7.14143 √52 = 7.2111 √53 = 7.28011 √54 = 7.34847 √55 = 7.4162 √56 = 7.48331 √57 = 7.54983 √58 = 7.61577 √59 = 7.68115 √60 = 7.74597 √61 = 7.81025 √62 =7.87401 √63 = 7.93725 √64 = 8 √65 = 8.06226 √66 = 8.12404 √67 = 8.18535 √68 = 8.24621 √69 = 8.30662 √70 = 8.3666 √71 = 8.42615 √72 = 8.48528 √73 = 8.544 √74 = 8.60233 √75 = 8.66025 √76 = 8.7178 √77 = 8.77496 √78 = 8.83176 √79 = 8.88819 √80 = 8.94427 √81 = 9 √82 = 9.05539 √83 = 9.11043 √84 = 9.16515 √85 = 9.21954 √86 = 9.27362 √87 = 9.32738 √88 = 9.38083 √89 = 9.43398 √90 = 9.48683 √91 = 9.53939 √92 = 9.59166 √93 =9.64365 √94 = 9.69536 √95 = 9.74679 √96 = 9.79796 √97 = 9.84886 √98 = 9.89949 √99 = 9.94987 √100 = 10 100以内各数平方 12=1 22=432=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400

勾股数的规律总结

勾股数的规律总结 我们知道,像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数.勾股数有什么规律吗?下面就让我们分类探究一下. 一、最短边的长度为奇数 观察下表中的勾股数: 根据上面的表格,我们可以发现以上勾股数(,,无公约数)具备一定的特征,很显然,当21a n =+(n ≥1)时,()21b n n =+,()211c n n =++.同时我们容易验证: () ()()22 2 2121211n n n n n +++=++????????, 即当最短边的长度为奇数时,勾股数有此规律. 二、最短边的长度为偶数 最短边的长度为偶数时,没有公约数的勾股数又有什么规律呢? 首先,最短边为偶数时,其他两边不可能再是偶数,否则就有了公约数2,所以另外两个勾股数必为奇数,而且这两个奇数的平方差是8的倍数(八年级上册曾学过).这是因为两个奇数可以表示为21m +和21n +,这里的m 、n 都是正整数,不妨设m n >,则 ()() ()22 222121441441m n m m n n +-+=++-++ ( )()22 44m n m n =-+- ()()41m n m n =-++. 因为m 、n 都为正整数,而任意两个正整数的和与差具有同奇同偶性,所以m n -与 1m n ++这两个数中,有且只有一个偶数,所以()()41m n m n -++必定能被8整除.这说 明,一组无公约数的勾股数中,如果最小的数为偶数,则它的平方必为8的倍数,而另外两数必为奇数. 由此表格中的数据可以得出,该表格中的无公约数的勾股数具备这样的特征:当(n ≥1)时,2161b n =-,2 161c n =+,同时我们容易验证:

[实用参考]常见的勾股数及公式.doc

常见的勾股数及公式 武安市黄冈实验学校翟升华搜集整理 我们知道,如果∠C=90°,a 、b 、c 是直角三角形的三边,则由勾股定理,得a 2+b 2=c 2;反之,若三角形的三边 a 、 b 、 c 满足a 2+b 2=c 2,则该三角形是直角三角形,c 为斜边.与此相类似,如果三个正整数a 、b 、c 满足a 2+b 2=c 2, 则称a 、b 、c 为勾股数,记为(a ,b ,c ).勾股数有无数多组,下面向同学们介绍几种: 一、三数为连续整数的勾股数 (3,4,5)是我们所熟悉的一组三数为连续整数的勾股数,除此之外是否还有第二组或更多组呢? 设三数为连续整数的勾股数组为(G -1,G ,G +1),则由勾股数的定义,得(G+1)2+G 2=(G+1)2,解得G = 4或G =0(舍去),故三数为连续整数的勾股数只有一组(3,4,5);类似有3n,4n,5n(n 是正整数)都是勾股数。 二、后两数为连续整数的勾股数 易知:(5,12,13),(9,40,41),(113,6338,6385),…,都是勾股数,如此许许多多的后两数为连续整数的勾股数,它的一般形式究竟是什么呢? a=2n+1,b=2n 2+2n,c=2n 2+2n+1(其特点是斜边与其中一股的差为1). 分别取n =1,2,3,…就得勾股数组(3,4,5),(5,12,13),(7,24,25),… 三、前两数为连续整数的勾股数 你知道(20,21,29),(119,120,169),(4059,4060,5741)…,这些都是前两数为连续整数的勾股数组。其公式为:(G ,G +1,1222++x x )(G 为正整数)。 设前两数为连续整数的勾股数组为(G ,G +1,P ),P=1222++x x 则()22 21y x x =++(*) 整理,得1222++x x =2y ,化为()121222 -=-+y x ,即()y x 212++()y x 212-+=-1, 又()()2121-+=-1,∴()1221++n ()1221+-n =-1(n∈N) , 故取()y x 212++=()1221++n ,()y x 212-+=()1221+-n , 解之,得G =4 1〔()1221++n +()1221+-n -2〕,P =42〔()1221++n -()1221+-n 〕, 故前两数为连续整数的勾股数组是(41〔()1221++n +()1221+-n -2〕,41〔()1221++n +()1221+-n -2〕+1,42〔()1221++n -()1221+-n 〕). 四、后两数为连续奇数的勾股数 如(8,15,17),(12,35,37)…其公式为:4(n+1),4(n+1)2-1,4(n+1)2+1(n 是正整数). 五、其它的勾股数组公式: 1.a=2m,b=m 2-1,c=m 2+1(m 大于1的整数). 2.a= 21(m 2-n 2),b=mn,c=21(m 2+n 2)(其中m>n 且是互质的奇数). 3.a=2m,b=m 2-n 2,c=m 2+n 2(m>n,互质且一奇一偶的任意正整数). 下面我们把100以内的勾股数组列出来,供同学们参考: 34 5;512 13;6810;72425;81517;9 1215;940 41;102426;116061;12 16 20; 12 35 37;13 84 85;14 48 50;15 20 25;15 36 39;15112 113;16 30 34;16 63 65 17144 145;18 24 30;18 80 82;19 180 181;20 21 29;20 48 52;20 99 101;21 28 35 21 72 75;21 220 221;22 120 122;23 264 265;24 32 40;24 45 51;24 70 74;24 143 145 25 60 65;25 312 313;26 168 170;27 36 45;27120 123;27 364 365;28 45 53;28 96 100 28 195 197;29 420 421;30 40 50;30 72 78;30 224 226;31 480 481;32 60 68;32 126 130 32 255 257;33 44 55;33 56 65;33 180 183;33 544 545;34 288 290;35 84 91;35 120 125 35 612 613;36 48 60;36 77 85;36 105 111;36 160 164;36 323 325;37 684 685;38 360 362 39 52 65;39 80 89;39 252 255;39 760 761;40 42 58;40 75 85;40 96 104;40 198 202 40 399 401;41 840 841;42 56 70;42 144 150;42 440 442;43 924 925;44 117 125;44 240 244 44 483 485;45 60 75;45 108 117;45 200 205;45 336 339;46 528 530;48 55 73;48 64 80 48 90 102;48 140 148;48 189 195;48 286 290;48 575 577;49 168 175;50 120 130;50 624 626

勾股数的常用套路

勾股数的常用套路 所谓勾股数,一般是指能够构成直角三角形三条边的三个正整数(a,b,c)。 即a^2+b^2=c^2,a,b,c∈N 又由于,任何一个勾股数组(a,b,c)内的三个数同时乘以一个整数n得到的新数组(na,nb,nc)仍然是勾股数,所以一般我们想找的是a,b,c互质的勾股数组。 关于这样的数组,比较常用也比较实用的套路有以下两种: 1、当a为大于1的奇数2n+1时,b=2*n^2+2*n, c=2*n^2+2*n+1。 实际上就是把a的平方数拆成两个连续自然数,例如: n=1时(a,b,c)=(3,4,5) n=2时(a,b,c)=(5,12,13) n=3时(a,b,c)=(7,24,25) ... ... 这是最经典的一个套路,而且由于两个连续自然数必然互质,所以用这个套路得到的勾股数组全部都是互质的。 2、当a为大于4的偶数2n时,b=n^2-1, c=n^2+1 也就是把a的一半的平方分别减1和加1,例如: n=3时(a,b,c)=(6,8,10) n=4时(a,b,c)=(8,15,17) n=5时(a,b,c)=(10,24,26) n=6时(a,b,c)=(12,35,37) ... ... 这是次经典的套路,当n为奇数时由于(a,b,c)是三个偶数,所以该勾股数组必然不是互质的;而n为偶数时由于b、c是两个连续奇数必然互质,所以该勾股数组互质。 所以如果你只想得到互质的数组,这条可以改成,对于a=4n (n>=2), b=4*n^2-1, c=4*n^2+1,例如: n=2时(a,b,c)=(8,15,17) n=3时(a,b,c)=(12,35,37) n=4时(a,b,c)=(16,63,65) ... ... ========Edward补充======== 对于N 为质因数比较多的和数时还可以参照其质因数进行取相应的勾股数补充,即1个N会有多对的勾股数,例如: n=9时(a,b,c)=(9,24,25)or (9,12,15) --------3* (3,4,5) n=12时(a,b,c)= (12,35,37) or (12,16,20) ----- 4*(3,4,5) =========ShangJingbo补充======= 还有诸如此类的勾股数,20、21、29; 119、120、169;

勾股数的整理及应用

首先要熟记1~30的平方 例如: 162 个位6乘以6 所以结果个位一定是6,个位不是6肯定错。 例如:可以用完全平方公式 192=(20-1)2=400-40+1=361 222=(20+2)2=400+80+4=484 整十的数比较好算。。。 某些学生觉得记上表很难,其实不然,部分已经是我们非常熟悉的数,像1~16、20、25…要记的不多,再加上上述的方法,再用心一下,就很好记的! 常用勾股数与上表有联系,涉及到xx的平方 常用勾股数: 3 4 5 (9+16=25) 5 12 13 (25+144=169) 7 24 25 (49+576=625) 8 15 17 (64+225=289) 9 40 41 (81+1600=1681) … 这些是要求学生熟悉并记住的。 例如:当你看见三个数,7/24/25时候,若你记得,马上可以做出判断。 常用勾股数的整数倍也可以构成勾股数。 6 8 10 9 12 15 12 16 20 15 20 25 10 24 26 15 36 39 …

常用勾股数的正实数倍,进而构成一组广义的勾股数 2.5 6 6.5 3.5 8.4 9.1 … 判定勾股数的方法:化整、约简、判断 例:3.5 8.4 9.1 → 35 84 91 → 5 12 13 例: 如图,为了求出湖两岸A 、B 两点之间的距离,一个观测者在点C 设桩,使三角形ABC 恰好为直角三角形.通过测量,得到AC 长160m ,BC 长128m ,则AB 长 m . 分析:很多学生会直接1602-1282=?这样算,不是不可以,而是数太大,一是易错,二是不好算。正确方法是 先约简: 160 128 ? 同除以32 5 4 3 ? =3x32=96 A C 160m

相关主题