搜档网
当前位置:搜档网 › 步进电机简介

步进电机简介

步进电机简介
步进电机简介

什么是步进电机?

1.什么是步进电机? 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

2.步进电机分哪几种? 步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为0.72度。这种步进电机的应用最为广泛。

3.什么是保持转矩(HOLDING TORQUE)? 保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m 的步进电机。

4.什么是DETENT TORQUE? DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。

5.步进电机精度为多少?是否累积? 一般步进电机的精度为步进角的3-5%,且不累积。

6.步进电机的外表温度允许达到多少? 步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。

7.为什么步进电机的力矩会随转速的升高而下降? 当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

8.为什么步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有啸叫声? 步进电机有一个技术参数:空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。

9.如何克服两相混合式步进电机在低速运转时的振动和噪声? 步进电机低速转动时振动和噪声大是其固有的缺点,一般可采用以下方案来克服:

A.如步进电机正好工作在共振区,可通过改变减速比等机械传动避开共振区;

B.采用带有细分功能的驱动器,这是最常用的、最简便的方法;

C.换成步距角更小的步进电机,如三相或五相步进电机;

D.换成交流伺服电机,几乎可以完全克服震动和噪声,但成本较高;

E.在电机轴上加磁性阻尼器,市场上已有这种产品,但机械结构改变较大。

10.细分驱动器的细分数是否能代表精度? 步进电机的细分技术实质上是一种电子阻尼技术(请参考有关文献),其主要目的是减弱或消除步进电机的低频振动,提高电机的运转

精度只是细分技术的一个附带功能。比如对于步进角为1.8°的两相混合式步进电机,如果细分驱动器的细分数设置为4,那么电机的运转分辨率为每个脉冲0.45°,电机的精度能否达到或接近0.45°,还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。

11.四相混合式步进电机与驱动器的串联接法和并联接法有什么区别? 四相混合式步进电机一般由两相驱动器来驱动,因此,连接时可以采用串联接法或并联接法将四相电机接成两相使用。串联接法一般在电机转速较的场合使用,此时需要的驱动器输出电流为电机相电流的0.7倍,因而电机发热小;并联接法一般在电机转速较高的场合使用(又称高速接法),所需要的驱动器输出电流为电机相电流的1.4倍,因而电机发热较大。

12.如何确定步进电机驱动器的直流供电电源?

A.电压的确定混合式步进电机驱动器的供电电源电压一般是一个较宽的范围(比如IM483的供电电压为12~48VDC),电源电压通常根据电机的工作转速和响应要求来选择。如果电机工作转速较高或响应要求较快,那么电压取值也高,但注意电源电压的纹波不能超过驱动器的最大输入电压,否则可能损坏驱动器。

B.电流的确定供电电源电流一般根据驱动器的输出相电流I来确定。如果采用线性电源,电源电流一般可取I的1.1~1.3倍;如果采用开关电源,电源电流一般可取I 的1.5~2.0倍。

13.混合式步进电机驱动器的脱机信号FREE一般在什么情况下使用? 当脱机信号FREE为低电平时,驱动器输出到电机的电流被切断,电机转子处于自由状态(脱机状态)。在有些自动化设备中,如果在驱动器不断电的情况下要求直接转动电机轴(手动方式),就可以将FREE信号置低,使电机脱机,进行手动操作或调节。手动完成后,再将FREE信号置高,以继续自动控制。

14.如果用简单的方法调整两相步进电机通电后的转动方向? 只需将电机与驱动器接线的A+和A-(或者B+和B-)对调即可。

步进电动机的工作原理与特点

步进电动机的工作原理及特点随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 1 步进电机概述 步进电动机又称脉冲电动机或阶跃电动机,国外一般称为Steppingmotor、Pulse motor或Stepper servo,其应用发展已有约80年的历史。步进电机是一种把电脉冲信号变成直线位移或角位移的控制电机,其位移速度与脉冲频率成正比,位移量与脉冲数成正比。步进电机在结构上也是由定子和转子组成,可以对旋转角度和转动速度进行高精度控制。当电流流过定子绕组时,定子绕组产生一矢量磁场,该矢量场会带动转子旋转一角度,使得转子的一对磁极磁场方向与定子的磁场方向一着该磁场旋转一个角度。因此,控制电机转子旋转实际上就是以一定的规律控制定子绕组的电流来产生旋转的磁场。每来一个脉冲电压,转子就旋转一个步距角,称为一步。根据电压脉冲的分配方式,步进电机各相绕组的电流轮流切换,在供给连续脉冲时,就能一步一步地连续转动,从而使电机旋转。步进电机每转一周的步数相同,在不丢步的情况下运行,其步距误差不会长期积累。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,同时步进电机只有周期性的误差而无累积误差,精度高,步进电动机可以在宽广的频率围通过改变脉冲频率来实现调速、快速起停、正反转控制等,这是步进电动机最突出的优点[1]。 正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。 2国外的研究概况 步进电机是国外发明的。中国在文化大革命中已经生产和应用,例如、、、、都生产,而且都在各行业使用,驱动电路所有半导体器件都是完全国产化的,当时是全分立元器件构成的逻辑运算电路,还有电容耦合输入的计数器,触发器,环形分配器。国外在大功率的工业设备驱动上,目前基本不使用大扭矩步进电动机,因为从驱动电路的成本,效率,噪音,加速度,绝对速度,系统惯量与最大扭矩比来比较,比较不划算,还是用直流电动机,加电动机编码器整体技术和经济指标高。一些少数高级的应用,就用空心转杯电机,交流电机。国外在小功率的场合,还使用步进电机,例如一些工业器材,工业生产装备,打印机,复印件,速印机,银行自动柜员机。国外用许多现代的手段将步进电机排挤出驱动应用,除了前面提到的旋转编码器,打印机还使用光电编码带或感应编码带配合直流电动机,实现闭环直线位移控制。国过去是用大力矩步进电动机实现机床数控,有实力的公司现在也采用交流电动机驱动数控机床,在驱动设备的主要差距,是国外对交流电动机的控制理论与工程分析和应用能力强,先进的控制理论作为软件,写在控制器部。 总的来说,步进电机是一种简易的开环控制,对运用者的要求低,不适合在大功率的场合使用。 在卫星、雷达等应用场合,中国在文化大革命后期,就生产了力矩电机,就生产了环形

步进电机控制系统

目录 一、设计任务: (2) 二、步进电机概述: (2) 三、题目分析与整体构思: (4) 四、硬件电路设计: (7) 五、硬件验证: (10) 六、程序设计: (10) 七、系统仿真: (15) 八、感应子式步进电机工作原理: (17) 九、心得体会: (24) 参考文献: (25)

一、系统设计要求 步进电机作为一种电脉冲—角位移的转换元件,由于具有价格低廉、易于控、制、无积累误差和计算机接口方面等优点,在机械、仪表、工业控制等领域中获得了广泛的应用。本设计的具体要求是: 1. 设计制作一个步进电机控制电路,可以细分驱动和常规驱动。 2. 常规驱动状态转速四档可调并可实现正反转。 二、步进电机概述 步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 现在比较常用的步进电机包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)和单相式步进电机等。 永磁式步进电机一般为两相,转矩和体积较小,步进角一般为7.5度或15度。 反应式步进电机一般为三相,可实现大转矩输出,步进角一般为 1.5度,但噪声和振动都很大。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。 混合式步进电机是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为 1.8度而五相步进角一般为 0.72度。这种步进电机的应用最为广泛,也是本次细分驱动方案所选用的步进电机。 (一)步进电机的一些基本参数: 1.电机固有步距角: 电机固有步距角表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角的值,如86BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°,整步工作时为1.8°),这个步距角可以称之为“电机固有步距角”,它不一定是电机实际工作时的真正步距角,真正的步距角和驱动器有关。 2.步进电机的相数: 步进电机的相数是指电机内部的线圈组数,目前常用的有二相、三相、四相、五相步进电机。电机相数不同,它们的步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°

步进电动机概念及其工作原理

步进电动机概念及其工作原理 步进电动机是一种将脉冲信号变换成相应的角位移(或线位移)的电磁装置,是一种特殊的电动机。一般电动机都是连续转动的,而步进电动机则有定位和运转两种基本状态,当有脉冲输入肘步进电动机一步一步地转动,每给它一个脉冲信号,它就转过一定的角度。步进电动机的角位移量和输入脉冲的个数严格成正比,在时间上与输入脉冲同步,因此只要控制输入脉冲的数量、频率及电动机绕组通电的相序,便可获得所需的转角、转速及转动方向。在没有脉冲输入时,在绕组电源的激励下气隙磁场能使转子保持原有位置处于定位状态。步进电动机按其输出转矩的大小来分,可以分为快速步进电动机和功率步进电动机。快速步进电动机连续工作频率高而输出转矩较小,一般在N·cm级,可以作为控制小型精密机床的工作台(例线切割机床)也可以和液压转矩放大器组成电液脉冲马达去驱动数控机床的工作台,而功率步进电动机的输出转矩就比较大是N·m级的,可以直接去驱动机床的移动部件。步进电动机按其励磁相数,可以分为三相、四相、五相、六相甚至八相。一般来说随着相数的增加,在相同频率的情况下,每相导通电流的时间增加,各相平均电流会高些,仍而使电动机的转速—转矩特性会好些,步距角亦小。但是随着相数的增加,电动机的尺寸就增加,结构亦复杂,目前多用3~6相的步进电动机。由于步进电动机的转速随着输入脉冲频率变化而变化,调速范围很广,灵敏度高,输出转角能够控制,而且输出精度较高,又能实现同步控制,所以广泛地使用在开环系统中,也还可用在一般通用机床上,提高进给机构的自动化水平。步进电动机按其工作原理来分,主要

有磁电式和反应式两大类,这里只介绍常用的反应式步进电动机的工作原理,现用下图的步进电动机的简化图来加以说明。 在电动机定子上有A、B、C三对磁极,磁极上绕有线圈,分别称之为A相、B 相和C相,而转子则是一个带齿的铁心,这种步进电动机称之为三相步进电动机。如果在线圈中通以直流电,就会产生磁场,当A、B、C三个磁极的线圈依次轮流通电,则A、B、C三对磁极就依次轮流产生磁场吸引转子转动。首先有一相线圈(设为A相)通电,则转子1、3两齿被磁极A吸住,转子就停留在图5—5a的位置上。然后,A相断电,6相通电,则磁极A的磁场消失磁极B产生了磁场,磁极召的磁场把离它最近的2、4两齿吸引过去,停止在图b的位置上,这时转子逆时针转了30°。再接下去B相断电,C相通电。根据同样道理,转子又逆时针转了30°,停止在图c的位置上。若再A相通电,C相断开,那么转子再逆转30°,使磁极A的磁场把2、4两个齿吸住。定子各相轮流通电一次转子转过一个齿。这样按A→B→C→A→B→C→A→…次序轮流通电,步进电动机就一步一步地按逆时针方向旋转。通电线圈每转换一次,步进电动机旋转30°,我们把步进电动机每步转过的角度称之为步距角。如果把步进电动机通电线圈转换的次序倒过来换成A→C→B→A→C→B→…的顺序,则步进电动机将按顺时针方向旋转,所以要改变步进电动机的旋转方向可以在仸何一相通电时进行。 步进电动机

步进电机闭环控制系统方案

几种典型的步进电机闭环控制系统 工业大学 【摘要】系统阐述了步进电动机闭环控制系统的优点,给出了几种典型的闭环控制系统,并提出了步进电动机高精度定位系统的设计思想。 【叙词】步进电机闭环系统/高精度定位 l概述 步进电机是机电一体化产品中的关键元件之一,是一种性能良好的数字化执行元件。它能够将电的脉冲信号转换成相应的角位移,是一种离散型自动化执行元件。随着计算机控制系统的发展,步进电动机广泛应用于同步系统、直线及角位系统、点位系统、连续轨迹控制系统以及其它自动化系统中,是高科技发展的一个重要环节。 2步进电动机闭环系统与开环系统比较[1- 步进电机的主要优点之一是适于开环控制。在开环控制下,步进电动机受具有予定时间间隔的脉冲序列所控制,控制系统中无需反馈传感器和相应的电子线路。这种线路具有简单、费用低的特点,使步进电动机的开环控制系统得以广泛的应用。 但是,步进电机的开环控制无法避免步进电动机本身所固有的缺点,即共振、振荡、失步和难以实现高速。另一方面,开环控制的步进电动机系统的精度要高于分级是很困难的,其定位精度比较低。因此,在精度和稳定性标准要求比较高的系统中,就必须果用闭环控制系统。 步进电动机的闭环控制是采用位置反馈和(或)速度反馈来确定与转子位置相适应的相位转换,可大大改进步进电动机的性能。 在闭环控制的步进电机系统中,或可在具有给定精确度下跟踪和反馈时,扩大工作速度围,或可在给定速度下提高跟踪和定位精度,或可得到极限速度指标和极限精度指标。步进电动机的闭环控制性能与开环控制性能相比,具有如下优点: a.随着输出转矩的增加,二者的速度均以非线性形式下降,但是,闭环控制提高了矩频特性。 b.闭环控制下,输出功率/转矩曲线得以提高,原因是,闭环下,电机励磁转换是以转子位置信息为基础的,电流值决定于电机负载,因此,即使在低速度围,电流也能够充分转换成转矩。 c.闭环控制下,效率一转矩曲线提高。 d.采用闭环控制,可得到比开环控制更高的运行速度,更稳定、更光滑的转速。 e.利用闭环控制,步进电动机可自动地、有效地被加速和减速。 f.闭环控制相对开环控制在快速性方面提高的定量评价,可借助比较Ⅳ步通过某个路径间隔的时间得出: 式中n-步进电动机转换拍数(N>n) g.应用闭环驱动,效率可增到7.8倍,输出功率可增到3.3倍,速度可增到3.6倍。 闭环驱动的步进电机的性能在所有方面均优于开环驱动的步进电动机。步进电机闭环驱动具有步进电动机开环驱动和直流无刷伺服电机的优点。因此,在可靠性要求很高的位置控

步进电动机的结构与工作原理

步进电动机的结构与工作原理 步进电机是利用电磁铁原理,将脉冲信号转换成线位移或角位移的电机。每来一个电脉冲,电机转动一个角度,带动机械移动一小段距离。 步进电动机 步进机将脉冲信号转换为角位移或线位移。主要要求:动作灵敏、准确、重量轻、体积小、运行可靠、耗电少等。 步进电动机的特点: (1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变方向。 步进电动机的种类 根据励磁式方式的不同分为:反应式、永磁式和混合式(又叫感应子式)三种。反应式步进电机的应用较多。 下面以反应式步进电机为例说明步进电机的结构和工作原理。 图7-20 (a)三相反应式步进电动机工作原理图 A 相通电,A 方向的磁通经转子形成闭合回路。若转子和磁场轴线方向原有一定角度,则在磁场的作用下,转子被磁化,吸引转子,使转子的位置力图使通电相磁路的磁阻最小,使转、定子的齿对齐停止转动。

A 相通电使转子1、3齿和AA' 对齐。 图7-20 (b)三相反应式步进电动机工作原理图 同理,B相通电,转子2、4齿和B相轴线对齐,相对A相通电位置转30; 图7-20 (c)三相反应式步进电动机工作原理图 最后,C相通电,转子1、3齿和C相轴线对齐,相对B相通电比较,转子再次转动30。 步进电动机的结构 步进机主要由两部分构成:定子和转子。它们均由磁性材料构成,以三相为例其定子和转子上分别有六个、四个磁极。

步进电动机结构简图 定子的六个磁极上有控制绕组,两个相对的磁极组成一相。 注意:这里的相和交流电中的“相”的概念不同。步进机通的是直流电脉冲,这主要是指线图的联接和组数的区别。

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

步进电机结构及工作原理简介

步进电机结构简介 按照励磁方式分类,步进电机可分为反应式、永磁式和感应子式。其中反应式步进电机用的比较普遍,结构也较简单。本课题采用的也是此类电机。 反应式步进电机又称为磁阻式步进电机,其典型结构如图1所示。这是一台三相电机,定子铁心由硅钢片叠成,定子上有6个磁极,每个磁极上又各有5 个均匀分布的矩形小齿。三相电机共有三套定子控制绕组,绕在径向相对的两个磁极上的一套绕组为一相。转子也是由叠片铁心构成,转子上没有绕组,而是由40个矩形小齿均匀分布在圆周上,相邻两 齿之间的夹角为9度。 下面简述其工作原理。当某相绕组通 电时,对应的磁极就会产生磁场,并与转 子形成磁路。若此时定子的小齿与转子的 小齿没有对齐,则在磁场的作用下,转子 转动一定的角度使转子齿与定子齿对应。 由此可见,错齿是促使步进电机旋转的根 本原因。例如,在单三拍运行方式中,当 A相控制绕组通电,而B、C相都不通电时, 由于磁通具有力图走磁阻最小路径的特 点,所以转子齿与A相定子齿对齐。若以此作为初始状态,设与A相磁极中心磁极的图1 步进电机剖面结构转子齿为0号齿,由于B相磁极与A相磁极相差120度,且120度/9度=13.333不为整数,所以,此时13号转子齿不能与B相定子齿对齐,只是靠近B相磁极的中心线,与中心线相差3度。如果此时突然变为B相通电,而A、C相都不通电,则B相磁极迫使13号小齿与之对齐,整个转子就转动3度。此时称电机走了一步。 同理,我们按照A→B→C→A顺序通电一周,则转子转动9度。转速取决于各控制绕组通电和断电的频率(即输入脉冲频率),旋转方向取决于控制绕组轮流通电的顺序。如上述绕组通电顺序改为A→C→B→A······则电机转向相反。 这种按A→B→C→A······方式运行的称为三相单三拍,“三相”是指步进电机具有三相定子绕组,“单”是指每次只有一相绕组通电,“三拍”是指三次换接为一个循环。 此外,三相步进电机还可以以三相双三拍和三相六拍方式运行。三相双三拍就是按AB→BC→CA→AB······方式供电。与单三拍运行时一样,每一循环也是换接3次,共有3种通电状态,不同的是每次换接都同时有两相绕组通电。三相六拍的供电方式是A→AB→B→BC→C→CA→A······每一循环换接六次,共

文献综述-步进电动机的微机控制

文献综述 电气工程及其自动化 步进电动机的微机控制 前言:进电动机属于DC驱动的同步电动机,它是纯粹的数字控制电动机。它是将电脉冲激励信号转换成相应的角位移或线位移的离散值控制电动机,这种电动机每当输入一个电脉冲就动一步,所以又称脉冲电动机。近30年来,数字技术、计算机技术和永磁材料的迅速发展推动了步进电动机的发展,为步进电动机的应用开辟了广阔的前景。 步进电动机系统是由步进电动机及其驱动控制电路构成的。近二十年来,电力电子技术、微电子技术和微处理器技术的飞速发展,极大地推动了步进电动机驱动控制技术的进步,并使之在不断完善中趋于成熟。步进电动机驱动控制技术的发展,在使得步进电动机系统获得更加广泛应用的同时,也使得步进电动机与其驱动电路装置日益成为不可分割的一个整体。步进电动机驱动电路的合理设计与改进,需要对步进电动机运行机理和具体结构设计的透彻了解与深入分析。同时,步进电动机系统的性能和运行品质在很大程度上取决于其驱动电路的结构与性能,同一台电动机配以不同类型的驱动电路,其性能会有较大差异。抛开驱动电路来谈步进电动机的性能是不完全的。 步进电动机主要用于数字控制系统中,精度高,运行可靠。如采用位置检测和速度反馈,亦可实现闭环控制。步进电动机已广泛地应用于数字控制系统中,如数模转换装置、数控机床、计算机外围设备、自动记录仪、钟表、和磁盘等等之中,另外在工业自动化生产线、印刷设备如打印机、绘图机等中亦有应用。 正文:国内外关于步进电动机的研究主要在它本身的性能提高,应用领域的不断拓广,电动机外形的改变和不同的更先进的控制方式。 1、步进电动机的发展历史与概要。 步进电动机的发展过程 步进电动机的机理是基于最基本的电磁铁作用、其原始模型起源于1830年至1860年间。1870午前后开始以控制为目的的尝试、应用于氮弧灯的电极输送机构中。这被认为是最初的步进电动机。 此后,在电话自动交换机中广泛使用了步进电动机。不久又在缺乏交流电源的船舶和飞

步进电机的种类、结构及工作原理

步进电机的种类、结构及工作原理 步进式伺服驱动系统是典型的开环控制系统。在此系统中,执行元件是步进电机。它受驱动控制线路的控制,将代表进给脉冲的电平信号直接变换为具有一定方向、大小和速度的机械转角位移,并通过齿轮和丝杠带动工作台移动。由于该系统没有反馈检测环节,它的精度较差,速度也受到步进电机性能的限制。但它的结构和控制简单、容易调整,故在速度和精度要求不太高的场合具有一定的使用价值。 1.步进电机的种类 步进电机的分类方式很多,常见的分类方式有按产生力矩的原理、按输出力矩的大小以及按定子和转子的数量进行分类等。根据不同的分类方式,可将步进电机分为多种类型,如表5-1所示。 表5-1 步进电机的分类 2.步进电机的结构

目前,我国使用的步进电机多为反应式步进电机。在反应式步进电机中,有轴向分相和径向分相两种,如表5--1所述。 图5--2是一典型的单定子、径向分相、反应式伺服步进电机的结构原理图。它与普通电机一样,分为定子和转子两部分,其中定子又分为定子铁心和定子绕组。定子铁心由电工钢片叠压而成,其形状如图中所示。定子绕组是绕置在定子铁心6个均匀分布的齿上的线圈,在直径方向上相对的两个齿上的线圈串联在一起,构成一相控制绕组。图5--2所示的步进电机可构成三相控制绕组,故也称三相步进电机。若任一相绕组通电,便形成一组定子磁极,其方向即图中所示的NS极。在定子的每个磁极上,即定子铁心上的每个齿上又开了5个小齿,齿槽等宽,齿间夹角为9°,转子上没有绕组,只有均匀分布的40个小齿,齿槽也是等宽的,齿间夹角也是9°,与磁极上的小齿一致。此外,三相定子磁极上的小齿在空间位置上依次错开1/3齿距,如图5--3所示。当A相磁极上的小齿与转子上的小齿对齐时,B相磁极上的齿刚好超前(或滞后)转子齿1/3齿距角,C相磁极齿超前(或滞后)转子齿2/3齿距角。 图5-2 单定子径向分相反应式伺服步进电机结构原理图

步进电机控制系统设计

文理学院芙蓉学院课程设计报告 课程名称:专业综合课程设计 专业班级:自动化1001班学号:40 学生:志航 指导教师:建英 完成时间: 2013年 6月13 日 报告成绩: 芙蓉学院教学工作部制

摘要 本文先介绍了混合式步进电机的结构和工作原理,分析了细分驱动对于改善步进电机运行性能的作用,论述了正弦波细分驱动可以实现等步距角、等力矩均匀细分驱动的原理,提出了一种基于H桥和其他分立元件分配脉冲的驱动技术,该方案可实现步进电机的单拍、半拍、双拍三种工作方式。本文采用控制电路主要由AT89C51单片机、晶振电路、地址锁存器、译码器、液晶显示电路组成,单片机是控制系统的核心。文中对整个系统的架构及硬件电路和驱动软件的实现都做了详细的介绍。 关键词:单片机;正弦脉宽调制;混合式步进电机;细分驱动

Abstract In this paper, the working principle and configuration of three-phase hybrid Stepper are introduced, then based on technologies such as stepper motor controller, PWM inverter and microcontroller. In the thesis, we develop a single chip computer -based digital controlling system for a three-phase hybrid stepper motor that is mainly constructed from a AT89C51 single chip computer and ST7920IC which is used as the core of control parts. The system's whole architecture, the design of hardware and software are introduced in detail. KEY WORDS: Microcontroller,SPWM,Hybrid stepper motor,Micro-stepping driver

步进电动机

Stepper motor Convert electrical pulse signal into angular displacement of the stepping motor to control the micro &special motor rotors. As actuators in the automatic control device. For each pulse signal input, further before stepping motors, also known as the pulse motor. Stepper motor used in digital computer peripheral equipment, as well as the printer, plotter, and disk device. Stepper motor is the electrical pulse signal into angular displacement or line open loop control elements of displacement. In the case of the overload, motor speed, stop position depends only on the pulse signal frequency and pulse number, and not affected by load change, which give the motor a pulse signal, a step from the Angle of motor is turning. This line sexual relations, and the error of the stepper motor only periodic without cumulative error, etc. Made in the field of speed and position control with stepper motor to control becomes very simple. Although the stepper motor has been widely used, but stepping motor does not like ordinary dc motor, ac motor under normal use. It must be driven by double annular pulse signal and power circuit of control system can use. So good with step motor is not easy, it involves the mechanical, electrical, electronic and computer and many other professional knowledge. Today, the manufacturer of stepper motor is indeed many, but has the professional and technical personnel, can be developed, developed at the factory are very few, most manufacturers only a, 20 people, even the most basic equipment. Only in a stage of blind imitation. This gives households in product selection, use lots of trouble. Stepping motor driving power source by frequency pulse signal generator, pulse distributor and pulse amplifier, thus provide pulse current drive power supply to the motor windings. The performance of the stepper motor depends on the good cooperation between the motor and drive power supply. Stepper motor is no cumulative error, the advantages of simple structure, convenient operation and maintenance, low manufacturing cost, the ability of stepper motor to drive the load inertia is big, suitable for small and medium-sized machine speed and accuracy is not high, defect is low efficiency, fever, sometimes out of step. Stepper motor is widely used in the digital control system, such as d/a conversion device, numerical control machine tools, computer peripherals, recorder, clocks, such as in the industrial automation production lines, printing equipment, etc are used. Stepper motor is divided into electromechanical, magnetoelectric and linear three basic types. Electromechanical stepper motor consists of core, coil, gear mechanism, etc. Will produce magnetic solenoid coil electricity, promote its core panels, through a rotary Angle of the output shaft gear mechanism, rotating the gear 天行健,自强不息;地势坤,厚德载物。1/5

步进电机程序编写及说明

步进电机 学习交流群——126500542(验证信息:千寻琥珀心) 在这里介绍一下如何用51单片机驱动步进电机。 本例所使用的步进电机为四项驱动,驱动电压为12V,锯齿角(为什么叫锯齿叫而不叫步进角,我也不知道这样解释是否正确,但是根据步进角计算公式所得的结果将7.5理解为锯齿叫会更好些,也在网上搜了不少资料,说是步进角的较多,但都是直接给出的,而未作出计算,不过也有是将其作为锯齿角的,并且结合书上的内容,在此就将此作为锯齿角理解,那何谓步进角,下面公式将给出)为7.5度。(也就是说锯齿之间的单位角度),不进一圈总共需要360度,故有48个锯齿。 在此对电路图部分不再给出,具体引脚连接接下来给出。本例所使用的电机驱动芯片为达林顿驱动器(ULN2003),通过P1.0~P1.3分别接通步进电机的驱动线圈来控制步进电机的运转。注意如果直接使用单片机通过驱动芯片驱动电机,力矩可能不够大,效果不是很好,因为ULN2003的驱动电压为12V,而单片机系统电压为5V,故请读者注意此点,在设计电路时,另施电压。 步进电机要想正常工作,必须有驱动信号,转动的速度与驱动信号的频率是成正比的。(实例中将会给出并予以说明)接下来我们看看对于电机驱动中的信号的产生。 本例中采用的步进电机为四项,三项驱动和四项驱动原理上

是一样的。假设步进电机的四个项为:A、B、C、D。它的拍数可由读者任意设定(即步进节奏)。再继续下面的内容时,我们现在此给出一个计算步进电机的公式:Qs=360/NZr,其中N=McC 为运行的拍数,McC为控制绕组项数,C为状态系数,当采用单双本项拍数时,C=1,当采用单双本项一倍拍数时,C=2。(此处说的本项拍数,如三项为单三拍,双三拍。本项一倍拍数为单六拍,简言之,三拍为1.六拍为2对于四项则四拍为1,8拍为2(说的有些玄乎,手中板砖还望留情)),Zr为转子齿数,先来看看单四拍,即A→B→C→D→A.因为上述已经给出了锯齿数,此例C=1,所以Qs=360/(4*1*48)=1.875°。故此电机的步进角为1.875°(既步与步之间的角度),因为行进是和脉冲有关的,一个脉冲行进一步,那么行进一圈,所需脉冲数为:360/1.875=192个脉冲。同时我们如果控制这些脉冲的频率就可以直接控制步进电机的运转速度了。继续我们的单四拍,运行方向A→B→C→D →A。(假设为正转)则在程序中对应的操作执行码为:(硬件连接时P1口的高四位不用全置1,此处只需用到低四位) P1.3 P1.2 P1.1 P1.0 D C B A (对应4个线圈) 1 1 1 0 0xfe (根据外部链接电路定,也可以是0001,此处采用低电平导通,导通A项线圈) 1 1 0 1 0xfd (导通B项线圈) 1 0 1 1 0xfb (导通C项线圈)

步进电动机的结构与工作原理

步进电动机的结构与工作原 理 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

步进电动机的结构与工作原理 步进电机是利用电磁铁原理,将脉冲信号转换成线位移或角位移的电机。每来一个电脉冲,电机转动一个角度,带动机械移动一小段距离。 步进电动机 步进机将脉冲信号转换为角位移或线位移。主要要求:动作灵敏、准确、重量轻、体积小、运行可靠、耗电少等。 步进电动机的特点: (1)来一个脉冲,转一个步距角。 (2)控制脉冲频率,可控制电机转速。 (3)改变脉冲顺序,改变方向。 步进电动机的种类 根据励磁式方式的不同分为:反应式、永磁式和混合式(又叫感应子式)三种。反应式步进电机的应用较多。 下面以反应式步进电机为例说明步进电机的结构和工作原理。 图7-20 (a)三相反应式步进电动机工作原理图 A 相通电,A 方向的磁通经转子形成闭合回路。若转子和磁场轴线方向原有一定角度,则在磁场的作用下,转子被磁化,吸引转子,使转子的位置力图使通电相磁路的磁阻最小,使转、定子的齿对齐停止转动。 A 相通电使转子1、3齿和 AA' 对齐。

图7-20 (b)三相反应式步进电动机工作原理图 同理,B相通电,转子2、4齿和B相轴线对齐,相对A相通电位置转30; 图7-20 (c)三相反应式步进电动机工作原理图 最后,C相通电,转子1、3齿和C相轴线对齐,相对B相通电比较,转子再次转动30。 步进电动机的结构 步进机主要由两部分构成:定子和转子。它们均由磁性材料构成,以三相为例其定子和转子上分别有六个、四个磁极。

步进电动机结构简图 定子的六个磁极上有控制绕组,两个相对的磁极组成一相。 注意:这里的相和交流电中的“相”的概念不同。步进机通的是直流电脉冲,这主要是指线图的联接 和组数的区别。 图7-22 三相反应式步进电动机结构原理图 步进电动机工作方式 (以三相步进电机为例)步进电机的工作方式可分为:三相单三拍、三相六拍、三相双三拍等。

步进电机的控制电路和程序

步进电机的控制电路和程序 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机分类与结构 现在比较常用的步进电机分为三种:反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)。本章节以反应式步进电机为例,介绍其基本原理与应用方法。反应式步进电机可实现大转矩输出,步进角一般为1.5度。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。常用小型步进电机的实物如图1 所示。 图1步进电机实物图 图 2 步进电机内部图 步进电机现场应用驱动电路 综合系统使用的是小型步进电机,对电压和电流 要求不是很高,为了说明应用原理,故采用最简单 的驱动电路,目的在于验证步进电机的使用,在正 式工业控制中还需在此基础上改进。一般的驱动电 路可以用图3的形式。 图3 一般驱动电路 在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多 场合用现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用 ULN2003或ULN2803。本书配套实验板上用的是ULN2003。ULN2003是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A由7组达林顿晶体管阵列和相应的电阻网络以及钳位二极管网络构成,具有同时驱动7组负载的能力,为单片双极型大功率高速集成电路。ULN2003内部结构及等效电路图如图4:

FX1S控制步进电机的实例(图与程序)

此主题相关图片如下,点击图片看大图: ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。

·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作! ·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。 此主题相关图片如下,点击图片看大图: PLC技术网(https://www.sodocs.net/doc/00759667.html,)-可编程控制器技术门户 此主题相关图片如下,点击图片看大图:

步进电机驱动器以及原理图

` 基于L297系列芯片的步进电机驱动器 设计说明书 一:概述 步进电动机是用脉冲信号进行控制,将点脉冲信号转换成相应的角位移和线位移的微电机,广泛地应用于打印机等办公知道设备以及各种控制装置。 步进电机和一般的电机不同,之接电源步进电机不能转动,而每加一个点脉冲仅转动一定的角度,另外,改变脉冲的频率时,步进电机的速率也跟着改变。 步进电机按电磁转距产生机理的不同可以分为反应式步进电机,永磁式步进电机和混合式步进电机,而按绕组的相数又可以分为单相,两相,三相。五相……… 二:步进电机的驱动方式 由于篇幅有限和设计的实际情况,在这我只介绍和设计方式相关的二相步进电机的励磁方式和驱动方式。 (一)驱动器结构简介 步进电机驱动器主要结构可以由下图表示 各部分的主要作用为 1:环行分配器:根据输入信号的要求产生电机在不同状态下的开关波形 2:信号处理:对环行分配器产生的开关信号波形进行PWM调制以及对相关的波形进行滤波整形处理 3:推动级:对开关信号的电压,电流进行放大提升 4:主开关电路:用功率元器件直接控制电机的各相绕组 5:保护电路:当绕组电流过大时产生关断信号对主回路进行关断,以保护电机驱动器和电机绕组 6:传感器:对电机的位置和角度进行实时监控,传回信号的产生装置。 (二):励磁方式

本设计对二相双极性电机进行的,所以介绍二相电机的励磁方式 1:一相励磁:通电的绕组只有一相,依次切换相电流产生旋转步距角为1。8度,对这种励磁方式,每个脉冲到来时的旋转角的响应有振动,若频率过高,有时会产生失步现象 2:两相励磁:两相同时流通电流,也采用依次切换相电流的方法,二相励磁的步距角为1.8度,二相历次的总电流增大2倍,则最高启动频率增大,能获得高的转速,另外,过度性能也好。 3:一,二相励磁:这是一种交替进行一相励磁,二相励磁的方法,启动电流每两个始终切换依次,因此步距角为0。9度,励磁电流变大,过度性能也好,最大启动频率也高。 (三):驱动方式 单极性和双极性是步进电机最常采用的两种驱动架构。单极性驱动电路使用四颗晶体管来驱动步进电机的两组相位,电机结构则如图1所示包含两组带有中间抽头的线圈,整个电机共有六条线与外界连接。这类电机有时又称为四相电机,但这种称呼容易令人混淆又不正确,因为它其实只有两个相位,精确的说法应是双相位六线式步进电机。六线式步进电机虽又称为单极性步进电机,实际上却能同时使用单极性或双极性驱动电路。 单极性步进电机驱动电路 双极性步进电机的驱动电路则如图2所示,它会使用八颗晶体管来驱动两组相位。双极性驱动电路可以同时驱动四线式或六线式步进电机,虽然四线式电机只能使用双极性驱动电路,它却能大幅降低量产型应用的成本。双极性步进电机驱动电路的晶体管数目是单极性驱动电路的两倍,其中四颗下端晶体管通常是由微控制器直接驱动,上端晶体管则需要成本较高的上端驱动电路。双极性驱动电路的晶体管只需承受电机电压,所以它不像单极性驱动电路一样需要箝位电路。

相关主题