搜档网
当前位置:搜档网 › 函数及其表示练习题及答案

函数及其表示练习题及答案

函数及其表示练习题及答案
函数及其表示练习题及答案

函数及其表示练习题

一.选择题

1 函数)2

3

(,32)(-≠+=

x x cx x f 满足,)]([x x f f =则常数c 等于( ) A 3 B 3- C 33-或 D 35-或

2. 已知)0(1)]([,21)(2

2

≠-=-=x x

x x g f x x g ,那么)21(f 等于( ) A 15 B 1

C 3

D 30

3.

函数2y =的值域是( )

A [2,2]-

B [1,2]

C [0,2] D

[]

4 已知2

211()11x x f x x

--=++,则()f x 的解析式为( )

A

21x x + B 2

12x x

+- C 212x x + D 2

1x x

+-

5.设()f x 是R 上的任意函数,则下列叙述正确的是 ( )

(A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C) ()()f x f x --是偶函数 (D) ()()f x f x +-是偶函数

6. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( )

7.已知二次函数)0()(2

>++=a a x x x f ,若0)(

( )

A .正数

B .负数

C .0

D .符号与a 有关 8. 已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 ( )

A .)2,1[-

B .]1,1[-

C .)2,2(-

D .)2,2[-

9. 已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式 ( )

A .x b

c a

c y --=

B .x c b a c y --=

C .x a c b c y --=

D .x a

c c

b y --= 10.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( )

A .q p +

B .q p 23+

C .q p 32+

D .23q p +

11. (2010陕西文数)某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为

(A )y =[

10x

] (B )y =[

3

10x +] (C )y =[4

10

x +]

(D )y =[5

10

x +]

12.(2009海口模拟)已知函数()()2113,f x x x =+≤≤则

A .()()12202f x x x -=+≤≤

B .()()12124f x x x -=-+≤≤

C .()()12202f x x x -=-≤≤

D .()()12104f x x x -=-≤≤ 13.(2009江西理)函数

ln 1x y +=

的定义域为

A .()4,1--

B .4,1-

C .()1,1-

D .(1,1]-

14.(2008山东)设函数()2

21, 1,

2, 1,x x f x x x x ?-≤?=?+->??则

()12f f ??

? ???

的值为 A .

1516 B .2716- C .8

9

D.18 15.(2008陕西) 定义在R 上的函数()f x 满足

()()()()()2,,12f x y f x f y xy x y R f +=++∈=

则()3f -等于( )

A. 2

B. 3

C. 6 D .9

16.(

2009福建)下列函数中与函数y =

有相同定义域的是 ( ) A .()ln f x x = B 。 ()1f x x

=

C 。 ()f x x =

D 。 ()x f x e =

17. (2010天津理数)若函数f(x)=21

2

log ,0,log (),0x x x x >??

?-f(-a),则实数a 的取值范围

(A )(-1,0)∪(0,1) (B )(-∞,-1)∪(1,+∞) (C )(-1,0)∪(1,+∞) (D )(-∞,-1)∪(0,1) 18.下列各组函数表示同一函数的是( ) A

.2(),()f x g x =

= B .0()1,()f x g x x ==

C .()()()()t t g x x x x x f =?

??<-≥=,00

D .21

()1,()1

x f x x g x x -=+=-

19 设??

?<+≥-=)

10()],6([)

10(,2)(x x f f x x x f 则)5(f 的值为( )

A 10

B 11

C 12

D 13

20. 函数()y f x =的图象与直线1x =的公共点数目是( ) A 1 B 0 C 0或1 D 1或2

二.填空题 1. 函数1

(0)y x x x

=+

>的值域为 2. 设()x x x f -+=22lg

,则??

?

??+??? ??x f x f 22的定义域为

3.(2008山东)已知()234log 3233,x f x =+则()()()()

8

2482f f f f ++++ 的值

等于

4. (2010杭州模拟)已知2

2

11f x x x x

?

?-

=+ ???,则函数值()3f = 5. 设函数.)().0(1),0(12

1

)(a a f x x

x x x f >??????

?<≥-=若则实数a 的取值范围是 三、解答题

1 设,αβ是方程2

4420,()x mx m x R -++=∈的两实根,当m 为何值时,

22αβ+有最小值?求出这个最小值

2 求下列函数的值域

(1)x x y -+=43 (2)1

5

2222++++=x x x x y (

3.动点P 从边长为1的正方形ABCD 的顶点出发顺次经过B 、C 、D 再回到A ;设x 表示

P 点的行程,y 表示PA 的长,求y 关于x 的函数解析式.

4. 已知函数)(x f ,)(x g 同时满足:)()()()()(y f x f y g x g y x g +=-;1)1(-=-f ,

0)0(=f ,1)1(=f ,求)2(),1(),0(g g g 的值.

5 已知函数2

()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值

函数及其表示练习题答案

1.

()3,(),32()3223

cf x x cx

x f x c f x c x x ====-+-+得

2. 令[]2

2

11111(),12,,()()152242x g x x x f f g x x

-=-===== 3 224(2)44,02,20x x x -+=--+≤≤-≤≤

022,02y ≤≤≤≤

4. 令22211()

1121,,()11111()1t x t t t t x f t t x t t t

----+===

=-+++++则

11. 解析:法一:特殊取值法,若x=56,y=5,排除C 、D ,若x=57,y=6,排除A ,所以选B

法二:设)90(10≤≤+=ααm x ,,时??????==??????++=??????+≤≤10103103,60x m m x αα

15. 解析

()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()1010120101,00.

01111211112,10.

12121221214,2 2.

23131231316,3 6.

f f f f f f f f f f f f f f f f f f f f f f f f f f f f =+=++??=+∴==-+=-++?-?=-+-∴-=-=-+=-++?-?=-+-∴-=-=-+=-++?-?=-+-∴-=

17. 【答案】C

【解析】本题主要考查函数的对数的单调性、对数的基本运算及分类讨论思想,属于中等题。 由分段函数的表达式知,需要对a 的正负进行分类讨论。

2112

220a<0()()log log log ()log ()

a f a f a a a a a >????

>-???>->-????或0

01-101

12a a a a a a a

<>??????><????或或 【温馨提示】分类函数不等式一般通过分类讨论的方式求解,解对数不等式既要注意真数大于0,同事要注意底数在(0,1)上时,不等号的方向不要写错。 19. [][](5)(11)(9)(15)(13)11f f f f f f f ===== 二.填空题答案

1. 因为0>x ,于是21

21=?≥+=x

x x x y ,当且仅当x =1时取等号 所以1

(0)y x x x

=+

>的值域为),2[+∞ 2. 由

202x x +>-得,()f x 的定义域为22x -<<。故22,2

22 2.x

x

?-<

??-<

解得()()4,11,4x ∈-- ,故??

?

??+???

??x f x f 22的定义域为()()4,11,4 -- 3.解析 因()

2234log 32334log 3233x x

f x =+=+,故()24lo

g 233.f x x =+ 于是()()()

()8

242412823382008.f f f +++=++++?=

4. 11

5. (),1-∞- 当1

0,()1,22

a f a a a a ≥=-><-时,这是矛盾的; 当1

0,(),1a f a a a a

<=><-时 三.解答题答案

1. 解:2

1616(2)0,21,m m m m ?=-+≥≥≤-或

222222min 1()21

2

11,()2

m m m αβαβαβαβ+=+-=--=-+=

当时

2. 解:(1)∵343

,43,,141

x y y y xy x x y x y +-=

-=+=≠--+得, ∴值域为{}|1y y ≠-

(2)解:因2

2

1

3

1()2

4

x x x ++=++,故对任意实数x ,210,x x ++>由此可得该函数的定义域为R 。又因

22222

22252223332213111()24

x x x x y x x x x x x x +++++===+=+++++++++ , 故

23

226113()224

y <≤+

=-++,由此得值域为}{

26

y y <≤。

R 函数的定义域为

3. 解:显然当P 在AB 上时,PA=x ;当P 在BC 上时,PA=2)1(1-+x ;当P 在CD 上时,

PA=2)3(1x -+;当P 在DA 上时,PA=x -4,再写成分段函数的形式.

4. 解:令y x

=得:)0()()(22g y g x f =+. 再令0=x ,即得1,0)0(=g . 若0)0(=g ,令

1==y x 时,得0)1(=f 不合题意,故1)0(=g ;)1()1()1()1()11()0(f f g g g g +=-=,即

1)1(12+=g ,所以0)1(=g ;那么0)1()0()1()0()10()1(=+=-=-f f g g g g ,

1)1()1()1()1()]1(1[)2(-=-+-=--=f f g g g g .

5. 解:对称轴1x

=,[]1,3是()f x 的递增区间,

max ()(3)5,335f x f a b ==-+=即 min ()(1)2,32,f x f a b ==--+=即

∴3231,.1

44a b a b a b -=?==?

--=-?得

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

宿松二中101班函数及其表示测试题(2012.9.27晚自习)(1)

宿松二中101班测试题(2012.9.27晚自习) 时间120分钟满分150分 姓名 得分 一、选择题 (每小题5分,共35分) 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是( ) A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是( ) A .()()A C B C B .()()A B A C C .()()A B B C D .()A B C 4.下面有四个命题: (1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2; (4)x x 212 =+的解可表示为{}1,1; 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 5.若集合{},,M a b c =中的元素是△ABC 的三边长, 则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 6.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( ) A .3个 B .5个 C .7个 D .8个 7. 下图中哪个图象与"我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学"这一过程吻合( ) O 离开家的距离 时间 (A ) O 离开家的距离 时间 (B ) O 离开家的距离 时间 (C ) O 离开家的距离 时间 (D ) A B C

最新基本初等函数经典总结

第十二讲 基本初等函数 一:教学目标 1、掌握基本初等函数(指数函数、对数函数、幂函数)的基本性质; 2、理解基本初等函数的性质; 3、掌握基本初等函数的应用,特别是指数函数与对数函数 二:教学重难点 教学重点:基本初等函数基本性质的理解及应用; 教学难点:基本初等函数基本性质的应用 三:知识呈现 1.指数与指数函数 1).指数运算法则:(1)r s r s a a a +=; (2)()s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)m n n m a a -= (6),||,n n a n a a n ?=??奇偶 2). 指数函数:形如(01)x y a a a =>≠且 2.1)对数的运算: 1、互化:N b N a a b log =?= 2、恒等:N a N a =log 3、换底: a b b c c a log log log = 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

推论1 a b b a log 1log = 推论2 log log log a b a b c c ?= 推论3 log log m n a a n b b m =)0(≠m 4、N M MN a a a log log log += log log log a a a M M N N =- 5、M n M a n a log log ?= 2)对数函数: 3.幂函数 一般地,形如 a y x =(a R ∈)的函数叫做幂函数,其中 a 是常数 1)性质: (1) 所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1, 1); 对数函 数 01 图 象 表达式 log a y x = 定义域 (0,)+∞ 值 域 R 过定点 (1,0) 单调性 单调递减 单调递增

指数函数典型例题详细解析

指数函数典型例题详细解析

指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---21 3321 x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥- 2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<. 0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0)

3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y=a x,y=b x,y =c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. ---- 45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有

函数及其表示练习题及答案

函数及其表示练习题 一.选择题 1 函数)2 3 (,32)(-≠+= x x cx x f 满足,)]([x x f f =则常数c 等于( ) A 3 B 3- C 33-或 D 35-或 2. 已知)0(1)]([,21)(2 2 ≠-=-=x x x x g f x x g ,那么)21(f 等于( ) A 15 B 1 C 3 D 30 3. 函数2y =的值域是( ) A [2,2]- B [1,2] C [0,2] D [ 4 已知2 211()11x x f x x --=++,则()f x 的解析式为( ) A 21x x + B 2 12x x +- C 212x x + D 2 1x x +- 5.设()f x 是R 上的任意函数,则下列叙述正确的是 ( ) (A)()()f x f x -是奇函数 (B)()()f x f x -是奇函数 (C) ()()f x f x --是偶函数 (D) ()()f x f x +-是偶函数 6. 下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是 ( ) 7.已知二次函数)0()(2 >++=a a x x x f ,若0)(

A .正数 B .负数 C .0 D .符号与a 有关 8. 已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为 ( ) A .)2,1[- B .]1,1[- C .)2,2(- D .)2,2[- 9. 已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数 关系式 ( ) A .x b c a c y --= B .x c b a c y --= C .x a c b c y --= D .x a c c b y --= 10.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p + B .q p 23+ C .q p 32+ D .23q p + 11. 某学校要招开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6.时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为 (A )y =[ 10 x ] (B )y =[ 3 10x +] (C )y =[410x +] (D )y =[5 10 x +] 12.已知函数()()2113,f x x x =+≤≤则 A .()()12202f x x x -=+≤≤ B .()()12124f x x x -=-+≤≤ C .()()12202f x x x -=-≤≤ D .()()12104f x x x -=-≤≤ 13.函数 ln 1x y += 的定义域为 A .4,1-- B .()4,1- C .()1,1- D .(1,1]- 14.设函数()221, 1,2, 1, x x f x x x x ?-≤? =?+->??则 ()12f f ?? ? ??? 的值为 A . 1516 B .2716- C .8 9 D.18 15. 定义在R 上的函数()f x 满足 ()()()()()2,,12f x y f x f y xy x y R f +=++∈= 则()3f -等于( ) A. 2 B. 3 C. 6 D . 9 16.下列函数中与函数y = 有相同定义域的是 ( ) A .()ln f x x = B 。 ()1f x x = C 。 ()f x x = D 。 ()x f x e =

人教版高中数学知识与巩固·函数及其表示方法(基础)

人教版高中数学知识与巩固·函数及其表示方法(基础) 【学习目标】 (1)会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数. (3)求简单分段函数的解析式;了解分段函数及其简单应用. 【要点梳理】 要点一、函数的概念 1.函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 要点诠释: (1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。 2.构成函数的三要素:定义域、对应关系和值域 ①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: <<= {x|a≤x≤b}=[a,b]; x a x b a b {|}(,); (] {|}, ≤<=; x a x b a b {|}, x a x b a b <≤=;[) (][) ≤=∞≤=+∞. x x b b x a x a {|}-,; {|}, 要点二、函数的表示法 1.函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值. 2.分段函数: 分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况. 要点三、映射与函数 1.映射定义: 设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B. 象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象. 要点诠释: (1)A中的每一个元素都有象,且唯一;

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a < b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 【例4】解 比较大小与>且≠,>. 当<<,∵>,>, a a a a a n n n n n n n n n n n n -+-+-=-111 1 111 1(a 0a 1n 1)0a 1n 10() ()

高中数学必修一《函数及其表示》测试题

《1.2 函数及其表示(1)》测试题 一、选择题 1.(2012安徽理)下列函数中,不满足的是( ). A. B. C. D. 考查目的:考查学生对函数符号的理解. 答案:C. 解析:经验证,只有不满足. 2.下列函数中,与函数定义域相同的是( ). A. B.

C. D. 考查目的:主要考查函数定义域的求法. 答案:B 解析:解不等式组得函数定义域为,故答案选B 3.函数的定义域为,那么其值域为( ). A. B. C. D. 考查目的:主要考查函数的值域的概念. 答案:A

解析:将代入,求得函数值分别为,故函数的值域为,答案选A. 二、填空题 4.已知函数,若,则取值的集合 为 . 考查目的:主要考查对分段函数的理解. 答案:. 解析:函数,,则,解得;或,解得,∴取值的集合为. 5.已知是一次函数,且满足,则 .

考查目的:主要考查对函数符号的理解和利用待定系数法求函数解析式. 答案: 解析:设,则由得 ,即,∴,解得,∴. 6.函数的定义域是,则函数的定义域 为 . 考查目的:对函数符号以及函数定义域概念的理解. 答案:. 解析:由已知得,解得,∴函数的定义域为.

三、解答题 7.函数对于任意实数满足条件,若,求. 考查目的:主要考查对函数符号的理解. 答案: 解析:∵,∴,∴,∴. 8.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费元,已知甲、乙两用户该月用水量分别为,吨.

⑴求关于的函数; ⑵若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费. 考查目的:主要考查根据实际问题,列函数关系式,分段函数求值. 解析:⑴当甲的用水量不超过4吨时,即,乙的用水量也不超过4吨,; 当甲的用水量超过4吨,乙的用水量不超过4吨时,即且时, . 当乙的用水量超过4吨时,即,, ∴.

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

最新指数函数典型例题详细解析

精品文档 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围) 【例2】(基础题)指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如 图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b

解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6

解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<< <.22224282162133825491 2 28416212313525838949 3859===== 解 (2)0.6110.6∵>,>, ∴>. --- -45 12 451 232 32 ()() 解 (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y 1=4.5x ,y 2=3.7x 的图像如图2.6-3,取x =3.6,得4.53.6>3.73.6 ∴ 4.54.1>3.73.6. 说明 如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3). 例题4(中档题)

高一数学函数及其表示测试题及答案

必修1数学章节测试(3)—第一单元(函数及其表示) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.下列四种说法正确的一个是 ( ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的数集B C .函数是一种特殊的映射 D .映射是一种特殊的函数 2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于 ( ) A .q p + B .q p 23+ C .q p 32+ D .2 3 q p + 3.下列各组函数中,表示同一函数的是 ( ) A .x x y y = =,1 B .1,112-=+?-= x y x x y C .33,x y x y == D . 2 )(|,|x y x y == 4.已知函数2 3212 ---= x x x y 的定义域为 ( ) A .]1,(-∞ B .]2,(-∞ C .]1,21 ()21 ,(- ?--∞ D . ]1,2 1()21,(- ?--∞ 5.设?? ???<=>+=)0(,0)0(,) 0(,1)(x x x x x f π,则=-)]}1([{f f f ( ) A .1+π B .0 C .π D .1- 6.下列图中,画在同一坐标系中,函数bx ax y +=2 与)0,0(≠≠+=b a b ax y 函数的图 象只可能是 ( ) 7.设函数x x x f =+-)11(,则)(x f 的表达式为 ( ) A .x x -+11 B . 11-+x x C .x x +-11 D . 1 2+x x 8.已知二次函数)0()(2 >++=a a x x x f ,若0)(

(全面突破)高考数学最新一轮复习 必考题型巩固提升 2.1函数及其表示学案

2.1函数及其表示 考情分析 1.主要考查函数的定义域、值域、解析式的求法. 2.考查分段函数的简单应用. 3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.基础知识 1.函数的基本概念 1.符号:f A B →表示集合A到集合B的一个映射,它有以下特点: (1)对应法则有方向性, :f A B →与:f B A →不同; (2)集合A中任何一个元素,在 f下在集合B中都有唯一的元素与对应; (3)象不一定有原象,象集C与B间关系是C B ?. 2.函数是特殊的映射,它特殊在要求集合A和B都是非空数集. 函数三要素是指定义域、值域、对应法则. 同一函数必须满足:定义域相同、对应法则相同. 3.分段函数是指函数由n个不同部分组成,但是一个函数. 4.函数解析式求法: (1)已知函数类型,可设参,用待定系数法;(2)已知复合函数 [(()] f g x的表达式,求() f x可 用换元法;(3)配凑法与方程组法. 注意事项 1.求复合函数y=f(t),t=q(x)的定义域的方法: ①若y=f(t)的定义域为(a,b),则解不等式得a<q(x)<b即可求出y=f(q(x))的定义域; ②若y=f(g(x))的定义域为(a,b),则求出g(x)的值域即为f(t)的定义域. 2.。(1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 3.。函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f. 典型例题 题型一求函数的定义域 【例1】?求下列函数的定义域: (1)f(x)=|x-2|-1 log2x-1 ;

基本初等函数经典复习题+问题详解

()) 1,,,0(.4*>∈>=n N n m a a a n m n m x N N a a x =?=log 必修1基本初等函数 复习题 1、幂的运算性质 (1)s r s r a a a +=?),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =?)(R r ∈ 2、对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1()N M N M a a a log log log +=?; ○2 N M N M a a a log log log -=; ○ 3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a 换底公式:a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b m n b a n a m log log = ;(2)a b b a log 1log =. 求函数的定义域时列不等式组的主要依据是: (1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法 (A) 定义法:○1 任取x 1,x 2∈D ,且x 1

高一复习考试指数函数经典例题

指数函数 指数函数是高中数学中的一个基本初等函数,有关指数函数的图象与性质的题目类型较多,同时也是学习后续数学内容的基础和高考考查的重点,本文对此部分题目类型作了初步总结,与大家共同探讨. 1.比较大小 例1 已知函数2()f x x bx c =-+满足(1)(1)f x f x +=-,且(0)3f =,则()x f b 与()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则3 21x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2 321(25) (25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2 2 25(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x > .∴x 的取值范围是14?? + ??? ,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数2 16x y -=-的定义域和值域. 解:由题意可得2 16 0x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令2 6 x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2 061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01, . 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响.

高一数学上学期单元素质测试题——1.2函数及其表示

新课标高一(上)数学单元素质测试题——1.2函数及其表示 (训练时间45分钟,满分100分) 姓名__________评价__________ 一、选择题(本大题共6小题,每小题6分,共36分. 以下给出的四个备选答案中,只有一个正确) 1.(08全国Ⅰ)函数y ) A .{|1}x x ≤ B .{|0}x x ≥ C .{|10}x x x ≥或≤ D .{|01}x x ≤≤ 2.(99全国)已知映射B A f →:,其中A = { –3 , –2 , –1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的 a ∈ A ,在B 中和它对应的元素是 | a |,则集合B 中元素的个数是( ) A . 4 B .5 C .6 D .7 3. (10四川)函数2 ()1f x x mx =++的图象关于直线1x =对称的充要条件是( ) A.2m =- B. 2m = C.1m =- D.1m = 4.(08江西)若函数()y f x =的定义域是[0,2],则函数(2) ()1 f x g x x =-的定义域是( ) A .[0,1] B .[0,1) C . [0,1) (1,4] D .(0,1) 5.(11福建8)已知函数???≤+>=0 10 2)(x x x x x f ,,.若0)1()(=+f a f ,则实数a 的值等于( ) A .3- B . 1- C .1 D .3 6.(08陕西)定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(2)f -等于( ) A .2 B .3 C .6 D .9 二、填空题(本大题共3小题,每小题6分,共18分.把答案填在对应题号后的横线上) 7.(07浙江)函数)(1 22R x x x y ∈+=的值域是______________. 8.(08湖北)已知函数269)(2)(2 2 +-=++=x x bx f a x x x f ,,其中b a R x 、,∈为常数,则方程0)(=+b ax f 的解集为 . 9.(10陕西)已知函数232,1,(),1, x x f x x ax x +

指数函数经典例题(标准答案)

指数函数 1.指数函数的定义: 函数)10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 2.指数函数的图象和性质: 在同一坐标系中分别作出函数y=x 2,y=x ??? ??21,y=x 10,y=x ?? ? ??101的图象 . 我们观察y=x 2,y=x ?? ? ??21,y=x 10,y= x ?? ? ??101图象特征,就可以得到)10(≠>=a a a y x 且的图象和性质。 a>1 0

()x f c 的大小关系是_____. 分析:先求b c ,的值再比较大小,要注意x x b c ,的取值是否在同一单调区间内. 解:∵(1)(1)f x f x +=-, ∴函数()f x 的对称轴是1x =. 故2b =,又(0)3f =,∴3c =. ∴函数()f x 在(]1-, ∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥. 评注:①比较大小的常用方法有:作差法、作商法、利用函数的单调性或中 间量等.②对于含有参数的大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式 例2 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥, ∴函数2(25)x y a a =++在()-+, ∞∞上是增函数, ∴31x x >-,解得1 4x >.∴x 的取值范围是14 ?? + ??? , ∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论. 3.求定义域及值域问题 例3 求函数216x y -=-的定义域和值域. 解:由题意可得2160x --≥,即261x -≤, ∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-, ∞. 令26x t -=,则1y t =-, 又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.

《1.2 函数及其表示(2)》测试题

《1.2 函数及其表示(2)》测试题 一、选择题 1.设函数,则( ). A. B.3 C. D. 考查目的:主要考查分段函数函数值求法. 答案:D. 解析:∵,∴,∴,故答案选D. 2.下列各组函数中,表示同一函数的是( ). A., B., C., D., 考查目的:主要考查对函数概念的理解.两个函数相同,则这两个函数的定义域和对应关系均要相同. 答案:C 解析:A、B选项错,是因为两个函数的定义域不相同;D选项错,是因为两个函数的对应关系不相同.

3.函数的图象如图所示,对于下列关于函数说法: ①函数的定义域是; ②函数的值域是; ③对于某一函数值,可能有两个自变量的值与之对应. 其中说法正确的有( ). A.0个 B.1个 C.2个 D.3个 考查目的:本题主要考查对函数概念的理解以及对区间符号的认识. 答案:C 解析:从图可知,函数的定义域是[,所以①不正确,②、③说法正确,故选C. 二、填空题 4.如图,函数的图像是曲线OAB,其中点O、A、B的坐标分别为(O,O),(1,2),(3,1),则的值等于.

考查目的:主要考查用图象表示函数关系以及求函数值. 答案:2 解析:由图可知,,,∴. 5.已知函数,,则实数的值等于. 考查目的:主要考查分段函数的函数值的求法. 答案:. 解析:∵,∴,∴,∴,∴只能有,. 6.在同一平面直角坐标系中,函数和的图象关于直线对称. 的图象是由两条线段组成的折线(如图),则函数的表达式为. 考查目的:主要考查函数的表示法:解析法与图像法,分段函数的表示. 答案:.

解析:点()关于直线对称的点为(),∴的图象上的三点(-2,0),(0,1),(1,3)关于直线对称的点分别为(0,-2),(1,0),(3,1),∴函数 . 三、解答题 7.已知的定义域是,求的表达式. 考查目的:主要考查函数的解析式的求法.一定要注意函数的定义域. 答案:. 解析:,令,则,且,∴,即,则. 8.某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次. ⑴若每日来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数解析式; ⑵在⑴的条件下,每节车厢能载乘客110人,问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数. 考查目的:主要考查实际问题中求函数解析式、二次函数求最值. 解析:⑴设每日来回次,每次挂节车厢,,由题意知,当时,当时,∴,解得,∴;

高一数学教案:函数及其表示

第一课时: 1.2.1 函数的概念(一) 教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。 教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。 教学过程: 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法. 二、讲授新课: 1.教学函数模型思想及函数概念: ①给出三个实例: A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-. B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图) C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表) ②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点? 归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B → ③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.

相关主题