搜档网
当前位置:搜档网 › 高性能碳纤维的性能及其应用

高性能碳纤维的性能及其应用

高性能碳纤维的性能及其应用
高性能碳纤维的性能及其应用

科技进展

高性能碳纤维的性能及其应用

张新元 何碧霞 李建利 张 元

(陕西省纺织科学研究所)

摘要: 探讨高性能碳纤维的性能及其应用领域。介绍了碳纤维的分类、制备、性能特征、应用以及国内

外产业发展状况,分析了国际碳纤维产业的情况和我国碳纤维产业的现状及发展趋势。碳纤维应用涉及航空航天、体育运动、一般制造业、土木建筑、能源开发等领域。随着科技的发展和碳纤维应用技术的不断完善,碳纤维产业的发展空间必将越来越广。

关键词: 碳纤维;强度;比电阻;结晶度;聚丙烯腈;碳纤维机织物

中图分类号:TS102

.52+7 2 文献标志码:A 文章编号:1001 7415(2011)04 0065 04Property and Application of H igh perfor m ance Carbon Fiber

Zhang X i n yuan H e B i x ia L i J i a nli Zhang Y uan

(Shaanx iT extil e Sc i ence and T echno logy Instit ute)

A bstrac t H igh perfor m ance carbon fi ber prope rty and appli cati on we re d i scussed .C l assifi cation and m anu fact ure o f carbon fiber w ere i ntroduced ,carbon fi ber property ,appli cation ,deve l op m ent at hom e and abroad w ere i n troduced as w ell as .The applica ti on fie l d i nc l udes aerospace field ,spo rts field ,genera l m anufacturi ng field ,civ il constructi on fi e l d and energy dev elopment fi e l d et a.l Interna ti ona l carbon fi ber i ndustry situati on ,current situati on and deve lop m ent trend o f dom estic carbon fi be r industry w ere ana l y sed .carbon fiber i ndustry dev elopment w ou l d be m ore and mo re w i de l y as the deve lopment o f techno logy and the perfection o f carbon fibe r app licati on technology .

K ey W ords Carbon F i ber ,Strength ,Specific R esistance ,Cry sta lli nity ,Po l yacrylon itr ile ,Carbon F i ber W oven F abr i c

高性能纤维具有高强度、高模量、耐高温、耐气候、耐化学试剂等特性,是近年来纤维高分子材料领域中发展迅速的一类特种纤维。高性能纤维品种较多,目前已规模化生产的有碳纤维、芳纶纤

维等,既可作为结构材料承载负荷,又可作为功能材料发挥作用,是性能优越的战略性新型材料。

目前,高性能纤维中碳纤维是大规模生产的一个品种,具有较高的比强度、比模量和较小的体积质量。碳纤维既具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,具有优异的力学性能,近年来被广泛应用于航空、航天、汽车、化工、能源、交通、建筑、电子、体育运动器材等领域。

1 碳纤维的制备及分类

碳纤维的制备目前是采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机

作者简介:张新元(1962-),男,高级工程师,西安,710038

收稿日期:2010 12 23

纤维与塑料树脂结合在一起,放在稀有气体的环境中,在一定张力、温度、压强下,经过一定时间的

预氧化、碳化和石墨化处理等强热过程制成。碳纤维按原丝类型可分为聚丙烯腈(P AN )基碳纤维、沥青基碳纤维、粘胶基碳纤维和酚醛基碳纤维4类。P AN 基碳纤维是目前制备碳纤维的第一大原料,其产量约占世界总产量的95%左右。沥青基碳纤维约占4%,粘胶基碳纤维约占1%,酚醛基碳纤维尚处于实验室研究,未形成产业化。

碳纤维按形态可分为长丝、短纤维和短切纤维。长丝应用在工业结构件和宇航结构件中,短纤维主要应用在建筑行业,如短碳纤维石墨低频电磁屏蔽混凝土、工业用碳纤维毡等。碳纤维按力学性能分为通用型和高性能型。通用型碳纤维强度为1000M Pa 、模量为100GPa 左右。高性能型碳纤维又分为高强型(强度2000MPa 、模量250GPa )和高模型(模量300GPa 以上)。强度大于4000MPa 的又称为超高强型;模量大于450GPa 的称为超高模型。

碳纤维按用途可分为宇航级小丝束碳纤维和工业级大丝束碳纤维。小丝束以1K 、3K 、6K 为主,逐渐发展为12K 和24K;大丝束在48K 以上,包括60K 、120K 、360K 和480K 等。

2 碳纤维的性能特征

碳纤维的抗拉强度一般都在3500MPa (1 2N /tex~1 9N /tex)以上,比钢材(0 35N /tex )大4倍~5倍,比强度为钢材的10倍左右,高模碳纤维抗拉强度比钢材大68倍左右。碳纤维的弹性模量在230GPa 以上,比钢材(200GPa )大1 8倍~2 6倍。日本东丽的高强型T1000系列碳纤维,其模量为295GPa ,强度达7 05GPa ,而高强高模M 55J 型碳纤维,模量达540GPa ,强度为4 02GPa 。碳纤维的体积质量为1 50g /c m 3

~

2 16g /c m 3,相当于钢材(7 8g /c m 3

)的l/4、铝合金体(2 72g /c m 3

~2 82g /c m 3

)的1/2,钛合金(4 5g /c m 3

)的1/3,即便是制作成复合材料,其

体积质量仅为1 70g /c m 3

左右。

碳纤维性能独特,例如其热膨胀系数较小,导热率随温度升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂。同时碳纤维导电性好,25 时高模量碳纤维电阻率为

7 75 10-2

m ,高强度碳纤维为1 5 10

-1

m 。碳纤维耐高温和低温性也较

好,在3000 非氧化环境下不融化、不软化,在液氮温度下依旧很柔软,不脆化;在600 高温下其性能保持不变,在-180 低温下仍很柔韧。

碳纤维的耐酸性较好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等腐蚀,此外还耐油、抗辐射、抗放射,具有吸收有毒气体和使中子减速等特性。碳纤维的可加工性能较好,由于碳纤维及其织物质量轻又可折可弯,可适应不同的构件形状,成型较方便,可根据受力需要黏贴若干层,而且施工时不需要大型设备,也不需要采用临时固定,而且对原结构又无损伤。不同品种,高模、高强碳纤维的性能如表1所示。

表1 不同品种高模、

高强碳纤维的性能项目牌号抗拉强度/GP a 拉伸模量/GP a 断裂伸长

/%热膨胀系数

/K -1导热率

/W (m K )-1

电阻率/ m 体积质量/g c m -3

美国聚丙烯腈基美国聚丙烯腈基日本聚丙烯腈基日本聚丙烯腈基日本聚丙烯腈基中国聚丙烯腈基

GY 70GY 80M 40M 50M 60J BHM 3

1.861.86

2.742.45

3.923.20

517527392490588400

0.360.320.60.50.70.8

-1.1 10-6

-1.2 10-6

-0.9 10-6

142 858975

6.0

10-6 8.0 10-68.0 10-68.0

10-6

1.92 1.811.911.941.83

3 碳纤维的应用

目前,已经成熟的碳纤维应用形式有四种,即碳纤维、碳纤维织物、碳纤维预浸料坯和切短纤维。碳纤维织物是碳纤维重要的应用形式。碳纤维织物可分为碳纤维机织物、碳纤维针织物、碳纤维毡和碳纤维异型织造织物。碳纤维主要以 缠绕成形法 应用为主。碳纤维织物主要以 树脂转注成形法(RTM 也称真空辅助成型工艺) 应用为主。预浸料坯是将碳纤维按照一个方向一致排列或碳纤维织物经树脂浸泡,加热和塑化,使其转化成片状的一种产品。切短纤维是指将PAN 基碳纤维长丝切成数毫米长的短纤维,与塑料、金属、橡胶等材料进行复合,以增加材料的强度和耐

磨性。目前,国内碳纤维织物的应用形式主要以

碳纤维机织物为主。由于碳纤维轴向经编增强体

中碳纤维完全平行伸直排列,纤维取向度高,纤维

特性可以得到充分利用。目前国际市场的碳纤维应用形式逐渐向碳纤维轴向经编织物转变。随着碳纤维生产应用技术的不断提高,碳纤维的应用领域越来越广。3.1 航空航天领域

碳纤维复合材料广泛应用在火箭、导弹和高速飞行器等航空航天领域。碳纤维由于其质量小,所以动力消耗少,可节约大量燃料。例如2007年问世的A380超大型飞机,复合材料比重占25%左右,百公里油耗不到3L /人;2008年的B787飞机用复合材料占50%左右;将在2013年面世的A 350超宽客机,复合材料比重将达52%左右,预计百公里油耗只有2 5L /人,几乎可与小汽车媲美。我国C919飞机提出了复合材料不

低于25%的目标,每架飞机用碳纤维约8t~10t 。

专家预测:到2020年,只有复合材料才有潜力使飞机获得20%~25%的性能提升,复合材料将成为飞机的基本材料,用量将达到65%。

碳纤维增强树脂基复合材料也是生产武器装备的重要材料。在战斗机机身、主翼、垂尾翼、平尾翼及蒙皮等部位,可以起到明显的减重作用,较大提高了抗疲劳、耐腐蚀等性能,可比金属结构减轻质量31 5%左右,减少零件61 5%左右,减少紧固件61 3%左右。目前,国外第四代军用飞机的结构重量系数已达到27%~28%。以F 22为目标的背景机复合材料用量比例需求为35%左右,其中碳纤维复合材料将成为主体材料。国外一些轻型飞机和无人驾驶飞机,已实现了结构的复合材料化。目前主要使用的是T300级和T700级小丝束碳纤维增强的复合材料。全球航空航天领域碳纤维用量统计如表2所示。 表2 全球航空航天领域碳纤维用量统计

年份用量/t 增长率/%2002200320042005200620072008

10134117141196011480122261325313412

111.9111.6102.196.1106.5108.4101.

2

3.2 体育运动领域

碳纤维最早的商业化应用就是体育运动休闲

产品市场。多年来,碳纤维在高尔夫球杆中的使用一直居首位,年产量约为3400万件,美国和日本是高尔夫球棒的主要消费地,占80%以上。碳纤维在曲棍球棍和自行车架中的应用也逐年增多。而在球拍、钓鱼竿、滑雪板、帆板桅杆、帐篷杆及棒球球棒等产品中同样也看到碳纤维的身影。2003年和2004年世界碳纤维总消耗量分别为19210t 和20680,t 而用于体育休闲用品的碳纤维就超过5000,t 占世界碳纤维总消耗量的25%左右。

3.3 一般制造业领域

在一般工业制造领域中,碳纤维材料现已成为汽车制造商青睐的材料。目前,碳纤维复合材料传动轴、刹车片、尾翼和引擎盖已经在汽车行业中被广泛应用。福特和保时捷GT 型赛车发动机

罩,奔驰57S 型轿车内装饰,通用雪佛莱轿车底

盘,宝马M 6型轿车顶篷,梅赛德斯-奔驰的SLR 迈凯轮超级跑车整个车身,法国标致的308RC Z 概念新车都已采用了碳纤维复合材料,使汽车更加轻量化。随着环保要求的提高,碳纤维开始被广泛应用于汽车尾部沸腾器、发动机、传动轴和燃料箱材料。在工业领域,碳纤维还可应用于机器部件、家用电器、微机及与半导体相关设备,起到提高材料强度、防静电和电磁波防护的作用。3.4 土木建筑领域

碳纤维也应用在工业与民用建筑物、铁路公路桥梁、隧道、烟囱、塔结构等的加固补强,具有密度小,强度高,耐久性好,抗腐蚀能力强,可耐酸、碱等化学品腐蚀,柔韧性佳,应变能力强的特点。用碳纤维管制作的桁梁构架屋顶,比钢材轻50%左右,使大型结构物达到了实用化的水平,而且施工效率和抗震性能得到了大幅度提高。另外,碳纤维做补强混凝土结构时,不需要增加螺栓和铆钉固定,对原混凝土结构扰动较小,施工工艺简便。3.5 能源开发领域

随着人类环保意识的提高,大型风力发电产业正迅速兴起。为提高风力发电机叶片的捕风能力,轻质高强、耐久性好的玻璃纤维和碳纤维混杂复合材料结构成为目前大型风力发电机叶片的首选材料。尤其在翼缘等对材料强度和刚度要求较高的部位应使用碳纤维不仅可提高叶片的承载能力,还可因碳纤维具有导电性而有效避免雷击对叶片造成的损伤。

预计未来五年,风能发电的市场需求将以每年15%~20%的速度增长。风能发电成本相对低廉,已成为人类开发新能源的重要领域。美国能源信息管理部2006年报告称,风力发电成本为0 0558美元/k W h ,天然气发电成本为0 0525美元/k W h ,煤电为0 53美元/k W h,核电为0 593美元/k W h 。1980年风电成本为0 8美元/k W h ;1991年降为0 1美元/k W h,可见风能发电具有显著的成本优势。

4 国内外碳纤维产业现状及其发展趋势

4.1 国际碳纤维产业的概况

碳纤维的研发始于19世纪60年代,但未形

成产业化。20世纪50年代初,随着空间技术的发展,发达国家开始重视碳纤维的研究,20世纪

60年开始了碳纤维的研发工业化生产技术,20世纪70年代实现了工业化生产。在21世纪,碳纤维进入了蓬勃发展的新阶段,生产国也由原来仅限于少数发达国家扩展到十多个国家和地区。但核心技术仍被发达国家掌握,如碳纤维领域中日本东丽、日本帝人、我国台湾省台塑集团,美国SGL、HEXCEL、Z OLTEK等,均有规模化生产。

碳纤维复合材料是国防军工和现代工业产业升级与产品更新换代所必须的关键材料。2001年全球碳纤维消耗量为17900t左右;2005年达21920;t2006年24190,t2008年27740,t预计2010年需求量将会增加到50000,t2011年达到58000,t2012年达到68000t。目前,航空航天业仍然是碳纤维消费的最大市场,占据了市场份额的21%,而且价格相对较高。在其他的应用领域,产业应用占15%左右、体育用品占l4%左右、风能发电占11%左右、汽车工业占10%左右、电子工业占9%左右、石油和天然气业占8%左右、建筑业占8%左右、海洋业占4%左右。

4.2 我国碳纤维产业的现状及发展趋势

进入21世纪以来,碳纤维产业在我国发展迅速。到2010年我国计划建成的年产能千吨级以上的碳纤维厂家有十多家,碳纤维总产能原丝可达7100,t碳纤维2750,t产量400,t产品规格为1K、3K、6K、12K。但我国的碳纤维质量不稳定,毛丝率较多,产品规格较少,性能仍有待提高。为适应民用需求,应加强产品均匀稳定化的改进。另外我国碳纤维尚不能满足高性能CF的急需,如高强型T700、T800,高强高模型如M55J等产品。

尽管我国碳纤维生产发展相对缓慢,但消费量却一直在逐渐增加,市场需求旺盛。据统计, 1996年消耗量为580,t1997年为700t左右, 2000年为1200,t2001年为1500,t2002年已超过2000,t2003年3000,t2004年4000,t2005年和2006年我国碳纤维的需求量为5000吨, 2010年已突破5000t达到7800t。其主要用途包括体育器材、一般工业和航空航天等,其中体育休闲用品的使用量最大,占消费量的80%~90%。

5 结束语

碳纤维是一多学科、跨行业的特殊精细化工产品,国外已实现了其商业化的生产。在我国碳纤维正处于研制、生产和应用阶段,为开发碳纤维顶级新产品,目前要完善碳纤维生产工艺,减少毛丝,稳定产品质量,以利于传统工业制品材料的更新换代。同时,抓紧制订大丝束碳纤维力学性能的国家标准测试方法,重视原丝的油剂、碳纤维和石墨纤维的上胶剂等辅助材料的研制,统一制订控制碳纤维关键质量指标的测试方法,如取向度、结晶度、原丝油剂残存量、毛丝率等,大力开发各种复合材料制品,拓宽其应用领域,满足市场发展需求。

参考文献:

[1] 林红,赵凯,余建华,等.碳纤维产业发展态势分析

[J].新材料产业,2007(4):33 36.

[2] 郭慧,黄玉东,刘丽,等.T300和国产碳纤维本体的

力学性能对比及其分析[J].宇航学报,2009,30

(5):2068 2072.

[3] 宋新利.碳纤维加固技术[J].交通标准化,2009

(6):14 16.

[4] 姜永恺.高性能纤维的现状及应用[J].棉纺织技

术.2000,28(6):6 9.

[5] 徐进,张伟,林洪芹.纺织复合材料在风力发电机叶

片制造中的应用[J].棉纺织技术,2010,38(5):22

24.

[6] 洪建员,苏海员.6839型细纱上销的使用体会[J].

棉纺织技术,2009,37(9):28.

[7] 陈绍杰.聚焦碳纤维[J].高科技纤维与应用,2006,

31(1):1 8.

[8] 孟玉竹.碳纤维材料及应用[J].河北工程技术高等

专科学院学报,2008(3):14 16.

[9] 魏光群.多轴向经编机铺纬运动的研究[D].江南

大学,2008.

[10]蒋高明,顾璐英.多轴向经编技术的现状与发展

[J].纺织导报,2009(8):53 56.

[11]黄伯云,肖鹏,陈康华.复合材料研究新进展[J].金

属天地,2007(2):46 48.

[12]T ang Z X,Postl e R.M echan i cs o f T hree D i m ensi onal

B ra i ded Struc t ures for Co m po siteM a terials Part:l Fab

r i c Struct ure and F i ber V o l u m e F raction[J].Co m pos

ites Struct ures,2000(49):451 459.

[13]Zhou G M,Sun X K,W ang Y Q.M u li Cha i n D ig ital

E le m entA na l ysis i n T ex tile M echan ics[J].Co m po sites

Science and T echno l ogy,2003(64):239 244.

[14]魏光群,蒋高明,缪旭红.多轴向经编针织物的应用

现状与发展展望[J].纺织导报,2008(3):70 72.

高性能碳纤维的性能及其应用

科技进展 高性能碳纤维的性能及其应用 张新元 何碧霞 李建利 张 元 (陕西省纺织科学研究所) 摘要: 探讨高性能碳纤维的性能及其应用领域。介绍了碳纤维的分类、制备、性能特征、应用以及国内 外产业发展状况,分析了国际碳纤维产业的情况和我国碳纤维产业的现状及发展趋势。碳纤维应用涉及航空航天、体育运动、一般制造业、土木建筑、能源开发等领域。随着科技的发展和碳纤维应用技术的不断完善,碳纤维产业的发展空间必将越来越广。 关键词: 碳纤维;强度;比电阻;结晶度;聚丙烯腈;碳纤维机织物 中图分类号:TS102 .52+7 2 文献标志码:A 文章编号:1001 7415(2011)04 0065 04Property and Application of H igh perfor m ance Carbon Fiber Zhang X i n yuan H e B i x ia L i J i a nli Zhang Y uan (Shaanx iT extil e Sc i ence and T echno logy Instit ute) A bstrac t H igh perfor m ance carbon fi ber prope rty and appli cati on we re d i scussed .C l assifi cation and m anu fact ure o f carbon fiber w ere i ntroduced ,carbon fi ber property ,appli cation ,deve l op m ent at hom e and abroad w ere i n troduced as w ell as .The applica ti on fie l d i nc l udes aerospace field ,spo rts field ,genera l m anufacturi ng field ,civ il constructi on fi e l d and energy dev elopment fi e l d et a.l Interna ti ona l carbon fi ber i ndustry situati on ,current situati on and deve lop m ent trend o f dom estic carbon fi be r industry w ere ana l y sed .carbon fiber i ndustry dev elopment w ou l d be m ore and mo re w i de l y as the deve lopment o f techno logy and the perfection o f carbon fibe r app licati on technology . K ey W ords Carbon F i ber ,Strength ,Specific R esistance ,Cry sta lli nity ,Po l yacrylon itr ile ,Carbon F i ber W oven F abr i c 高性能纤维具有高强度、高模量、耐高温、耐气候、耐化学试剂等特性,是近年来纤维高分子材料领域中发展迅速的一类特种纤维。高性能纤维品种较多,目前已规模化生产的有碳纤维、芳纶纤 维等,既可作为结构材料承载负荷,又可作为功能材料发挥作用,是性能优越的战略性新型材料。 目前,高性能纤维中碳纤维是大规模生产的一个品种,具有较高的比强度、比模量和较小的体积质量。碳纤维既具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,具有优异的力学性能,近年来被广泛应用于航空、航天、汽车、化工、能源、交通、建筑、电子、体育运动器材等领域。 1 碳纤维的制备及分类 碳纤维的制备目前是采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机 作者简介:张新元(1962-),男,高级工程师,西安,710038 收稿日期:2010 12 23 纤维与塑料树脂结合在一起,放在稀有气体的环境中,在一定张力、温度、压强下,经过一定时间的 预氧化、碳化和石墨化处理等强热过程制成。碳纤维按原丝类型可分为聚丙烯腈(P AN )基碳纤维、沥青基碳纤维、粘胶基碳纤维和酚醛基碳纤维4类。P AN 基碳纤维是目前制备碳纤维的第一大原料,其产量约占世界总产量的95%左右。沥青基碳纤维约占4%,粘胶基碳纤维约占1%,酚醛基碳纤维尚处于实验室研究,未形成产业化。 碳纤维按形态可分为长丝、短纤维和短切纤维。长丝应用在工业结构件和宇航结构件中,短纤维主要应用在建筑行业,如短碳纤维石墨低频电磁屏蔽混凝土、工业用碳纤维毡等。碳纤维按力学性能分为通用型和高性能型。通用型碳纤维强度为1000M Pa 、模量为100GPa 左右。高性能型碳纤维又分为高强型(强度2000MPa 、模量250GPa )和高模型(模量300GPa 以上)。强度大于4000MPa 的又称为超高强型;模量大于450GPa 的称为超高模型。

碳纤维的特性及应用

碳纤维的特性及应用 碳纤维是高级复合材料的增强材料,具有轻质、高强、高模、耐化学腐蚀、热膨胀系数小等一系列优点,归纳如下: 一、轻质、高强度、高模量 碳纤维的密度是1.6-2.5g/cm3,碳纤维拉伸强度在2.2Gpa以上。因此,具有高的比强度和比模量,它比绝大多数金属的比强度高7倍以上,比模量为金属的5倍以上。由于这个优点,其复合材料可广泛应用于航空航天、汽车工业、运动器材等。 二、热膨胀系数小 绝大多数碳纤维本身的热膨胀系数,室内为负数(-0.5~-1.6)×10-6/K,在200~400℃时为零,在小于1000℃时为1.5×10-6/K。由它制成的复合材料膨胀系数自然比较稳定,可作为标准衡器具。 三、导热性好 通常无机和有机材料的导热性均较差,但碳纤维的导热性接近于钢铁。利用这一优点可作为太阳能集热器材料、传热均匀的导热壳体材料。 四、耐化学腐蚀性好 从碳纤维的成分可以看出,它几乎是纯碳,而碳又是最稳定的元素之一。它除对强氧化酸以外,对酸、碱和有机化学药品都很稳定,可以制成各种各样的化学防腐制品。我国已从事这方面的应用研究,随着今后碳纤维的价格不断降低,其应用范围会越来越广。 五、耐磨性好 碳纤维与金属对磨时,很少磨损,用碳纤维来取代石棉制成高级的摩檫材料,已作为飞机和汽车的刹车片材料。 六、耐高温性能好 碳纤维在400℃以下性能非常稳定,甚至在1000℃时仍无太大变化。复合材料耐高温性能主要取决于基体的耐热性,树脂基复合材料其长期耐热性只达300℃左右,陶瓷基、碳基和金属基的复合材料耐高温性能可与碳纤维本身匹配。因此碳纤维复合材料作为耐高温材料广泛用于航空航天工业。 七、突出的阻尼与优良的透声纳 利用这二种特点可作为潜艇的结构材料,如潜艇的声纳导流罩等。 八、高X射线透射率 发挥此特点已经在医疗器材中得到应用。 九、疲劳强度高 碳纤维的结构稳定,制成的复合材料,经应力疲劳数百万次的循环试验后,其强度保留率仍有60%,而钢材为40%,铝材为30%,而玻璃钢则只有20%-25%.因此设计制品所取的安全系数,碳纤维复合材料为最低。

碳纤维的性能与应用论文

碳纤维的性能与应用 系别:食品化工系 专业纺织品检验与贸易 班级:级纺检 学生姓名: 指导教师: 完成日期:

碳纤维的性能与应用 第1页共19 页 河南质量工程职业学院毕业设计(论文)任务书

碳纤维的性能与应用 第2页共19 页目录 摘要 (3) Abstract (4) 绪论 (5) 1 碳纤维的定义及其分类 (6) 1.1 什么是碳纤维 (6) 1.2 分类 (6) 2 碳纤维的制造 (6) 3 碳纤维的性能 (7) 3.1 碳纤维的优良特性 (7) 3.1.1 在纤维轴向方向显示高抗拉强度和高弹性模量 (7) 3.1.2 密度小 (7) 3.1.3 纤维细 (7) 3.1.4 不生锈、耐腐蚀 (7) 3.1.5 即耐低温,又耐高温 (7) 3.1.6 耐温度骤变,热膨胀系数小 (8) 3.1.7 常温下导热性能良好,高温下导热性能低 (8) 3.1.8 突出的导电性能 (8) 3.1.9 优良的吸附性能 (8) 3.1.10 具有耐辐射,能反射中子等特性 (9) 3.2 碳纤维的缺点 (9) 3.2.1 比较脆,怕受压和剪切 (9) 3.2.2 抗氧化性差 (9) 3.2.3 破坏前无预报 (9) 4 碳纤维的应用 (10) 4.1 碳丝 (10) 4.2 碳纤维毡和碳素短纤维 (10) 4.3 碳纤维织物 (10) 4.4 活性炭碳纤维 (10) 5 碳纤维的发展前景 (10) 6结论 (11) 参考文献 (12) 致谢 (13)

碳纤维的性能与应用 摘要 碳纤维是一种新型材料,本文主要阐述了碳纤维的分类、生产制造等,碳纤维的高强度、高模量、耐高温等主要特性,及在各行业中的应用,并对其近年来的市场前景的展望,使人们对其有一定的了解。(可以说的详细些,让别人看了摘要就知道你本篇论文写了那些东西) 关键词:新型碳纤维应用 第3页共19 页

碳纤维材料性能及应用

碳纤维材料的性能及应用 碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 碳纤维的微观结构类似人造石墨,是乱层石墨结构。另外,碳纤维是指含碳量高于90%的无机高分子纤维。其中含碳量高于99%的称石墨纤维。 性能特点: 碳纤维的比重小,抗拉强度高,轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。总之,碳纤维是一种力学性能优异的新材料。 应用领域: 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。1999年发生在南联盟科索沃的战争中,北约使用石墨炸弹破坏了南联盟大部分电力供应,其原理就是产生了覆盖大范围地区的碳纤维云,这些导电性纤维使供电系统短路。 目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。目前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐蚀化工设备等。羽毛球:现在大部分羽毛球拍杆由碳纤维制成。【碳纤维】carbon fibre 含碳量高于90%的无机高分子纤维。其中含

碳纤维性能的优缺点及其对策

碳纤维性能的优缺点及其对策 现面以结构加固用的碳纤维布为例说明碳纤维的性能: 碳纤维布加固技术是利用碳素纤维布和专用结构胶对建筑构件进行加固处理,该技术采用的碳素纤维布强度是普通二级钢的10倍左右。具有强度高、重量轻、耐腐蚀性和耐久性强等优点。厚度仅为2mm左右,基本上不增加构件截面,能保证碳素纤维布与原构件共同工作。 1、碳纤维介绍 碳纤维根据原料及生产方式的不同,主要分为聚丙烯腈(PAN)基碳纤维及沥青基碳纤维。碳纤维产品包括PAN基碳纤维(高强度型)及沥青基碳纤维(高弹性型)。 2、环氧树脂 不同类型的树脂还可以保证其对砼具有良好的渗透作用,例如底涂树脂;以及对碳纤维片与砼结构的粘接作用,例如环氧粘结树脂等。 (1)环氧树脂简介 仅仅依靠碳纤维片本身并不能充分发挥其强大的力学特性及优越的耐久性能,只有通过环氧树脂将碳纤维片粘附于钢筋混凝土结构表面并与之紧密地结合在一起形成整体共同工作,才能达到补强的目的。因此,环氧树脂的性能是重要的关键之一。环氧树脂因类型不同而有不同的性能,适应于各个部位的不同要求。例如底涂树脂对混凝土具有良好的渗透作用,能渗入到混凝土内一定深度;粘贴碳纤维片的环氧树脂易于"透"过碳纤维片,有很强的粘结力。依使用温度的不同,树脂还分为夏用及冬用类树脂。 2、碳纤维材料与其他加固材料对比 (1)抗拉强度:碳纤维的抗拉强度约为钢材的10倍。 (2)弹性模量:碳纤维复合材料的拉伸弹性模量高于钢材,但芳纶和玻璃纤维复合材料的拉伸弹性模量则仅为钢材的一半和四分之一。 (3)疲劳强度:碳纤维和芳纶纤维复合材料的疲劳强度高于高强纲丝。金属材料在交变应力作用下,疲劳极限仅为静荷强度的30%~40%。由于纤维与基体复合可缓和裂纹扩展,以及存在纤维内力再分配的可能性,复合材料的疲劳极限较高,约为静荷强度的70%~80%,并在破坏前有变形显著的征兆。 (4)重量:约为钢材的五分之一。 (5)与碳纤维板的比较:碳纤维片材可以粘贴在各种形状的结构表面,而板材更适用于规则构件表面。此外,由于粘贴板材时底层树脂的用量比片材多、厚度大,与混凝土界面的粘接强度不如片材。

碳纤维导线的特性及应用

碳纤维导线的特性及应用 韩国聚1赵功展2齐文灿1、2 (1.平顶山电力设计院;2.平顶山供电公司;河南平顶山市,467001) 摘要:主要论述了碳纤维导线的特性及在老线路改造工程中的应用。 关键词:碳纤维导线特性拐点 ACCC/TW ACSR Properties and Applications of Aluminum Conductor Composite Core HAN Guo-ju et al (Pingdingshan Electric Power Design Institute, Pingdingshan467001,Henan Province,China) Abstract: This paper discusses the characteristics of Aluminum Conductor Composite Core and the transformation of the old-line engineering Keywords:Aluminum Conductor Composite Core Features Knee ACCC/TW ACSR 0引言 随着我国电力需求的不断增长,许多电力线路面临增容的压力。线路增容最经济的办法之一是利用原有杆塔只更换导线。而利用原有杆塔的前提条件是,更换的导线荷载不能超过原有杆塔的设计条件。为此,新更换的导线一般不能采用普通的钢芯铝绞线ACSR(Aluminum Conductor Steel Reinforced),而是采用新型的增容导线。这种新型导线一般具备这样三个特点:一是弧垂随温度的变化小;二是质量轻、外径小;三是具有输送大电流的能力。而碳纤维复合芯软铝绞线(以下简称碳纤维导线)ACCC/TW(Aluminum Conductor Composite Core/Trapezoidal Wire)是典型的品质优良的增容导线品种之一。 1.碳纤维导线的结构 碳纤维导线ACCC/TW的结构独特,内部是一根由碳纤维为中心层和玻璃纤维包覆制成的复合芯,外层由一系列呈梯形截面的软铝线绞合而成。碳纤维复核芯承担导线总的力学性能,具有强度高、密度小、膨胀系数小、耐腐蚀等特点。外层软铝具有导电率高、电阻小、自阻尼性能强的特点。碳纤维复合芯与软铝线绞制而成的导线,便具有优良的性能:导线重量轻,电阻小,表面光滑不易舞动,拉力质量比大,弧垂随温度的变化小等[1]。因此,可作为电力部门老旧线路改造、电力增容导线使用。其结构如图1-1所示。 外层软铝 碳纤维复核芯 图1-1碳纤维导线结构 2.碳纤维导线的特性 2.1.抗拉强度高 目前各设计院广泛采用的钢芯铝绞线基本上仍为GB1197-83标准中的型式,该标准导线中使用的钢芯绞合后强度为1244N/mm2,而碳纤维导线ACCC/TW的复合芯抗拉强度最小值可

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

聚丙烯腈碳纤维性能表征规范

聚丙烯腈碳纤维性能表征规范 聚丙烯腈碳纤维的性能主要有力学性能、热物理性能和电学性能。对于碳纤维材料来说,拉伸力学性能,包括拉伸强度、拉伸模量以及断裂伸长率是其主要力学性能指标。由于纤维材料本身的特点,很难对其压缩力学性能进行有效的表征,因此基本不考虑纤维本身的压缩性能。碳纤维的热物理性能包括热容、导热系数、线膨胀系数等,也是材料应用的重要指标。电性能主要为体积电阻率以及电磁屏蔽方面的性能。对于碳纤维的拉伸力学性能测试,各国都已经基本形成了相应的测试标准系列,这些标准系列同时包括了在力学性能测试时需要的线密度、体密度、上浆量等相关的测试。对于热物理性能,相关的测试标准较少。 5.5.1 碳纤维性能测试标准 日本从1986年开始发布了其碳纤维力学性能测试标准,有关标准见表5.30,其中JIS R7601-1986《碳纤维试验方法》涵盖了碳纤维单丝、束丝的拉伸力学性能测试方法外,还包括以及密度、上浆剂含量、线密度等测试方法及规范。JIS R7601-2006《碳纤维试验方法(修正1)》是在国际对石棉制品应用规定严格的条件下,将JIS R7601-1986中拉伸性能测试中夹持用垫片的石棉材料进行了删除。相比于JIS R7601-1986,JIS R7608-2007《碳纤维-树脂浸渍丝拉伸性能测试方法》被广泛地用于碳纤维力学性能的测试,其可操作性和规范性也更强。 表5.30 日本碳纤维测试标准 序号标准号标准名称 1 JIS R7601-1986 碳纤维试验方法 2 JIS R7602-1995 碳纤维织物试验方法 3 JIS R7603-1999 碳纤维-密度的试验方法

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

活性碳纤维的特性

活性碳纤维的特性 1) 吸附量大 活性碳纤维对有机气体及恶臭物质(如正丁基硫醇等)的吸附量比粒状活性炭( GAC )大几倍至十几倍。对无机气体也有较好的吸附能力。对水溶液中的无机物、染料、有机物及贵金属的吸附量比 GAC 高 5 — 6 倍。对微生物及细菌也有很好的吸附能力(如对大肠杆菌的吸附率可达 94 — 99% )。对低浓度吸附质的吸附能力特别优良。如对于吸附质的浓度在几 ppm 级时仍可保持很好的吸附量,而 GAC 等吸附材料往往在几十ppm浓度时才有良好的吸附能力。 2) 吸附速度快 对于从气相中吸附气态污染物的吸附速度非常快,对液体的吸附也可很快达到吸附平衡,其吸附速率比 GAC 高数十倍至数百倍。 3) 再生容易,脱附速度快 在多次吸附和脱附过程中,仍能保持原有的吸附性能。如用 120-150 ℃蒸汽或热空气再生处理 ACF 10-30 分钟即可达到完全脱附。 4) 耐热性好 在惰性气体中可耐高温 1000 ℃以上,在空气中的着火点高达 500 ℃以上。 5) 耐酸、耐碱,具有较好的导电性能和化学稳定性。 6) 灰份少。 7) 成型性好,易加工成毡、丝、布、纸等形态。 活性碳纤维的介绍 一般传统上所使用的活性炭可分为粉末状活性炭(AC)和颗粒状活性炭(GAC),上世纪六十年美、日、俄等国家相继研发出第三种形态的活性炭称为活性碳纤维( Activated Carbon Fibers, /ACF )。国内在七十年代末八十年初, 也研发出活性碳纤维。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点 活性碳纤维(以下简称ACF)的诞生在整个环保产业是一场革命。ACF是以粘胶基纤维为原料,经高温碳化、活化后制成的纤维状新型吸附材料,与社会上公认的比较好的吸附材料颗粒状活性炭相比,ACF具有以下显著的的特点:(一)、比表面积大,有效吸附量高。由于同样重量的纤维的表面积是颗粒的近

碳纤维特性

碳纤维是一种纤维状碳材料。它是一种强度比钢的大、密度比铝的小、比不锈钢还耐腐蚀、比耐热钢还耐高温、又能像铜那样导电,具有许多宝贵的电学、热学和力学性能的新型材料。 用碳纤维与塑料制成的复合材料所做的飞机不但轻巧,而且消耗动力少,推力大,噪音小;用碳纤维制电子计算机的磁盘,能提高计算机的储存量和运算速度;用碳纤维增强塑料来制造卫星和火箭等宇宙飞行器,机械强度高,质量小,可节约大量的燃料。目前,人们还不能直接用碳或石墨来抽成碳纤维,只能采用一些含碳的有机纤维(如尼龙丝、腈纶丝、人造丝等)做原料,将有机纤维跟塑料树脂结合在一起,放在稀有气体的气氛中,在一定压强下强热炭化而成碳纤维是纤维状的碳材料,其化学组成中含碳量在90%以上。由于碳的单质在高温下不能熔化(在3800K 以上升华),而在各种溶剂中都不溶解,所以迄今无法用碳的单质来制碳纤维。碳纤维可通过高分子有机纤维的固相碳化或低分子烃类的气相热解来制取。上前世界上产生的销售的碳纤维绝大部分都是用聚丙烯腈纤维的固相碳化制得的。其产生的步骤为A预氧化:在空气中加热,维持在200-300度数十至数百分钟。预氧化的目的为使聚丙烯腈的线型分子链转化为耐热的梯型结构,以使其在高温碳化时不熔不燃而保持纤维状态。B碳化:在惰性气氛中加热至1200-1600度,维持数分至数十分钟,就可生成产品碳纤维;所用的惰性气体可以是高纯的氮气、氩气或氦气,但一般多用高纯氮气。C石墨化:再在惰性气氛(一般为高纯氩气)加热至2000-3000度,维持数秒至数十秒钟;这样生成的碳纤维也称石墨纤维。碳纤维有极好的纤度(纤度的表示法之一是9000米长的纤维的克数),一般仅约为19克;拉力高达300KG/MM2;还有耐高温、耐腐蚀、导电、传热、彭胀系数小等一系列优异性能。目前几乎没有其他材料像碳纤维那样具有那么多的优异性能。目前,碳纤维主要是制成碳纤维增强塑料来应用。这种增强塑料比钢、玻璃钢更优越,用途非常广泛,如制造火箭、宇宙飞船等重要材料;制造喷气式发动机;制造耐腐

碳纤维的性能、应用及相关实用标准

聚丙烯腈基(PAN)碳纤维的性能、应 用及相关标准 .texindex../ 2010年6月15日 10:42 中国纤检 摘要:聚丙烯腈基碳纤维是一种力学性能优异的新材料,在航空、航天、建筑、体育、汽车、医疗等领域得到广泛的应用。本文简要介绍了国外PAN基碳纤维的发展历程和现状,PAN基碳纤维的制备、结构及性能及碳纤维的应用领域,详细介绍了PAN基碳纤维相关标准及检测,并对未来发展进行了展望。 关键词:碳纤维;聚丙烯腈;标准 碳纤维是一种力学性能优异的新材料,它不仅具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000Mpa~43000Mpa亦高于钢。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景。 碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。

1 国外聚丙烯腈基碳纤维的发展现状 1.1国外发展现状 1959年,媒体报道的日本的进藤昭南由聚丙烯腈长丝经预氧化、碳化而制成性能优良的碳纤维工艺专利,由于该工艺简单,产品力学性能优良,因此发展较快,开创了碳纤维的新时代。 世界上聚丙烯腈基碳纤维的生产,现在已分化为以美国为代表的大丝束碳纤维和以日本为代表的小丝束两大类。日本和美国所产的碳纤维约占全球总供应量的80%[1]。日本三家以腈纶纤维为主要产品的公司(东丽Toray、东邦Toho及三菱人造丝公司Mitsubishi)依靠其先进纺丝科学技术,形成高性能原丝生产的优势,大量生产高性能碳纤维,使日本成为碳纤维大国,无论质量还是数量上均处于世界前三位,占据了世界78%左右的产量。日本Toray 公司是世界上最大的PAN基碳纤维厂商,2003年生产能力为7350t/a,其中在日本国生产能力4700t/a,在美国拥有产能1800t/a,另外在法国与Atofia合资的Soficar产能为850t/a。公司以生产小丝束PAN基碳纤维为主,在日本国大丝束PAN基碳纤维的产能仅为300t/a。东邦人造丝是第二大碳纤维生产商,其碳纤维的生产能力为5800t/a,全是小丝束品种。三菱人造丝在日本国产能为2700t/a,在海外美国Grafil的产能为700t/a,2001年三菱人造丝率先将设备投资增加27.5%,达到190亿元,将本国的产能提高500t/a,再将美国子公司Grafil的产能增加800t/a,这样两地的总产能达到4700t/a。世界主要PAN基碳纤维生产企业的产能见表1[2]。 表1 世界主要PAN基碳纤维生产企业的产能t

碳纤维导线的特性及应用

碳纤维复合芯导线的特性及应用 魏国彬 (华晋焦煤公司山西吕梁 033000) 摘要:主要论述了碳纤维导线的特性及在老线路改造工程中的应用。 关键词:碳纤维导线特性线路增容、 ACCC/TW Properties and Applications of Aluminum Conductor Composite Core Wei Guo-bin (Huajin Coking Coal Co.,Ltd.,Luliang 033000,Shanxi Province,China) Abstract: This paper discusses the characteristics of Aluminum Conductor Composite Core and the transformation of the old-line engineering Keywords: Aluminum Conductor Composite Core Features Line-compatibilizing ACCC/TW 0.引言 长期以来,架空输电线路导线主要采用钢芯铝绞线以及相关产品,电力工业的飞速发展对架空输电线路导线提出了更高的要求,促使各国科技人员研发各种新型导线。上世纪90年代末,人们开始尝试用复合材料代替金属材料来制作导线的承载部件,改善导线的弧垂特性,采用软铝型线代替硬铝圆单丝,提高填充率和导电率,以达到提高线路输送容量的目的。远东控股集团于2002年开始跟踪和研究导线领域这一新发展,并于2006年成功专门从事复合芯软铝绞线的研发、生产和销售,经过近几年的产品质量提升及市场化。碳纤维复合芯导线在电力行业中得到了广泛的应用。 碳纤维复合芯软铝绞线的型号为JRLX/T(J-架空导线,RL-软铝,X-型线,T-碳纤维复合材料),规格用软铝型线标称截面和复合芯标称截面表示;国际上的通用型号为ACCC/TW (Aluminum Conductor Composite Core/Trapezoidal wire)。 碳纤维复合芯导线由于复合芯的强度足够高,不再需要铝承担受力作用,导电的铝就可以采用退火状态的软铝,软铝的截面设计成瓦型,可大幅减少导线的外径。 随着我国各行业电力需求的不断增长,部分老旧输电线路输送能力不足,面临增容改造的压力。线路改造中,投资最大的项目是杆塔的更换,最棘手的问题是村民的土地问题,一种新型的导线“碳纤维复合芯导线”的产生,使老线路在不更换杆塔的前提下达到增容的目的。从节能、降低成本、增加输送容量、提高电网安全运行等方面综合看,推广应用具有很大的经济和社会效益。有助于构造安全,经济,环保,高效输电网络。 1.碳纤维导线的结构 碳纤维导线ACCC/TW的结构独特,内部是一根由碳纤维为中心层和玻璃纤维包覆制成的复合芯,外层由一系列呈梯形截面的软铝线绞合而成。碳纤维复核芯承担导线总的力学性能,具有强度高、密度小、膨胀系数小、耐腐蚀等特点。外层软铝具有导电率高、电阻小、自阻尼性能强的特点。碳纤维复合芯与软铝线绞制而成的导线,便具有优良的性能:导线重量轻,电阻小,表面光滑不易舞动,拉力质量比大,弧垂随温度的变化小等。因此,可作为电力部门老旧线路改造、电力增容导线使用。其结构如图1-1所示。 外层软铝 碳纤维复核芯

PAN基碳纤维综述

PAN基碳纤维综述 专业纺织工程学号 0843093070 学生林华萍指导老师傅师申 摘要:聚丙烯晴基碳纤维是一种力学性能优异的新材料,具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。本综述简要介绍了其结构,制备方法,性能,应用领域及前景。 关键词:PAN基碳纤维,制备,结构,性能,应用,前景 1碳纤维结构 碳纤维属于聚合的碳,它是由有机物经固相反应转化为三维碳化合物,碳化历程不同,形成的产物结构也不同。 碳纤维和石墨纤维在强度和弹性模量上有很大差别,这主要是由于其结构不同,碳纤维是由小的乱层石墨晶体所组成的多晶体,含碳量约75%~95%;石墨纤维的结构与石墨相似,含碳量可达98-99%,杂质少。碳纤维的含碳量与制造纤维过程中碳化和石墨化过程有关。 2PAN基碳纤维的制备 图1 从原料丙烯晴到聚丙烯晴基碳纤维的制备过程中可以看出四个关键步骤:PAN 的聚合,原丝的制备,原丝的预氧化以及预氧化丝的炭化和石墨化。 2.1 PAN的聚合 由于PAN分子结构的特性,纯聚体PAN不适宜作为碳纤维前驱体。工业生产中,往往采用

共聚PAN来制备PAN原丝。引入共聚单体可以起到如下作用:减少聚合物原液中凝胶的产生;增加聚合物的溶解性和可纺性;降低原丝环化温度及变宽放热峰。但也可能带来一些副作用:降低原丝的结构规整性和结晶度;增加大分子链结构的不均匀性;引入更多的无机和有机杂质等。 2.2 原丝的制备 PAN在熔点(317°C)以下就开始分解,因此形成纤维主要通过湿法或干湿法进行纺丝。 干湿法纺丝由于将挤出膨化与表皮凝固进行了隔离,纤维的成形机理有所改变,因此湿法纺丝凝固过程中皮层破裂或径向大孔及表皮褶皱等现象基本消失,干湿法纺丝的原丝表面及内部的缺陷减少、致密性提高。干湿法纺丝还具有高倍的喷丝头拉伸(3-10mm的空气层是有效拉伸区),纺丝速度高(为湿法纺丝的5-10倍),容易得到高强度、高取向度的纤维等特点,从而保证了碳纤维有足够的强度,是当前碳纤维原丝生产的发展方向。 2.3 原丝的预氧化 预氧化过程中原丝的颜色由白色向黄、棕、黑过渡,主要发生的反应为脱氢、环化及氧化反应,其中环化反应是预氧化过程中最关键的一步。 环化反应:PAN热处理时,分子间相邻氰基的加成反应,形成稳定性较高的梯形结构。 脱氢反应:为环化的聚合物或环化的杂环均可由于氧的作用发生脱氢反应,产生大量的水。脱氢反应是预氧化过程中主要反应之一,其结果导致主链上双键的形成,赋予主链更高的稳定性,使预氧化丝具有耐燃性。 氧化反应:预氧化开始时,氧化脱氢为氧化反应的主要部分。除此之外,氧同时还直接与预氧化丝结合,主要生成羟基、羰基、羧基等。若PAN原纤被充分预氧化,在预氧化丝中的含氧量甚至课高达16-23%。 影响PAN原丝预氧化的因素只要有:纤维的张力,热处理温度和介质的影响。 2.4 预氧化丝的碳化及石墨化 为避免高温下碳的氧化,碳化必须在惰性气氛的保护下进行。通常采用N 2、Ar 2 或其他非氧 化性介质如HCl等气体。 碳化是纤维仍会发生物理收缩和化学收缩,因此要对纤维施加张力进行拉伸以得到优质碳纤维。 碳化阶段以多段式的升温速率进行。低于600°C的温区,需低升温速率,升温速率需严格控制在小于5℃/min的范围内。因为这一温区包含大部分的化学反应及挥发性物质的逸出,提高升温速率的话,纤维表面会形成气孔或不规则的形态。600℃以上的温区,可以以较快的升温速率进行,此加热段仍有挥发性产物的逸出,同时形成分子链聚合物之间的交联。经600℃左右的低温碳化处理后,碳纤维的强度为1.5-2.0GPa,模量约120GPa。从900℃升温到1350℃,可制取强度为3-4GPa,模量约220GPa的碳纤维;升温到1500℃,可制取强度为4-5GPa,模量约

碳纤维增强复合材料在汽车上的应用终结版综述

碳纤维增强复合材料在汽车中的应用 摘要 随着汽车工业的飞速发展,减少燃料消耗和降低对环境的污染已成为汽车工业发展和社会可持续发展急需解决的关键问题。汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,寻找较轻且性能良好的材料代替钢制汽车零件成为一个重要的研究方向。碳纤维增强复合材料具有强度高、重量轻、耐高温、耐腐蚀、热力学性能优良等特点,碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能,是当前汽车材料轻量化的重要研究发展方向之一。本文介绍了碳纤维增强复合材料的特点、成型工艺及在汽车行业的应用情况,以及碳纤维增强复合材料在汽车应用中存在的问题。 关键词:碳纤维增强汽车应用

1 前言 现在社会汽车已成为人民出行必不可少的交通工具,在汽车给人类带来方便的同时也给环境带来了污染,汽车的燃料消耗和二氧化碳废气的排放量与汽车重量存在密切的关系,美国能源部相关研究表明,美国现有的汽车,如减重25%,每天可节省750,000桶燃油,每年二氧化碳的排放量可减少1.01亿吨,因此汽车轻量化已成为汽车工业技术发展的重要方向。除了对汽车各种零部件结构进行优化设计和改进外,采用高性能轻质材料是实现汽车轻量化的一条重要途径。如选用铝、镁、钛、高强度钢、工程塑料和复合材料等,用以制造汽车车身、底盘、发动机等零部件,可以有效的减轻汽车自重,提高发动机效率。 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料,是目前最先进的复合材料之一。它以其质量轻、强度高、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗腐蚀材料,是其它纤维增强复合材料所无法比拟的。纤维增强复合材料具有高强度、高模量,已在航天航空等领域广泛使用,是制造卫星、导弹、飞机的重要结构零部件的关键结构材料,同时也受到汽车工业广泛重视,碳纤维增强复合材料在汽车方面主要是汽车骨架、缓冲器、弹簧片、引擎零件等,早在1979年,福特汽车公司就在实验车上作了试验,将其车身、框架等160个部件用碳纤维复合材料制造,结果整车减重33%,汽油的利用率提高了44%,同时大大降低了振动和噪音。 碳纤维具有比重小、强度高、模量高、耐腐蚀等特点,可用于制造碳纤维增强聚合物、金属、陶瓷基复合材料,是先进复合材料最重要的增强体。碳纤维增强复合材料用于制造汽车车身、发动机零件等,可有效降低汽车自重并提高汽车性能。本文将简述碳纤维增强复合材料的性能特点,及其在汽车工业应用的前景和存在的问题。由于碳纤维增强复合材料的价格昂贵,严重影响其在汽车工业中的应用。因此,发展廉价的碳纤维和高效率碳纤维增强复合材料的生产方法和工艺已成为汽车轻量化材料研究中的关键课题,美国、日本等已将其列为汽车轻量化材料的研究计划。

相关主题