搜档网
当前位置:搜档网 › JIS_Z_3136-1999电阻点焊及凸焊焊接接头剪切试验的试验片尺寸及试验方法中文版

JIS_Z_3136-1999电阻点焊及凸焊焊接接头剪切试验的试验片尺寸及试验方法中文版

JIS_Z_3136-1999电阻点焊及凸焊焊接接头剪切试验的试验片尺寸及试验方法中文版
JIS_Z_3136-1999电阻点焊及凸焊焊接接头剪切试验的试验片尺寸及试验方法中文版

Z3136: 1999

前言

本标准是依据工业标准化法,经日本工业标准调查会的审议,由日本通商产业大臣修订的日本工业标准。因此,JIS Z3136:1989经修改由本标准替代。

本次的修订,为了与国际标准接轨,以ISO/DIS 14273:1989作为基础。

日本工业标准 JIS

Z 3136:1999

电阻点焊及凸焊焊接接头剪切试验的

试验片尺寸及试验方法

序文

本标准是在1989年发行的ISO/DIS 14273 的基础上编制的日本工业标准,其对应部分(试验片、试验装置、试验顺序及记录)等技术方面的内容没作变更,但追加了如下规定内容。

a) 关于试验片尺寸,从前规定的“常规板宽试验片”和ISO/DIS 中规定的“饱和

板宽试验片”并用。 b) 关于试验片的个数,以ISO/DIS 中规定的11个为基础,当不需要标准偏差时,可经当事者之间协商后减少之。

c) 对3张重叠以上的焊接接头试验片做了规定。

1 适用范围

本标准对金属的点焊及凸焊焊接接头在如下方面做了规定:厚度0.3—5.0mm

具有不超过

片的试验方法。 2 引用标准

本标准引用的标准如下,这些被引用的标准可作为构成本标准的一部分,这些被引用的标准适用最新版本。 JIS Z 2241 金属材料抗拉试验方法 JIS Z 3001 焊接用语

JIS Z 8041 数值的归纳方法 3 定义

本标准中所使用的主要用语的定义依据JIS Z 3001 及如下规定。 a) b) c)

d)饱和板宽试验片当已给出焊接直径、试验片厚度及重叠代时,随着板宽的增

加,试验得到的剪切力的值也会增加,直至达到饱和值。在本标准中,饱和板宽试验片是指这样的试验片:具有与5根号t焊接直径时的饱和值相对应的板宽。

图1 剪切试验时的主要断裂形式和焊接直径

上图中的焊接直径均按下面的公式求得

D=(d1+d2)/2

4试验片

4.1试验片的形状及尺寸试验片的形状如图2所示。试验片的尺寸,常规板宽

的试验片尺寸见表1,饱和板宽的试验片的尺寸见表2。

对于由板厚或材质不同板的重叠板材,其试验片的尺寸,计算母材抗拉强度乘以板厚所得的值,以该值较小的板厚为准。

3张重叠以上的,其试验片的形状见图3,尺寸见表1。这种情况的剪切试验,如图3a), b) 所示,是在加有荷重的母材间进行的。

另外,3张重叠以上,板厚或材质不同时,其试验片的尺寸,以加有荷重的板材中,母材抗拉强度乘以板厚的值较小的板厚为准。

图2 试验片的形状图3 3张重叠以上的试验片

表1 常规板宽试验片的尺寸

表2 饱和板宽试验片的尺寸

4.2试验片的制作试验片按如下内容制作。

a)单点焊接接头试验片单点试验片按图2或图3所示焊接制作单点试验板。

b)从多点焊接接头试验材中取试验片根据试验目的,必要时,多点焊接的试

验片可这样制作:先按图4所示制作10点以上的多点焊接试验材,然后,使

用剪切机或其它方法切出试验片。

另外还规定,把与表1中板宽W相同的值作为焊接点的间隔P,重叠代L 也与表1中的L的值相同。在剪切试验片时,还要注意避免因切割对焊接接头的性能造成影响。

多点焊接接头试验材的焊接顺序是,从一端开始依次焊接。并且,焊接中不得对无效分流进行补偿的调整。但是,对于由自动控制而自动进行补偿设计的的装置来说,不受此限制。

多点焊接的,第一点和最后的点要从试验中除去。而对于凸焊的,所有的焊接部位都要进行试验。

在制作多点焊接接头试验片时,在一连串的焊接结束之前,不得修整或更换电极。

c)使用组合式点焊机制作的试验片,关于该试验片的尺寸等事项,可根据当事

者协议来定。

图4 多点焊接接头试验材

4.3试验片的个数同一条件时,试验片的个数为11个。但是,当不需要剪断

力或者焊接直径的标准偏差时,经当事者间协商,可以减少。

5.试验装置及试验顺序如下

该试验是依据JIS Z 2241 的规定的装置和方法来进行。设定好规定的间隔,向试验机中插入芯棒,然后渐渐地牵引,测定出试验片断裂时的最大拉力,求出剪断力。然后,求出断裂后的试验片的焊接直径。试验在室温状态下进行。

(板厚)>3mm, 或者(2张板厚之比)>1.4时,要使用如图5所示的辅助板。辅助板要使用与试验材相同厚度的,事先要用点焊等方法固定在试验片上。试验在室温状态进行。

图5 使用有辅助板的试验片

6.记录

试验之后,把实施试验的下列事项进行记录。在写试验结果报告时,也可以依据当事者之间的协定,省略其中一部分。

a)试验日期及地点

b)试验材料的种类及板厚

c)试验材料的化学成分及机械性质

d)焊接方法(点焊或凸焊)

e)焊接机的种类及焊接条件

f)试验的种类(剪断试验)

g)试验机的名称、型号、最大容量

h)试验片的尺寸

i)各个剪断力值,平均值,必要时记录标准偏差(参照JIS Z 8401)

j)各个焊接直径的值、平均值、必要时记录标准偏差(参照JIS Z 8401)k)其它特记事项

参考1. 若可以,在试验片或者试验材焊接时,确认所选择的焊接条件,是否能形成规定的焊接部位(熔核直径等),方法依据截面试验方法

(JIS Z 3139)。

参考2. 若可以, 记录下能够了解引起试验片变形信息的荷重—延伸曲线

关联标准 JIS Z 3137 点焊焊接接头的抗拉强度试验方法

JIS Z 3138 点焊焊接接头的疲劳试验方法

JIS Z 3139 点焊焊接接头的截面试验方法

JIS Z 3144 点焊及凸焊焊接部的现场试验方法

点焊方法及工艺参数选择

点焊方法及工艺参数选择 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各

对电极均由单独的变压器供电,全部电极同时压住工件的型式(图 11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、

点焊焊接参数及其相互关系

点焊焊接参数及其相互关系 1. 点焊焊接循环 焊接循环(welding cycle),在电阻焊中是指完成一个焊点(缝)所包括的全部程序。图19是一个较完整的复杂点焊焊接循环,由加压,…,休止等十个程序段组成,I、F、t中各参数均可独立调节,它可满足常用(含焊接性较差的)金属材料的点焊工艺要求。当将I、F、t中某些参数设为零时,该焊接循环将会被简化以适应某些特定材料的点焊要求。当其中I1、I3、F pr、F fo、t2、t3、t4、t6、t7、t8均为零时,就得到由四个程序段组成的基本点焊焊接循环,该循环是目前应用最广的点焊循环,即所谓“加压-焊接-维持-休止”的四程序段点焊或电极压力不变的单脉冲点焊。 2. 点焊焊接参数 点焊焊接参数的选择,主要取决于金属材料的性质、板厚、结构形式及所用设备的特点(能提供的焊接电流波形和压力曲线),工频交流点焊在点焊中应用最为广泛且主要采用电极压力不变的单脉冲点焊。 (1)焊接电流I焊接时流经焊接回路的电流称为焊接电流,一般在数万安培(A)以内。焊接电流是最主要的点焊参数。调节焊接电流对接头力学性能的影响如图20所示。

AB段曲线呈陡峭段。由于焊接电流小使热源强度不足而不能形成熔核或熔核尺寸甚小,因此焊点拉剪载荷较低且很不稳定。 BC段曲线平稳上升。随着焊接电流的增加,内部热源发热量急剧增大(Q∝I2),熔核尺寸稳定增大,因而焊点拉剪载荷不断提高;临近C点区域,由于板间翘离限制了熔核直径的扩大和温度场进入准稳态,因而焊点拉剪载荷变化不大。 CD段由于电流过大使加热过于强烈,引起金属过热、喷溅、压痕过深等缺陷,接头性能反而降低。 图20还表明,焊件越厚BC段越陡峭,即焊接电流的变化对焊点拉剪载荷的影响越敏感。 (2)焊接时间t 自焊接电流接通到停止的持续时间,称焊接通电时间,简称焊接时间。点焊时t一般在数十周波(1周波=0.02s)以内。焊接时间对接头力学性能的影响与焊接电流相似(图21)。但应注意二点: 1) C点以后曲线并不立即下降,这是因为尽管熔核尺寸已达饱和,但塑性环还可有一定扩大,再加之热源加热速率较和缓,因而一般不会产生喷溅。 2) 焊接时间对接头塑性指标影响较大,尤其对承受动载或有脆性倾向的材料(可淬硬钢、铝合金等),较长的焊接时间将产生较大的不良影响。

电阻焊基本知识及操作要求

电阻焊基本知识及操作要求 一.电阻焊 1.1 电阻焊概念: 将被焊工件置于两电极之间加压,并在焊接处通以电流,利用电流流经工件接触面及其临近区域产生锝电阻热将其加热到熔化或塑性状态,使之达到金属结合而形成牢固接头的工艺过程。 1.2 电阻焊设备 是指采用电阻加热的原理进行焊接操作的一种设备,它主要由以下部分组成: ①焊接回路:以阻焊变压器为中心,包括二次回路和工件。 ②机械装置:由机架、夹持、加压及传动机构组成。 ③气路系统:以气缸为中心,包括气体、控制等部分 ④冷却系统:冷却二次回路和工件,保证焊机正常工作。 ⑤控制部分:按要求接通电源,并能控制焊接循环的各段时间及调整焊接电流等。 常见的手工点焊焊钳有X型、C型及特制型等,X型、C型结构示意图如下:

注:X型焊钳主要用来焊接水平或基本处于水平位置的工件; C型焊钳主要用来焊接垂直或近似垂直位置的工件;而特制焊钳主要用来焊接有特殊位置或尺寸要求的工件。 1.3 电阻点焊操作注意事项: ①焊接过程中,在电极与工件接触时,尽量使电极与工件接触点所在的平面保持垂直。(不 垂直会使电极端面与工件的接触面积减小,通过接触面的电流密度就会增大,导致烧穿、熔核直径减小、飞溅增大等焊接缺陷。) ②焊接过程中,应避免焊钳与工件接触,以免两极电极短路。 ③电极头表面应保证无其它粘接杂物,发现电极头磨损严重或端部出现凹坑,必须立即更 换。(因为随着点焊的进行,电极端面逐渐墩粗,通过电极端面输入焊点区域的电流密度逐渐减小,熔核直径减小。当熔核直径小于标准规定的最小值,则产生弱焊或虚焊。 一般每打400∽450个焊点需用平锉修磨电极帽一次,每个电极帽在修磨9∽10次后需更换。) ④定期检查气路、水路系统,不允许有堵塞和泄露现象。 ⑤定期检查通水电缆,若发现部分导线折断,应及时更换。 ⑥停止使用时应将冷却水排放干净。 1.4 电阻焊的优缺点 电阻焊的优缺点(表1)

点焊基本原理

点焊基本原理 1.1 点焊接头的形成 电阻点焊原理和接头形成如图1所示。可简述为:将焊件3压紧在两电极2之间,施加电极压力后,阻焊变压器1向焊接区通过强大的焊接电流,在焊件接触面上形成真实的物理接触点,并随着通电加热的进行而不断扩大。塑变能与热能使接触点的原子不断激活,消失了接触面,继续加热形成熔化核心4,简称熔核。熔核中的液态金属在电动力作用下发生强烈搅拌,熔核内的金属成分均匀化,结合界面迅速消失。加热停止后,核心液态金属以自由能最低的熔核边界半熔化晶粒表面为晶核开始结晶,然后沿与散热相反方向不断以枝晶形式向中间延伸。通常熔核以柱状晶形式生长,将合金浓度较高的成分排至晶叉及枝晶前端,直至生长的枝晶相互抵住,获得牢固的金属键合,接合面消失了,得到了柱状晶生长较充分的焊点,如图2所示。或因合金过冷条件不同,核心中心区同时形成等轴晶粒,得到柱状晶与等轴晶两种凝固组织并存的焊点,如图3所示。同时,液态熔核周围的高温固态金属,在电极压力作用下产生塑性变形和强烈再结晶而形成塑性环①〔注:塑性环(corona bond)熔核周围具有一定厚度的塑性金属区域称为塑性环,它也有助于点焊接头承受载荷〕,该环先于熔核形成且始终伴随着熔核一起长大,如图4所示。它的存在可防止周围气体侵入和保证熔核液态

金属不至于沿板缝向外喷溅。 熔核凝固组织为全部柱状晶者,以65Mn熔核为例,其形成过程模型如图5所示。图中: 图5a 凝固前,在熔合线上(固-液相界面)有许多晶粒处于半熔化状态,显然熔核的液态金属能很好的润湿取向不同的半熔化晶粒表面,为异质成核进行结晶提供了有利条件。 图5b 液态熔核的温度降低时,由于成分过冷较大,以半熔化晶粒作底面沿<100>向长出枝晶束。 在电极与母材的急冷作用下,凝固界面前形成较大的温度梯度,因而使枝晶主干伸入液体中较远,枝晶生长很快,枝晶臂间距H与冷却速度V间存在以下关系。 一次枝晶臂间距H1∝V-? 二次枝晶臂间距H2∝V-(?~?) 由于薄件脉冲点焊熔核尺寸小,电极与母材的急冷作用强,液体金属的冷却速度极快,因此枝晶臂的间距甚小。 图5c 枝晶继续生产、凝固层向前推进,液体向枝晶间充填。 枝晶间的液体逐渐向枝晶上凝固,使枝晶变长变粗,靠近母材处由于温度低,液体向枝晶上凝固快,以至形成连续的凝固层。由于65Mn合金具有较宽的凝固温度范围,故凝固层呈锯齿形起状,由于晶界在凝固层内形成,这就造成柱状

钣金件点焊参数标准(DOC)

钣金件点焊参数标准 核准: 审核: 会签: 制定:付强红 发布日期:2011/07/06 海宁红狮宝盛科技有限公司发布

1.目的: 规范点焊过程参数不确定性及标准的不明确性,同时规范和明确焊接的使用,判定及检测方法,保证公司产品的焊接质量,并加以规定,以便检查工作的顺利进行和实施 2.范围: 适用部门:技术、生产部焊接及公司其它涉及焊接的车间;公司所生产的所有需点焊产品,但是有特殊要求的产品除外 适用客户:公司所生产的所有需点焊产品,如 BE,WINCOR 及其他客户,但是有特殊要求的产品除外. 3.引用标准: 1.BE PS-01-01_03 Welding焊接标准 2.国内点焊标准 3.国内点焊接检测方法 4.点焊参数规格及标准 电阻点焊(resistance spot welding),简称点焊。是焊件装配成搭接接头,并压紧在两电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊是一种高速、经济的重要连接方法,适用于制造可以采用搭接、接头不要求气密、厚度小于3mm的冲压、轧制的薄板构件。当然,它也可焊接厚度达6mm或更厚的金属构件,但这时其综合技术经济指标将不如某些熔焊方法。 如下为焊接参数规格及标准参考表: 1.点焊通常采用搭接接头或折边接头(图1).接头可以由两个或两个以上等厚度或不等厚度、相同材料或不相同材料的零件组成,焊点数量可为单点或多点.在电极可达性良好的条件下,接头主要尺寸设计可参见表1、表2和表3。 图1

2.焊前工件表面清理 点焊、凸焊和缝焊前,均需对焊件表面进行清理,以除掉表面脏物与氧化膜,获得小而均匀一致的接触电阻,这是避免电极粘结、喷溅、保证点焊质量和高生产率的主要前提.对于重要焊接结构和铝合金焊件等,尚需每批抽测施加一定电极压力下的两电极间总电阻R,以评定清理效果,一般情况下可由清理工艺保证。清理方法可有二类:机械法清理,主要有喷砂、刷光、抛光及磨光等;化学清理用溶液参见表5,也可查阅相关熔焊资料。 3、常用金属材料的点焊 判断金属材料点焊焊接性的主要标志:①材料的导电性和导热性,即电阻率小而热导率大的金属材料,其焊接性较差; ②材料的高温塑性及塑性温度范围,即高温屈服强度大的材料(如耐热合金)、塑性温度区间较窄的材料(如铝合金),其焊接性较差;③材料对热循环的敏感性,即易生成与热循环作用有关缺陷(裂纹、淬硬组织等)的材料(如65Mn),其焊接性较差;④熔点高、线膨胀系数大、硬度高等金属材料,其焊接性一般也较差。当然,评定某一金属材料点焊焊接性时,应综合、全面地考虑以上诸因素。 3.1 低碳钢的点焊(表6)

电阻焊接原理与电阻点焊过程四个阶段

电阻焊接原理与电阻点焊过程四个阶段 电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。 在动力电池的成组工艺中,电阻焊作为一种比较成熟的工艺,被在一些场合应用,比如单体与母排的焊接,电池极耳与并联导电条的连接等等。由于设备简单,成本较低,在电池行业发展早期,应用比较多。虽然近年有逐步被更先进的激光焊接和超声焊接替代的趋势……不管怎样,整理一份资料,了解一下这位成型工艺界的前辈。 电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。 电阻焊接原理 电阻焊(resistance welding)是把工件置于一定的电极力夹紧间,然后利用接电流通过件所析出的电阻热使被材料熔化,待冷却后形成可靠点的接方法。 电阻焊基本形式如下图所示,将即将接的材料 3 夹紧于两电极2 之间,在施加一定的接压力后,接变压器 1 在接区释放较大的电流,并持续一定的时间,直到件的接触面间出现了真实的接触点后,再继续加大接电流让熔核持续地生长,此时接材料接触位置的原子不断被激活后形成熔化核心4。 最后接变压器停止通电,被融化件材料遇冷凝固为点。利用电流流经工件接触面及邻近区域产生的电阻热效应将其加热到熔化或塑性状态,使之形成金属结合的一种方法。电阻焊方法主要有四种,即点、缝、凸、对。 电阻焊点的热源是电流通过接区产生的电阻热。电阻焊点时,电流通过件产生的热量可由下式确定: Q=I Rt

电阻点焊方法和工艺资料

点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区,形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距l很大时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。 其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料(见图11-8) 调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有: (1)采用强条件使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。 (2)采用不同接触表面直径的电极在薄件或导电、导热性好的工件一侧采用较小直径,以增加这一侧的电流密度、并减少电极散热的影响。 (3)采用不同的电极材料薄板或导电、导热性好的工件一侧采用导热性较差的铜合金,以减少这

第五章电阻点焊_百度文库.

第五章电阻点焊 5.1概述 点焊是电阻焊的一种, 是将被焊工件压紧于两电极之间, 并通过电流利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态, 使之形成金属结合的一种方法, 如图 5.1 所示。 点焊是一种高速、经济的连接方法。它适用于制造接头不要求气密,厚度小于3mm, 冲压、轧制的薄板搭接构件,广泛用于汽车、摩托车、航空航天、家具等行业产品的生产。 图 5.1 点焊示意图 5.2点焊的基本原理 5.2.1点焊过程(焊接循环 图 5.2为点焊的基本焊接循环, 图 5.33为点焊焊接过程示表图。点焊过程由四个基本阶段组成。 图 5.2 点焊的基本焊接循环图 5.3 点焊焊接过程示意图 (1 预压阶段—将待焊的两个焊件搭接起来,置于上、下铜电极之间,然后施加一定的电极压力,将两个焊件压紧。 (2 焊接时间—焊接电流通过工件,由电阻热将两工件接触表面加热到熔化温度,并逐渐向四周扩大形成熔核。 (3 维持时间—当熔核尺寸达到所要求的大小时,切断焊接电流,电极压力继续保持,熔核在电极压力作用下冷却结晶形成焊点。 (4 休止时间—焊点形成后,电极提起,去掉压力,到下一个待焊点压紧工件的时间。休止时间只适用于焊接循环重复进行的场合。 为了提高焊点的物理和化学性能,可以在基本焊接循环中加入下列其中之一或多个过程: (1 预压力使电极和工件紧密、贴合; (2 预热来降低工件上开始焊接时的温度梯度; (3 顶锻力压实熔核,防止产生裂纹和缩孔;

(4 回火、退火时间对硬化合金钢以达到所需求的强度; (5 后热以细化晶粒; (6 电流衰减以延迟AL 的冷却。 图 5.4 为一个比较复杂的焊接循环。 图 5.4 复杂的点焊焊接循环示例 5.2.2 焊接热的产生及其影响因素 5. 2.2.1焊接热量的产生 点焊时产生的热量由下式决定: Q=I2RT 式中: Q—产生的热量(J I—焊接电流(A R—电极间电阻( T—焊接时间(S 点焊时导电通路上的总电阻及热量分布如图 5.5所示。 图 5.5 点焊时导电通路上的电阻及热量分布 总电阻由以下七个部分组成: ①1,7—电极电阻,与电极材料有关; ②2,6—电极与工件之间的接触电阻,与电极和工件的表面状态,电极大小、形状及压力有关。此处产生的热量较多,但由于电极的热传导较好,并有水冷,母材达不到熔化温度。 ③3,5—母材本身电阻,正比于材料的电阻率和板厚,反比于导电面积。 ④4—母材间接触电阻,此处电阻最大,产热最多对焊接形核有作用的是接触电阻4,其它的电阻应尽可能减少。在一定的焊接循环 内,影响点焊接头热量多少的因素有:A.工件及电极电阻;B.工件间接触电阻以及工件与电极之间的接触电阻;C.工件及电极上的热量损失。 5. 2.2.2影响因素

电阻点焊基础.

?局部结合?形成结构-自发牛成 电阻焊接基础什么是屯阻点焊

为什么采用电阻焊 ?快速 -价廉 -零件兀配容差 -可靠 -能焊度层材料 .相对简单 什么使用电阻焊?厚度从0.6mm到 3.5m m的钢板 -热浸镀锌 ?电镀锌 -铝材

?辆现代汽车包含有3000多个 电阻焊点xm GM-4488M - -产品工程和制造间的规范. WS-1 - -GM的电阻点焊手册 GM9621P— -工艺控制文件 WESS- -WS-1计算器 WS?4— -焊接认证流程 WS-2 — -设备规范- 2 3—; A J BUU'K 二.'

?电阻点焊是对两层或 以上的金属板材加压 并保持, 同时进行加 执 八■ ■ ? Heat =PRT -作为电阻焊的a 的,热量是由焊接电流和电阻形 成的. -钢铁的电阻值范围是6()到150微欧. -电阻焊接钢铁的焊接电流范围J^7{)0()-l8(X)()安培 ?焊接时间范围是8到48个周波 热量-压力 -时间 □ 着

TMAHSFORMER 典型焊接程序 1 ()()()()安 2 X ().000100 欧 X 0.24 秒(12周波) =2400 ws (焦耳) 基本构件 -控制器 ?变压器 ?电极 I ^SECOBDMV I rJ ---- < C I i / I 、伫? / L ---------------------------- > SECOMDUV 3?3t VBLTS AMPS

?电极施压? -焊接电流导入零件 -冷却零件表面 电极施压目的 ?压紧零件 ?维持焊接电阻 ?如果电阻太低,生成热量不够. ?如果电阻太高,牛成热量过多. ?建立封闭压力 ?当焊接热量形成,在压力F热量扩散至焊接金属.

一、焊接接头的设计

焊接接头的设计 焊接是制造各种金属制品的一项重要工艺,由于它具有独特优异的技术经济指标。已被广泛应用于机械制造、石油化工、海洋船舶、航空航天、电力、电讯及家用电器等各个领域。 一、焊接接头的设计: 用焊接方法连接的接头称为焊接接头,焊接接头由焊缝、热影响区及相邻母材金属三部份组成。在一些重要的焊接结构中,如锅炉、压力容器、船体结构中,焊接接头不仅是重要的连接元件,而且与所连接的部件共同承受工作压力、载荷、温度和化学腐蚀。为此,焊接接头已成为整个金属结构不可分割的组成部分,它对结构运行的可靠性和使用寿命起着决定性的影响。 焊接接头的设计除了考虑焊接接头与母材金属的强度和塑性外,焊接接头的设计主要还包括如下内容: 1、确定焊接接头的形式和位置 在手工电弧焊中,由于焊件的厚度、结构的形状及使用条件不同,其接头形式及坡口形式也不相同。根据国家标准GB985—88《气焊、手工电弧焊及气体保护焊焊缝坡口的基本形式与尺寸》的规定,焊接接头的基本形式可分为四种:(见图焊接接头形式A) 对接接头:两焊件端面相对平行的接头称为对接接头,它是在焊接结构中采用最多的一种接头形式。 T形接头:一焊件的端面与另一焊件的表面构成直角或近似直角的接头,称为T形接头。 角接接头:两焊件端面间构成大于30度,小于135度夹角的接头,称为角接头。 搭接接头:两焊件部分重叠构成的接头称为搭接接头。 有时焊接结构中还有其他类型的接头形式,(见图焊接接头形式B)如十字接头、端接接头、卷边接头、套管接头、斜对接接头、锁底对接接头等。 焊接接头的形式:主要取决于焊件的结构形状和板厚。 焊接接头的位置:应布置在便于组装、焊接和检查(包括无损检测)的部位。 2、设计焊接接头的坡口形式和尺寸 当确定了焊接接头的的形式后,还应设计焊接接头的坡口形式及尺寸: I形对接接头(不开坡口)当钢板厚度在6mm以下,一般不开坡口,采用I形对接接头,只留1~2mm的接缝间隙; V形坡口对接接头(见图V形坡口)当钢板厚度为7~40mm时,可采用V 形坡口,V形坡口分为V形坡口、钝边V形坡口、单边V形坡口、钝边单边V 形坡口四种,它的特点是加工容易,但焊后焊件易产生角变形。 X形坡口对接接头(见图X形坡口)当钢板厚度为12~60mm时,可采用X形坡口,也称双V形坡口,它于V形坡口相比较,具有在相同厚度下,它能减少焊缝填充金属量约1/2,焊件焊后变形和产生的内应力也小些,所以它主要用于大厚度以及要求变形较小的结构中; U形坡口对接接头(见图U形坡口)当钢板厚度为20~60mm时,可采用U形坡口,40~60mm时采用双面U形坡口,U形坡口的特点是焊缝填充金属量最少,焊件产生的变形也小,但这种坡口加工较困难,一般应用于较重要的焊接

点焊技术参数及其设备

双点焊工艺总结 1 点焊质量 1.1焊接质量与参数对照表 1.2.1飞溅原因 (1)开始时电极预紧压力过小,熔化核心周围未形成塑性金属环而向外飞溅; (2)加热结束时,因加热时间过长,熔化核心过大,在电极压力下,塑性金属环发生崩溃,熔化金属从焊件之间或焊件表面溢出。 1.3焊接质量一般要求 1.3.1 焊透率

点焊接头的强度决定于焊点的几何尺寸及其内外质量。一般要求熔核直径随板厚增加而增大。熔核在单板上的熔化厚度hn对板厚度δ的百分比称焊透率A,即A=单板上的熔化高度hn/板厚δ×100%。通常规定A在20%-80%范围内。实验表明,焊点熔核直经符合要求时,取A》20%便可保证焊点的强度。A过大,熔核接近焊件表面,使表面金属过热,晶粒粗大,易出现飞溅或熔核内产生缩孔、裂纹等缺陷,接头承载能力下降。一般不许A>80%。 参考: (1)薄板焊接——薄板焊接时,因散热强烈,焊透率宜选小,可取10%左右。 (2)不同板厚焊接——薄板一边焊透率选10-20%。 (3)镁合金焊接——选60%左右。 (4)钛合金焊接——可达95%。 ※一般焊透率选40%左右较好。 1.3.2表面质量 一个好的焊点,从外观上看,表面压坑浅,平滑均匀过渡无明显凸肩或局部挤压的表面鼓起,不允许有外表环状或经向裂纹,表面不能有熔化或粘附的铜合金。从内部看,焊点形状规则,均匀其尺寸能满足结构强度的要求,核心内部无贯穿性或越规家值的裂纹,结合线深入及缩孔均在规定范围内,焊点核心无严重过热组织及其它不允许的缺陷。 1.3.3焊点直径 直接决定了接头的强度。一般焊点直径为:d=2δ+3(δ为板厚)。在板件搭边宽度的允许下,焊点直径应尽量大点。 2点焊工艺介绍 2.1 点焊过程 2.1.1概述 点焊经如图1所示过程:是一种永久结合的金属连接方式。焊件通过焊接电流处局部发热而发生塑性变形,同时在焊件加热处施加压力,形成熔核。 焊件自身的电阻,产生相当大的热量,温度也很高。尤其是在焊件之间的接触面处,首先熔化,形成熔化核心。电极与焊件之间的接触电阻也产生热量,但大部分被水冷的铜合金电极带走,于是电极与焊件之间接触处的温度远比焊件之间接触处为低。正常情况下是达不到熔化温度。在圆柱体周围的金属 因电流密度小,温度不高,其中靠近熔化核心的金属温度较高,达到塑性状态,在压力作用下发生焊接,形成一个塑性金属环,紧密地包围着熔化核心,不使熔化金属向外溢出。

法兰与管体焊接接头工艺设计

法兰与管体焊接接头工艺设计 前言 法兰是使管子与管子相互连接的零件,连接于管端。 法兰连接就是把两个管道、管件或器材,先各自固定在一个法兰盘上,两个法兰盘之间,加上法兰垫,用螺栓紧固在一起,完成了连接。有的管件和器材已经自带法兰盘,也是属于法兰连接。 法兰连接的主要特点是拆卸方便、强度高、密封性能好。安装法兰时要求两个法兰保持平行、法兰的密封面不能碰伤,并且要清理干净。法兰所用的垫片,要根据设计规定选用。 法兰分螺纹连接(丝接)法兰和焊接法兰。低压小直径有丝接法兰,高压和低压大直径都是使用焊接法兰,不同压力的法兰盘的厚度和连接螺栓直径和数量是不同的。 法兰连接使用方便,能够承受较大的压力。 此次是普通的低碳钢管体与法兰的焊接接头工艺的设计。 1.母材Q235 性能分析 Q235是普通的碳素结构钢,Q代表的是这种材质的屈服度,后面的235,就是指这 种材质的屈服值,在235 左右。并会随着材质的厚度的增加而使其屈服值减小。由于含碳适中,综合性能较好,强度、塑性和焊接等性能得到较好配合,用途最广泛。常轧制成盘条或圆钢、方钢、扁钢、角钢、工字钢、槽钢、窗框钢等型钢,中厚钢板。大量应用于建筑及工程结构。用以制作钢筋或建造厂房房架、高压输电铁塔、桥梁、车辆、锅炉、容器、船舶等,也大量用作对性能要求不太高的机械零件 由于低碳钢含碳量低,锰、硅含量也少,所以,通常情况下不会因焊接而产生严重硬化组织或淬火组织。焊接时,一般不需预热、控制层间温度和后热,焊后也不必采用热处理改善组织,整个焊接过程不必采取特殊的工艺措施,焊接性优良。 2.备料 备料的过程大致分为以下几步: (1 )选材 选取管体内径为350mm,壁厚为8mm的管体, 由于所选的管材和法兰盘均为Q235,故对管材无太多特殊的要求,须保证管材形状规则符 合标准,无裂纹,弯曲,变形等其他缺陷,能具有一定的耐压能力,耐腐蚀能力 选取法兰外径为550mm厚度为12mm,小孔直径为10mm管体与法兰的连接为焊接,所以管体内径应与法兰的内径一致。 (2)下料在选好的管体上划线,截取一定的满足需要的长度,且截面光滑平整,无毛刺,裂纹等。由于法兰要分块安装,故将法兰均分为6 瓣,要保证截线切口处,要平整。 (3)焊前准备 焊前准备有以下三点: 1 、技术准备焊工在施焊前需要进行的技术准备工作为:熟悉产品图纸,了解产品结构;熟悉产品焊接工艺,了解产品焊接接头要求的焊工持证项目,掌握产品焊接接头的焊接参数。

点焊工艺及参数

. ....................... 北為.............. ................ 点焊方法和工艺 一、点焊方法: 点焊通常分为双面点焊和单面点焊两大类。双面点焊时,电极由工件的两侧向焊接处馈电。典型的双面点焊方式如图11-5所示。图中a是最常用的方式,这时工件的两侧均有电极压痕。图中b表示用 大焊接面积的导电板做下电极,这样可以消除或减轻下面工件的压痕。常用于装饰性面板的点焊。图中c 为同时焊接两个或多个点焊的双面点焊,使用一个变压器而将各电极并联,这时,所有电流通路的阻抗必须基本相等,而且每一焊接部位的表面状态、材料厚度、电极压力都需相同,才能保证通过各个焊点的电流基本一致。图中d为采用多个变压器的双面多点点焊,这样可以避免c的不足。 单面点焊时,电极由工件的同一侧向焊接处馈电,典型的单面点焊方式如图11-6所示,图中a为 单面单点点焊,不形成焊点的电极采用大直径和大接触面以减小电流密度。图中b为无分流的单面双点点 焊,此时焊接电流全部流经焊接区。图中C有分流的单面双点点焊,流经上面工件的电流不经过焊接区, 形成风流。为了给焊接电流提供低电阻的通路,在工件下面垫有铜垫板。图中d为当两焊点的间距I很大 时,例如在进行骨架构件和复板的焊接时,为了避免不适当的加热引起复板翘曲和减小两电极间电阻,采用了特殊的铜桥A,与电极同时压紧在工件上。 在大量生产中,单面多点点焊获得广泛应用。这时可采用由一个变压器供电,各对电极轮流压住工件的型式(图11-7a),也可采用各对电极均由单独的变压器供电,全部电极同时压住工件的型式(图11-7b).后一型式具有较多优点,应用也较广泛。其优点有:各变压器可以安置得离所联电极最近,因而。其功率及尺寸能显著减小;各个焊点的工艺参数可以单独调节;全部焊点可以同时焊接、生产率高;全部电极同时压住工件,可减少变形;多台变压器同时通电,能保证三相负荷平衡。 二、点焊工艺参数选择 通常是根据工件的材料和厚度,参考该种材料的焊接条件表选取,首先确定电极的端面形状和尺寸。其次初步选定电极压力和焊接时间,然后调节焊接电流,以不同的电流焊接试样,经检查熔核直径符合要求后,再在适当的范围内调节电极压力,焊接时间和电流,进行试样的焊接和检验,直到焊点质量完全符合技术条件所规定的要求为止。最常用的检验试样的方法是撕开法,优质焊点的标志是:在撕开试样的一片上有圆孔,另一片上有圆凸台。厚板或淬火材料有时不能撕出圆孔和凸台,但可通过剪切的断口判断熔核的直径。必要时,还需进行低倍测量、拉抻试验和X光检验,以判定熔透率、抗剪强度和有无缩孔、裂纹等。 以试样选择工艺参数时,要充分考虑试样和工件在分流、铁磁性物质影响,以及装配间隙方面的差异,并适当加以调整。 三、不等厚度和不同材料的点焊 当进行不等厚度或不同材料点焊时,熔核将不对称于其交界面,而是向厚板或导电、导热性差的一边偏移,偏移的结果将使薄件或导电、导热性好的工件焊透率减小,焊点强度降低。熔核偏移是由两工件产热和散热条件不相同引起的。厚度不等时,厚件一边电阻大、交界面离电极远,故产热多而散热少,致使熔核偏向厚件;材料不同时,导电、导热性差的材料产热易而散热难,故熔核也偏向这种材料(见图11-8) 调整熔核偏移的原则是:增加薄板或导电、导热性好的工件的产热而减少其散热。常用的方法有: (1)采用强条件使工件间接触电阻产热的影响增大,电极散热的影响降低。电容储能焊机采用大电流和短的通电时间就能焊接厚度比很大的工件就是明显的例证。 (2)采用不同接触表面直径的电极在薄件或导电、导热性好的工件一侧采用较小直径,以增加这一侧的电流密度、并减少电极散热的影响。 (3)采用不同的电极材料薄板或导电、导热性好的工件一侧采用导热性较差的铜合金,以减少这一侧的热损失。

7 压力容器焊接接头设计

7 压力容器焊接接头设计 焊接接头由焊缝金属、热阻碍区及相邻母材三部分组成。在压力容器、锅炉和管道等过程设备中,焊接接头不仅是重要的连接元件,而且与所连接部件一起承担工作压力、其它载荷、温度和化学腐蚀介质的作用。焊接接头作为整个受压部件或承压设备不可分割的组成部分,对运行可靠性和工作寿命起着决定性的阻碍。因此,焊接接头的正确设计关于保证产品的质量具有十分重要的意义。 7.1 焊接接头设计基础 7.1.1 焊接接头的差不多类型与特点 焊接接头要紧起两个作用:一是连接作用,即把被焊件连成一个整体;二是承力作用,即承担被焊工件所受的载荷。焊接与被焊工件并联的接头,焊缝仅承担专门小的载荷,即使焊缝断裂,结构也可不能赶忙失效,这种接头中的焊缝称为联系焊缝,如图7-1a所示。焊缝与被焊工件串联的接头,焊缝承担全部载荷,一旦焊缝断裂,结构会赶忙失效,这种焊缝称为承载焊缝,如图7-1b所示。设计时联系焊缝不一定要求焊透或全长焊接,也不必运算焊缝强度,而承载焊缝必须运算强度,且必须采纳全熔透焊接。过程设备中常用的典型焊接接头类型有对接接头、T形或十字接头、搭接接头和角接接头等,如图7-2所示。 (a) (b) 图7-1 联系和承载焊缝 a)联系焊缝b)承载焊缝 对接接头较其它接头受力状况好,应力集中程度小,焊接时易保证质量,是优先广泛应用的接头。关于不同厚度的焊件,为了保证焊透,大多都要把焊件的对接边缘加工成各种形式的坡口。对接接头焊前对工件的边缘加工和装配要求较高。通常设备壳体上的纵、环焊缝均为对接接头。 T形及十字形接头能承担各种方向的力和力矩,其接头亦有不同类型,有不焊透和焊透的,有不开坡口和开坡口的。不开坡口者通常均为不焊透

钢筋焊接试验报告汇总表-建龙

SG-044 钢筋焊接试验报告汇总表 单位工程名称:成都康弘药业集团股份有限公司施工单位名称:成都倍特建筑安装工程有限公司共页,第页固体口服制剂异地改扩建项目 序号材料名称型号(规格)代表数量使用部位试验单编号备注 注册建造师(技术负责人): (签字)审核: (签字) 填表: (签字)

混凝土(弯拉)强度合格评定 施工单位:成都倍特建筑安装工程有限公司 单位工程名称 成都康弘药业集团股份有限公司 研发中心异地改扩建项目 混凝土强度等级 水泥品种及标号 配合比(重量比) 坍落度 (㎝) 养护条件 同批混凝土代表数量(m 3) 结构部位 水 水泥 砂 石子 外加剂 试件组数n= 合格判定系数λ1= λ3= λ2= λ4= 同一验收批强度平均值: 最小值f cu,min= 前一检验期强度标准差: 同一验收批强度标准差: 验收批各组试件弯拉强度: 标 准 差 已 知 统 计 方 法 m f cu= MPa f cuk+0.7§ m f cu f cuk+0.7§ f cu,min= MPa f ck-0.7§= f cu,min f ck-0.7§ 弯 拉 强 度 试 件 大 于 10 组 弯 拉 强 度 试 件 小 于 10 组 标 准 差 未 知 统 计 方 法 m f cu= MPa f cuk+λ1·s f cu= m f cu f cuk+λ1·s f cu f cu,min= MPa λ2·f cuk= f cu,min λ2·f cuk 非 统 计 方 法 m f cu= MPa λ3·f cuk= m f cu λ3·f cuk f cu,min= MPa λ4·f cuk= f cu,min λ4· f cuk 验收评定结论: 根据《混凝土强度检验评定标准》GB/T 50107-2010 方法进行评定,达到合格标准。 注册建造师(技术负责人): (签字) 年 月 日 审核人:(签字) 年 月 日 评定人:(签字) 年 月 日 监理工程师:(注册方章) 年 月 日 注:本表一式四份,建设单位、施工单位、监理单位、城建档案馆各一份。

ASME焊接接头分类

A S M E压力容器建造规范研讨会设计部分问题解答──第二部分焊接接头分类和焊接接头系数本文就2009年在上海举行的ASME压力容器建造规范研讨会中学员所提的与设计有关的问题进行汇总答复。 CACI于今年4月所组织的ASME规范Ⅷ(与设计有关)研讨会期间,与会者在会前和研讨中提出了不少问题,CACI要求归纳整理后公布。初步考虑,拟对研讨会中以书面或口头提及的低温操作和防脆断措施,焊接接头分类和焊接接头系数,压力试验及其限制条件,开孔及其补强,元件的形状和尺寸允差,换热器设计,全部改写ASMEⅧ-2的背景和主要修改内容等几个方面陆续整理,在整理中不拟以和讨论者一问一答的方式简单处理,而是根据规范的具体规定,从原理并规范的条文上系统说明。本文是其中的第二篇。 1焊接接头类别和焊接接头(焊缝)类型 焊接接头和焊缝二者既有区别,又有联系,见图1。 图1焊接接头和焊缝 ASMEⅧ-1[1][2]根据接头在容器上所处的位置,在UW-3节中划分为A、B、C、D四类;根据接头的结构型式,例如对接接头,搭接接头和角接接头,在表UW-12中分为(1)~(8)共计八个类型。对每种接头类别和相应的结构型式,规范在UW-2中规定了相应的使用限制。对于对接接头,在UW-11中规定了接头的射线及超声波检测要求,并相应在表UW-12中列出了焊接接头系数;对于角接接头,分别在UW-13、UW-15、UW-16规定了焊缝各处的尺寸要求和强度校核要求,并在UW-11的注中附带说明了无损检测要求。 2焊接接头分类 2.1分类的出发点 ASMEⅧ-1在UW-3中指出,分类是指焊接接头在容器上的位置而不是接头的型式。对“在容器上的位置”这一说法可以解读为分类的根据是接头所受应力的大小。由这点出发,对ASMEⅧ-1的焊接接头分类立刻就得以理解。 焊接接头在容器上所受应力的大小可以由接头在容器上的位置来分析,而接头在容器上的位置则和所连接两元件的结构有关。例如壳体本身或平板本身上的拼接接头,其所在处的应力一般都可以由板壳理论解得;而壳体或平板上连有接管处的接头,其所在处的应力并不能由板壳理论解得。所以规范将其所在处应力可以由板壳理论解得的接头划为A、B类,其中承受最大主应力的接头划为A类,承受第二主应力的接头划为B类,这种壳体本身或平板本身上的拼接接头除个别者外(下面分析)都是对接或搭接接头,不可能是角接接头。规范将其所在处应力并不能由板壳理论解得的接头划为C、D类,由于在同样载荷和尺寸时,平板应力高于壳体,所以将连接件之一为平板者划为C类,将两连接件都为壳体者划为D类,但涉及矩形截面容器侧板时,因在设计中计及了因压力

电阻点焊的主要技术参数.

电阻点焊的主要技术参数 电阻点焊的焊接技术参数主要由焊接时间、焊接电极压力和焊接电流三项,可根据钢筋级别、直径及焊接性能等选定。合理正确的参数值,要经过点焊过程中积累的经验来确定,不可生搬硬套。 1)焊接电流 焊接电流是指点焊时电极通过钢筋的电流。焊接电流的调节是通过电焊机变压器的分级转换开关的调节实现的,所以一般焊接电流这个参数由变压器级次的高低来反映,变压器级次高则焊接电流大,变压器级次低则焊接电流小。 焊接电流值的确定与钢筋直径的大小和通电时间长短有关,其间的函数关系可以表达为:焊接电流和焊接钢筋直径成正比,与通电时间成反比。 2)焊接时间 点焊机的焊接时间由四部分组成:预压时间,通电时间,锻压时间,休息时间。 预压时间:即是钢筋放大电极之后,已加上电极压力,但尚未通上焊接电流的时间。 通电时间:为已通上焊接电流的时间。 锻压时间:是焊接电流切断后,电极压力持续至消失的时间。 休息时间:是指电极工作停歇间隔时间。 在上述四段时间中,通电时间是和焊接质量密切相关的,因此焊接参数主要是指通电时间。不同情况点焊主要技术参数的关系前边已经叙述,如采用DN-75型点焊机,钢筋直径、变压器级数、通电时间之间的关系见表1。 表1 DN-75型点焊机焊接通电时间表 (单位:s) 变压器级数 较小钢筋直径(mm) 3 4 5 6 8 10 12 14 1 0.03 0.10 0.12 2 0.05 0.06 0.07 3 0.22 0.70 1.50 4 0.20 0.60 1.2 5 2.59 4.00 6 0.50 1.00 2.00 3.50 7 0.40 0.75 1.50 3.00 8 0.50 1.20 冷处理钢筋,则必须采用强参数。 3)电极压力 电极压力是钢筋电焊时,从预压到锻压过程中最高的焊接压力。在一定的焊接电流和通电时间的条件下,还必须确保适当的电极压力,只有这样,才能保证焊点质量。而 - 1 -

点焊的基本原理

点焊的基本原理 摘要:本文从点焊的热源及熔核的形成过程、在焊接过程中焊接参数对焊点的影响及调整方法、在焊接过程中易出现的缺陷及处理措施、焊点的一般检验方法及常用的检验标准等四个方面综述了点焊的形成、调整及检验过程。 关键词:点焊焊接缺陷参数调整 一、点焊的热源及熔核的形成过程 在点焊过程中,点焊的热源主要有电极与金属的接触电阻热、金属内部的电阻热,金属与金属的接触电阻热,而在焊接过程中以金属内部的电阻热为主,占在焊接过程形核热量的95%左右。主要原因是在开始阶段,工件是靠接触电阻及工件本身电阻所产生的热量加热。但随着加热的进行,工件之间的接触点熔化消失,金属间接触电阻消失,但金属内部电阻率随着温度的升高而增大,所以在焊接过程中金属内部电阻为主要热源。 焊点的形成一般要经常过四个过程:预压-焊接-维持-休止。 预压的作用是在焊件的接触点得到尽可能大的接触面积。在焊接过程中,从宏观方面来看,件与件之间的接触是面与面之间的接触;但是从微观方面来看,件与件之间的接触其实是点与点之间的接触,因为每个工件的表面是不可能绝对光滑的,也就是说工件表面都有凸起和凹坑,所以件与件之间的接触就变成了件上面的凸起点之间的接触。当瞬间有很大的电流通过时,由于产生的电阻热很高,很快就使工件的接触点开始熔化,随着熔化金属的加多,工件之间的接触面也不断加大,电流密度相对减少。但是,如在电流闭合瞬间电极压力不够大,则接触面积相对较小,接触电阻相对较大,在接触点上会立即产生很多热量,接触点处金属会很快熔化,并以火花的形式飞溅出来,产生飞溅。这时,工件可能被烧穿,电极可能被烧坏。

在维持阶段,当熔核达到合格的形状与尺寸后,切断电流电源。熔核是在电极压力作用下冷却结晶。结晶一般从温度较低、散热较好、首先达到结晶温度的的熔核周界开始,即从半熔化晶粒表面开始,以结晶形式沿着与散热相反的方向生长。 休止时间是指第一个焊点焊接结束与第二个焊点焊点焊接开始之间的间隔时间,一般在焊接时无要求。 熔核的结晶是在封闭的金属模内进行的,结晶时不能自由收缩,用电极挤压可使正在结晶的金属变得致密,使之不易产生缩孔或裂缝。如压力不足则可能会造成外部缺陷。 二、在焊接过程中各焊接参数对焊点的影响及调整方法 熔核的形成过程中对熔核的形成产生重要影响的参数主要有:焊接电流、焊接时间、电极压力、电极头端面尺寸。 ⑴焊接电流及焊接时间的影响 根据焦耳定率 Q=I2RT 当时间一定时,电流增大时,在一定时间内的产热量增加;当电流一定时,时间增大,在一定时间内的产热量也会增加。 ⑵电极压力的影响 电极压力将影响焊接区的加热程度和塑性变形程度。随着电极力的增大,焊件接触电阻和本身电阻会减小,电流密度也会降低。在其他参数不变的情况下,增大电极力将减慢加热速度,并使焊点熔核尺寸减小而导致焊点强度降低。 ⑶电极头端面尺寸的影响

相关主题