搜档网
当前位置:搜档网 › 线性代数知识点总结汇总

线性代数知识点总结汇总

线性代数知识点总结汇总
线性代数知识点总结汇总

线性代数知识点总结

1 行列式

(一)行列式概念和性质

1、逆序数:所有的逆序的总数

2、行列式定义:不同行不同列元素乘积代数和

3、行列式性质:(用于化简行列式)

(1)行列互换(转置),行列式的值不变

(2)两行(列)互换,行列式变号

(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式

(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。

(5)一行(列)乘k加到另一行(列),行列式的值不变。

(6)两行成比例,行列式的值为0。

(二)重要行列式

4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积

5、副对角线行列式的值等于副对角线元素的乘积乘

6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则

7、n阶(n≥2)范德蒙德行列式

数学归纳法证明

★8、对角线的元素为a,其余元素为b的行列式的值:

(三)按行(列)展开

9、按行展开定理:

(1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0

(四)行列式公式

10、行列式七大公式:

(1)|kA|=k n|A|

(2)|AB|=|A|·|B|

(3)|A T|=|A|

(4)|A-1|=|A|-1

(5)|A*|=|A|n-1

(6)若A的特征值λ1、λ2、……λn,则

(7)若A与B相似,则|A|=|B|

(五)克莱姆法则

11、克莱姆法则:

(1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。

2 矩阵

(一)矩阵的运算

1、矩阵乘法注意事项:

(1)矩阵乘法要求前列后行一致;

(2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律)

(3)AB=O不能推出A=O或B=O。

2、转置的性质(5条)

(1)(A+B)T=A T+B T

(2)(kA)T=kA T

(3)(AB)T=B T A T

(4)|A|T=|A|

(5)(A T)T=A

(二)矩阵的逆

3、逆的定义:

AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1

注:A可逆的充要条件是|A|≠0

4、逆的性质:(5条)

(1)(kA)-1=1/k·A-1 (k≠0)

(2)(AB)-1=B-1·A-1

(3)|A-1|=|A|-1

(4)(A T)-1=(A-1)T

(5)(A-1)-1=A

5、逆的求法:

(1)A为抽象矩阵:由定义或性质求解

(2)A为数字矩阵:(A|E)→初等行变换→(E|A-1)

(三)矩阵的初等变换

6、初等行(列)变换定义:

(1)两行(列)互换;

(2)一行(列)乘非零常数c

(3)一行(列)乘k加到另一行(列)

7、初等矩阵:单位矩阵E经过一次初等变换得到的矩阵。

8、初等变换与初等矩阵的性质:

(1)初等行(列)变换相当于左(右)乘相应的初等矩阵

(2)初等矩阵均为可逆矩阵,且E ij-1=E ij(i,j两行互换);

E i-1(c)=E i(1/c)(第i行(列)乘c)

E ij-1(k)=E ij(-k)(第i行乘k加到j)

★(四)矩阵的秩

9、秩的定义:非零子式的最高阶数

注:(1)r(A)=0意味着所有元素为0,即A=O

)=n(满秩)←→ |A|≠0 ←→A可逆;

(2)r(A n

×n

r(A)<n←→|A|=0←→A不可逆;

(3)r(A)=r(r=1、2、…、n-1)←→r阶子式非零且所有r+1子式均为0。

10、秩的性质:(7条)

(1)A为m×n阶矩阵,则r(A)≤min(m,n)

(2)r(A±B)≤r(A)±(B)

(3)r(AB)≤min{r(A),r(B)}

(4)r(kA)=r(A)(k≠0)

(5)r(A)=r(AC)(C是一个可逆矩阵)

(6)r(A)=r(A T)=r(A T A)=r(AA T)

(7)设A是m×n阶矩阵,B是n×s矩阵,AB=O,则r(A)+r(B)≤n 11、秩的求法:

(1)A为抽象矩阵:由定义或性质求解;

(2)A为数字矩阵:A→初等行变换→阶梯型(每行第一个非零元素下面的元素均为0),则r(A)=非零行的行数

(五)伴随矩阵

12、伴随矩阵的性质:(8条)

(1)AA*=A*A=|A|E → ★A*=|A|A-1

(2)(kA)*=k n-1A*

(3)(AB)*=B*A*

(4)|A*|=|A|n-1

(5)(A T)*=(A*)T

(6)(A-1)*=(A*)-1=A|A|-1

(7)(A*)*=|A| n-2·A

★(8)r(A*)=n (r(A)=n);

r(A*)=1 (r(A)=n-1);

r(A*)=0 (r(A)<n-1)

(六)分块矩阵

13、分块矩阵的乘法:要求前列后行分法相同。

14、分块矩阵求逆:

3 向量

(一)向量的概念及运算

1、向量的内积:(α,β)=αTβ=βTα

2、长度定义:||α||=

3、正交定义:(α,β)=αTβ=βTα=a1b1+a2b2+…+a n b n=0

4、正交矩阵的定义:A为n阶矩阵,AA T=E ←→ A-1=A T←→ A T A=E → |A|=±1 (二)线性组合和线性表示

5、线性表示的充要条件:

非零列向量β可由α1,α2,…,αs线性表示

(1)←→非齐次线性方程组(α1,α2,…,αs)(x1,x2,…,x s)T=β有解。

★(2)←→r(α1,α2,…,αs)=r(α1,α2,…,αs,β)(系数矩阵的秩等于增广矩阵的秩,用于大题第一步的检验)

6、线性表示的充分条件:(了解即可)

若α1,α2,…,αs线性无关,α1,α2,…,αs,β线性相关,则β可由α1,α2,…,αs线性表示。

7、线性表示的求法:(大题第二步)

设α1,α2,…,αs线性无关,β可由其线性表示。

(α1,α2,…,αs|β)→初等行变换→(行最简形|系数)

行最简形:每行第一个非0的数为1,其余元素均为0

(三)线性相关和线性无关

8、线性相关注意事项:

(1)α线性相关←→α=0

(2)α1,α2线性相关←→α1,α2成比例

9、线性相关的充要条件:

向量组α1,α2,…,αs线性相关

(1)←→有个向量可由其余向量线性表示;

(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,x s)T=0有非零解;

★(3)←→r(α1,α2,…,αs)<s 即秩小于个数

特别地,n个n维列向量α1,α2,…,αn线性相关

(1)←→ r(α1,α2,…,αn)<n

(2)←→|α1,α2,…,αn |=0

(3)←→(α1,α2,…,αn)不可逆

10、线性相关的充分条件:

(1)向量组含有零向量或成比例的向量必相关

(2)部分相关,则整体相关

(3)高维相关,则低维相关

(4)以少表多,多必相关

★推论:n+1个n维向量一定线性相关

11、线性无关的充要条件

向量组α1,α2,…,αs线性无关

(1)←→任意向量均不能由其余向量线性表示;

(2)←→齐次方程(α1,α2,…,αs)(x1,x2,…,x s)T=0只有零解

(3)←→r(α1,α2,…,αs)=s

特别地,n个n维向量α1,α2,…,αn线性无关

←→r(α1,α2,…,αn)=n ←→|α1,α2,…,αn |≠0 ←→矩阵可逆12、线性无关的充分条件:

(1)整体无关,部分无关

(2)低维无关,高维无关

(3)正交的非零向量组线性无关

(4)不同特征值的特征向量无关

13、线性相关、线性无关判定

(1)定义法

★(2)秩:若小于阶数,线性相关;若等于阶数,线性无关

【专业知识补充】

(1)在矩阵左边乘列满秩矩阵(秩=列数),矩阵的秩不变;在矩阵右边乘行满秩矩阵,矩阵的秩不变。

(2)若n维列向量α1,α2,α3线性无关,β1,β2,β3可以由其线性表示,即(β1,β2,β3)=(α1,α2,α3)C,则r(β1,β2,β3)=r(C),从而线性无关。

←→r(β1,β2,β3)=3 ←→ r(C)=3 ←→ |C|≠0

(四)极大线性无关组与向量组的秩

14、极大线性无关组不唯一

15、向量组的秩:极大无关组中向量的个数成为向量组的秩

对比:矩阵的秩:非零子式的最高阶数

★注:向量组α1,α2,…,αs的秩与矩阵A=(α1,α2,…,αs)的秩相等★16、极大线性无关组的求法

(1)α1,α2,…,αs为抽象的:定义法

(2)α1,α2,…,αs为数字的:

(α1,α2,…,αs)→初等行变换→阶梯型矩阵

则每行第一个非零的数对应的列向量构成极大无关组

(五)向量空间

17、基(就是极大线性无关组)变换公式:

若α1,α2,…,αn与β1,β2,…,βn是n维向量空间V的两组基,则基变换公式为(β1,β2,…,βn)=(α1,α2,…,αn)C n×n

其中,C是从基α1,α2,…,αn到β1,β2,…,βn的过渡矩阵。

C=(α1,α2,…,αn)-1(β1,β2,…,βn)

18、坐标变换公式:

向量γ在基α1,α2,…,αn与基β1,β2,…,βn的坐标分别为x=(x1,x2,…,x n)T,y=(y1,y2,…,y n)T,,即γ=x1α1 + x2α2 + …+x nαn =y1β1 + y2β2 + …+y nβn,则坐标变换公式为x=Cy或y=C-1x。其中,C是从基α1,α2,…,αn到β1,β2,…,βn的过渡矩阵。C=(α1,α2,…,αn)-1(β1,β2,…,βn)

(六)Schmidt正交化

19、Schmidt正交化

设α1,α2,α3线性无关

(1)正交化

令β1=α1

(2)单位化

4 线性方程组

(一)方程组的表达形与解向量

1、解的形式:

(1)一般形式

(2)矩阵形式:Ax=b;

(3)向量形式:A=(α1,α2,…,αn)

2、解的定义:

若η=(c1,c2,…,c n)T满足方程组Ax=b,即Aη=b,称η是Ax=b的一个解(向量)

(二)解的判定与性质

3、齐次方程组:

(1)只有零解←→r(A)=n(n为A的列数或是未知数x的个数)

(2)有非零解←→r(A)<n

4、非齐次方程组:

(1)无解←→r(A)<r(A|b)←→r(A)=r(A)-1

(2)唯一解←→r(A)=r(A|b)=n

(3)无穷多解←→r(A)=r(A|b)<n

5、解的性质:

(1)若ξ1,ξ2是Ax=0的解,则k1ξ1+k2ξ2是Ax=0的解

(2)若ξ是Ax=0的解,η是Ax=b的解,则ξ+η是Ax=b的解

(3)若η1,η2是Ax=b的解,则η1-η2是Ax=0的解

【推广】

(1)设η1,η2,…,ηs是Ax=b的解,则k1η1+k2η2+…+k sηs为

Ax=b的解(当Σk i=1)

Ax=0的解(当Σk i=0)

(2)设η1,η2,…,ηs是Ax=b的s个线性无关的解,则η2-η1,η3-η1,…,ηs-η1为Ax=0的s-1个线性无关的解。

变式:①η1-η2,η3-η2,…,ηs-η2

②η2-η1,η3-η2,…,ηs-ηs-1

(三)基础解系

6、基础解系定义:

(1)ξ1,ξ2,…,ξs是Ax=0的解

(2)ξ1,ξ2,…,ξs线性相关

(3)Ax=0的所有解均可由其线性表示

→基础解系即所有解的极大无关组

注:基础解系不唯一。

任意n-r(A)个线性无关的解均可作为基础解系。

★7、重要结论:(证明也很重要)

设A施m×n阶矩阵,B是n×s阶矩阵,AB=O

(1)B的列向量均为方程Ax=0的解

(2)r(A)+r(B)≤n(第2章,秩)

8、总结:基础解系的求法

(1)A为抽象的:由定义或性质凑n-r(A)个线性无关的解

(2)A为数字的:A→初等行变换→阶梯型

自由未知量分别取1,0,0;0,1,0;0,0,1;代入解得非自由未知量得到基础解系(四)解的结构(通解)

9、齐次线性方程组的通解(所有解)

设r(A)=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,

则Ax=0的通解为k1η1+k2η2+…+k n-rηn-r (其中k1,k2,…,k n-r为任意常数)10、非齐次线性方程组的通解

设r(A)=r,ξ1,ξ2,…,ξn-r为Ax=0的基础解系,η为Ax=b的特解,

则Ax=b的通解为η+ k1η1+k2η2+…+k n-rηn-r (其中k1,k2,…,k n-r为任意常数)(五)公共解与同解

11、公共解定义:

如果α既是方程组Ax=0的解,又是方程组Bx=0的解,则称α为其公共解

12、非零公共解的充要条件:

方程组Ax=0与Bx=0有非零公共解

←→有非零解←→

13、重要结论(需要掌握证明)

(1)设A是m×n阶矩阵,则齐次方程ATAx=0与Ax=0同解,r(ATA)=r(A)(2)设A是m×n阶矩阵,r(A)=n,B是n×s阶矩阵,则齐次方程ABx=0与Bx=0同解,r(AB)=r(B)

5 特征值与特征向量

(一)矩阵的特征值与特征向量

1、特征值、特征向量的定义:

设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。

2、特征多项式、特征方程的定义:

|λE-A|称为矩阵A的特征多项式(λ的n次多项式)。

|λE-A |=0称为矩阵A的特征方程(λ的n次方程)。

注:特征方程可以写为|A-λE|=0

3、重要结论:

(1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量

(2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。

(3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。

△4、总结:特征值与特征向量的求法

(1)A为抽象的:由定义或性质凑

(2)A为数字的:由特征方程法求解

5、特征方程法:

(1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn

注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略) (2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解)

6、性质:

(1)不同特征值的特征向量线性无关

(2)k重特征值最多k个线性无关的特征向量

1≤n-r(λi E-A)≤k i

(3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii

(4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0

(5)设α是矩阵A属于特征值λ的特征向量,则

A f(A)

A

T

A

-1

A*

P-1AP(相

似)

λf(λ)λ

λ

-1

|A|λ-1λ

αα/ ααP-1α

(二)相似矩阵

7、相似矩阵的定义:

设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B

8、相似矩阵的性质

(1)若A与B相似,则f(A)与f(B)相似

(2)若A与B相似,B与C相似,则A与C相似

(3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和)

【推广】

(4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似

(三)矩阵的相似对角化

9、相似对角化定义:

如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,

称A可相似对角化。

注:Aαi=λiαi(αi≠0,由于P可逆),故P的每一列均为矩阵A的特征值λi 的特征向量

10、相似对角化的充要条件

(1)A有n个线性无关的特征向量

(2)A的k重特征值有k个线性无关的特征向量

11、相似对角化的充分条件:

(1)A有n个不同的特征值(不同特征值的特征向量线性无关)

(2)A为实对称矩阵

12、重要结论:

(1)若A可相似对角化,则r(A)为非零特征值的个数,n-r(A)为零特征值的个数

(2)若A不可相似对角化,r(A)不一定为非零特征值的个数

(四)实对称矩阵

13、性质

(1)特征值全为实数

(2)不同特征值的特征向量正交

(3)A可相似对角化,即存在可逆矩阵P使得P-1AP=Λ

(4)A可正交相似对角化,即存在正交矩阵Q,使得Q-1AQ=QTAQ=Λ

6 二次型

(一)二次型及其标准形

1、二次型:

(1)一般形式

(2)矩阵形式(常用)

2、标准形:

如果二次型只含平方项,即f(x1,x2,…,x n)=d1x12+d2x22+…+d n x n2

这样的二次型称为标准形(对角线)

3、二次型化为标准形的方法:

(1)配方法:

通过可逆线性变换x=Cy(C可逆),将二次型化为标准形。其中,可逆线性变换及标准形通过先配方再换元得到。

★(2)正交变换法:

通过正交变换x=Qy,将二次型化为标准形λ1y12+λ2y22+…+λn y n2

其中,λ1,λ2,…,λn是A的n个特征值,Q为A的正交矩阵

注:正交矩阵Q不唯一,γi与λi对应即可。

(二)惯性定理及规范形

4、定义:

正惯性指数:标准形中正平方项的个数称为正惯性指数,记为p;

负惯性指数:标准形中负平方项的个数称为负惯性指数,记为q;

规范形:f=z12+…z p2-z p+12-…-z p+q2称为二次型的规范形。

5、惯性定理:

二次型无论选取怎样的可逆线性变换为标准形,其正负惯性指数不变。

注:(1)由于正负惯性指数不变,所以规范形唯一。

(2)p=正特征值的个数,q=负特征值的个数,p+q=非零特征值的个数=r(A)(三)合同矩阵

6、定义:

A、B均为n阶实对称矩阵,若存在可逆矩阵C,使得B=C T AC,称A与B合同

△7、总结:n阶实对称矩阵A、B的关系

(1)A、B相似(B=P-1AP)←→相同的特征值

(2)A、B合同(B=C T AC)←→相同的正负惯性指数←→相同的正负特征值的个数

(3)A、B等价(B=PAQ)←→r(A)=r(B)

注:实对称矩阵相似必合同,合同必等价

(四)正定二次型与正定矩阵

8、正定的定义

二次型x T Ax,如果任意x≠0,恒有x T Ax>0,则称二次型正定,并称实对称矩阵A是正定矩阵。

9、n元二次型x T Ax正定充要条件:

(1)A的正惯性指数为n

(2)A与E合同,即存在可逆矩阵C,使得A=C T C或C T AC=E

(3)A的特征值均大于0

(4)A的顺序主子式均大于0(k阶顺序主子式为前k行前k列的行列式)10、n元二次型x T Ax正定必要条件:

(1)a ii>0

(2)|A|>0

11、总结:二次型x T Ax正定判定(大题)

(1)A为数字:顺序主子式均大于0

(2)A为抽象:①证A为实对称矩阵:A T=A;②再由定义或特征值判定12、重要结论:

(1)若A是正定矩阵,则kA(k>0),A k,A T,A-1,A*正定

(2)若A、B均为正定矩阵,则A+B正定

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数知识点归纳同济第五版

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1. 行列式的计算: ① (定义法)12 1212 11 12121222() 121 2 ()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.

④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==**=-1 例 计算 2-100-1 300001100-25 解 2-100 -1 30000110 -2 5 =2-1115735-13-25?=?= ⑤ 关于副对角线: (1) 2 1121 21 1211 1()n n n n n n n n n n n a O a a a a a a a O a O ---* = =-1 ⑥ 范德蒙德行列式:()1 2 2 22 12 11 1112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏111 例 计算行列式

⑦ a b - 型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=-

线性代数必考知识点归纳

线性代数必考的知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、(1)m n C A O A A B B O B C ==- ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解;

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数知识点的总结

线性代数知识点总结 第一章行列式 第一节:二阶与三阶行列式 把表达式11221221a a a a -称为 1112 2122 a a a a 所确定的二阶行列式,并记作11122112a a a a , 即1112 112212212122 .a a D a a a a a a = =-结果为一个数。(课本P1) 同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数 表11 121321 222331 32 33 a a a a a a a a a 所确定的三阶行列式,记作1112132122 23313233 a a a a a a a a a 。 即11 1213 21 222331 32 33 a a a a a a a a a =112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++--- 二三阶行列式的计算:对角线法则(课本P2,P3) 注意:对角线法则只适用于二阶及三阶行列式的计算。 利用行列式计算二元方程组和三元方程组: 对二元方程组11112212112222 a x a x b a x a x b +=?? +=? 设1112 2122 0a a D a a = ≠11212 22 b a D b a = 11 1 2212 .a b D a b = 则1 12 2 221 111122122 b a b a D x a a D a a = =, 11 1 2122 211122122 .a b a b D x a a D a a = =(课本P2) 对三元方程组111122133121122223323113223333 a x a x a x b a x a x a x b a x a x a x b ++=?? ++=??++=?,

线性代数知识点总结归纳

线性代数知识点总结归纳 第一章行列式 知识点1:行列式、逆序数 知识点2:余子式、代数余子式 知识点3:行列式的性质 知识点4:行列式按一行(列)展开公式 知识点5:计算行列式的方法 知识点6:克拉默法则 第二章矩阵 知识点7:矩阵的概念、线性运算及运算律 知识点8:矩阵的乘法运算及运算律 知识点9:计算方阵的幂 知识点10:转置矩阵及运算律 知识点11:伴随矩阵及其性质 知识点12:逆矩阵及运算律 知识点13:矩阵可逆的判断 知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解 知识点16:初等变换的概念及其应用 知识点17:初等方阵的概念 知识点18:初等变换与初等方阵的关系

知识点19:等价矩阵的概念与判断 知识点20:矩阵的子式与最高阶非零子式 知识点21:矩阵的秩的概念与判断 知识点22:矩阵的秩的性质与定理 知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例 第三章向量 知识点25:向量的概念及运算 知识点26:向量的线性组合与线性表示 知识点27:向量组之间的线性表示及等价 知识点28:向量组线性相关与线性无关的概念 知识点29:线性表示与线性相关性的关系 知识点30:线性相关性的判别法 知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系 知识点33:求向量组的最大无关组 知识点34:有关向量组的定理的综合运用 知识点35:内积的概念及性质 知识点36:正交向量组、正交阵及其性质 知识点37:向量组的正交规范化、施密特正交化方法 知识点38:向量空间(数一) 知识点39:基变换与过渡矩阵(数一)

数三线性代数必考知识点

线性代数必考知识点 1、行列式 1. 行列式共有个元素,展开后有项,可分解为行列式; 2. 代数余子式的性质: ①、和的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为; 3. 代数余子式和余子式的关系: 4. 设行列式: 将上、下翻转或左右翻转,所得行列式为,则; 将顺时针或逆时针旋转,所得行列式为,则; 将主对角线翻转后(转置),所得行列式为,则; 将主副角线翻转后,所得行列式为,则; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积; ③、上、下三角行列式():主对角元素的乘积; ④、和:副对角元素的乘积; ⑤、拉普拉斯展开式:、 ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于阶行列式,恒有:,其中为阶主子式; 7. 证明的方法:

①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值; 2、矩阵 1. 是阶可逆矩阵: (是非奇异矩阵); (是满秩矩阵) 的行(列)向量组线性无关; 齐次方程组有非零解; ,总有唯一解; 与等价; 可表示成若干个初等矩阵的乘积; 的特征值全不为0; 是正定矩阵; 的行(列)向量组是的一组基; 是中某两组基的过渡矩阵; 2. 对于阶矩阵:无条件恒成立; 3. 4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和; 5. 关于分块矩阵的重要结论,其中均、可逆:

若,则: Ⅰ、; Ⅱ、; ②、;(主对角分块) ③、;(副对角分块) ④、;(拉普拉斯) ⑤、;(拉普拉斯) 3、矩阵的初等变换与线性方程组 1. 一个矩阵,总可经过初等变换化为标准形,其标准形是唯一确定的:; 等价类:所有与等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵、,若; 2. 行最简形矩阵: ①、只能通过初等行变换获得; ②、每行首个非0元素必须为1; ③、每行首个非0元素所在列的其他元素必须为0; 3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换) ①、若,则可逆,且; ②、对矩阵做初等行变化,当变为时,就变成,即:; ③、求解线形方程组:对于个未知数个方程,如果,则可逆,且; 4. 初等矩阵和对角矩阵的概念: ①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、,左乘矩阵,乘的各行元素;右乘,乘的各列元素; ③、对调两行或两列,符号,且,例如:;

《线性代数》的主要知识点

《线性代数》的主要知识点 第一部分 行列式 概念: 1. n 阶行列式展开式的特点:①共有n!项,正负各半; ②每项有n 个元素相乘,且覆盖所有的行与列; ③每一项的符号为(列) 行)ττ+-() 1( 2. 元素的余子式以及代数余子式 ij j i ij M )1(A +-= 3. 行列式的性质 计算方法: 1. 对角线法则 2. 行列式的按行(列)展开 (另有异乘变零定理) 第二部分 矩阵 1. 矩阵的乘积 注意:①不满足交换率(一般情况下B A A B ≠) ②不满足消去率 (由AB=AC 不能得出B=C ) ③由AB=0不能得出A=0或B=0 ④若AB=BA ,则称A 与B 是可换矩阵 2.矩阵的转置 满足的法则:T T T B A )B A (+=+,T T T T T A B AB kA kA ==)(,)( 3.矩阵的多项式 设n n x a x a a x +++=Λ10)(?,A 为n 阶方阵,则 n n A a A a E a A +++=Λ10)(?称为A 的n 次多项式。 对与对角矩阵有关的多项式有结论如下: (1)如果 1 -Λ=P P A ,则n n A a A a E a A +++=Λ10)(? 11110---Λ++Λ+=P Pa P Pa EP Pa n n Λ= 1)(-ΛP P ?

(2)若),,(21n a a a diag Λ=Λ,则))(),(),(()(21n a a a diag ????Λ=Λ 4.逆矩阵:n 阶矩阵A,B ,若E BA AB ==,则A,B 互为逆矩阵。 n 阶矩阵A 可逆0A ≠?; n A r =?)( (或表示为n A R =)()即A 为满秩矩阵; ?A 与E 等价; ?A 可以表示成若干个初等矩阵的乘积; ?A 的列(行)向量组线性无关; ?A 的所有的特征值均不等于零 求法:①伴随矩阵法:*1 1 A A A ?= - ②初等变换法:()() 1,,-???→?A E E A 初等行变换或??? ? ?????→????? ??-1A E E A 初等列变换 , E 是单位矩阵 性质:(1)矩阵A 可逆,则A 的逆矩阵是唯一的 (2)设A 是n 阶矩阵,则有下列结论 ①若A 可逆,则1 -A 也可逆,且A A =--1 1)( ②若A 可逆,则T A 也可逆,且T T A A )() (11 --= ③若A 可逆,数0≠k ,则kA 可逆,且111)(--= A k kA ④若B A .为同阶矩阵且均可逆,则B A .也可逆,且111 )(---=A B AB 5.方阵A 的行列式: 满足下述运算规律(设B A ,为n 阶方阵,λ为数) ①A A T = ②A A n λλ= ③B A AB = 6.伴随矩阵:行列式A 的各个元素的代数余子式ij A 所构成的如下的矩阵 ???? ?? ? ??=nn n n n n A A A A A A A A A A Λ M M M ΛΛ212221212111* ,称为矩阵A 的伴随矩阵(注意行与列的标记的不同) 伴随矩阵具有性质:E A A A AA ==* *

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

考研线性代数知识点归纳

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数知识点总结汇编

《线性代数》复习提纲第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在; ③若A、B为同阶方阵,则|AB|=|A|*|B|; ④|kA|=k^n|A| 3.矩阵的秩 (1)定义非零子式的最大阶数称为矩阵的秩; (2)秩的求法一般不用定义求,而用下面结论: 矩阵的初等变换不改变矩阵的秩;阶梯形矩阵的秩等于非零行的个数(每行的第一个非零元所在列,从此元开始往下全为0的矩阵称为行阶梯阵)。 求秩:利用初等变换将矩阵化为阶梯阵得秩。 4.逆矩阵 (1)定义:A、B为n阶方阵,若AB=BA=I,称A可逆,B是A的逆矩阵(满足半边也成立); (2)性质:(AB)^-1=(B^-1)*(A^-1),(A')^-1=(A^-1)';(A B的逆矩阵,你懂的)(注意顺序)

《线性代数》知识点 归纳整理

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式 ............................................................................................................................................. - 2 - 02、主对角线 ................................................................................................................................................................. - 2 - 03、转置行列式 ............................................................................................................................................................. - 2 - 04、行列式的性质 ......................................................................................................................................................... - 3 - 05、计算行列式 ............................................................................................................................................................. - 3 - 06、矩阵中未写出的元素 ............................................................................................................................................. - 4 - 07、几类特殊的方阵 ..................................................................................................................................................... - 4 - 08、矩阵的运算规则 ..................................................................................................................................................... - 4 - 09、矩阵多项式 ............................................................................................................................................................. - 6 - 10、对称矩阵 ................................................................................................................................................................. - 6 - 11、矩阵的分块 ............................................................................................................................................................. - 6 - 12、矩阵的初等变换 ..................................................................................................................................................... - 6 - 13、矩阵等价 ................................................................................................................................................................. - 6 - 14、初等矩阵 ................................................................................................................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵 ......................................................................................................................... - 7 - 16、逆矩阵 ..................................................................................................................................................................... - 7 - 17、充分性与必要性的证明题 ..................................................................................................................................... - 8 - 18、伴随矩阵 ................................................................................................................................................................. - 8 - 19、矩阵的标准形: ..................................................................................................................................................... - 9 - 20、矩阵的秩: ............................................................................................................................................................. - 9 - 21、矩阵的秩的一些定理、推论 ................................................................................................................................. - 9 - 22、线性方程组概念 ................................................................................................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)........................................................................................ - 10 - 24、行向量、列向量、零向量、负向量的概念 ....................................................................................................... - 11 - 25、线性方程组的向量形式 ....................................................................................................................................... - 11 - 26、线性相关与线性无关的概念 ......................................................................................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关.............................................................................................. - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题...................................... - 12 - 29、线性表示与线性组合的概念 ......................................................................................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................................................... - 12 - 31、线性相关(无关)与线性表示的3个定理 ....................................................................................................... - 12 - 32、最大线性无关组与向量组的秩 ........................................................................................................................... - 12 - 33、线性方程组解的结构 ........................................................................................................................................... - 12 -

线性代数知识点总结第二章doc资料

线性代数知识点总结 第二章 矩阵及其运算 第一节 矩阵 定义 由m n ?个数() 1,2,,;1,2,,ij a i m j n ==L L 排成的m 行n 列的数表 11 12 1212221 2n n m m mn a a a a a a a a a L L M M M L 称为m 行n 列矩阵。简称m n ?矩阵,记作111212122 211 n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L L L L L L ,简记为() ()m n ij ij m n A A a a ??===,,m n A ?这个数称为的元素简称为元。 说明 元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。 扩展 几种特殊的矩阵: 方阵 :行数与列数都等于n 的矩阵A 。 记作:A n 。 行(列)矩阵:只有一行(列)的矩阵。也称行(列)向量。 同型矩阵:两矩阵的行数相等,列数也相等。 相等矩阵:AB 同型,且对应元素相等。记作:A =B 零矩阵:元素都是零的矩阵(不同型的零矩阵不同) 对角阵:不在主对角线上的元素都是零。 单位阵:主对角线上元素都是1,其它元素都是0,记作:E n (不引起混淆时,也可 表示为E )(课本P29—P31) 注意 矩阵与行列式有本质的区别,行列式是一个算式,一个数字行列式经过计算可求得其值,而矩阵仅仅是一个数表,它的行数和列数可以不同。 第二节 矩阵的运算 矩阵的加法 设有两个m n ?矩阵() () ij ij A a B b ==和,那么矩阵A 与B 的和记作A B +, 规定为111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b A B a b a b a b +++?? ? +++ ? += ? ? +++?? L L L L L L L 说明 只有当两个矩阵是同型矩阵时,才能进行加法运算。(课本P33) 矩阵加法的运算规律 ()1A B B A +=+; ()()()2A B C A B C ++=++

相关主题