搜档网
当前位置:搜档网 › 基于MATLAB的图像增强算法的研究

基于MATLAB的图像增强算法的研究

基于MATLAB的图像增强算法的研究
基于MATLAB的图像增强算法的研究

图像增强算法研究与实现

摘要:图像处理是近年来发展起来的新兴研究领域,受到越来越多学者的关注。本论文主要研究图像处理的一个重要分支——图像增强技术。由于图像在生成、传递、压缩、储存、变换等一系列过程中,会受到各种因素的影响,例如在不同的照明环境下操作,会引起图像亮度的变化;操作设备时,不可避免地会发生抖动,引起图像位移;捕捉到的图像对比度低或是位置不适当等等。在实际应用中,这些都会造成图像质量的退化,影响图像的整体视觉效果。因此,为了解决这些问题,需要对图像进行增强处理,对已获取的图像进行加工处理,有目的地对图像进行增强,比如突出图像的局部细节特征或是增强图像的整体效果,同时抑制图像中不必要的细节信息,把模糊的图像变成清晰的图像,改善图像的质量,以便在后续的图像分析时,实验者或计算机视觉系统可以对图像进行更好地分析和理解。

本文对图像增强技术的常用方法进行了介绍,其中主要介绍了空域图像增强算法的原理及方法,包括灰度变换、直方图处理(直方图均衡化和直方图规定化)等和频域图像增强算法的原理及方法,包括低通滤波、高通滤波、同态滤波,以及彩色图像增强算法的原理及实现。在此基础上,提出了两种结合空域和频域特征的图像增强算法,并在MATLAB开发平台实现了相关算法。实验结果表明,经这种综合的图像增强算法处理后的图像,其主观效果明显改善,图像增强的效果也比采用一种算法的效果要好。

关键词:图像增强;空域图像增强;频域图像增强;彩色图像增强

Research and Implementation of Image Enhancement

Algorithm

Abstract:Image processing has developed quickly in recent years, it was a new kind of research field, more and more scholars have paid attention to it. This paper mainly studied an important branch of image processing--image enhancement technology. During the generation, transmission, compression, storage, transformation and other a series of process, image would be affected various factors, such as:variations in the operating environment's illumination could cause lighting changes; when operating the equipment, shocking inevitably occurs, causing displacements; it was common to capture image with low contrast or inappropriate position, etc. In practical application, these factors could cause image quality degradation, and the overall visual effect of the image. Therefore, in order to solve these problems, it was need to enhance the image,and improve the quality of the image. Image enhancement was an important part of image processing, and aimed at enhancing the image with the purpose, for example, it was not only enhance the contrast of entire image or the local details but also inhibit the unnecessary details of the image, make fuzzy image turn into clear image, improve the quality of image, so that in the subsequent image analyze, an operator or a machine vision system could be better to analyze and understand the image.

This paper introduced the commonly methods of image enhancement, including the principle and method of the image enhancement algorithm in the spatial domain, such as gray level transformations, histogram processing (histogram equalization and histogram specification) and so on and the principle and method of the image enhancement algorithm in the frequency domain, such as lowpass filter, highpass filter, and homomorphic filter,and the color image enhancement algorithm.Based on this, two image enhancement algorithms combining spatial and frequency domain features were proposed, and the correlation algorithm was implemented in the MATLAB platform.Experimental results showed that the subjective effect of the image enhancement algorithm was obviously improved after this synthetic image enhancement algorithm, and the effect of image enhancement was better than the one algorithm.

Keywords:Image enhancement;Image enhancement in the spatial domain;Image enhancement in the frequency domain;The color image enhancement

目录

1 绪论 (1)

1.1 课题的背景及意义 (1)

1.1.1 课题的背景 (1)

1.1.2 研究意义 (2)

1.2 国内外研究现状与分析 (3)

1.3 本文研究的主要内容 (4)

2 空域图像增强算法的原理及实现 (6)

2.1 直方图修正 (6)

2.1.1 直方图均衡化 (6)

2.1.2 直方图规定化 (7)

2.2 锐化 (8)

2.2.1 梯度锐化法 (8)

2.2.2 拉普拉斯锐化 (11)

2.3 去噪 (12)

2.3.1 邻域平均法 (12)

2.3.2 中值滤波法 (14)

2.4 灰度变换 (15)

2.4.1 比例线性变换 (15)

2.4.2 分段线性变换 (17)

2.4.3 非线性灰度变换 (18)

3 频域图像增强算法的原理及实现 (20)

3.1 低通滤波器 (20)

3.2 高通滤波器 (20)

3.3 同态滤波器 (21)

4 彩色图像增强算法的原理及实现 (23)

4.1 假彩色增强 (23)

4.2 伪彩色增强 (23)

4.2.1 密度分割法 (23)

4.2.2 灰度变换法 (25)

4.3 真彩色增强 (25)

5 空域和频域相结合的图像增强算法的研究 (28)

5.1 低频滤波和拉普拉斯变换、直方图均衡化相结合算法 (28)

5.1.1 低通滤波 (28)

5.1.2 拉普拉斯锐化 (30)

5.1.3 直方图均衡化 (30)

5.1.4 具体算法及其实现 (31)

5.2 高通滤波和直方图均衡化相结合算法 (32)

5.2.1 高频滤波 (32)

5.2.2 具体算法及其实现 (33)

结论 (35)

参考文献 (36)

致谢 (37)

1 绪论

1.1 课题的背景及意义

1.1.1 课题的背景

图像是物体透射或反射的光信息,通过人的视觉系统接收后,在大脑中形成的印象或认识,是自然景物的客观反映。一般来说,凡是能为人类视觉系统所感知的有形信息,或人们心目中的有形想象都统称为图像。图像作为一种有效的信息载体,是人类获取和交换信息的主要来源。因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。所谓图像处理,就是通过某些数学运算对图像信息进行加工和处理,以满足人的视觉心理和实际应用需求。图像增强是图像处理的一个重要环节,在整个图像处理过程中起着承前启后的重要作用。

数字图像处理是二十世纪六十年代发展起来的一门新型学科,它的系统研究始于二十世纪五十年代。二十世纪七十年代以后,数字图像处理在陆地卫星遥感和生物学的图片分析方面取得了丰硕的成果。与此同时,在X射线图像增强、光学显微镜图像分析、粒子物理、地质勘探、工业检测和机器人视觉等方面数字图像处理也获得了广泛的应用。近几十年来,各相关学科领域的迅猛发展,对图像处理提出了越来越高的要求,使得图像处理的研究更加深入、广泛,发展也更为迅速。

目前,数字图像处理已经应用于诸多领域。在遥感方面,它主要应用于航空和卫星遥感。毋庸置疑,数字图像处理的发展推动了遥感技术的进步,并在此基础上发展了多光谱图像遥感、SAR图像遥感和微波图像遥感,以及与这些遥感技术相应的处理技术。当前,人们运用数字图像处理技术分析、处理遥感图像,可以有效地进行资源和矿藏的勘探、调查,农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,图像处理的应用展开较早,主要应用对象有X 射线图像、超声图像和生物切片显微图像。运用图像处理技术可以提高图像的清晰度和分辨率,便于医生的诊断。在工业和工程方面,图像处理技术已有效地应用于无损探伤、质量检测和自动控制等方面,如应力分析、流场分析、机械零件检测和识别等。在军事方面,图像处理技术主要应用于飞行导航、导弹打靶的景物图像制导和搜寻。此外,图像传输、存储和显示的自动化指挥系统,飞机、坦克和军舰的模拟训练器也大多需要图像处理技术。在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及跟踪、监视、交通监控、事故分析等都在不同程度上使用了图像处理技术的成果。

在数字图像处理中,图像增强是至关重要的,它是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或锐化,以便于显示、观察或进一步分析与处理。在获取图像的过程中,由于多种因素的影响,导致图像质量会有所退化。图像增强的目的在于:

(1)采用一系列技术改善图像的视觉效果,提高图像的清晰度。

(2)将图像转化成为一种更适合于人或机器进行分析处理的形式。

增强的主要目标是使处理后的图像比原始图像更适合于特定应用。这里“特定”的含义很重要,所以图像增强的算法是因应用不同而不同的。例如,一种很适合增强X摄像图像的方法,不一定是增强由空间探测器发回的火星图像的最好办法。

图像增强的最大困难是很难对增强结果加以量化描述。图像增强的通用理论是不存在的。这与衡量图像增强质量通用的客观标准有关。增强的方法往往具有针对性,增强的结果一般要靠人的主观感觉加以评价。因此,图像增强的方法必须有选择的使用。

1.1.2 研究意义

人类传递信息的主要媒介是语言和图像。据统计,在人类接受的各种信息中视觉信息占80%,所以图像信息是十分重要的信息传递媒体和方式。图像传递系统包括图像采集、图像压缩、图像编码、图像存储、图像通信、图像显示这六个部分。在实际应用中每个部分都有可能导致图像品质变差,使图像传递的信息无法被正常读取和识别。例如,在采集图像过程中由于光照环境或物体表面反光等原因造成图像整体光照不均,或是图像采集系统在采集过程中由于机械设备的缘故无法避免的加入采集噪声,或是图像显示设备的局限性造成图像显示层次感降低或颜色减少等等。因此,研究快速且有效地图像增强算法成为推动图像分析和图像理解领域发展的关键内容之一。

图像增强处理是数字图像处理的一个重要分支。由于场景条件的影响,拍摄的视觉效果不佳,这就需要使用图像增强技术来改善人的视觉效果,比如突出图像中目标物体的某些特点及从数字图像中提取目标物的特征参数等,这些都有利于对图像中目标的识别、跟踪和理解。图像增强处理主要内容是突出图像中感兴趣的部分,减弱或去除不需要的信息。这样使有用信息得到加强,从而得到一种更加实用的图像或者转换成一种更适合人或机器进行分析处理的图像。图像增强的应用领域也十分广阔并涉及各种类型的图像。例如,在军事应用中,增强红外图像提取我方感兴趣的敌军目标;在医学应用中,增强X射线所拍摄的患者脑部、胸部图像病症的准确位置;在空间应用中,对用太空照相机传来的月球图片进行增强处理来改善图像的质量;在农业应用中,增强遥感图像来了解农作物的分布;在交通应用中,对大雾天气图像进行增强,加强车牌、路标等重要信息的识别;在数码相机中,增强彩色图像可以减少光线不均、颜色失真等造成的图像退化现象。

影响图像质量清晰度的因素很多,室外光照度不均匀会造成图像灰度过于集中;摄像头获得的图像经过数/模转换,线路传输时都会产生噪声污染,图像质量不可避免会降低,轻者为图像伴有噪点,难于看清图像细节;重者为图像模糊不清,连物体表面的大概轮廓都难以看清。因此,对图像进行分析处理之前,必须对图像进行改善,

即增强图像。图像增强并不考虑图像质量下降的原因,只是将图像中感兴趣的重要特征有选择性的突出,同时衰减不需要的特征,目的就是提高图像的可懂度。

1.2 国内外研究现状与分析

图像处理技术始于20世纪60年代,由于当时图像存储成本高,处理设备造价高,因而其应用面很窄。1964年美国加州理工学院的喷气推进实验室,首次对徘徊者7号太空飞船发回的月球照片进行了处理,得到了前所未有的清晰图像,这标志着图像处理技术开始得到实际应用。70年代进入发展期,出现了CT和卫星遥感图像,对图像处理的发展起到了很好的促进作用。80年代进入普及期,此时微机已经能够承担起图形图像处理的任务。VLSI的出现使得处理速度大大提高,其造价也进一步降低,极大的促进了图像处理系统的普及和应用。90年代是图像处理技术进入实用化时期,图像处理的信息量巨大,对处理的速度要求极高。21世纪的图像处理技术向高质量化方面发展,实现图像的实时处理,采用数字信息技术使图像包含最为完整和丰富的信息,实现图像的智能生成、处理、理解和识别。

在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。

初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。

20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像增强处理提出了一个更高的要求。

到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。

20世纪90年代进入了应用期,人们运用数字图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查,城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像和生物切片显微图像等进行处理,提高图像的清晰度和分辨率。在工业和工程方面,主要应用于无损探伤、质量检测和过程自动控制等方面。在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。

图像增强是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了以模糊松弛、

模糊熵、模糊类等增强算法相结合来解决增强算法中映射函数的选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度的映射范围,使增强效果较好。

1.3 本文研究的主要内容

本文在图像增强的研究过程中包含的主要内容如图1-1所示。

??????????????????????????????????????????

灰度变换点运算直方图修正

空间域平滑区域运算锐化高通滤波图像增强频率域低通滤波同态滤波增强假彩色增强彩色增强伪彩色增强真彩色增强 图1-1 图像增强的主要内容

本次课题是基于在MATLAB 软件上的图像增加算法的研究,通过了解其国内外发展情况和应用概况,熟悉和掌握图像增强的原理,学习不同图像增强算法的实现。具体方案如下所示:

(1)学习基础的图像增强算法的理论知识及实现过程。通过调整各个参数,对比不同参数下的增强效果。其中空域图像增强包括基于点运算的灰度变换,直方图修正,和基于区域运算的图像去噪,图像锐化;频域图像增强包含低通滤波,高通滤波和同态滤波;彩色图像增强包括假彩色、伪彩色和真彩色图像增强。

(2)在对基础的图像增强算法有了一个深层次的认识之后,进行了两种综合的图像增强算法的研究,都是将空间域和频率域的方法结合在一起而形成的。一种是基于低频滤波和拉普拉斯变换、直方图均衡化相结合的图像增强算法,另一种是基于高频滤波与直方图均衡化相结合的图像增强算法。

(3)将不同算法下的图像增强效果进行比较,确定每一种算法的适用场合。

全文分为六章,具体章节安排如下:

第1章为绪论,主要阐述课题的研究背景及其意义,还有国内外研究现状与分析以及本文研究内容。

第2章是关于空域图像增强算法的原理及实现,具体涉及了直方图修正,去噪,锐化和灰度变换增强算法。

第3章是关于频域图像增强算法的原理及实现,包含低通滤波,高通滤波,同态滤波图像增强算法的原理与实现。

第4章关于彩色图像增强算法的原理及实现。有假彩色图像增强,伪彩色图像增强和真彩色图像增强。

第5章是基于传统的图像增强算法的扩展,基于空间域和频率域相结合的图像增强算法和基于空间域和频率域相结合的图像增强算法。

第6章本文结论,总结本文的主要工作。

2 空域图像增强算法的原理及实现

2.1 直方图修正

2.1.1 直方图均衡化

直方图均衡化是使原直方图变换为具有均匀密度分布的直方图,然后按该直方图调整原图像的一种图像处理技术。直方图均衡化通常用来增加许多图像的全局对比度。

这种方法对于背景和前景都太亮或者太暗的图像非常有用,这种方法尤其是可以带来X光图像中更好的骨骼结构显示以及曝光过度或者曝光不足照片中更好的细节显示的优点。这种方法的一个主要优势在于它是一个相当直观的技术并且是可逆操作,如果已知均衡化函数,那么就可以恢复原始的直方图,并且计算量也不大。这种方法的一个缺点是它对处理的数据不加选择,它可能会增加背景噪声的对比度并且降低有用信号的对比度。

(1)直方图均衡化的操作步骤:统计各灰度级像素数目;计算灰度概率分布;计算累积分布;折算到真实灰度值;确定灰度变换关系;进行灰度变换。

(2)图像直方图均衡化的特点。直方图均衡化操作后,直方图有平坦的趋势,但一般不会真正平坦。原因:灰度的离散取值可能导致原图像多个灰度值变换到新图像的同一个灰度值上(灰度值的合并),使灰度分布与理想情况有差异。

(3)直方图均衡化的主要思想是像素灰度值是依据灰度密度分布的,如果当前像素的灰度值>之前灰度值的平均值(平均值的像素点数除以面积乘以255)则当前像素的灰度值将减小(这也说明当前像素灰度值的像素过少(稀),将当前像素降低灰度值去补充),否则将变大。

(4)直方图均衡的优点:计算简单;无需人工干预;很多情况下效果较好。

(5)直方图均衡的不足:增强图像反差的同时增加了图像的可视度(原图像的多个灰度可能变换到一个灰度上,造成灰度级减少且不连续,形成“假轮廓”);自动增强图像整体对比度,但局部效果未必最好。

在MATLAB图像处理工具箱中使用histeq函数实现图像的均衡化处理,如图2-1所示。从效果图不难看出,经过直方图均衡化处理后的图像有一种“冲淡”的感觉;从直方图来看,处理后的图像直方图分布更趋均匀了。

尽管如此,直方图均衡化增强也存在着两点不足:其一,处理后的图像灰度级有所减少,致使某些细节消失;其二,某些图像,如直方图有高峰等,经处理后其对比度易产生不自然的过分增强。例如,有些卫星图像或医学图像因灰度分布过度集中,在对此类图像进行直方图均衡化处理时,其结果往往会出现过亮或过暗现像,达不到

增强视觉效果的目的。此外,对于图像的有限灰度级,量化误差也经常引起信息丢失,导致一些敏感的边缘因与相邻像素点的合并而消失,这是直方图修正增强无法避免的问题。

图2-1 直方图均衡化图像增强

2.1.2 直方图规定化

所谓直方图规定化,是指通过一个灰度映射函数将原直方图改造成用户希望的直方图。直方图规定化是一种根据给定的期望直方图来进行图像增强的手段,其关键在于灰度映射函数的定义。

在MATLAB中histeq函数也可以用于直方图规定化,图像处理结果如图2-2所示。左图所示的是一幅花的图像,图像整体亮度较暗,黑色区域偏多,左图显示出该图像的直方图分布集中在两个地方,如果用直方图均衡化处理,则会产生褪色效果,处理结果不理想。因此,可以对该图像采用直方图规定化,利用编制的图像增强软件的直方图规定化功能。经处理后的图像,比原始图像要亮,达到了图像增强的效果。从右图处理后的直方图可以看到,规定化的直方图比左图显示的原始图像直方图实现了平稳的灰度过渡。

由此可得出结论:

直方图均衡化只能产生近似均匀的直方图,这就限制了它的效果。但是直方图规定化能够产生具有特定的直方图,以便能够对图像中的某些灰度级加以增强。实验结

果表明直方图规定化能有选择地对某灰度范围进行局部的对比度增强,从而得到期望的增强图像。

图2-2 直方图规定化图像增强

2.2 锐化

平滑锐化时经常会使图像的边缘变得模糊,针对平均和积分运算使得图像模糊,可对其进行反运算,采取微分算子使用模板和统计差值的方法,使图像增强锐化。图像边缘和高频分量相对应,高通滤波器可以让高频分量畅通无阻,而对低频分量则充分限制,通过高通滤波器去除低频分量,也可以达到图像锐化的目的。

图像锐化主要影响图像中的低频分量,不影响图像中的高频分量。

图像锐化的主要目的有两个:

(1)增强图像边缘,使模糊的图像变得更加清晰,颜色变得鲜明突出,图像的质量有所改善,产生更适合人眼观察和识别的图像;

(2)希望通过锐化处理后,目标物体的边缘鲜明,以便于提取目标的边缘、对图像进行分割、目标区域识别、区域形状提取等,为进一步的图像理解与分析奠定基础。

图像锐化一般有两种方法:(1)微分法;(2)高通滤波法

这里主要介绍一下两种常用的微分锐化方法:梯度锐化法和拉普拉斯锐化法。

注意:由于锐化使噪声受到比信号还要强的增强,所以要求锐化处理的图像有较高的信噪比;否则,锐化后的图像的信噪比更低。

2.2.1 梯度锐化法

在图像处理中,一阶微分是通过梯度算法来实现的,对于一幅图像用函数f(x,y)

表示,定义f(x,y)在坐标点(x ,y )处的梯度是一个矢量,定义为

(),(21)x y f G x G f x y f G y →???

???????

==-????????????????

这个梯度向量的幅度由下式给出: ()11222222,()()(22)x y f f G f x y G G x y ??????=+=+-????????????

由上式可知:梯度的数值就是f(x,y)在其最大变化率方向上的单位距离所增加的量。

对于数字图像而言,微分可用差分来近似。因此上式可写成:

[](,)(,)(1,)(,)(,1)

(23)G f i j f i j f i j f i j f i j =-++-+- 另一种梯度算法是交叉的进行差分计算,称为罗伯特梯度法。其表达式如下所示: []22(,)(,)(1,1)(1,)(,1)(24)

G f i j f i j f i j f i j f i j =-++++-+- 对于图像而言,物体与物体之间,背景与背景之间的梯度变化很小,灰度变化较

大的地方一般集中在图像的边缘上,也就是物体和背景交接的地方。当我们设定一个阈值时,G [f (i ,j )]大于阈值就认为该像素点处于图像的边缘,对结果加上常数C ,以使边缘变亮;而对于G [f (i ,j )]不大于阈值就认为该像素点为同类像素,即同为物体或同为背景,常数C 的选取可以根据具体的图像特点。这样既增亮了图像的边界,同时又保留了图像背景原来的状态,比传统的梯度锐化具有更好的增强效果和适用性。

MATLAB 中edge 函数用于灰度图像的边缘检测。主要形式为:BW=edge (I ,method ,thresh ),对灰度图像I 进行边缘检测,检测的方法有method 决定,检测输出的图像是二值图像,阈值由thresh 指定。

阈值分割原理:

一幅图像包括目标、背景和噪声,设定某一阈值T 将图像分成两部分:大于T 的像素群和小于T 的像素群。(1为白色,0为黑色)

1,(,)T (,)(25)

0(,)T f x y f x y f x y ≥?=-?≤?,

图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。难点在于如何选择一个合适的阈值实现较好的分割。

在MATLAB 中edge 函数用于梯度锐化,不同阈值的图像处理结果如图2-3、2-4、

2-5所示。

图2-3 梯度锐化图像增强(阈值为0.1)

图2-4 梯度锐化图像增强(阈值为0.05)

图2-5 梯度锐化图像增强(阈值为0.025)

由处理结果可知,以不同的阈值进行梯度锐化处理时,效果也不同,阈值越小图像显示的细节就越多,而同时也更加的模糊,所以,在选择阈值时,得注意其合理性。此处可知,梯度锐化可以加强图像中景物的边缘,便于观察。

2.2.2 拉普拉斯锐化

除上述一阶微分外,还可以用二阶微分算子,如拉普拉斯算子,一个连续的二元函数f (x ,y ),其拉普拉斯运算定义为:

22222(26)

f f f x y ???=+-??

对于数字图像,拉普拉斯算子可以简化为:

(,)4(,)(1,)(1,)(,1)(,1)(27)g i j f i j f i j f i j f i j f i j =-+---+---

式(2-7)也可以表示为卷积的形式,即:

(,)(,)(,)(28)k l r k s l g i j f i r j s H r s =-=-=

---∑∑

式中,i ,j =0,1,2,…,N -1;k =1,l =1,H (r ,s )取下式:

1010141(29)010H -????=---????-??

在图像处理的过程中,函数的拉普拉斯算子也是借助模板来实现的。常用的模板有:

010010141,151(210)010010x y G G --????????=--=---????????--????

在MATLAB 中imfilter 函数用于拉普拉斯锐化,不同模板的图像处理结果如图2-6、2-7所示。由处理结果可知,图像边界的线条变得更加清晰了,达到了突出边缘的目的。但是选择模板时应该注意合理选择。

图2-6 拉普拉斯锐化图像增强(模板1)

图2-7 拉普拉斯锐化图像增强(模板2)

2.3 去噪

2.3.1 邻域平均法

我们知道大部分的噪声都可以看成是随机信号,它们对图像的影响可以看成是孤立的。对于某一像素而言,如果它与周围像素点相比,有明显的不同,就可以认为该点被噪声感染了。基于这样的分析,我们可以用领域平均的方法,来判断每一点是否含有噪声,并用适当的方法消除所发现的噪声。

设当前待处理像素为f(m,n),给出一个处理模板,大小为3*3,如图2-8所示。

图2-8 模板示意图

处理后的图像设为g (m ,n ),则处理过程可描述为:

11(,)(,)(,)(,)99(,)i Z j Z i Z j Z f m i n j f m n f m i n j g m n f m n ε∈∈∈∈?++-++>?=???∑∑∑∑当其他

(2-11) 式中,Z={-1,0,1},ε称为门限,它可以根据对误差容许的程度,选为图像灰度均方差的若干倍。

这种邻域平均的方法也可以用另一种形式来表示,把平均处理看成是图像通过一个低通空间滤波器后的结果,设该滤波器的冲激响应为H (r ,s ),于是滤波器输出的结果g (m ,n )可以表示成卷积的形式,即:

(,)(,)(,)(212)k l r k s l f m n f m r n s H r s =-=-=

---∑∑

式中,m ,n =0,1,2,…,N -1。K ,l 决定了所选邻域的大小,一般来说,k =l =1即3*3大小的邻域就可以了,也可以根据实际需要选取5*5或7*7的邻域,H (r ,s )为加权函数,又被称为掩膜或模板。常用的模板还有很多,如下所示:

1111112110111H ????=??????,2121124216121H ????=??????,311111018111H ????=??????,411

141111(213)2441004H ????????=-??????????

采用上面四种模板对图像进行处理的结果如图2-9所示。由处理结果可以看出选择模板的重要性。当选择合适的模板时,原椒盐噪声图像经过处理会变得清晰,虽然在清晰度上会有所下降,但是整体来说比原图像效果要好。

图2-9 邻域平均法图像增强

2.3.2 中值滤波法

在邻域平均法中,为了抑制噪声,选用了低通滤波器,但是通常图像中的边缘信息里含有大量的高频信息,所以在去噪的同时也使边界变得模糊了,这种现象在平滑处理的例子中可以看到。那么可否找到一种新的方法,在滤除噪声的同时,还能保留住边缘的信息呢?中值滤波便属于这一类的增强方法,它是非线性的处理,这种在去噪的同时可以兼顾到边界信息的保留。即:

()

=--∈-

g m n Median f m k n l k l

(,){,,(,)W}(214)

例如,选择滤波用的窗口W如下面所示,是一个一维窗口,待处理像素的灰度取这个模块中灰度的中值,滤波过程为:

表 2-1滤波窗口

m-2 m-1 m m+1 m+2 除上述窗口外,常用的窗口还有方形、十字形、圆形和环形等。

中值滤波是一种非线性运算。它对于消除孤立点和线段的干扰十分有用。特别是对于二进噪声(噪声的值只有两个)尤为有效,对于消除高斯噪声的影响效果不佳。它的最大特点是在消除噪声的同时,还能保持边界信息。对于一些细节较多的复杂图像,还可以多次使用不同的中值滤波,然后通过适当的方式综合所得的结果作为输出,这样可以获得更好的平滑图像,以达到保护边缘的效果。(medfilt)

图2-10 中值滤波法图像增强

处理结果如图2-10所示。左图是一幅带有椒盐噪声的图像,右图是对左图进行中值滤波处理的结果,很明显,经过中值滤波处理之后图像,椒盐噪声被很好的去除,图像变得更加清晰了。

2.4 灰度变换

在扫描的过程中,由于扫描系统或者光电转换系统多方面的原因,常出现图像不均匀、对比度不足等弊端,使人眼在观看图像时视觉效果很差。灰度图像变换就是在图像采集系统中对图像像素进行修正,使整幅图像成像均匀。

灰度变换可使图像动态范围增大,图像对比度扩展,从而使图像变得清晰,且图像上的特征更加明显。常见的灰度变换的方法有:比例线性变换、分段线性变换和非线性变换。下面分别对各类方法进行简单的介绍。

2.4.1 比例线性变换

假定原图像f(x,y)的灰度范围为[a,b],希望变换后图像g(x,y)的灰度范围扩展

至[c ,d],则灰度线性变换的表达式为:

(,)[()/()]((,))(215)g x y d c b a f x y a c =---+-

此关系可用下图2-11表示。如果变换后比变换前的灰度范围大,那么变换后增大了不同像素间的灰度差值,因此图像对比度得到加强,图像更加清晰。

g(x,y)

f(x,y)a b

c

d

图2-11 灰度范围线性变换关系 如果图像中大部分像素的灰度级分布在区域[a ,b]之间,小部分灰度级超出了此区域,那么能在[m ,n]区间内作线性变换,超出这个区间的转化成一个常数。因此,为改善增强效果,可以用如下所示的变换关系:

,0(,)a (,)[()/()]((,)),(,)(216),(,)c f x y g x y d c b a f x y a c a f x y b

d b f x y M ≤

此关系可用图2-12表示。

g(x,y)f(x,y)a b c

d

g(x,y)

f(x,y)a b

图2-12 线性变换关系 图2-13 图像的负相变换关系

在灰度线性变换中有一种特别的情况,就是图像的负相变换。对图像求反是将原图像灰度值翻转,简单的说就是将黑的变成白的,将白的变成黑的。普通黑白照片和底片就是这种关系。负相变换的关系可用图2-13表示,图中a 为图像灰度的最大值。

matlab的图像拼接程序(20210119152549)

mat lab的图像拼接程 序 -CAL-FENGHAI-(2020YEAR-YICAI) JINGBIAN ll=imread{,,);%6dTAEuODpAp¥dy2All%6D j u j A ll=double(ll); [hl wl dl]=size(ll);%TEOEdl±al2lldU±a>>0dl I2= imread(n);

I2=double(l2); [h2 w2 d2]=size(l2); %show input images and prompt for correspondences figure;subplot( 1,2,1); image(ll/255); axis image; hold on; title(*first input image'); [XI Yl]=ginput(2); %get two points from the usersubplot(l z2,2); image(l2/255); axis image; hold on; title('sec ond input image*); [X2 Y2]=ginput(2); %get two points from the user %estimate parameter vector(t); Z=[X2' Y2'; Y2'?X2'; HOOjOOll]1; xp=[Xl; Yl]; t=Z\xp; %solve the I in ear system a=t(l); %=s cos(alpha) b=t(2);%=s sin(alpha) tx=t(3); ty=t(4); % con struct transformation matrix(T) T=[a b tx;?b a ty; 0 0 1]; % warp incoming corners to determine the size of the output image(in to out) cp二T*[l 1 w2 w2; 1 h2 1 h2; 1 111]; Xpr=min([cp(l/:)/O]): max([cp(l/:)/wl]);%min x:maxx Ypr=min([cp(2/:)/0]): max([cp(2/:)/hl]); %min y: max y [Xp/Yp]=ndgrid(Xpr/ Ypr); [wp hp]=size(Xp); %=size(Yp) % do backwards transform (from out to in) X=T\[Xp(:) Yp(:) ones(wp*hp/l)]';%warp %re-sample pixel values with bilinear interpolation clear Ip; xl二reshape(X(b:)Mp,hp)‘; yl=reshape(X(2/:)/wp/hp)1; lp(:/:/l)=interp2(l2(:/:/l)/xl/ yl, '?bilinear*); %red Ip(:/:/2)=interp2(l2(:/:/2)/xl/ yl, '?bilinear1);%green lp(:z:/3)=interp2(l2(:/:/3)/xl/ yl, ^bilinear1);%blue % offset and copy original image into the warped image offset= -rounddmindcpfl/)^]) min([cp(2,:),0])]); lp(l+offset ⑵:hl+offset(2), 1+off set {1): wl+offset (1 )z:); doublefllflihl.liwl,:)); %show the result figure; image(lp/255); axis image; title('mosaic image'); ll=double(imread(n)); [hl wl dl]=size(ll);%TEOEdl±aPll6lJ±agl I2=double(imread(n)); [h2 w2 d2]=size(l2); %show input images and prompt for correspondences figure; subplot(l,2z l); image(ll/255); axis image; hold on; title('first input image'); [XI Yl]=ginput(2); %get two points from the user subplot(122); image(l2/255); axis image; hold on; title('sec ond input image1); [X2 Y2]=ginput(2); %get two points from the user %estimate parameter vector(t); Z=[X2' Y2'; Y2'-X2' ;1100;0011]'; xp=[Xl; Yl]; t=Z\xp; %solve the linear system %% a=t(l); %=s cos(alpha) b=t(2); %=s sin(alpha)

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.sodocs.net/doc/0d2144907.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

指纹增强算法的研究

本科毕业设计(论文) 学生姓名: 专 业: 指导教师完成日期

诚信承诺书 本人承诺:所呈交的论文是本人在导师指导下进行的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已发表或撰写过的研究成果。参与同一工作的其他同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 本论文使用授权说明 本人完全了解南通大学有关保留、使用学位论文的规定,即:学校有权保留论文及送交论文复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容。 (保密的论文在解密后应遵守此规定) 学生签名:指导教师签名:日期:

指纹在生物识别应用中的形式最为广泛,具有唯一性和不变性。指纹增强的主要任务 Gabor 滤波器在指纹增强技术中的应用,并且在此基础上提出了改进算法。仿真显示Gabor 滤波法在指纹增强技术中具有很好的带通特性,也具有很好的方向和频率选择特性。因此,用 滤波法的缺陷,改善指纹图像的滤 摘要是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记述文献重要内容的短文。其要素一般包括:①目的——研究、研制、调查等的前提、目的和任务,所涉及的主要范围;②方法——所用的原理、理论、条件、对象、材料、工艺、结构、手段、装备、程序等;③结果——实验的、研究的结果,数据,被确定的关系,观察结果,得到的效果,性能等;④结论——结果的分析、研究、比较、评价、应用,提出的问题,今后的课题,假设,启发,建议,预测等; 写摘要时不得简单地重复题名中已有的信息,要排除在本学科领域中已成常识的内容,要用第三人称的写法。应采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法,不使用“本文”、“作者”等作为主语。摘要的第一句不要与题目重复;取消或减少背景信息,只表示新情况、新内容;不说空洞的词句,如“本文所讨论的工作是对过去×××的一个极大地改进”、“本工作首次实现了……”、“经检索尚未发现与本文类似的工作”等;此外,作者的打算及未来的计划不能纳入摘要。

基于matlab的图像识别与匹配

基于matlab的图像识别与匹配 摘要 图像的识别与匹配是立体视觉的一个重要分支,该项技术被广泛应用在航空测绘,星球探测机器人导航以及三维重建等领域。 本文意在熟练运用图像的识别与匹配的方法,为此本文使用一个包装袋并对上面的数字进行识别与匹配。首先在包装袋上提取出来要用的数字,然后提取出该数字与包装袋上的特征点,用SIFT方法对两幅图进行识别与匹配,最终得到对应匹配数字的匹配点。仿真结果表明,该方法能够把给定数字与包装袋上的相同数字进行识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。

1 研究内容 图像识别中的模式识别是一种从大量信息和数据出发,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别、评价的过程。 图形辨别是图像识别技术的一个重要分支,图形辨别指通过对图形的图像采用特定算法,从而辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进行辨别。 2 研究意义 数字图像处理在各个领域都有着非常重要的应用,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发生日新月异的变化。在多媒体技术的各个领域中,视频处理技术占有非常重要的地位,被广泛的使用于农业,智能交通,汽车电子,网络多媒体通信,实时监控系统等诸多方面。因此,现今对技术领域的研究已日趋活跃和繁荣。而图像识别也同样有着更重要的作用。 3 设计原理 3.1 算法选择 Harris 角点检测器对于图像尺度变化非常敏感,这在很大程度上限制了它的应用范围。对于仅存在平移、旋转以及很小尺度变换的图像,基于Harris 特征点的方法都可以得到准确的配准结果,但是对于存在大尺度变换的图像,这一类方法将无法保证正确的配准和拼接。后来,研究人员相继提出了具有尺度不变性的特征点检测方法,具有仿射不变性的特征点检测方法,局部不变性的特征检测方法等大量的基于不变量技术的特征检测方法。 David.Lowe 于2004年在上述算法的基础上,总结了现有的基于不变量技术的特征检测方法,正式提出了一种基于尺度空间的,对图像平移、旋转、缩放、甚至仿射变换保持不变性的图像局部特征,以及基于该特征的描述符。并将这种方法命名为尺度不变特征变换(Scale Invariant Feature Transform),以下简称SIFT 算法。SIFT 算法首先在尺度空间进行特征检测,并确定特征点的位置和特征点所处的尺度,然后使用特征点邻域梯度的主方向作为该特征点的方向特征,以实现算子对尺度和方向的无关性。利用SIFT 算法从图像中提取出的特征可用于同一个物体或场景的可靠匹配,对图像尺度和旋转具有不变性,对光照变化、

利用MATLAB进行图像截取_拼接(灰色_彩色)

%灰色图像拼接 clc; clear; A=imread('C:\Documents and Settings\s35\桌面\新建文件夹\v1.jpg'); figure,imshow(A) A1=im2bw(A); A2=double(A1); se=strel('disk',20); A4=imdilate(A2,se); figure,imshow(A4) A5=double(A4); A6=not(A5); A7=double(A6); B=imread('C:\Documents and Settings\All Users\Documents\My Pictures\示例图片\Water lilies.jpg'); C=imread('C:\Documents and Settings\All Users\Documents\My Pictures\示例图片\Winter.jpg'); [m,n]=size(A4); B2=rgb2gray(B); B3=imresize(B2,[m,n]); B4=double(B3); C2=rgb2gray(C); C3=imresize(C2,[m,n]); C4=double(C3); D=A5.*B4; E=A7.*C4; F=uint8(D+E); figure,imshow(F) %彩色图像拼接 clc; clear; A=imread('C:\Documents and Settings\s35\桌面\新建文件夹\v1.jpg'); figure,imshow(A) A1=im2bw(A); A2=double(A1); se=strel('disk',20); A4=imdilate(A2,se); figure,imshow(A4)

图像增强研究现状

在借鉴国外相对成熟理论体系与技术应用体系的条件下,国内的增强技术与应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期与应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别就是出现了CT与卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理与分析遥感图像,以有效地进行资源与矿藏的勘探、调查、农业与城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X射线图像、超声图像与生物切片显微图像等进行处理,提高图像的清晰度与分辨率。在工业与工程方面,主要应用于无损探伤、质量检测与过程自动控制等方面。在公共安全方面,人像、指纹及其她痕迹的处理与识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强就是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入与发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择与亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时她们也考虑太阳位置与月球环境的影响,最终成功地绘制出了月球表面地图。随后她们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究与设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末与20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测与天文学等领域。X射线就是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N、Hounsfield先生与Allan M、Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理就是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20世纪80年代以后,各种硬件的发展使得人们不仅能够处理二维图像,而且开始处理三维图像。许多能获得三维图像的设备与分析处理三维图像的系统已经研制成功了,图像处理技术

图像增强方法的研究

图像增强方法的研究 摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。在图像处理中,图像增强技术对于提高图像的质量起着重要的作用。本文先对图像增强的原理以及各种增强方法进行概述,然后着重对灰度变换、直方图均衡化、平滑和锐化等几种常用的增强方法进行了深入的研究,在学习数字图像的基本表示与处理方法的基础上,针对图像增强的普遍性问题,研究和实现常用的图像增强方法及其算法,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的适用场合,并对其图像增强方法进行性能评价。如何选择合适的方法对图像进行增强处理,是本文的主要工作,为了突出每种增强方法的差异,本文在Matlab的GUI图形操作界面中集合了四种常用算法的程序,以达到对各种算法的对比更直观和鲜明的效果。 关键词:图像增强直方图均衡化灰度变换平滑锐化

目录 1 图像增强的基本理论 (3) 1.1 课题背景及意义 (3) 1.2 课题的主要内容 (4) 1.3 数字图像基本概念 (5) 1.3.1数字图像的表示 (5) 1.3.2 图像的灰度 (5) 1.3.3灰度直方图 (5) 1.4 图像增强概述 (6) 1.5图像增强概述 (8) 1.5.1图像增强的定义 (8) 1.5.2常用的图像增强方法 (8) 1.5.3图像增强的现状与应用 (9) 2 图像增强方法与原理 (10) 2.1 图像变换 (10) 2.1.1 离散图像变换的一般表达式 (10) 2.1.2 离散沃尔什变换 (11) 2.2 灰度变换 (12) 2.2.1 线性变换 (12) 2.2.2 分段线性变换 (13) 2.2.3 非线性变换 (13) 2.3 直方图变换 (14) 2.3.1 直方图修正基础 (14) 2.3.2 直方图均衡化 (16) 2.3.3 直方图规定化 (17) 2.4 图像平滑与锐化 (18) 2.4.1 平滑 (18) 2.4.2 锐化 (19)

图像拼接原理及方法

第一章绪论 1.1图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系 列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制( IBR )成为结合两个互补领域 ――计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化 场景描述(Visual Seene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以 使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360度的环形图片了。但是在实际应用中,很 多时候需要将360度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360度景物的多幅图像进行拼接,从而实时地得到 超大视角甚至是360度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目 视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双 目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360度全景图像,用来虚拟实际场景。 这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四 周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图 像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重 要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算 法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型: (1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对 待配准图像中一块区域与参考图像中的相同尺寸的区域使用最小二乘法或者其它数学方法 计算其灰度值的差异,对此差异比较后来判断待拼接图像重叠区域的相似程度,由此得到待

面向低质量指纹的图像增强算法研究优秀毕业论文

西南政法大学硕士学位论文 面向低质量指纹的图像增强算法研究 导师:贾治辉副教授 作者:向锐 中国·重庆 二零零八年四月

中文摘要 指纹是手指末端正面皮肤上由乳头凸起的摩擦脊线形成的花纹,具有各人各指不同、终身稳定不变的特性。指纹因其蕴涵大量的人身个体信息,而具有很高的人身识别价值。近百年来,人们通过对指纹不懈的研究和探索,逐步对指纹的特征体系有了清晰的认识,并基于此对指纹特征进行了分类,提出了指纹鉴定的科学依据和程序。 目前,指纹识别技术已经在现代生物识别技术中占有相当重要的位置。从实用性和可行性角度看,指纹识别技术能够高效、快捷、方便的自动完成指纹的纹形分类、特征提取、图像的存储、检索以及比对、细节特征匹配等一系列工作,具有方便、高效、客观、安全等诸多优点,优于其它生物识别技术,已被认为是一种理想的身份认证技术。 从20世纪60年代起,计算机技术进入指纹识别、鉴定领域,英国、美国、法国、日本等计算机发达的国家先后研制出各具特色的指纹自动识别系统,为指纹鉴定开辟了新的途径。目前,计算机指纹识别技术已经在司法、金融安全、数字加密、电子商务等各个领域得到了广泛的应用,在我们未来的生活中发挥越来越重要的作用。 近年来,由于数字图象处理学以及硬件技术的迅速发展,指纹识别技术获得相当大的进展,但仍然不能满足社会发展的需要,以指纹识别广泛代替其它识别技术(如印鉴,钥匙,密码,签字)是面向二十一世纪的具有深远意义的课题,有关指纹自动识别技术的研究己成为模式识别、图象处理以及计算机视觉等领域中极为关注的热点。 指纹识别技术通常使用指纹的一般特征来进行种类识别,在种类识别的基础上再对指纹的细节特征进行系统性的比较,然后作出是否同一的判断。它一般都由以下模块组成:指纹图像采集模块;指纹图像预处理模块;特征提取模块;特征匹配模块。其中,指纹图像预处理模块又包括:图像质量评估,图像分割、图像增强、细化、二值化等步骤。 指纹识别技术中,图像增强技术是其中一个非常重要的步骤。如果指纹图像得不到准确、显著的增强,指纹特征就难以被准确提取。许多学者对指纹图像增强方法进行了探讨,其中,Coetzee等使用Marr-Hildreth边缘算子得到指纹灰度图的脊边缘图,提出了采用卷积

图像增强研究现状

在借鉴国外相对成熟理论体系和技术应用体系的条件下,国内的增强技术和应用也有了很大的发展。总体来说,图像增强技术的发展大致经历了初创期、发展期、普及期和应用期4个阶段。初创期开始于20世纪60年代,当时的图像采用像素型光栅进行扫描显示,大多采用中、大型机对其进行处理。在这一时期由于图像存储成本高,处理设备造价高,因而其应用面很窄。20世纪70年代进入了发展期,开始大量采用中、大型机进行处理,图像处理也逐渐改用光栅扫描显示方式,特别是出现了CT和卫星遥感图像,对图像增强处理提出了一个更高的要求。到了20世纪80年代,图像增强技术进入普及期,此时的计算机已经能够承担起图形图像处理的任务。20世纪90年代进入了应用期,人们运用数字图像增强技术处理和分析遥感图像,以有效地进行资源和矿藏的勘探、调查、农业和城市的土地规划、作物估产、气象预报、灾害及军事目标的监视等。在生物医学工程方面,运用图像增强技术对X 射线图像、超声图像和生物切片显微图像等进行处理,提高图像的清晰度和分辨率。在工业和工程方面,主要应用于无损探伤、质量检测和过程自动控制等方面。在公共安全方面,人像、指纹及其他痕迹的处理和识别,以及交通监控、事故分析等都在不同程度上使用了图像增强技术。图像增强是图像处理的重要组成部分,传统的图像增强方法对于改善图像质量发挥了极其重要的作用。随着对图像技术研究的不断深入和发展,新的图像增强方法不断出现。例如一些学者将模糊映射理论引入到图像增强算法中,提出了包括模糊松弛、模糊熵、模糊类等增强算法来解决增强算法中映射函数选择问题,并且随着交互式图像增强技术的应用,可以主观控制图像增强效果。同时利用直方图均衡技术的图像增强也有许多新的进展:例如提出了多层直方图结合亮度保持的均衡算法、动态分层直方图均衡算法。这些算法通过分割图像,然后在子层图像内做均衡处理,较好地解决了直方图均衡过程中的对比度过拉伸问题,并且可以控制子层灰度映射范围,增强效果较好。 20世纪20年代图片第一次通过海底电缆从伦敦传往纽约。当时人们通过字符模拟得到中间色调的方法来还原图像。早期的图像增强技术往往涉及硬件参数的设置,如打印过程的选择和亮度等级的分布等问题。在1921年年底提出了一种基于光学还原的新技术。在这一时期由于引入了一种用编码图像纸带去调制光束达到调节底片感光程度的方法,使灰度等级从5个灰度级增加到15个灰度等级,这种方法明显改善了图像复原的效果。到20世纪60年代早期第一台可以执行数字图像处理任务的大型计算机制造出来了,这标志着利用计算机技术处理数字图像时代的到来。1964年,研究人员在美国喷气推进实验室(JPL)里使用计算机以及其它硬件设备,采用几何校正、灰度变换、去噪声、傅里叶变换以及二维线性滤波等增强方法对航天探测器“徘徊者7号”发回的几千张月球照片进行处理,同时他们也考虑太阳位置和月球环境的影响,最终成功地绘制出了月球表面地图。随后他们又对1965年“徘徊者8号”发回地球的几万张照片进行了较为复杂的数字图像处理,使图像质量进一步提高。这些成绩不仅引起世界许多有关方面的注意而且JPL本身也更加重视对数字图像处理地研究和设备的改进,并专门成立了图像处理实验室IPL。在IPL里成功的对后来探测飞船发回的几十万张照片进行了更为复杂的图像处理,最终获得了月球的地形图、彩色图以及全景镶嵌图。从此数字图像增强技术走进了航空航天领域。 20世纪60年代末和20世纪70年代初有学者开始将图像增强技术用于医学图像、地球遥感监测和天文学等领域。X射线是最早用于成像的电磁辐射源之一,在1895年X射线由伦琴发现。20世纪70年代Godfrey N. Hounsfield先生和Allan M. Cormack教授共同发明计算机轴向断层技术:一个检测器围绕病人,并用X射线源绕着物体旋转。X射线穿过身体并由位于对面环中的相应检测器收集起来。其原理是用感知的数据去重建切片图像。当物体沿垂直于检测器的方向运动时就产生一系列的切片,这些切片组成了物体内部的再现图像。到了20

基于matlab的数字图像增强算法研究与实现

基于matlab的数字图像增强算法研究与实现 摘要图像在获取和传输过程中,会受到各种噪声的干扰,使图像退化质量下降,对分析图像不利。图像的平滑或去噪一直是数字图像处理技术中的一项重要工作。为此,论述了在空间域中的各种数字图像平滑技术方法。 关键字:数字图像;图像增强;平滑处理

目录 第一章、概述 2 1.1 图像平滑意义 2 1.2图像平滑应用 2 1.3噪声模 型 (3) 第二章 、图像平滑方法 5 2.1 空域低通滤波 5 2.1.1 均值滤波器 6 2.1.2 中值滤波器 6 2.2 频域低通滤波 7 第三章、图像平滑处理与调试 9 3.1 模拟噪声图像 9 3.2均值滤波法 11 3.3 中值滤波法 14 3.4 频域低通滤波法 17 第四章、总结与体会 19 参考文献 20 第一章、概述 1.1图像平滑意义 图像平滑(S m o o t h i n g)的主要目的是减少图像噪声。图像噪声来自于多方面,有来自于系统外部的干扰(如电磁波或经

电源窜进系统内部的外部噪声),也有来自于系统内部的干扰(如摄像机的热噪声,电器机械运动而产生的抖动噪声内部噪声)。实际获得的图像都因受到干扰而有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或在频率域处理。在空间域中进行时,基本方法就是求像素的平均值或中值;在频域中则运用低通滤波技术。 图像中的噪声往往是和信号交织在一起的,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓,线条等模糊不清,从而使图像降质。图像平滑总是要以一定的细节模糊为代价的,因此如何尽量平滑掉图像的噪声,又尽量保持图像的细节,是图像平滑研究的主要问题之一。 1.2图像平滑应用 图像平滑主要是为了消除被污染图像中的噪声,这是遥感图像处理研究的最基本内容之一,被广泛应用于图像显示、传 输、分析、动画制作、媒体合成等多个方面。该技术是出于人类视觉系统的生理接受特点而设计的一种改善图像质量的方法。处理对象是在图像生成、传输、处理、显示等过程中受到多种因素扰动形成的加噪图像。在图像处理体系中,图像平滑是图像复原技术针对“一幅图像中唯一存在的退化是噪声”时的特例。 1.3噪声模型 1.3.1噪声来源 一幅图像可能会受到各种噪声的干扰,而数字图像的实质就是光电信息,因此图像噪声主要可能来源于以下几个方面:光电传感器噪声、大气层电磁暴、闪电等引起的强脉冲干扰、

图像拼接原理及方法

第一章绪论 1.1 图像拼接技术的研究背景及研究意义 图像拼接(image mosaic)是一个日益流行的研究领域,他已经成为照相绘图学、计算机视觉、图像处理和计算机图形学研究中的热点。图像拼接解决的问题一般式,通过对齐一系列空间重叠的图像,构成一个无缝的、高清晰的图像,它具有比单个图像更高的分辨率和更大的视野。 早期的图像拼接研究一直用于照相绘图学,主要是对大量航拍或卫星的图像的整合。近年来随着图像拼接技术的研究和发展,它使基于图像的绘制(IBR)成为结合两个互补领域——计算机视觉和计算机图形学的坚决焦点,在计算机视觉领域中,图像拼接成为对可视化场景描述(Visual Scene Representaions)的主要研究方法:在计算机形学中,现实世界的图像过去一直用于环境贴图,即合成静态的背景和增加合成物体真实感的贴图,图像拼接可以使IBR从一系列真是图像中快速绘制具有真实感的新视图。 在军事领域网的夜视成像技术中,无论夜视微光还是红外成像设备都会由于摄像器材的限制而无法拍摄视野宽阔的图片,更不用说360 度的环形图片了。但是在实际应用中,很多时候需要将360 度所拍摄的很多张图片合成一张图片,从而可以使观察者可以观察到周围的全部情况。使用图像拼接技术,在根据拍摄设备和周围景物的情况进行分析后,就可以将通过转动的拍摄器材拍摄的涵盖周围360 度景物的多幅图像进行拼接,从而实时地得到超大视角甚至是360 度角的全景图像。这在红外预警中起到了很大的作用。 微小型履带式移动机器人项目中,单目视觉不能满足机器人的视觉导航需要,并且单目视觉机器人的视野范围明显小于双目视觉机器人的视野。利用图像拼接技术,拼接机器人双目采集的图像,可以增大机器人的视野,给机器人的视觉导航提供方便。在虚拟现实领域中,人们可以利用图像拼接技术来得到宽视角的图像或360 度全景图像,用来虚拟实际场景。这种基于全景图的虚拟现实系统,通过全景图的深度信息抽取,恢复场景的三维信息,进而建立三维模型。这个系统允许用户在虚拟环境中的一点作水平环视以及一定范围内的俯视和仰视,同时允许在环视的过程中动态地改变焦距。这样的全景图像相当于人站在原地环顾四周时看到的情形。在医学图像处理方面,显微镜或超声波的视野较小,医师无法通过一幅图像进行诊视,同时对于大目标图像的数据测量也需要把不完整的图像拼接为一个整体。所以把相邻的各幅图像拼接起来是实现远程数据测量和远程会诊的关键环节圆。在遥感技术领域中,利用图像拼接技术中的图像配准技术可以对来自同一区域的两幅或多幅图像进行比较,也可以利用图像拼接技术将遥感卫星拍摄到的有失真地面图像拼接成比较准确的完整图像,作为进一步研究的依据。 从以上方面可以看出,图像拼接技术的应用前景十分广阔,深入研究图像拼接技术有着很重要的意义 1.2图像拼接算法的分类 图像拼接作为这些年来图像研究方面的重点之一,国内外研究人员也提出了很多拼接算法。图像拼接的质量,主要依赖图像的配准程度,因此图像的配准是拼接算法的核心和关键。根据图像匹配方法的不同仁阔,一般可以将图像拼接算法分为以下两个类型:(1) 基于区域相关的拼接算法。 这是最为传统和最普遍的算法。基于区域的配准方法是从待拼接图像的灰度值出发,对

根据matlab的指纹图像增强方法

课程设计报告 设计题目:指纹图像的增强 学院:电子工程学院 专业:电子信息工程 班级: 学号: 姓名: 电子邮件: 日期: 2013 年 9 月 成绩: 指导教师:

一、设计概述 1.课程设计题目:指纹图像的增强方法 2.基本要求:读取初始指纹图像,设计程序,实现指纹图像的增强,使指纹的 纹理更加清晰,便于识别。 3.指纹图像增强的意义: 指纹是人类手指末端指腹上由凹凸的皮肤所形成的纹路。指纹能使手在接触物件时增加摩擦力,从而更容易发力及抓紧物件。是人类进化过程式中自然形成的。目前尚未发现有不同的人拥有相同的指纹,所以每个人的指纹也是独一无二。由于指纹是每个人独有的标记,近几百年来,罪犯在犯案现场留下的指纹,均成为警方追捕疑犯的重要线索,使得指纹识别技术得到了飞快的发展,指纹图像的识别也就变得非常具有意义,但是通过传感器等方式获取到的指纹图像往往是比较模糊的,识别率相对较低,此时,指纹图像增强就孕育而生,通过对指纹图像的增强处理,得出了具有较清晰的图像,是识别率更高。 二.设计思路:指纹图像增强的主要步骤及方法 ①读取指纹图像 ②指纹图像灰度化处理 ③指纹图像平滑处理 ④指纹图像的腐蚀处理 ⑤指纹图像的锐化处理 ⑥指纹图像二值化

⑦指纹图像纹理的细化处理 三.具体的处理流程及其分析 1.指纹图像的读取 将通过传感器或者别的方式获取到的指纹图像读取到matlab中;如 .bmp .jpg 等格式的图片文件。 通过matlab实现: I=imread(‘文件路径+图像名.jpg'); 2. 指纹图像灰度化处理 数字图像可分为灰度图像和彩色图像。通过灰度化处理和伪彩色处理,可以使伪彩色图像与灰度图像相互转化;灰度化就是使彩色的R,G,B分量值相等的过程 I=rbg2gray(I) 3.指纹图像平滑处理(此处我们使用的是中值滤波的方法处理) 图像平滑的主要目的是减少图像噪声。图像噪声来自于多方面,有来自于系统外部的干扰(如电磁波或经电源窜进系统内部的外部噪声),也有来自于系统内部的干扰(如摄像机的热噪声、电器机械运动而产生的抖动噪声等内部噪声)。实际获得的图像都因受到干扰而含有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或频率域处理。在空间域中进行时,基本方法就是求像素的平均值或中值;在频率域中则运用低通滤波技术。

基于MATLAB的图像拼接技术

基于MATLAB的图像拼接技术 基于MATLAB的图像拼接技术实验报告 学院:数信学院 专业班级: 12级信息工程1班 姓名学号: 一、实验名称:基于MATLAB的图像拼接技术 二、实验目的:利用图像拼接技术得到超宽视角的图像,用来虚拟实际场景。 三、实验原理: 基于相位相关的图像拼接技术是一种基于频域的方法,通过求得图像在频 域上是相位相关特点来找到特征位置,从而进行图像拼接。其基本原理是 基于傅氏功率谱的相关技术。该方法仅利用互功率谱中的相位信息进行图 像配准,对图像间的亮度变化不敏感,而且所获得的相关峰尖突出,具有 一定的鲁棒性和较高的配准精度。 基于相位相关法进行图像拼接的基本原理如下:假设f(x,y)表示尺寸为MN的图像,该函数的二维离散傅里叶变换(DFT)为: , MN,,111,,,juxMvyN2(//) Fuvfxye,(,)(,),,MN,xy,,00 其中,F(u,v)是复变函数;u、v是频率变量,u=0,1,…,M-1,v=0,1,…,N-1;x、y是空间或图像变量。 二维离散傅里叶逆变换(IDFT)为: N,1M,1,,juxMvyN2(//),fuve(,) Fxy(,),,,y,0x,0 ,…,M-1;y=0,1,…,N-1。其中,x=0,1 设两幅图像、的重叠位置为(,),则图像、的互功率谱为:IIxyII112002 *II(,)(,),,,,,,,jxy,,,2()1200 ,eII(,)(,),,,,,12

其中,*为共轭符号,对上式两边进行傅里叶逆变换将在(x,y)处产生一00个函数。因此,只要检测上式傅里叶逆变换结果最大值的位置,就可以获得两xy幅图像间的评议量(,。具体算法步骤如下: 00 II?读入两幅图片、(函数输入),并转换为灰度图像; 12 II?分别对、做二维傅里叶变换,即: 12 fftIfftI A=() B=() 1222 C则通过A、B的简单的矩阵运算得到另一矩阵,即: 3 C =B*.conj(A)/norm(B*.conj(A),1) 3 矩阵的二维傅里叶逆变换C在(,)处取得最大,可通过遍历比较C(i,Cxy300 j)大小即可找到该位置,并作为函数返回值。 四实验程序 tic x=[1 2;0 1]; a=imread('7.jpg'); %读取图片 b=imread('8.jpg'); figure imshow(a); figure imshow(b); imwrite(b,'160.jpg'); IMG={a,b}; %将图片存为元胞结构 num=size(IMG,2); %计算图片个数 move_ht=0; %累计平移量初值 move_wd=0; for count=1:num-1 input1=IMG{count}; %读取图象 input11=imresize(rgb2gray(input1),[300,200]);

指纹图像对比度模糊增强算法

指纹图像对比度模糊增强算法 指纹图像对比度模糊增强算法 引言指纹识别是指指尖表面纹路的脊谷分布模式识别,这种脊谷分布模式是由皮肤表面细胞死亡、角化及其在皮肤表面积累形成的。人的指纹特征是与生俱来的,在胎儿时期就已经决定了。人类使用指纹作为身份识别的手段已经有很长历史,使用指纹识别身份的合法性也己得到广泛的认可。自动指纹识别系统通过比对指纹脊线和谷线结构以及有关特征,如纹线的端点和分歧点等来实现个人身份认证。然而,要从原始指纹图像上准确地提取特征信息,这是十分困难的,在很大程度上特征提取的精确性依赖于图像质量。因此,在指纹特征提取和匹配之前有必要对指纹图像进行增强处理。指纹图像增强就是对指纹图像采用一定算法进行处理,使其纹理结构清晰化,尽量突出和保留固有的指纹特征信息,并消除噪声,避免产生虚假特征。其目的是保持特征信息提取的准确性和可靠性,在自动指纹识别系统中具有十分重要的作用和地位。由于曝光不足等因素的影响,图像的亮度分布会发生非线性失真,常常表现为对比度不强,图像的整体感觉较暗等。目前,已经有很多基于灰度直方图的方法来增强对比度,从而改善图像的质量。近年来,人们对基于模糊的图像处理技术进行了研究。模糊集合理论已能够成功地应用于图像处理领域,并表现出优于传统方法的处理效果。根本原因在于:图像所具有的不确定性往往是因模糊性引起的。图像增强的模糊方法,有些类似于空域处理方法,它是在图像的模糊特征域上修改像素的。基于模糊的图像处理技术,是一种值得重视的研究方向,应用模糊方法往往能取得优

于传统方法的处理效果。很多时候基于模糊的增强图像对比度方法能够更好地增强图像的对比度,尤其是对于对比度很差,一般的增强算法无法对其增强的图像,它的优势突显。本文结合模糊逻辑技术,研究了基于模糊特征平面的增强算法和基于GFO算子(广义模糊算子)的图像增强算法,并将其应用于指纹图像对比度的增强。1模糊特征平面增强算法1.1模糊特征平面从模糊集的概念来看,一幅具有L个灰度级的M×N元图像,可以看作为一个模糊集,集内的每一个元素具有相对于某个特定灰度级的隶属函数。该模糊集称为图像等效模糊集,亦即图像的模糊特征平面,对应的模糊矩阵记为F,有:式中:矩阵的元素μmn/Xmn表示图像像素(m,n)的灰度级Xmn相对于某个特定的灰度级l′的隶属度,通常l′取最大灰度级K-1。1.2算法实现首先采用图像分割中的阈值选取方法(本文中采用Ot su方法)来确定阈值参数X T,显然X T将整个图像的直方图分为2个部分。低灰度部分和高灰度部分;对于具有典型双峰分布的直方图来说,它们分别对应目标和背景这两部分。然后定义新的隶属函数形式,再进行模糊增强运算,在低灰度区域进行衰减运算,从而使属于该区域像素的灰度值更低,而在高灰度区域则进行增强运算,从而使属于该区域像素的灰度值更高。因而,经过模糊增强后直方图上阈值X T两侧的灰度对比增强,图像区域之间的层次将更加清楚。整个算法过程如下:(1)首先根据Ot su选取阈值的方法确定阈值参数XT。显然对于双峰分布的直方图阈值参数XT将位于双峰之间的谷底附近。然后定义新的隶属度函数为:对于迭代次数r的选择,仿真结果表明,当r较小时,模糊增强不够充分;随着r的逐渐加大,图像的增强效果会越来越明显,当达

相关主题