搜档网
当前位置:搜档网 › 改性PVA高阻隔薄膜的特征和应用

改性PVA高阻隔薄膜的特征和应用

改性PVA高阻隔薄膜的特征和应用
改性PVA高阻隔薄膜的特征和应用

改性PVA高阻隔薄膜的特征和应用

1.聚乙烯醇(PVA)的特性

聚乙烯醇(PVA)是聚醋酸乙烯酯的水解产物,具有造膜性能优良、皮膜无色透明、耐油、耐有机溶剂、对细菌和日光稳定等特性,作为薄膜生产工艺而言,以下特性必须引起足够的重视。

(1)PVA的溶剂是水,但对水的溶解性很大程度上受聚合度的影响,特别

是受醇解度的支配。完全醇解的PVA在水中的溶解极微,醇解度在88%以下时,在20℃常温下几乎完全溶解,但随着醇解度的上升,溶解度则大幅度下降。

(2)高醇解度的聚乙烯醇水溶液的粘度,因放置的条件不同而引起的变化,存放温度直接影响粘度。实验证明在20~50℃时粘度下降较大,50℃以上粘度

下降较小,80℃以上则处于稳定。PVA水溶液的粘度随PVA浓度的提高而增大。在静止状态下PVA水溶液表面极易结皮,这种结皮现象对涂布加工极为不利。

(3)PVA薄膜在干燥条件下有优异的阻氧性能,它的透氧系数是各种树脂

薄膜中最低的。

PVA的分子链上存在大量羟基(OH),处于湿态环境中这些羟基易和水分子形成氢键,导致PVA聚集态结构发生变化,使PVA的阻隔性大大下降。随着相对

湿度的上升,其氧气透过量明显上升。

(4)PVA薄膜遇到水有溶胀、脱落现象,这种涂布复合膜若裸露于潮湿环

境中,其高阻氧性能将丧失贻尽。

20世纪90年代初,国内一些高校和研究单位将PVA树脂制成水溶胶,采用

涂布复合的工艺,制成了PVA涂布薄膜,为稳定PVA薄膜在高湿条件下的阻隔性,采用遮蔽技术生产出了BOPP/PVA。PE涂布薄膜,其实质是将怕水的PVA夹在两层阻湿性能较好的薄膜中间,遮蔽了潮湿水气对PVA的影响。该流程生产的PVA

涂布复合膜,可以保持其阻隔性能,但流程复杂,效率低,成本高,而且性能

不稳定。

2.聚乙烯醇改性

为了提高和稳定PVA湿态阻隔性能,简化生产工艺,降低生产成本,让性能优越的PVA复合薄膜走向市场,我们对PVA进行了改性。

聚乙烯醇之所以不耐水,是由于它带有亲水性的羟基(OH),如果能将羟

基适当封闭,接上耐水性基团,就可提高PVA薄膜的耐水性。 PVA含有羟基,可发生多元醇的一切典型反应,我们选用了多种能与 PVA中的OH进行分子交联的

化合物,其改性效果及工艺性并不理想,最后研制成功了一种对人体无毒副作用的密胺树脂改性液“868”。由于“868”是一种多功能度的缩聚物,在添加量不

大的情况下,就能与 PVA中的羟基适度交朕,使PVA形成一种强韧的三维结构涂层,稳定了 PVA的湿态条件下的气密性,提高了耐水能力。

改性后的PVA胶液,在常温下不结皮,在生产允许的时间内粘度无上升现象,实现了常温配胶,常温涂布,为改性PVA涂布复合膜的生产提供了一个宽松的

工艺条件。

涂布工艺:由于改性液极性较大,提高了改性PVA与基膜的附着力,层间结合力可达不可分离的程度,可直接在PE、BOPP、BOPA、BOPET等薄膜表面涂布,构成改性PVA/PE、改性PVA/BOPP涂布复合膜,生产工艺流程如下:PE解卷-→改性PVA涂布-→干燥-→收卷-→熟化-→分切-→检验-→入库

改性PVA/PE膜无需任何处理即可在PVA面上进行彩印,油墨附着力很强。

为了进一步提高包装装潢效果,还可先在BOPP等基材上印刷,再与改性PVA 涂布复合,进一步加工成BOPP/改性PVA/PE薄膜。

3.涂布复合设备

我们自行设计加工制造了适宜改性PVA涂布复合薄膜生产的多功能涂布机组,机组采用了逆转辊涂布头、热风对流干燥、微张力输送等先进结构,可用一步法生产BOPP/改性PVA/PE、BOPP/PE、PET/ PE复合膜;还可用于不干胶、保护膜的生产,达到了运行稳定、涂布均匀、节能及一机多用的设计目标。

当涂布层合机组烘道长度、送风量固定以后,涂布膜的干燥速度就由涂布厚度、烘道温度及走膜速度三者来控制,涂层越厚、烘道温度越低、则干燥速

度就越慢。为了确保涂层干燥,薄膜运行速度势必很低,失去了工业化生产的意义。我们制定了涂层厚度为5~8微米, PVA涂层在100℃烘道内快速通过的工艺条件,这不仅有利于提高PVA的结晶度,确保PVA的气密性和耐水性,还有利于提高生产效率,该机组生产能力为1000吨/年。

4.PVA改性效果

改性PVA涂布复合膜通过小试、中试,已建成年产1000吨的生产线,产品

投放市场后受到用户好评。改性PVA涂布膜与未改性PVA涂布膜相比,粘结力、湿态阻隔性和耐水性有了明显提高。

5.改性PVA高阻隔薄膜的特征

(1)用对人体无毒、无副作用的密胺树脂改性液“868”对PVA进行适度交联,PVA在保留干态阻隔性能、透明、柔韧的优点的同时,还提高了与基材的粘

接性,省去了预涂布和粘结剂,尤其突出的是与未改性PVA比较湿态阻隔性能

明显提高,全套技术先进。

(2)与未改性PVA工艺比较,“868”改性的PVA省掉了预涂布和使用粘结剂

的工段,可减少设备投资和降低产品成本。改性后的PVA水溶胶解决了静态下

表面结皮和生产条件下粘度上升的难题,取消了遮蔽工艺,生产工艺合理。

(3)性能与未改性PVA比较,改性PVA涂布层在水中浸泡24小时后涂层无溶胀和脱落现象,关键指标氧气透过量达到国际先进水平。

(4)厚辅材料和生产设备立足国内,产品在南京红宝丽(集团)股份有限

公司已大批量生产。

6.应用

改性PVA高阻隔薄膜的应用是和其特性分不开的,这里作一简单介绍。

(1)改性PVA薄膜透明度、光泽度好,特别适用于服装、鞋帽、皮革及皮

革制品、工艺美术、文稿、档案的封存,与除氧剂配套使用,有防霉、防虫蛀、防氧化变色的功效。

(2)改性PVA薄膜极性强,印刷时油墨粘着性好,用玻璃纸型印刷油墨便

可得到美观的印刷效果。

(3)耐油、耐有机溶剂性好,对动物油、植物油、矿物油、醇类、醚类、酮类、酯类都是不溶的,适宜于化工原料及中间体的包装和油脂食品的包装。

(4)有很好的保香性,可广泛用于茶叶、咖啡、咖喱粉、辣椒粉、胡椒粉等香料的包装封存,用于灌装芥末,可使气味透不出来。

(5)具有优良的气体阻隔性,特别是有极低的透氧性,适宜于以下物品的包装封存。

A、可用于小杂粮、油料、海鲜干发、名贵中药材、烟草等包装,与除氧

剂或抽真空配合使用,其防霉、防虫蛀、防退色的保质保鲜效果特别明显,用

于封存高油脂食品,防止油脂氧化发“哈”和保持食品原有风味的功效。

B、用于无线电元器件及整机、精密机械、军械、雷达、弹药、大型导弹

的综合封存,有独到的防氧化锈蚀的功能。

C、光学仪器、镜片及另配件采用综合封存,可防止发霉和起雾。

高阻隔功能性薄膜材料项目可行性研究报告

高阻隔功能性薄膜材料项目可行性研究报告 规划设计/投资方案/产业运营

报告说明 不干胶标签胶粘材料是不干胶标签的承印材料,也是标签印刷企 业使用的主要印刷原材料。因此标签印刷行业的发展状况直接决定了 不干胶标签胶粘材料的市场容量和发展前景。 本期项目总投资包括建设投资、建设期利息和流动资金。根据谨 慎财务估算,项目总投资47991.54万元,其中:建设投资40031.98 万元,占项目总投资的83.41%;建设期利息891.80万元,占项目总投资的1.86%;流动资金7067.76万元,占项目总投资的14.73%。 根据谨慎财务测算,项目正常运营每年营业收入143900.00万元,综合总成本费用113937.23万元,净利润18532.18万元,财务内部收 益率18.49%,财务净现值1531.84万元,全部投资回收期4.81年。本期项目具有较强的财务盈利能力,其财务净现值良好,投资回收期合理。 本期项目技术上可行、经济上合理,投资方向正确,资本结构合理,技术方案设计优良。本期项目的投资建设和实施无论是经济效益、社会效益等方面都是积极可行的。 实现“十三五”时期的发展目标,必须全面贯彻“创新、协调、 绿色、开放、共享、转型、率先、特色”的发展理念。机遇千载难逢,

任务依然艰巨。只要全市上下精诚团结、拼搏实干、开拓创新、奋力 进取,就一定能够把握住机遇乘势而上,就一定能够加快实现全面提 档进位、率先绿色崛起。 该报告是从事一种经济活动(投资)之前,双方要从经济、技术、生产、供销直到社会各种环境、法律等各种因素进行具体调查、研究、分析,确定有利和不利的因素、项目是否可行,估计成功率大小、经 济效益和社会效果程度,为决策者和主管机关审批的上报文件。 本报告为模板参考范文,不作为投资建议,仅供参考。报告产业 背景、市场分析、技术方案、风险评估等内容基于公开信息;项目建 设方案、投资估算、经济效益分析等内容基于行业研究模型。本报告 可用于学习交流或模板参考应用。

改性PVA高阻隔薄膜的特征和应用

改性PVA高阻隔薄膜的特征和应用 1.聚乙烯醇(PVA)的特性 聚乙烯醇(PVA)是聚醋酸乙烯酯的水解产物,具有造膜性能优良、皮膜无色透明、耐油、耐有机溶剂、对细菌和日光稳定等特性,作为薄膜生产工艺而言,以下特性必须引起足够的重视。 (1)PVA的溶剂是水,但对水的溶解性很大程度上受聚合度的影响,特别 是受醇解度的支配。完全醇解的PVA在水中的溶解极微,醇解度在88%以下时,在20℃常温下几乎完全溶解,但随着醇解度的上升,溶解度则大幅度下降。 (2)高醇解度的聚乙烯醇水溶液的粘度,因放置的条件不同而引起的变化,存放温度直接影响粘度。实验证明在20~50℃时粘度下降较大,50℃以上粘度 下降较小,80℃以上则处于稳定。PVA水溶液的粘度随PVA浓度的提高而增大。在静止状态下PVA水溶液表面极易结皮,这种结皮现象对涂布加工极为不利。 (3)PVA薄膜在干燥条件下有优异的阻氧性能,它的透氧系数是各种树脂 薄膜中最低的。 PVA的分子链上存在大量羟基(OH),处于湿态环境中这些羟基易和水分子形成氢键,导致PVA聚集态结构发生变化,使PVA的阻隔性大大下降。随着相对 湿度的上升,其氧气透过量明显上升。 (4)PVA薄膜遇到水有溶胀、脱落现象,这种涂布复合膜若裸露于潮湿环 境中,其高阻氧性能将丧失贻尽。 20世纪90年代初,国内一些高校和研究单位将PVA树脂制成水溶胶,采用 涂布复合的工艺,制成了PVA涂布薄膜,为稳定PVA薄膜在高湿条件下的阻隔性,采用遮蔽技术生产出了BOPP/PVA。PE涂布薄膜,其实质是将怕水的PVA夹在两层阻湿性能较好的薄膜中间,遮蔽了潮湿水气对PVA的影响。该流程生产的PVA 涂布复合膜,可以保持其阻隔性能,但流程复杂,效率低,成本高,而且性能 不稳定。 2.聚乙烯醇改性 为了提高和稳定PVA湿态阻隔性能,简化生产工艺,降低生产成本,让性能优越的PVA复合薄膜走向市场,我们对PVA进行了改性。 聚乙烯醇之所以不耐水,是由于它带有亲水性的羟基(OH),如果能将羟 基适当封闭,接上耐水性基团,就可提高PVA薄膜的耐水性。 PVA含有羟基,可发生多元醇的一切典型反应,我们选用了多种能与 PVA中的OH进行分子交联的 化合物,其改性效果及工艺性并不理想,最后研制成功了一种对人体无毒副作用的密胺树脂改性液“868”。由于“868”是一种多功能度的缩聚物,在添加量不 大的情况下,就能与 PVA中的羟基适度交朕,使PVA形成一种强韧的三维结构涂层,稳定了 PVA的湿态条件下的气密性,提高了耐水能力。 改性后的PVA胶液,在常温下不结皮,在生产允许的时间内粘度无上升现象,实现了常温配胶,常温涂布,为改性PVA涂布复合膜的生产提供了一个宽松的

聚乙烯醇pva的用途和应用

聚乙烯醇 PVA 的用途和应用 【新海湾-徐江】 聚乙烯醇(简称PVA)外观为白色粉末,是一种用途相当广泛的水溶性高分子聚合物,性能介于塑料和橡胶之间,它的用途可分为纤维和非纤维两大用途。 由于PVA具有独特的强力粘接性、皮膜柔韧性、平滑性、耐油性、耐溶剂性、保护胶体性、气体阻绝性、耐磨性以及经特殊处理具有的耐水性,因此除了作纤维原料外,还被大量用于生产涂料、粘合剂、纸品加工剂、乳化剂、分散剂、薄膜等产品,应用范围遍及纺织、食品、医药、建筑、木材加工、造纸、印刷、农业、钢铁、高分子化工等行业。 产品性能:聚乙烯醇树脂系列产品系白色固体,外型分絮状、颗粒状、粉状三种;无毒无味、无污染,可在80--90℃水中溶解。其水溶液有很好的粘接性和成膜性;能耐油类、润滑剂和烃类等大多数有机溶剂;具有长链多元醇酯化、醚化、缩醛化等化学性质。 产品用途:主要用于纺织行业经纱浆料、织物整理剂、维尼纶纤维原料;建筑装潢行业107胶、内外墙涂料、粘合剂;化工行业用作聚合乳化剂、分散剂及聚乙烯醇缩甲醛、缩乙醛、缩丁醛树脂;

造纸行业用作纸品粘合剂;农业方面用于土壤改良剂、农药粘附增效剂和聚乙烯醇薄膜;还可用于日用化妆品及高频淬火剂等方面。 使用方法:聚乙烯醇树脂系列产品均可以在95℃以下的热水中溶解,但由于聚合度、醇解度高低的不同,醇解方式等不同在溶解时间、温度上有一定的差异,因此在使用不同品牌聚乙烯醇树脂时,溶解方法和时间需要进行摸索。溶解时,可边搅拌边将本品缓缓加入20℃左右的冷水中充分溶胀、分散和挥发性物资的逸出(切勿在40℃以上的水中加入该产品直接进行溶解,以避免出现包状和皮溶内生现象),而后升温到95℃左右加速溶解,并保温2~小时,直到溶液不再含有微小颗粒,再经过28目不锈钢过滤杂质后,即可备用。 搅拌速度 70~100转/分,升温时,可采用夹套、水浴等间接加热方式,也可采用水蒸汽直接加热;但是,不可用明火直接加热,以免局部过热而分解,若没有搅拌机,可用蒸汽以切线方向吹入的方法,进行溶解。 聚乙烯醇树脂系列产品水溶液浓度一般在12~14%以下;低醇解度聚乙烯醇树脂产品水溶液浓度一般可在20%左右。

聚乙烯醇PVA在各领域的应用

PVA自工业化生产以来,经过几十年的发展,其用途得到了极大的拓展,由最初的只用于维纶生产,逐步发展到用于纺织、造纸、建筑、化工、电子等行业,目前PVA新的用途仍在不断地被开发出来,PVA已经成为一个重要的、必不可少的材料。同时,PVA作为“最生态友好产品”,在环保和安全方面也得到了广泛的重视和应用。由于PVA具有许多优异的物理和化学性能,其在实际生产中具有十分广泛的用途,并且近些年得到了长足的发展,在各个新领域的应用开发如火如荼。

(1)织物及织物加工由于分子间的高黏着性,PVA具有良好的拉丝、成膜性,曾经奠定了PVA作为维纶纤维原料的地位。用PVA 制造的维纶纤维可与棉、毛、黏胶纤维混纺或纯纺,用于衣着及篷布、帘子线、绳索等生产,是石棉的理想代用品。近年开发的水溶性纤维具有水溶性、耐酸性、耐碱性、耐有机溶剂性以及良好的耐盐、耐化学药品性,可以根据需要在不同的水温中得以溶解,其废液经活性污泥处理后,完全降解而无公害,是一种极有应用前景、使用较广的环保材料。水溶性纤维主要作为造纸原料、无纺布原料、生产水溶性纱线或与其它纤维混纺后织成高档纺织品,以及制作军工用品的纺织材料。 织物加工对PVA的需求量最大,使用范围大致如下:浆料——经纱浆、印染浆、织物整理;改性剂——织物树脂整理;黏合剂——毡和无纺布等的黏合剂。 在上述应用中作为经纱浆料用的比例最大。PVA是一种能使经纱的抱合力,上浆纱强力、耐磨性、可挠性以及对大气条件变化的保护性等得以提高的一种理想的低成本经纱浆料。国外PVA浆料上百种,主要区别在于醇解度和聚合度,最常用的是1799和1788。 (2)纸加工PVA在造纸工业中主要用于表面施胶剂、颜料黏合剂和打浆机添加剂等。用PVA制作的纸张表面施胶剂,可增强纸品表面强度和内部张力、耐破裂度、耐折和耐磨强度,改善纸张的光泽及平滑性,提高纸张耐水性、耐油及耐有机溶剂性。由于PVA水溶液对纸的黏合力强,成膜性好,可代替价格昂贵、容易腐败的干酪素制作颜料胶黏剂,涂布纸的白度和光泽度好,不易卷曲,成本低,因此在美术纸、

阻隔性包装材料发展现状

阻隔性包装材料发展现状 中国包装网6月30日讯 塑料包装材料常因内容物不同而被要求具有阻气、防潮、保香、防止油脂渗透等多种功能;作为薄膜材料通常还要求具有热封性。单一品种的塑料材料常常无法满足这一要求,因此,复合塑料材料在包装领域广泛使用,特别是在薄膜制品方面。选用不同的阻隔性包装材料可以满足不同的使用要求。 常用阻隔性包装材料的种类 相对于PP、PE、PVC等通用热塑性塑料材料而言,PET和PEN、尼龙、PVDC、PC和EVOH等材料,因阻隔性优良而被称为阻隔性塑料材料。阻隔材料可以作为夹层薄膜与其他材料复合构成复合材料,也可作为涂层涂覆于其他材料上使用。其中PET、尼龙的使用量较大,PVDC近年来发展较快,PC主要用于制作中空容器;而EVOH因为只有几家公司可以生产,产量不高,价格昂贵,应用尚未普及。 主要阻隔性包装材料的发展情况 PET和PEN 聚酯是以PET为代表的热塑性饱和聚酯的总称,包括PBT、PEN、PCT及其共聚物等,是用量最大、应用最广泛的阻隔性材料。其中,PET是开发最早、产量最大、应用最广的聚酯产品。在包装领域主要用于制造薄膜和中空容器。 近几年中国碳酸软饮料、纯水、果汁等饮料以20%以上的速度增长,因此饮料包装用聚酯瓶的需求也以两位数增长。同时,瓶级聚酯在化妆品、医药等领域的需求也在不断增加。 PET具有较高的特性粘度、较低的乙醛含量、较好的结晶性、耐热性、耐气候性和尺寸稳定性等特性,制品透明度高、光泽性好,具有优良的阻气、阻油和保香性能。刚性强而且有韧性,抗拉强度是PE的5-10、PA 的3倍。PET材料的化学稳定性好,耐烯酸和堿及普通的有机溶剂。卫生安全性好,符合食品包装的要求。 由PET制成的未定向透明薄膜、收缩膜,结晶型定向拉伸膜等,因其良好的强度、透明性、耐油性和保香性而被广泛用于禽肉类包装,并且逐渐应用于医药、日化用品等非食品包装的材料领域。但它的热封性差,必须与其他薄膜(热封层)复合使用,且价格较通用塑料薄膜高。 PET也可由非晶态瓶坯得到高强度、高透明的拉伸吹塑瓶,还可以直接挤出或吹塑成非拉伸中空容器。PET中空容器尤其是拉伸吹塑瓶,充分发挥了PET的性能,对内容物有良好的展示效果,且成本较低。 不过,相对于PET来说,阻隔性能更好的PEN正愈来愈受人注目。PEN的分子结构与PET相似,只是以荼环代替了苯环,因此PEN比PET 具有更优异的阻隔性,特别是阻气性和防紫外线性,耐热性好(普通非晶态PEN热变形温度达100,而PET仅为70)。 此外,与PET相比,PEN具有更佳的耐化学品性能、机械强度和耐磨刮性。用PEN制作的塑料瓶可以像玻璃瓶一样用热堿液洗涤回收,并

聚乙烯醇薄膜的性能和用途图文稿

聚乙烯醇薄膜的性能和 用途 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

聚乙烯醇薄膜的性能和用途 聚乙烯醇薄膜的性能和用途 1 概述 聚乙烯醇(PVA)是一种水溶性聚合物,特点是致密性好、结晶度高,粘接力强、制成的薄膜柔韧平滑、耐油、耐溶剂、耐磨耗、气体阻透性好,以及经特殊处理具有的耐水性,用途广泛。 聚乙烯醇对人体无毒、无味、无害,与自然环境具有良好的亲和性,不累积,无污染。 聚乙烯醇薄膜是以聚乙烯醇为主体,加入改性剂等助剂,经过特殊工艺加工、可以被土壤中的微生物完全降解的绿色环保功能性材料。它可在短时间内降解为二氧化碳和水,并有改良土地的作用。 聚乙烯醇薄膜最大的优点是水溶性,最大的缺点是耐水性差。之所以耐水性差,是由于其分子中带有亲水性的羟基(-OH)。如果能将羟基适当封闭,接上耐水性基团,就可提高PVA薄膜的耐水性。PVA含有羟基,可发生多元醇的一切典型反应,选用适当的缩聚物,在添加量不大的情况下,就能与PVA中的羟基适度交朕,使PVA形成一种强韧的三维结构,稳定了PVA在湿态条件下的气密性,提高了耐水能力。 实际应用中,可以通过调整原料、配方和工艺来控制聚乙烯醇薄膜的水溶性和吸潮性,以此来满足不同使用目的的需要。 2 分类 聚乙烯醇薄膜按照溶解特性分为以下几类: 常温溶薄膜(NT型,又称快溶薄膜、冷溶薄膜):溶解温度25℃

中温溶薄膜(IT型,又称中溶薄膜、热熔薄膜):溶解温度65℃ 高温溶薄膜(HT型,又称难溶薄膜、耐溶薄膜):溶解温度85℃ 特种薄膜:可以根据具体用途设计配方和工艺,达到特殊使用的要求。 3 性能 3.1 环保性 PVA薄膜产品属于绿色环保材料。有关部门测得PVA生物耗氧量(BOD)比淀粉小得多,美国空气产品公司把Airvol公司的PVA产品进行生物降解5天后,测得的BOD量低于最初BOD总量的1%。经过生物试验证明PVA既无毒。 就降解机理而言,PVA材料具有水和生物两种降解属性,首先溶于水形成胶液渗入土壤中,可增加土壤的团粘化、透气性和保水性,特别适合于沙土改造。在土壤中的PVA材料可被土壤中的细菌分解,最终可降解为CO2和H2O。 3.2 水溶性 PVA的溶剂是水,但对水的溶解性很大程度上受聚合度的影响,特别是受醇解度的支配。醇解度在88%以下时,在20℃常温的常温水中几乎完全溶解。随着醇解度的上升溶解度大幅度下降,完全醇解的PVA在水中的溶解极微。 PVA薄膜的水溶性与薄膜的厚度和水的温度有关,相关数据表如下: 溶解水温开始溶解时间 (分钟)完全溶解时间 (分钟)

高阻隔塑料材料应用与进展

高阻隔塑料材料应用与进展 目前高阻隔性已成为塑料包装材料的重要发展方向之一,尤其是在食品、医药包装中,更是越来越强调高阻隔性。 ◆PVDC PVDC(聚偏二氯乙烯)的特点是低透过性、阻隔性和耐化学药品性。我国PVDC是伴随着火腿肠加工技术引进并得到发展的,2002年国内PVDC产量约为2万吨,目前已广泛应用于食品、卷烟、饮料保鲜和隔味,以及化工、医药、电子和军工产业的防潮包装。我国浙江巨化公司、大连塑料研究所等单位对其合成与加工研究做了大量工作并取得突破。 单层PVDC薄膜采用双向拉伸吹塑制取,具有收缩性、阻隔性、阻水性,在微波加热的条件下不分解,广泛用于家用保鲜膜;PVDC与聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(HIPS)等合成树脂多层挤出用于真空奶制品、果酱等包装,其拉伸性能较好,适于较大容积的包装;PVDC与PE、聚氯乙烯(PVC)的复合片材适用于易吸潮、易挥发药品的包装。目前国内许多科研单位和生产厂家集中研究PVDC与其它树脂复合层压薄膜技术及复合薄膜的耐高温技术。 由于PVDC是目前唯一被美国FDA认证可以与食品接触的高阻隔透明材料,因此在许多塑料包装材料上涂覆PVDC胶乳也成为国际食品包装业常用的手法之一。PVDC使用于多种基材如PE、PP、PVC、聚酰胺(PA)、聚对苯二甲酸乙二醇酯(PET)等,以双向拉伸聚丙烯薄膜为例,涂覆后透氧率降低1000倍,透水率降低3倍;涂覆可以单层或多层,一般单层涂覆为2.5μm即可具备良好的阻隔效果。 ◆EVOH EVOH的阻隔性能取决于乙烯的含量,一般来说当乙烯含量增加时候,气体阻隔性下降,但难于加工。EVOH显著特点是对气体具有极好的阻隔性和极好加工性,另外透明性、光泽性、机械强度、伸缩性、耐磨性、耐寒性和表面强度都非常优异。目前国外主要生产商有美国的EVAL公司,日本可乐丽公司、合成化学工业公司,比利时SOLVAY公司等。 在包装领域,EVOH制成复合膜中间阻隔层,应用在所有的硬性和软性包装中;在食品业中用于无菌包装、热罐和蒸煮袋,包装奶制品、肉类、果汁罐头和

PET薄膜与BOPP薄膜阻隔性能的比较

摘要:由于高分子材料的化学结构等差异,不同材质薄膜材料的阻隔性能不尽相同。本文通过对相同厚度的PET、BOPP两种材质薄膜材料氧气透过量与水蒸气透过率分别进行测试,对比了两种材料的阻隔性能差异,并介绍了试验原理、设备参数及适用范围、试验过程等内容,为薄膜材料阻隔性能的测试及包材筛选提供参考。 关键词:PET薄膜、BOPP薄膜、阻隔性能、氧气透过量、水蒸气透过率、压差法气体渗透仪、水蒸气透过率测试系统、压差法、杯式法、称重法 1、意义 包装材料对气体的阻隔性能可通过气体透过高分子材料的速度进行表征。气体渗透的越快,相同时间内透过材料的气体量越多,反映材料对气体的阻隔性能较差。 气体在包装材料中的渗透过程可分为吸附—扩散—脱附三个阶段,影响整个渗透过程的因素包括气体分子的大小、极性等相关性能以及高分子材料分子链结构、分子量大小、分子极性、结晶度、材料改性等。由于不同气体及高分子材料的结构各异,同种包装材料对不同气体的阻隔性能并不相同,不同材料对同一种气体的阻隔性能也千差万别。本文针对性的测试了不同材质的高分子包装材料分别对氧气、水蒸气阻隔性能的差异。 2、试验样品 本次试验以PET薄膜与BOPP薄膜材料为试验样品,对上述两种样品分别进行氧气透过量与水蒸气透过率测试。为了避免厚度对阻隔性的影响,本文选取厚度相同的PET薄膜与BOPP薄膜。 3、试验依据 鉴于本次所测试两种样品的阻隔性能范围,本文分别采用杯式法与压差法测试两种薄膜的水蒸气透过率与氧气透过量,试验过程分别依据GB 1037-1988 《塑料薄膜和片材透水蒸气性试验方法杯式法》与GB/T 1038-2000 《塑料薄膜和薄片气体透过性试验方法压差法》。 4、试验设备 本文采用C360M水蒸气透过率测试系统、VAC-V2 压差法气体渗透仪分别测试PET薄膜与BOPP薄膜样品的水蒸气透过率与氧气透过量,这两款设备均由济南兰光机电技术有限公司自主研发生产。 4.1 试验原理 杯式法原理是利用装夹的试样将透湿杯内部与测试腔环境隔开,通过控制透湿杯内部与测试腔环境的湿度条件,使两者处于不同的湿度环境,从而实现水蒸气从高湿侧向低湿侧的渗透,透湿杯的质量随水蒸气的渗透过程而增加或减小。因此,通过测试透湿杯质量随渗透时间的变化情况即可得到试样的水蒸气透

绿色环保PVA薄膜

绿色环保PVA薄膜 PVA 薄膜具有优异的阻隔性、水溶性和对环境的友好性,是近年来国内外开发最为成功的绿色环保材料之一。它已经获得国内外环保权威机构和广大用户的普遍认可,正在愈来愈广泛地应用于包装、纺织刺绣和水转印刷等领域。例如:农药、化肥、染料、清洁剂、水处理剂、矿物质添加剂、洗涤剂、园林护理用化学试剂等,亦可作为菜籽、植物种子袋、服装包装袋、食品以及医院洗涤袋等多种产品的包装上,同时也可用于纺织刺绣垫付用料和水转印刷及脱膜上。 由于水溶性PVA薄膜产品可设计选择水溶速度,无毒无污染;拉伸强度、张力等均等同于或优于传统塑料薄膜;透明度高、光泽好;柔软度高、触感好;耐油、耐溶剂性好、可热封、可印刷;透气系数低、阻气性好;抗静电性能优良,不吸尘等特性,对产品的应用极大地提高了产品的质量和档次。外包装水溶性薄膜主要以全透明高温水溶性PVA薄膜为主,用途在高级纺织品,胶装包装袋、包装缓冲气垫、书籍/纸张保护膜、假发、食品、化妆品包装袋等。外包装袋(全透明PVA水溶性薄膜)可加子母塑料扣,全透明水溶性PVA薄膜具有不带静电、透明度、光泽度均优于其它薄膜的特点,包装物体呈现出更鲜明的美化外观,提高了商品的价值。另水溶性PVA薄膜对空气具有高阻隔性,在用于纺织品时包装时,能阻隔空气里的氮气,避免氮气令纺织品发黄,还可吸收纺织品中致癌物如甲醛,在使用完毕方便销毁处理(在80℃水温可全部溶解),因此水溶性PVA薄膜是理想的纺织物包装材料。 PVA薄膜产品品种项目分类用途:品种分类:常温溶薄膜(NT型) 中温溶薄膜(IT型) 高温溶薄膜(HT 型) 用途:刺绣品、农药包装、清洁用品包装、水转印膜农用种子袋、除草剂包装袋、假发刺绣暂用载体、食品复合膜高级纺织品、胶袋包装袋、包装缓冲气垫、医院用洗涤袋等一次性包装袋。 一、 PVA薄膜概括 PVA薄膜市场分布 PVA薄膜主要集中在日本生產,約占世界產量的75%左右。日本以合成化學、尤尼吉卡,可樂麗三家公司為主,電氣化學、信越、生物材料通用公司等也有生產。其他如美國杜邦、Christ-Cralt (C.C.L.P公司),W.T.P公司,德國赫司特公司,法国的GRENSOL公司也有生產。產品主要用于纖維制品包裝,其次為食品包裝、婦女衛生用品、農藥、除草劑包裝等。世界總產量約在2.5萬~2.7萬噸間 其用户也是一些著名的大公司,例如Bayer(拜耳)、Henkel(汉高)、Shell(壳牌)、Agr.Eva(艾格福)等大公司都已开始使用水溶性薄膜包装其产品。 一, PVA原料在世界范围的分布 PVA是用途相當廣泛、性能十分良好的水溶性高分子聚合物,它的性能介于 橡膠和塑料之間。自1926年工業化以來,生產能力發展較快,1970年為70萬噸/年,1980年達到166.5萬噸/年,10年間翻了一番多,年均增長率達12.17%﹔1990年超過了80萬噸/年,1996年達90萬噸/

高阻隔EVOH薄膜的基本介绍

食品和饮料的安全一直是全人类共同关注的话题,包装材料在保证食品与饮料的品质上起了极其重要的作用,而科技进步和材料性能的提升又使EVOH(乙烯-乙烯醇共聚物)成为高阻隔性能包装材料的首选。 EVOH是一种链状结构的结晶性聚合物,集乙烯聚合物良好的加工性和乙烯醇聚合物的极高的气体阻隔性于一体,是一种新型的阻隔材料,其阻气性比PA(聚酰胺)高100倍,比PE、PP高10000倍,比目前常用的高阻隔性材料PVDC(聚偏二氯乙烯)高数十倍以上。另外,EVOH的透明性、光泽性、机械强度、伸缩性、耐磨性、耐寒性和表面强度都非常优异,同时在高性能阻隔树脂中热稳定性最高,这一性质使加工中生产的废料可以再生利用。 EVOH在包装上应用越来越广泛,在食品业中用于无菌包装、热罐装和蒸煮袋,包装奶制品、肉类、果汁罐头和调味品;在非食品方面,用于包装溶剂、化学药品;也可以用于制造汽油桶、汽油桶内衬和空调设制冷剂容器和结构件可以减少碳氢化合物或氟氯烃的泄露。 将普通塑料和高阻隔性塑料制成多层其挤复合薄膜可以明显改善阻隔性能,而且有利于发挥各组份的作用,获得综合性能良好而成本较低的薄膜。EVOH作为高阻隔性材料,常与多种树脂多层挤出,用于饮料、奶制品、果汁、饮料、多种食品等包装,如目前国内多家水产公司出口海鲜就使用 PE/ TIE/EVOH/PA/EVOH/TIE/PE七层共挤出膜真空包装。近年来国外高附加值的高阻隔性多层共挤出塑料薄膜的年均增长率高达15%左右,发展迅猛。 在薄膜表面涂覆一层具有阻隔性能的高分子材料,使薄膜表面具有高阻隔性能,在国际包装业,尤其是食品包装业日见常用,在多种基材如PE、PP、聚氯乙烯、聚苯乙烯、PET、PA等,涂覆后透氧率可以降低至基材的几十分之一甚至数千分之一,根据阻隔效果要求,涂覆可以是单面也可以是双面,也可以进行多层涂覆。 作为一种高性能阻隔包装材料,EVOH也存在一定缺点,主要是在高湿度情况下,其制品的阻隔性会有一定幅度下降。但着取决于外层原料的选择,如果用聚烯烃材料达到一定的厚度就可以解决的.近年来由于市场需求和发展前景看好,国外新产品开发层出不穷,如日本合成化学公司推出的STS新牌号,

多层共挤高阻隔薄膜的结构与性能

中国包装报/2007年/2月/12日/第006版 综合 多层共挤高阻隔薄膜的结构与性能 贾志革 1.尼龙共挤膜 五层尼龙共挤膜有对称结构PE/Tie/PA/Tie/PE和非对称结构PA/Tie/PE/PE/PE,尼龙不仅可以作为一种阻隔材料被用在共挤膜中,而且还有强度高、耐穿刺的特点,尼龙做表层可以承受较高的热封温度,不会粘在烫刀上。 生产薄膜用的尼龙有均聚尼龙和共聚尼龙两种,均聚尼龙在吹膜时通常放在中间层,它的透氧率可以达到40ml,共聚尼龙的透氧率一般在60ml~100ml。 七层共挤尼龙膜基本上都采用PA/Tie/PE/Tie/PA/Tie/PE的非对称结构,既能保证一定的阻隔性,又能保证制袋顺利,还可以防止薄膜卷曲。 通常所说的透氧率都是指23℃情况下测定的结果,如果温度降低,则薄膜的透氧率也会降低。因此,很多肉食品真空包装后在商场里都要放在冷柜里低温贮藏。 2.EVOH共挤膜 五层EVOH共挤膜一般做成对称结构PE/Tie/EVOH/Tie/PE。有时用在小食品包装,多数用在牛奶膜中。 七层共挤吹膜可以分为对称式结构PE/Tie/PA/EVOH/PA/Tie/PE和非对称式结构PA /EVOH/PA/Tie/PE/PE/PE,热成型薄膜可以采用PA/Tie/PA/Tie/PE/PE/PE结构,或者PA/EVOH/PA/Tie/PE/PE/PE结构,EVOH共挤膜的阻隔性能非常好,它的透氧率可以小于1ml,比尼龙共挤膜阻氧率高近百倍。 作为一种高性能阻隔包装材料,EVOH也存在一定缺点,主要是在高湿度情况下,其制品的阻隔性会有一定幅度下降,另外材料成本太高,制品价格高。 3.PVDC共挤膜 通常将PVDC共挤吹膜做成六层或者七层,里层和外层都用聚乙烯材料,可用来生产盖膜、底膜和真空袋。 PVDC作为一种高阻隔材料,越来越受到人们的喜爱,这种材料的透氧率可以控制在1ml-3ml,阻湿性能好于EVOH,这种包装薄膜可以允许食品常温贮藏,具有阻湿、高阻隔的特点。 PVDC共挤膜的强度没有尼龙共挤膜好,所以九层带有尼龙的PVDC共挤吹膜技术已经列入2007年的开发计划里。 第1页共1页

一种包装用聚乙烯醇薄膜及其制备方法

(10)授权公告号 (45)授权公告日 2014.02.19 C N 102702654 B (21)申请号 201210141653.2 (22)申请日 2012.05.09 C08L 29/04(2006.01) C08K 5/053(2006.01) C08F 16/06(2006.01) C08F 8/00(2006.01) C08J 5/18(2006.01) (73)专利权人江苏申乾食品包装有限公司 地址214262 江苏省无锡市宜兴市周铁分水 湖光路48号 (72)发明人李红梅 东为富 (74)专利代理机构江苏圣典律师事务所 32237 代理人黄振华 (54)发明名称 一种包装用聚乙烯醇薄膜及其制备方法 (57)摘要 本发明公开了一种包装用聚乙烯醇薄膜,它 包括以下重量百分比的组分:80~90%的聚乙烯醇 树脂、5~15%的改性聚乙烯醇、1~5%的1,2-亚乙基 二醇、0.5~2%的硅油和0.5~2%的丙二醇。同时, 本发明还公开了上述包装用聚乙烯醇薄膜的制备 方法。本发明通过加入改性聚乙烯醇获得较宽的 熔融加工窗口,实现热塑性加工,制备综合性能优 异的低成本PVA 薄膜,既克服添加大量的传统改 性剂造成PVA 综合性能下降的问题,又避免小分 子增塑剂的迁移带来的诸多问题。 (51)Int.Cl. 审查员 田恩涛 权利要求书1页 说明书2页 (19)中华人民共和国国家知识产权局(12)发明专利权利要求书1页 说明书2页(10)授权公告号CN 102702654 B

1/1页 1.一种包装用聚乙烯醇薄膜,其特征在于,它包括以下重量百分比的组分:80~90%的聚乙烯醇树脂、5~15%的改性聚乙烯醇、1~5%的1,2-亚乙基二醇、0.5~2%的硅油和0.5~2%的丙二醇;所述改性聚乙烯醇为天然多酚、氧化钙复配改性聚乙烯醇,包括重量百分比为20~30%的聚乙烯醇、10~15%的天然多酚、10~15%的氧化钙和50~60%的水。 2.根据权利要求1所述的包装用聚乙烯醇薄膜,其特征在于,所述丙二醇由甲醇、乙醇或异丙醇代替。 3.根据权利要求1所述的包装用聚乙烯醇薄膜,其特征在于,所述天然多酚包括茶黄素、茄红素、原花青素、安石榴苷、咖啡多酚、橄榄多酚、柑橘多酚、碧萝芷、姜黄素、阿魏酸或根皮素。 4.根据权利要求3所述的包装用聚乙烯醇薄膜,其特征在于,所述改性聚乙烯醇的制备方法为:将氧化钙加入水中搅拌10~15分钟,后加入聚乙烯醇和天然多酚,继续搅拌,并加热,待温度达到90~95℃后保温,使聚乙烯醇溶解后降至常温既得。 5.制备权利要求1所述包装用聚乙烯醇薄膜的方法,其特征在于,包括以下步骤: (1)按配方量取各组分,混合,并搅拌,采用回馏方式,控制温度100~150℃,使物料彻底溶解,得到混合液; (2)将混合液在100~130℃下静置1~2小时,倒入预热至90~100℃的平流模具,流延到室温的镜面钢板上,使混合液急冷迅速凝胶,将其从钢板上剥离制得聚乙烯醇薄膜。权 利 要 求 书CN 102702654 B

聚乙烯醇

聚乙烯醇的合成与应用 08206020222 08高分子<2>班吴家彬 【摘要】本文介绍聚乙烯醇的基本性质以及合成和应用,从不同方面说明聚乙烯醇的制备方法,同时介绍聚乙烯醇在工业以及生活上的应用和发展前景。【关键字】聚乙烯醇制备前景 聚乙烯醇,英文名称: polyvinyl alcohol,vinylalcohol polymer,poval,简称PVA 有机化合物,白色片状、絮状或粉末状固体,无味。溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。微溶于二甲基亚砜。聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂等。 聚乙烯醇的制备方法 聚乙烯醇的制备方法原料路线聚乙烯醇是由醋酸乙烯(VAc)经聚合醇解而制成,生产 PVA 通常有两种原料路线,一种是以乙烯为原料制备醋酸乙烯,再制得聚乙烯醇;另外一种是以乙炔 (分为电石乙炔和天然气乙炔)为原料制备醋酸乙烯,再制得聚乙烯醇。 ( 1)乙烯直接合成法)石油裂解乙烯直接合成法。目前,国际上生产聚乙烯醇的工艺路线以乙烯法占主导地位,其数量约占总生产能力的 72%。美国已完成了乙炔法向乙烯法的转变,日本的乙烯法也占 70%以上,而中国的生产企业只有两家为乙烯法。其工艺流程包括:乙烯的获取及醋酸乙烯(VAc)合成、精馏、聚合、聚醋酸乙烯(PVAc)醇解、醋酸和甲醇回收五个工序。石油乙烯法的工艺特点:生产规模较乙炔法大,产品质量好,设备易于维护、管理和清洗、热利用率高,能量节约明显,生产成本较乙炔法低 30%以上。 (2)电石乙炔合成法)电石乙炔合成法,最早实现工业化生产,其工艺特点是操作比较简单、产率高、副产物易于分离,因而国内至今仍有 1O 家工厂沿用此法生产,且大部分应用高碱法生产聚乙烯醇。但由于乙炔高碱法工艺路线产品能耗高、质量差、成本高,生产过程产生的杂质污染环境亦较为严重,缺乏市场竞争力,属逐渐淘汰工艺。国外先进国家早于 20 世纪 7O 年代已全部用低碱法生产工艺。 (3)天然气乙炔合成法)天然气乙炔为原料的 Borden 法,不但技术成熟,

高阻隔性淋膜纸的发展与应用

高阻隔性淋膜纸的发展与应用 李海涛戴中洋 (上海克翌新材料科技有限公司) 摘要:本文综述了高阻隔性淋膜纸的发展背景以及将来的发展方向 关键词:高阻隔性淋膜纸、新型高阻隔材料、淋膜纸的应用 随着低碳环保理念成为社会的主旋律,很多领域都在践行着低碳环保,包装材料领域也是如此。许多对环境有污染的包装材料正在淡出我们的生活,绿色包装材料成为了包装行业的发展趋势和未来。淋膜纸作为一种新型包装材料,而且近年来的应用范围也越来越广,如在化工类、食品类、纸类、生活类、药包类等一些其他地方都能用到淋膜纸。并且在这样应用领域当中高阻隔性淋膜纸已然成为包装材料的重要发展方向之一,尤其是在食品、医药包装中,更是越来越强调高阻隔性。 一、高阻隔性淋膜纸的发展 1.1、高阻隔性淋膜纸的发展背景 在我们日常生活中造成食品、药品等物品腐败变质,影响其储存期的原因有很多,但从包装角度来分析,主要原因有以下几个方面: 1.细菌的生长、繁殖是食品腐败变质的第一个主要原因,而氧气的含量多少则是细菌生存、繁殖的必要条件(厌氧菌除外)。 2.食品中的油脂等成分氧化变质,是食品腐坏的另一个主要原因。 3.食品的原汁原味挥发丧失、外部异味窜入食品内使食品变味也是食品变质的常见原因。 4.有些食品中水气的挥发会使食品丧失原有风味。有些食品则需要在干燥的状态下保存,若外面的水气进入食品内,有助于细菌的繁殖而加速食品的变质或食品受潮变软使食品失去原有风味。 1.2、高阻隔性淋膜纸的发展方向 经济的发展,社会需求量的增长以及出口商品的扩大,对塑料包装材料的要求越来越高,因此“十五”期间塑料包装材料要保持持续、快速、健康发展,除了满足不同内容物的包装质量要求外,进一步要求其必须节省资源,节源能源,用后易回收或易被环境降解为出发点,向高性能、多功能、环保及拓宽应用领域等方向发展。根据国家科技部“十五”期间提出的包装材料的发展方针,高阻隔、高透明、多功能型包装材料将是我国今后发展的重点。 回顾历史,高阻隔性包装材料的发展过程可分为两个阶段,在第一个阶段,形成了最主要的四种高阻隔材料的基本涂层:尼龙、PVDC、EVOH和喷镀金属膜。但是,社会的进步使消费者对阻隔包装的要求更高,希望食品更新鲜,更能保持产品原汁原味和高品质,这就促使我们和研究者们去寻求更加先进的包装材料和开发方案。从20世纪90年代中期开始直至今天,有些复合包装塑料薄膜已有7层以上了,特别引人注目的是,在高阻隔性包装材料的研制中不断地引入各种高新技术,这就成为阻隔性包装材料第二个阶段中一个主要特征。 在发展高阻隔包装产业开始时,消费者的要求是市场发展的第一要素,但成本问题也是这种新材料开发中重要因素。我们认为,让食品到达消费者手中应尽量保持其新鲜状态,这是开发新材料的第一驱动力。而第二驱动力就是指最优化操作,即达到包装材料的最低成本。

聚乙烯醇的性质

预混液的量和你要做的固含量有关,一般只用调节预混液的水含量来控制固含量,其他单体、交联剂、分散剂、粉体质量什么的量都不用动。AM一般按预混液质量分数算,分散剂按粉体质量分数算,固含量就是粉体占粉体+预混液体积的分数。一般10wt或15wt%AM,0.几wt%分散剂,记得调节PH,固含量50vol%以上。引发剂和催化剂应该是根据AM和MBAM 的量算,这几个都是固定值,一般只调节水就可以了 先由单体、交联剂以及分散剂与去离子水(或其他)配制成预混液,预混液配置好后通常会调节PH值,之后再加入粉料进行球磨,若干小时候取出,抽真空,加入引发剂和催化剂,最后注模,希望有所帮助。 一、聚乙烯醇的性质 1、基本物理及化学性质聚乙烯醇(Polyvinyl Alcohol,缩写PVA),分子式为[C2H4O]n,结构式为,是水溶性高分子树脂。白色片状、絮状或粉末状固体,无味,无毒,但其粉末吸入会对人体产生刺激。相对密度(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液。 玻璃化温度:75~85℃,引燃温度(℃):410(粉末)。 聚乙烯醇分子中存在两种化学结构: (2)1,2——乙二醇结构 图1为聚乙烯醇薄膜的红外光谱,为聚乙烯醇薄膜的红外光谱,图中标明了几个主要键和基团特征频率变化情况。图中3587 cm–1处的强吸收峰对应于二级羟基σ键的振动,2950 cm–1处的吸收对应于C–H2σ键的振动,1652cm–1处的强吸收属于残留的聚醋酸乙烯酯结构中C=O键的伸缩振动,1320 cm–1附近的强吸收对应于C–H键和O–H键共同作用的σ键的变形振动。2.聚乙烯醇的醇解及溶解性能聚乙烯醇的醇解度(摩尔分数)通常有三种,即78%、88%和98%。完全醇解的聚乙烯醇的醇解度为98%~100%;而部分醇解的聚乙烯的醇解度通常为87%~89%;78%的则为低醇解度聚乙烯醇。我国聚乙烯醇牌号命名是取聚合度的千、百位数放在牌号的前两位,把醇解度的百分数放在牌号的后两位,如1799,即聚合度为1700,醇解度为99%,完全醇解的聚乙烯醇。

聚乙烯醇

聚乙烯醇

聚乙烯醇(简称PV A)最早由德国的化学家赫尔曼(W.O.Hemnann)和海涅尔(W.Hachnel)于1924年发明的。1951年我国已经从事PV A的研究和开发工作,20世纪70年代市场上出现了PV A商品。由于合成技术的不断提高和价格不断下降,它的用途日益广泛,发展速度很快。 聚乙烯醇是通过醋酸乙烯酯聚合制得聚醋酸乙烯酯(PvAC),然后再醇解或者水解得到的。由于羟基基团的存在,使PvA有很高的吸水性,是一种性能优良,用途广泛的水溶性聚合物。聚乙烯醇为一种可溶性树脂,一般用作纺织浆料,粘合剂、建筑等行业。也可通过改性制成薄膜,用来制作可降解的地膜、保鲜膜等。聚乙烯醇的最大特点就是可以自然降解,环境友好。 1聚乙烯醇的性质 聚乙烯醇一般为白色或微黄色,为絮片状、颗粒状、粉末状固体。无毒无味,性能介于塑料和橡胶之间。PV A溶液遇碘液变深蓝色,这种变色受热后消失而冷却又重现。由于分子链上含有大量的侧基一羟基,具有良好的水溶性,同时还具有良好的成膜性、粘接力和乳化性,有卓越的耐油脂和耐溶剂性能。聚乙烯醇的相对密度为(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液),熔点230℃,玻璃化温度75-85℃,在空气中加热至100℃以上慢慢变色、脆化。加热至160一170℃脱水醚化,失去溶解性,加热到200℃开始分解。超过250℃变成含有共轭双键的聚合物。折射率1.49"-'1.52,热导率0.2w/(m·K),比热容l~5J/(kg·K),电阻率(3.1~3.8)×107 ?·cm。

解度为97%~98%时这种影响变得十分明显。 1.2PV A水溶液的性质 从表1.1可知,当聚乙烯醇的水溶液浓度为1%~5%时,在室温下放置较长时间或长时间加热,其粘度不下降,说明没有解聚现象。当溶液浓度增高时,粘度也有所升高,长时间静置后可出现凝胶,因为放置后形成了超分子结构。但加热后凝胶消失,形成均一的溶液。 (1)PV A水溶液粘度的变化 PV A水溶液的粘度随品种、溶液浓度、溶液温度而变化。PV A.1799羟基较多,又缺少空间障碍,分子之间易产生氢键,易进行交联。所以,PV A-1799水溶液粘度随时间而上升,而1788-PV A 几乎看不出粘度随时间上升而变化。其粘度随时间大体是一直线关系。 (2)聚乙烯醇溶液的溶胶一凝胶化转变 凝胶化有两种物理途径:一是提高溶液的浓度;二是降低溶液的温度。聚乙烯醇浓度越高,其凝胶点也越高。凝胶的熔融行为与结晶热力学熔融相类似。随着聚乙烯醇浓度的增加,由于PV A分子互相缠结,溶液由稀溶液进入亚浓溶液,此时溶液占有的空间完全被溶胀的大分子线团所填充,聚乙烯醇浓溶液会形成凝胶。

聚乙烯醇性能

聚 乙 烯 醇 在 油 田 领 域 的 应 用 系别:石油工程系 班级:10级油田化学二班 姓名:张博 日期:2012年5月13日

聚乙烯醇(PVA)在油田领域的应用 【摘要】聚乙烯醇(Polyvinyl Alcohol,简称P.V.A)首先是在1924年,由德国的科学家Dr.Hermann与Dr.Haenel共同合成得到此一崭新的水溶性高分子化合物,PVA历经无数科学家、工程师、制造者与使用者共同持续的努力开发新制程,探讨新用途,使PVA的需求量逐年上升(1995年全球产量达600,000公吨),各种新的用途也不断的扩大中。 关键词:聚乙烯醇、PVA、降滤失、滤失量 石油作为当前主要的战略能源,在各国经济军事领域占有举足轻重的地位。因而,各国在原油的开采方面投入了大量的资金和人员进行研究和创新。目前,国内外在钻井及采油方面积极研制和开发各类新型、高效、无毒和多功能的化学处理剂,其产品的效能、质量、技术水平实际上代表了钻井工艺水平的发展方向。随着科技的进步,所用的处理剂由过去单一的无机物发展到现在多功能高分子有机物。其中有机物主要包括水溶性聚合物。水溶性聚合物在石油和天然气开采工业中,有广泛的用途,从七十年代到目前使用量几乎以每十年翻一番的速度增加。现在,全世界用于油、气田的水溶性聚合物总量超过15万吨。它们主要将降失水剂、增稠剂、絮凝剂、分散剂、淌度控制剂、减阻剂等助剂用于固井、完井、酸化、压裂、三次采油等过程。常用的水溶性聚合物有聚酰亚胺、聚丙烯酰胺、聚丙烯酸钠、纤维素、黄原胶等。但对聚乙烯醇(PVA)在油田中的应用研究和报道较少,限制了聚乙烯醇在这一领域的应用。聚乙烯醇具有优异的稳定性、交联性能、增稠性能及可降解性等,可以广泛的应用于油田领域,比如,可以在注水中作为增稠剂,可以作为稠化酸的添加剂使工作液延缓与岩石作用并降低酸的损失;与交联剂配合使用再与水泥混合用于压裂液作用于固井、封井。 一、PVA的特性 (一) PVA之一般特性: 1.外观:白色到淡黄色颗粒或粉末。 2.比重:真比重1.26-1.31,充填比重0.5-0.7

薄膜阻隔性的决定参数

薄膜阻隔性的决定参数 薄膜阻隔性的决定参数 -扩散系数 扩散系数表示由于分子链的热运动,分子在膜中传递能力的大小。扩散起源于分子随机运动的传质过程,是粒子(分子、原子)通过一系列小的随机步骤运动逐渐从它们的原始位置迁移的现象。在实际生活中应用广泛,在软包材检测中是计算产品保值期的一项重要参数。 1、扩散现象及Fick Law 从微观上来讲,气体中的扩散现象和气体分子热运动有直接关系。如图1中组分A(用白色圆点表示)在S面上侧密度大,下侧密度小,由于气体分子热运动,在同样的间隔时间内A由下向上穿过S面的分子数比由上向下穿过S面的分子数多,因而有净质量由下向上输运,这在宏观上就表现为扩散。 描述扩散现象的基本公式是Fick Law(费克定律): 式中,A ——扩散发生的截面积 j1 ——单位面积的通量 c1 ——浓度 z ——距离。 这是费克定律的一种形式。费克称其中的D为“决定于物体本性的常数”,这就是扩散系数。费克还比照傅立叶的方式导出了更具一般性的守恒方程:当面积A为常数时,就成为一维非稳态扩散的基本方程,称为费克第二定律。

2、扩散系数的影响因素 由于气体分子在膜中传递需要能量来排开链与链之间一定的体积,而能量大小与分子直径有关。因此,扩散系数随分子增大而减小。扩散系数与温度有关,温度越高,高分子链运动越剧烈,气体分子扩散越容易,扩散系数随温度的升高而增加,遵循Arrhenius关系: 其中ΔE D 是扩散活化能,它随分子直径增加而增大,即分子直径越大,扩散越不易。 3、扩散与应用分析 从微观的角度来看薄膜渗透过程是按以下步骤进行的(如图2所示): 1.气体原子或分子碰撞到薄膜表面; 2.溶解; 3.气体在高浓度一侧的薄膜表面达到溶解平衡; 4.由于浓度梯度的存在,气体向薄膜的另一侧扩散; 5.解吸。 一般来说,扩散是渗透过程中最慢的又是最关键的步骤,它和渗透与溶解有密切的关系。当同一种气体(如氧气)透过不同的薄膜时,渗透系数主要取决于气体在膜中的扩散系数,而不同气体透过同种薄膜时,渗透系数的大小主要取决于气体对膜的溶解度系数。对同一薄膜来讲,渗透系数与薄膜的透气量成正比。由Fick定律可得,在浓度梯度不变的情况下,如果D很小,气体将需要一段很长的时间才能扩散到薄膜的另一面,表现在宏观上就是薄膜的阻隔性比较好;如果D比较大,气体透过薄膜就比较容易,相对应的就是薄膜的阻隔性较差。

相关主题