搜档网
当前位置:搜档网 › 毕业设计-电加热炉控制系统设计

毕业设计-电加热炉控制系统设计

毕业设计-电加热炉控制系统设计
毕业设计-电加热炉控制系统设计

密级:

NANCHANGUNIVERSITY

学士学位论文THESIS OF BACHELOR

(2006 —2010年)

题目锅炉控制系统的设计

学院:环境与化学工程系化工

专业班级:测控技术与仪器

学生姓名:魏彩昊学号:5801206025

指导教师:杨大勇职称:讲师

起讫日期:2010-3至2010-6

南昌大学

学士学位论文原创性申明

本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。

作者签名:日期:

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

保密□,在年解密后适用本授权书。

本学位论文属于

不保密□。

(请在以上相应方框内打“√”)

作者签名:日期:

导师签名:日期:

锅炉控制系统设计

专业:测控技术与仪器学号:5801206025

学生姓名:魏彩昊指导教师:杨大勇

摘要

温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。

本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。

此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。

关键词:温度;电加热炉;PLC;控制系统

Control System Design of Boiler ABSTRACT

Temperature is a very popular parameter of pyrology in flow industry,so temperature control is an emphases of process control.Considering some special condition such as heating mechanism and the special structure of heater there are often some features such as long time lag,nonlinearity and difficulties of modeling of targets of process.It's difficult to control very well by traditional PID algorithm,the Digital PID control algorithm can get better control effect.

This article described a type of imp roved regenerative heating furnace, which makes the temperature invariable and auto ignition using PLC. It can be available in aluminum and steelmill and other metal industry, which can bring obvious economic and social benefits.

The industrial design of the prototype electric oven to laboratory electric furnaceofthe real object, PID control algorithm for temperature control.The paper presents atarget for electric furnace characteristics of control algorithms, and PLC as the coreto form the furnace adaptive control system. Control accuracy, reliability andstability indicators are much higher than the system which is consisted of theconventional instrument, thedesign uses PID algorithm to control its temperature. Keyword:Temperature;heating furnace;PLC;control system

目录

摘要................................................................................................................................ I ABSTRACT .................................................................................................................. II 第一章绪论.. (1)

1.1选题的背景及意义 (1)

1.2加热炉控制研究现状 (2)

1.3本设计的主要工作及技术路线 (3)

1.3.1主要工作 (3)

1.3.2本论文的技术路线 (4)

第二章控制方案确定 (5)

2.1控制对象的数学模型及仿真 (5)

2.2 电加热炉控制系统分析: (9)

2.3控制系统的控制过程 (11)

2.3.1 温度--流量串级控制系统 (11)

2.3.2 液位-流量串级控制系统 (11)

2.4 控制系统主要特色 (12)

第三章PLC 控制系统硬件设计及仪表选型 (14)

3.1系统特性分析 (14)

3.2 PROFIBUS 现场总线介绍 (14)

3.3电加热炉PLC系统结构 (15)

3.4 PLC控制系统设计 (16)

3.4.1 恒温控制系统 (16)

3.4.2 恒压控制系统 (17)

第四章控制系统的软件设计 (20)

4.1 下位机软件设计 (20)

4.1.1Step-7简介 (20)

4.1.2下位机软件设计流程图 (22)

4.2上位机软件设计 (22)

4.2.1Win CC 简介 (23)

4.2.2监控系统的设计 (24)

第五章仪器仪表的选型 (26)

5.1现场仪表的选型 (26)

5.1.1控制阀的选型 (26)

5.1.2节流装置的计算 (27)

5.1.3电气阀门的定位器 (28)

5.1.4 压力变送器的选型 (29)

5.1.5 压力表的选型 (30)

5.1.6流量计的选择 (30)

5.1.7 温度变送器的选型 (31)

5.1.8浮子液位计的选型 (32)

5.2控制室仪表选型 (33)

5.2.1PLC的选型 (33)

5.2.2 控制柜的选型 (33)

5.2.3安全栅的选型 (34)

5.2.4供电箱的选型 (34)

5.2.5智能调节器的选型 (35)

5.3其他仪器的选型 (36)

5.3.1水箱的选型 (36)

5.3.2水泵的选型 (36)

5.3.4接线箱的选型 (37)

5.3.5三相调压模块的选型 (37)

第六章总结和展望 (38)

6.1 设计总结 (38)

6.2 课题展望 (39)

参考文献(References) (40)

致谢 (42)

第一章绪论

1.1选题的背景及意义

我国的电加热锅炉在10多年前问世,由于受到当时电力因素的制约,发展非常缓慢,只有几个非锅炉行业的厂家在生产。1998年以来,特别是2000年,电热锅炉市场迅速发展。行业内许多厂家都已经或者正在准备生产电热锅炉。由于起步晚、规模小,电加热锅炉的控制水准很低,甚至很原始。电加热锅炉的控制与燃油(气)锅炉的控制有很大的不同[1]:

1 电流巨大,属大电流或超大电流控制;

2 没有现成的燃烧器及其程控器,锅炉的加热过程和控制品质完全由自己决定;

3 比燃油(气)锅炉的自动化程度和蓄热要求更高,外观要求也更现代、更美观。

因此,电热锅炉控制存在较大难度。1998年我们抓住了市场机遇,再次把工业控制技术应用于电加热锅炉控制领域,把大型电力负荷控制的成功经验移植到电加热锅炉的大电流控制上来,率先提出了电加热锅炉的循环投切和分段模糊控制的控制模式,较好地解决了电加热锅炉控制的理论和实际问题。

国内电加热炉的加热形式主要有以下两个:

1 电阻加热式

国内绝大多数厂家采用该方式,并选用电阻式管状电热元件。电阻加热方式的电气特点是锅水不带电,但在电加热元件漏水或爆裂时会使锅水带电或称漏电。另外,受电热元件绝缘导热层的绝缘程度的影响,电热管存在一定的泄漏电流。泄漏电流的国家标准是<0.5ma。该方式在结构上易于叠加组合,控制灵活,更换方便。

2 电磁感应加热式

该方式的加热原理是:当电流通过加热线圈时,就会形成电磁场,把金属锅壳置于电磁场之中,就会使锅壳产生涡流,并导致其发热,从而完成对锅水加热的目的。其电流愈大,发热量愈大。电磁感应加热方式在工业上的应用较早,典型的应用就是中频加热炉。但是把它应用到锅炉上,确属首次,很有创意值得关注。目前国内只有一家厂家生产这种电热锅炉。

该方式的优点是,与水和锅炉是非接触式加热,因此绝无漏电的可能性;另一个优点是该方式须用可控硅做驱动输出,因此具有无触点开关的独特优势;机

械噪声小,可多级或无级调节,使用寿命长。

该方式的缺点是热效率比电阻加热方式要稍低,约96%:。这是因为后者是直接与锅水接触加热,而前者是间接加热,况且作为功率驱动元件的可控硅元件,其本身也要消耗一定功率。

1.2加热炉控制研究现状

国内电加热炉控制有四个发展阶段:

第一阶段:手动控制、温度仪表显示

处于发展初期的电加热锅炉控制采用温度仪表显示温度,由人工手动投切,以达到逐级投切和温度调节的目的。还有一种形式是无论功率多大,均分三个投切组,二组为手动,一组用温控表控制。第一阶段手动控制方式自动化程度极低,控制效果较差。

第二阶段:顺序控制器或PLC程控器,温度仪表参与控制

人们把人工手动投切改为用顺序控制器或PLC程控器来完成逐级投切,使锅炉控制基本能够自动化。为了解决逐级投切的自动化,厂家在采用PLC作程控器,或开发了电子顺序控制器后,不但可以实现逐级投切自动化,还能定时启停锅炉。然而由于仍然使用温控表来进行全功率的温度控制,动作频繁,控制效果较差,甚至产生控制振荡。

第三阶段:全PLC控制

为了满足市场对电加热锅炉自动化的更高要求,有少数厂家开发了全PLC 控制系统,全PLC控制就是不但使用PLC主机,还配置了温度输入模块和显示单元(液晶显示或触摸屏显示),在硬件上组成了完整的控制系统。通过厂家编制的控制程序,全PLC控制可以达到全部电加热锅炉的自动化要求,并具有良好的人机界面。它的缺点是成本很高,应用面很窄,控制程序的优劣直接与编程人员的专业水准相关,还需要专业人员去现场改变现场设置。

第四阶段:专用电脑控制

用电加热锅炉专用电脑取代通用的PLC,更取代温控表。它具有全PLC控制的全部优点,并克服了全plc控制的全部缺点,可产品化,成本低,易与各种电热锅炉配套,配备最先进和成熟的控制程序,现场参数可由一般操作人员在现场进行设置和解决。因此电加热锅炉专用电脑控制器已被广泛采用。

电加热锅炉加热的调节方式和控制模型:

从电气角度上看,电加热锅炉就是一台大功率的电力调功设备,锅炉输出的热功率越高,电功率的输出也应越大。

电功率的输出调节分有级功率调节和无级功率调节两种。无级功率调节用于调节精度要求较高的场合,有级功率调节用于调节精度要求较低的场合。由于对锅炉输出热功率的精度要求一般都不很高,因此国内绝大多数电加热锅炉均采用有级功率调节方式[2]。电功率输出的元件分为有机械触点和无机械触点两大类。前者是交流接触器,后者是可控硅,交流接触器只能用作有级功率调节,优点是主回路完全电气隔离,耐过流和过压能力较强、自身耗电小、发热量也小、价格较低,缺点是有机械动作噪声,触点寿命较短。可控硅可以用作无级功率调节,也可用于有级功率调节,优点是无机械动作噪声,触点寿命较长,缺点是主回路不能完全关断,过电流和过电压能力差,自身耗电较大,需要强制散热,价格较高。因此国内绝大多数电加热锅炉采用交流接触器作电功率输出元件。而中频感应加热锅炉因为电路的需要,必须用可控硅作电功率输出元件。另外小功率家用锅炉也适合用可控硅元件。

1.3本设计的主要工作及技术路线

1.3.1主要工作

本设计基于PCT-Ⅲ型过程控制实验装置中的电加热炉被控对象,要求从工 程的角度完成电加热炉的PLC 系统的自控专业施工图设计,通过本次设计,掌 握控制系统设计的流程和方法。

已知:流体介质为水,相关数据:阀前压力1p 250KPa =;压降p 200Kpa ?=; 温度t =20°C ;液体体积流量3

L Q 6m h =;管道直径12D =D =15mm 。具体内

容及要求如下:

1. 熟悉电加热炉的工艺流程,掌握温度、流量、液位等被控对象的特性;

2. 完成控制对象的数学建模及控制系统仿真,确定控制方案,优先采用流 量变比值控制系统或串级控制系统;

3. 采用PLC 作为控制元件,并根据已知条件,进行相关仪器仪表的计算与 选型;

4. 绘制自控专业部分施工图图纸,完成毕业设计报告。

1.3.2本论文的技术路线

PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID 调节是一般闭环控制系统中用得较多的调节方法[6]。大中型PLC都有PID 模块,目前许多小型PLC 也具有此功能模块。PID 处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。本文研究的是电加热炉PLC 控制系统的总体方案,从技术上分析、研究设备的控制系统、温度控制器、加热用发热元件等的选择和确定。

本文提出一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。为满足提高恒温控制精度的实际需要,针对温控过程的动态特点,由PLC进行非线性计算,采用变参数(占空比)方式动态控制加热电功率,使控制系统具有自整定和自适应能力,达到了快速实现较高精度温度控制的目的。系统设计时考虑了不同控制温度对热电偶的要求,考虑了不同电加热功率对可控硅的要求,也考虑了PLC的通用接口,因此系统具有较好的通用性。

第二章控制方案确定

2.1控制对象的数学模型及仿真

在控制系统的分析和设计中首先要建立数学模型[1]。而建立控制系统数学模型的方法主要有两种:机理分析法和实验辨识法。机理分析法是通过对系统内部运动机理的分析,根据系统中的物理或化学变化规律(比如三大守恒定律等),在合理的近似后推导出系统特性方程。实验辨识法一般是根据经验假定模型的结构,然后对实际系统施加某种典型的测试信号,如阶跃信号,通过对系统的输出数据的处理来确定模型参数。本文主要采用机理分析法来建立数学模型,如下图所示。

图 2.1 数学模型

加热炉内水温为被控对象,循环冷却水的流量为操纵变量。根据非稳态下的热平衡方程可得到:

Q= UA(T -T a)+MC dT dT

Q-发热量,

U-总传热系数,

A-传热面积,

Ta-冷却水平均温度,T-加热炉内水温,

M-炉内水的质量,

C-水的比热容

把式2-1 整理成一阶时滞模型的形式,即

MC dT Q T+

Ta UA dT UA

=+ MC UA

τ= 由稳态热平衡方程,利用对数平均温差的关系式: ()()()()UA T-Ti T-To T-Ti Q=FCln T-To

ln T-Ti T-To -????

=???? F —冷却水流量,

Ti —冷却水入口温度

To —冷却水出口温度

T-Ti UA=FCln T-To

()FTi FcTc+F-Fc To =

()Fc Ti=To-To-Tc F

()Q=FcCc To-Tc

()dT +T=KoF t-o dt

τ

τ 将上式进行拉氏变换,得到了过程传递函数为: ()()()-oS T s Ko Go S ==e F s s 1

ττ+ 选择锅炉的高为和h=400mm ,直径D=200mm ,则传热面积A=0.5024㎡体积 V=0.02933m 。冷却水入口温度T i =20℃,冷却水出口温度T o =50℃。

带入已知参数如下:

水的比热容:C = 4.1868 3-1-110J Kg K ???

水的传热系数:U =0.6W/mK 水的密度:31000kg m ρ=

炉内水的质量:2D M=V=()h=75.36kg 2

ρρπ 3

MC 4.186810==100=407.05AU 600

τ?? 3

C 4.186810Ko===13.89UA 6000.16 3.14

??*

30Ko 13.89G(s)=

s+14071

tos s e e s τ--=+

根据以上数学模型,在MATLAB 中进行仿真[7]。首先创建M 文件,输入Matlab 仿真程序:

clc ;

clear ;

sysl=tf (13.89,[407,1],’ioDelay ’,30);

step (sys1)

图2.2 在matab 中输入仿真程序

然后保存并且运行,可加热炉以得到对象的响应曲线为下图所示。

图2.3 加热炉温度对象开环阶跃响应曲线

根据以上数学模型,打开Matlab中的Simulink模块,选用数字PID控制,完成各组件连接。

图2.4单闭环控制回路

采用工程整定经验法[10],设置PID的三个参数,如下图

图2.5 PID三个参数

阶跃响应闭环控制效果图如下

图2.6PID 控制阶跃响应曲线(工程整定经验法)

由上述仿真图可看出,采用数字PID控制对电加热炉温度对象进行闭环单回路控制滞后较大,控制效果不是非常理想,故考虑对其进行串级控制。

2.2电加热炉控制系统分析:

电加热炉的复杂性及控制的困难性主要表现在以下几个方面[14]:

1.非线性。严格地说,所有的工业过程都存在非线性,只是非线性的程度不同而己。当系统的非线性不很严重时,可用线性系统来近似,这在工程上是可以接受的。但是对于存在严重非线性环节的系统,采用线性化的处理方法常会产生很大的偏差,甚至会得出完全相反的结论。线性系统的分析设计有着比较完善和系统的理论方法,而非线性系统的研究虽然取得了一些新成果,但非线性理论远非完善,有很多问题尚待研究。

2.大时滞特性。在电加热炉的过程控制中,存在着时间纯滞后与容量滞后。

时滞的存在给系统的稳定性带来了不利的影响,调节作用的不及时会导致调节系统的动态品质变差,甚至出现发散振荡。因而时滞对象被认为是最难控制的对象之一。从50 年代末以来,在时滞控制方面先后出现了基于模型的方法(如Smith预估控制、最优控制、滑模变结构控制等)和无模型的方法两大类,然而对于时滞系统的模型不确定性和干扰的不可知性,非参数模型显得更为有效,开发设计出各种智能控制方法或以不同的方式结合在一起,将是解决工业大时滞过程的有效途径汇。

3.变参数及强耦合特性。在电加热炉的控制过程中,包含了较多的过程变量,而且这些变量之间又常以各种形式相互关联着,任何一个变量的变化往往可能引起其他的变量发生变化,使系统的控制难以达到满意的指标。目前,许多单变量控制系统所以能正常工作,是因为在某些情况下变量之间的耦合程度不高。在变量间的关联比较紧密的情况下,不能简单地将系统分为若干个单变量系统进行分析和设计,否则不但得不到满意的控制效果,甚至得小到稳定的控制过程。所以,如何在电加热炉控制过程具有复杂特性的情况下,找到合理、有效的控制方式解决过程控制的难题,是非常重要的。加热炉控制系统包括温度控制系统、液位控制系统、流量控制系统和压力控制系统四大部分组成。本方案采用西门子S7-300系列PLC进行信号的采集、分析以及输出控制。S7-300 适用于各行各业的检测,检测以及控制的自动化,同时具有极高的可靠性、丰富的指令集和内置的集成功能、强大的通信能力和丰富的扩展模块。本系统由PLC进行核心控制,控制程序根据控制状态的变化采用PID 算法,使系统的控制精度大幅度提高。本文提出一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。

2.3控制系统的控制过程

2.3.1温度--流量串级控制系统

图2.7 温度流量串级控制系统

该系统为温度流量串级控制系统,当冷却水流量变大时,流量变送器的输出增大,从而使流量控制阀的开度减小,使输出流量减小。在流量增大的同时,锅炉的出口温度随着降低,使温度控制器的输出减小,从而使差值减小,又使控制阀的开度增大,也使锅炉的出口温度降低,两者共同作用,保持锅炉出口温度的稳定。

2.3.2液位-流量串级控制系统

图2.8 液位流量串级控制系统

该系统为液位流量串级控制系统,当流量变大时,流量变送器的输出增大,从而使控制阀的开度减小,使输出流量减小。在流量增大的同时,锅炉的液位随着降低,使液位控制器的输出减小,从而使差值减小,又使控制阀的开度增大,同时使锅炉的液位升高,两者共同作用,保持锅炉液位的稳定。

2.4 控制系统主要特色

1串级控制系统在工业控制系统中[5]:

1)用于克服被控过程较大的容量滞后

在过程控制系统中,被控过程的容量滞后较大,特别是一些被控量是温度等参数时,控制要求较高,如果采用单回路控制系统往往不能满足生产工艺的要求。利用串级控制系统存在二次回路而改善过程动态特性,提高系统工作频率,合理构造二次回路,减小容量滞后对过程的影响,加快响应速度。在构造二次回路时,应该选择一个滞后较小的副回路,保证快速动作的副回路。

2)用于克服被控过程的纯滞后

被控过程中存在纯滞后会严重影响控制系统的动态特性,使控制系统不能满足生产工艺的要求。使用串级控制系统,在距离调节阀较近、纯滞后较小的位置构成副回路,把主要扰动包含在副回路中,提高副回路对系统的控制能力,可以减小纯滞后对主被控量的影响。改善控制系统的控制质量。

3)用于抑制变化剧烈幅度较大的扰动

串级控制系统的副回路对于回路内的扰动具有很强的抑制能力。只要在设计时把变化剧烈幅度大的扰动包含在副回路中,即可以大大削弱其对主被控量的影响。

4)用于克服被控过程的非线性

在过程控制中,一般的被控过程都存在着一定的非线性。这会导致当负载变化时整个系统的特性发生变化,影响控制系统的动态特性。单回路系统往往不能满足生产工艺的要求,由于串级控制系统的副回路是随动控制系统,具有一定的自适应性,在一定程度上可以补偿非线性对系统动态特性的影响。

2串级控制系统的工作过程

当扰动发生时,破坏了稳定状态,调节器进行工作。根据扰动施加点的位置不同,分种情况进行分析:

1)扰动作用于副回路

2)扰动作用于主过程

3)扰动同时作用于副回路和主过程

分析可以看到:在串级控制系统中,由于引入了一个副回路,不仅能及早克服进入副回路的扰动,而且又能改善过程特性。副调节器具有“粗调”的作用,主调节器具有“细调”的作用,从而使其控制品质得到进一步提高。

3 系统特点及分析[12]

1)改善了过程的动态特性,提高了系统控制质量。

2)能迅速克服进入副回路的二次扰动。

3)提高了系统的工作频率。

4)对负荷变化的适应性较强

第三章PLC 控制系统硬件设计及仪表选型

3.1系统特性分析

准确生成有效的炉温监测信号是提高恒温控制精度的前提。通常加热炉采用热电偶进行炉温测量,生成毫伏级的的电压信号。本控制系统能将该信号进行虑波处理和调整放大,准确生成炉温监测的线性控制信号,以保证炉温的精确控制。

由于热惯性的存在,使得炉温控制过程在电加热功率与控制温度之间具有纯滞后量大(炉温滞后于加热功率)和非线性的特点[15]。另外由于对流和辐射引起的热量散失、加减炉料引起的温度变化和电源波动等因素的影响,使得控制参数随时间变化,其控制过程很难用数学模型表达。因此本控制系统能连续监测控制过程状态,根据控制过程动态特性及时测定过程偏差并自动整定控制参数,以实现温度的准确控制。为使控制系统具有通用性,本系统加热电阻可使用单相和三相负载,可控硅可选用多种加热功率,PLC和现场的输入输出有通用的接口。为适应各种场合和不同控制温度的要求,控制系统能使用K、B、J等不同型号的热电偶。

3.2 PROFIBUS现场总线介绍

现场总线(Fieldbus)是用于过程自动化、楼宇自动化、家庭自动化等领域的现场设备互连的通信网络,是现场通信网络与控制系统的集成[14]。

其中,PROFIBUS是当今国际上现场总线的一个重要的组成部分。根据国际标准化组织ISO7498 标准,PROFIBUS的协议结构以开放系统互联网络OSI为参考模型,采用了该模型的物理层、数据链路层作为用户接口,隐去了第3~7层,而增加了直接数据连接拟合。由于PROFIBUS现场总线标准是开放的、不依赖生产厂家通信系统标准,所以在各种工业控制中得到了广泛的应用。

PROFIBUS是德国国家标准DIN19245和欧洲标准EN50170的现场总线标准。由分散和外围设备PROFIBUS- DP (Decentralized Periphery)、报文规范PROFIBUS- FMS(Fieldbus message Periphery)、过程自动化PROFIBUS – PA (Process Automation)组成PROFIBUS系列。其中,PROFIBUS- DP用于设备级的高速数据传送,中央控制器(如PLC、PC),通过高速串行线同分散的现场设备(如I/O, 驱动器, 开关等)进行通信。PROFIBUS- DP具有快速、即插即用、高效低成本等优点。在用于现场层的高速数据传送时, 主站周期地读取从设备的

步进式加热炉加热质量控制系统的设计

步进式加热炉加热质量控制系统的设计 摘要:目前,工业控制自动化技术正在向智能化、网络化和集成化方向发展。本文通过对步进式加热炉加热质量控制系统的设计,从而反映出当今自动化技术的发展方向。同时,介绍了软件设计思想和脉冲式燃烧控制技术原理特点及在本系统的应用。 一、引言 加热炉是轧钢工业必须配备的热处理设备。随着工业自动化技术的不断发展,现代化的轧钢厂应该配置大型化的、高度自动化的步进梁式加热炉,其生产应符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求,以提高其产品的质量,增强产品的市场竞争力。 我国轧钢工业的加热炉型有推钢式炉和步进式炉两种,但推钢式炉有长度短、产量低,烧损大,操作不当时会粘钢造成生产上的问题,难以实现管理自动化。由于推钢式炉有难以克服的缺点,而步进梁式炉是靠专用的步进机构,在炉内做矩形运动来移送钢管,钢管之间可以 留出空隙,钢管和步进梁之间没有摩擦,出炉钢管通过托出装置出炉,完全消除了滑轨擦痕,钢管加热断面温差小、加热均匀,炉长不受限制,产量高,生产操作灵活等特点,其生产符合高产、优质、低耗、节能、无公害以及生产操作自动化的工艺要求。 全连续、全自动化步进式加热炉。这种生产线都具有以下特点:

①生产能耗大幅度降低。②产量大幅度提高。③生产自动化水平非常高,原加热炉的控制系统大多是单回路仪表和继电逻辑控制系统,传动系统也大多是模拟量控制式的供电装置,现在的加热炉的控制系统都是PLC或DCS系统,而且大多还具有二级过程控制系统和三级生产管理系统。传动系统都是全数字化的直流或交流供电装置。 本工程是某钢铁集团新建的φ180小口径无缝连轧钢管生产线中的热处理线部分的步进式加热炉设备。 二、工艺描述 本系统的工艺流程图见图1 ?图1 步进式加热 炉工艺流程图 淬火炉和回火炉均为步进梁式加热炉。装出料方式:侧进,侧出;炉子布料:单排。活动梁和固定梁均为耐热铸钢,顶面带齿形面,直径小于141.3mm钢管,每个齿槽内放一根钢管。直径大15 3.7mm的钢管每隔一齿放一根钢管。活动梁升程180mm,上、下各90mm,齿距为190mm,步距为145mm。因此每次步进时,

基于单片机的电加热炉温度控制系统设计

基于单片机的电加热炉温度控制系统设计 2010-07-28 12:56:38 作者:王丽华郑树展来源:高等职业教育:天津职业大学学报 关键字:电加热炉控温固态继电器飞升曲线 引言 电加热炉随着科学技术的发展和工业生产水平的提高,已经在冶金、化工、机械等各类工业控制中得到了广泛应用,并且在国民经济中占有举足轻重的地位。对于这样一个具有非线性、大滞后、大惯性、时变性、升温单向性等特点的控制对象,很难用数学方法建立精确的数学模型,因此用传统的控制理论和方法很难达到好的控制效果。 单片机以其高可靠性、高性能价格比、控制方便简单和灵活性大等优点,在工业控制系统、智能化仪器仪表等诸多领域得到广泛应用。采用单片机进行炉温控制,可以提高控制质量和自动化水平。 1 单片机炉温控制系统结构 本系统的单片机炉温控制系统结构主要由单片机控制器、可控硅输出部分、热电偶传感器、温度变送器以及被控对象组成。如图1所示。 炉温信号T通过温度检测及变送,变成电信号,与温度设定值进行比较,计算温度偏差e和温度的变化率de/dt,再由智能控制算法进行推理,并得控制量u,可控硅输出部分根据调节电加热炉的输出功率,即改变可控硅管的接通时间,使电加热炉输出温度达到 理想的设定值。 2 系统硬件设计 2.1 系统硬件结构 以AT89C51单片机为该控制系统的核心,实现对温度的采集、检测和控制。该系统的工作流程如图2所示。系统由变送器经A/D转换器构成输入通道,用于采集炉内的温度信号。

变送器可以选用DBW,型号,它将热电偶信号(温度信号)变为0~5 V电压信号,以供A/D转换用。转换后的数字量与炉温数字化后的给定值进行比较,即可得到实际炉温和给定炉温的偏差及温度的变化率。炉温的设定值由BCD 拨码盘输入。由AT89C51构成的核心控制器按智能控制算法进行推算,得出所需要的控制量。由单片机的输出通过调节可控硅管的接通时间,改变电炉的输出功率,起到调温的作用。 2.2 系统硬件的选择 a)微型计算机的选择:选择AT89C51单片机构成炉温控制系统。它具有8位CPU,3 2根I/O线,4 kB片内ROM存储器,128 kB的RAM存储器。AT89C51对温度是通过可控硅调功器实现的。在系统开发过程中修改程序容易,可以大大缩短开发周期。同时,系统工作过程中能有效地保存一些数据信息,不受系统掉电或断电等突发情况的影响。AT89C51单片机内部有128 B的RAM存储器,不够本系统使用,因此,采用6264(8 kB)的RAM作为外部数据存储器。 b)热电偶的选择:本设计采用DBW型热电偶--镍络-镍硅(线性度较好,热电势较大,灵敏度较高,稳定性和复现性较好,抗氧化性强,价格便宜)对温度进行检测。由于温度是非线性输出的,而与输入的mV信号成线性关系,所以在软件上将此非线性关系加以修正,以便正确反映输入mV信号与温度之间的关系。ADC0809把检测到的连续变化的温度模拟量转换成离散的数字量,输人到单片机中进行处理。 c)键盘输入的选择:采用4片BCD拨码盘作为温度设定的输入单元,输入范围为0~9999,可满足本系统的要求。每位BCD码盘占4条线,通过上拉电阻接入8255可编程并行I/O扩展口。4片BCD码盘占8255的A、B两口,8255工作方式设为"0 模式",A、B 两口均为输入方式。开机后,CPU读8255口操作,即可将BCD码盘的设定温度读入并存人相应的存储单元。 d) 显示器的选择:采用字符型LCD(液晶显示器)模块TC1602A,并且它把LCD控制器、ROM和LCD显示器用PCB(印制板)连接到一起,只要向LCD送人相应的命令和数据便可实现所需要的显示,使用特别方便灵活。第1行显示设定温度,第2行显示实际温度,这样,温差一目了然,方便控制。 3 系统软件设计

水温自动控制系统毕业设计论文(DOC)

毕业设计论文 水温自动控制系统 钟野 院系:电子信息工程学系 专业:电气自动化技术 班级: 学号: 指导教师: 职称(或学位): 2011年5 月

目录 1 引言 (2) 2 方案设计 (2) 2.1 总体系统的设计思路 (2) 2.2 部分外围系统的设计思路 (3) 3 硬件电路设计 (3) 3.1 单片机最小系统的设计 (3) 3.2 温度检测电路的设计与论证 (4) 3.3 显示功能电路的设计与论证 (5) 3.4 温度报警提示功能电路的设计与论证 (5) 3.5 外围电路控制设计 (6) 3.6 扩展部分方案设计 (7) 4 软件设计 (7) 4.1 控制主程序设计 (7) 4.2 温度设置程序设计 (8) 4.3 上下限报警程序设计 (8) 5 结论 (9) 结束语 (9) 致谢 (10) 参考文献 (10) 附录............................................................................................................... 错误!未定义书签。

水温自动控制系统 钟野 (XXXX电子信息工程学系指导教师:CXJ) 摘要:本文设计主要是采用A T89C51单片机为控制核心、以温度传感器(DS18B20)为温度采集元件, 外加温度设置电路、温度采集电路、显示电路、报警电路和加热电路来实现对水温的显示同时自动检测及线性化处理,其误差小于±0.5℃。本文重点介绍硬件设计方案的论证和选择,以及各部分功能控制的软件的设计。本次设计的目标在于:由单片机来实现水温的自动检测及自动控制,实现设备的智能化。 关键词:单片机;温度传感器;自动控制 Abstract: This paper is designed AT89C51 microcontroller as control core and temperature sensor DS18B20) for (temperature gathering element, plus the temperature setting circuit, temperature gathering electriccircuit, display circuit, alarm circuit and heating circuit to achieve water temperature display while automatically detecting and linearization, its error is less than 0.5 + ℃. This paper mainly introduces the hardware design argumentation and choice, and some functional control software design. This design goal is: by single-chip microcomputer to realize the automatic detection and automatic temperature control, realize the intellectualized equipment. Keywords: Microcontroller; Temperature sensors; Automatic control

毕业设计-电加热炉控制系统设计

密级: NANCHANGUNIVERSITY 学士学位论文THESIS OF BACHELOR (2006 —2010年) 题目锅炉控制系统的设计 学院:环境与化学工程系化工 专业班级:测控技术与仪器 学生姓名:魏彩昊学号:5801206025 指导教师:杨大勇职称:讲师 起讫日期:2010-3至2010-6

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

锅炉控制系统设计 专业:测控技术与仪器学号:5801206025 学生姓名:魏彩昊指导教师:杨大勇 摘要 温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。 本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。 此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。 关键词:温度;电加热炉;PLC;控制系统

电加热炉温度控制系统设计

湖南理工学院南湖学院 课程设计 题目:电加热炉温度控制系统设计专业:机械电子工程 组名:第三组 班级:机电班 组成员:彭江林、谢超、薛文熙

目录 1 意义与要求 (2) 1.1 实际意义 (2) 1.2 技术要求 (2) 2 设计内容及步骤 (2) 2.1 方案设计 (2) 2.2 详细设计 (3) 2.2.1 主要硬件介绍 (3) 2.2.2 电路设计方法 (4) 2.2.3 绘制流程图 (7) 2.2.4 程序设计 (8) 2.3 调试和仿真 (8) 3 结果分析 (9) 4 课程设计心得体会 (10) 参考文献 (10) 附录............................................................ 10-27

1 意义与要求 1.1 实际意义 在现实生活当中,很多场合需要对温度进行智能控制,日常生活中最常见的要算空调和冰箱了,他们都能根据环境实时情况,结合人为的设定,对温度进行智能控制。工业生产中的电加热炉温度监控系统和培养基的温度监控系统都是计算机控制系统的典型应用。通过这次课程设计,我们将自己动手设计一个小型的计算机控制系统,目的在于将理论结合实践以加深我们对课本知识的理解。 1.2 技术要求 要求利用所学过的知识设计一个温度控制系统,并用软件仿真。功能要求如下: (1)能够利用温度传感器检测环境中的实时温度; (2)能对所要求的温度进行设定; (3)将传感器检测到得实时温度与设定值相比较,当环境中的温度高于或低于所设定的温度时,系统会自动做出相应的动作来改变这一状况,使系统温度始终保持在设定的温度值。 2 设计内容及步骤 2.1 方案设计 要想达到技术要求的内容,少不了以下几种器件:单片机、温度传感器、LCD显示屏、直流电动机等。其中单片机用作主控制器,控制其他器件的工作和处理数据;温度传感器用来检测环境中的实时温度,并将检测值送到单片机中进行数值对比;LCD显示屏用来显示温度、时间的数字值;直流电动机用来表示电加热炉的工作情况,转动表示电加热炉通电加热,停止转动表示电加热炉断

温度自动控制系统的设计毕业设计论文

北方民族大学学士学位论文论文题目:温度自动控制系统的设计 北方民族大学教务处制

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博__ 学号 指导教师潘月斗 ___ 成绩 _______

摘要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

加热炉温度控制系统

目录 一、工艺介绍 (2) 二、功能的设计 (4) 三、实现的情况以及效果 (6)

一、工艺介绍 在钢厂中轧钢车间在对工件进行轧制前需要将工件加热到一定的温度,如图1表示其中一个加热段的温度控制系统。在图中采用了6台设有断偶报警的温度变送器、3台高值选择器、1台加法器、1台PID调节器和1台电器转换器组成系统。 利用阶跃响应便识的,以控制电流为输入、加热炉温度为输出的系统的传递函数为: 温度测量与变送器的传递函数为: 由于,因此,上式中可简化为: 在实际的设计控制系统时,首先采用了常规PID控制系统,但控制响应超调量较大,不能满足控制要求。

图1 对如图1所示的加热炉多点平均温度系统采用可变增益自适应纯滞后补偿进行仿真。 加入补偿环节后,PID调节器所控制的对象包括原来的对象和补偿环节两部分,于是等效对象的特性G(s)可以写成: 即补偿后的广义被控对象不在含有纯延迟环节,所以,采用纯滞后的对象特性比原来的对象容易控制的多。 但实际应用中发现,加热锅炉由于使用时间长短不同及处理工件数量不同,会引起特性变化,导致补偿模型精度降低,从而使纯滞后补偿特性变差,很难满足实际生产的稳定控制要求。

为改善调节效果,在控制线路中加入两个非线性单元——除法器与乘法器,构成如图所示的加热炉多点温度控制纯滞后自适应控制系统。 二、功能的设计 1、系统辨识 经辨识的被控对象模型为: 所以,带可变增益的自适应补偿控制结构框图如图

图2 加热炉多点温度控制纯滞后自适应补偿系统控制框图2、无调节器的开环系统稳定性分析 理想情况下,无调节器的开环传递函数为: 上式中所示广义被控对象的Bode图如下图所示。 图3

温度自动控制系统的设计毕业设计

论文题目:温度自动控制系统的设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

自动控制系统毕业设计..

目录 摘要…………………………………………………………………第1章任务要求和方案设计…………………………………… 1.1 任务要求……………………………………………………… 2.1 总体方案确定及元件选择…………………………………….. 2.1.1 总体设计框图……………………………………………… 2.1.2 控制方案确定………………………………...…………… 2.1.3 系统组成……………………………………………… 2.1.4 单片机系统……………………………………….. 2.1.15 D/A转换........................................................................... 2.1.5 晶闸管控制………………………………………... 2.1.6 传感器……………………………………………… 2.1.7 信号放大电路………………………………………. 2.1.8 A/D转换……………………………………………. 2.1.9 设定温度及显示……………………………………. 第2章系统硬件设计……………………….…………………2.1 系统硬件框图……………………………………………2.2 系统组成部分之间接线分析…………………………… 第3章系统软件设计…………………………………………. 3.1程序流程图..…………………………………..…………… 第4章参数计算……………………………..………………... 4.1 系统各模块设计及参数计算 4.1.1、温度采集部分及转换部分

4.1.2、传感器输出信号放大电路部分:........................... 4.1.3、模数转换电路部分:............................ 4.1.4、ADC0804芯片外围电路的设计:....................... 4.1.5、数值处理部分及显示部分:............................. 4.1.6、PID算法的介绍....................................: 4.1.7、A/D转换模块.......................................... 4.1.7、A/D转换模块................................... 4.1.8 单片机基本系统调试............................... 4 .1. 9 注意事项:................................................................ 第5章测试方法和测试结果 5.1 系统测试仪器及设备 5.2 测试方法 5.3 测试结果 结束语........................................... 参考文献.…………………………………….……….……………

基于+PLC+的两轴运动控制系统设计

基于 PLC 的两轴运动控制系统设计 学生姓名:张坤森 学号:2014062038 指导教师;彭宽栋 专业:机电一体化 杭州科技职业技术学院 摘要:以可编程控制器 PLC 作为运动控制系统的核心,步进电机作为运动控制系统的执行机构,设计了基于 PLC 的两轴运动控制系统;通过 PLC 高速脉冲口输出高速脉冲,实现了单轴运动或者两轴运动;采用触摸屏作为操作面板,建立了友好的人机交互界面。 关键词:机械制造自动化; PLC;步进电机;运动控制 0 前言 步进电机是一种将电脉冲转化为角位移的执行机构。步进电机开环控制结构简单,可靠性高,价格低。但当起动频率太高或者负载太大,步进电机极易失步。而步进电机闭环控制可以克服以上缺点,提高系统精度和稳定性。在闭环控制系统中,采用增量式编码器作为反馈装置。而 PLC 作为一种工业计算机,具有逻辑控制、步进控制、数据处理、存储功能、自诊断功能、通信联网等功能,而且具有较高的可靠性、较强的抗干扰性、较好的通用性等优点。所以,使用 PLC 控制步进电机,构建两轴运动控制系统,具有重要意义。 1 系统组成 本文所实现的示教与再现功能系统组成框图如图1所示。采用西门

子 S 7-200系列的 C P U226 D C/D C /D CP L C作为主控制器。该 C P U具有 4个最高 20k H z的正交高速脉冲计数器 ,能够对输入的正交编码脉冲信号进行 4分频 [ 5] ; 2个最高 20k Hz 的高速脉冲输出 ;24个输入点和 16个输出点 ; 其布尔型指令执行时间只有 0. 22μ s [ 6] 。 2 系统总体设计 该运动控制系统由触摸屏、 PLC、步进电机驱动器、步进电机、限位开关、急停开关、编码器等组成。操作者通过触摸屏端操作,向PLC 发出控制指令,PLC 根据控制指令和内部梯形图控制相应步进电机动作,步进电机将带动相应的进给轴动作,同时,PLC 将采集与步进电机相连的编码器产生的反馈信号,并将反馈信号返回给触摸屏,以完成整个系统的反馈环节。此外,外部限位开关用于限定运动系统的极限位置,急停开关用于发生突发状况时,立即停止机器,防止伤害或者损失扩大。系统总体设计框图如图 1

加热炉温度控制系统设计

过程控制系统课程设计 设计题目加热炉温度控制系统 学生姓名 专业班级自动化 学号 指导老师 2010年12月31日 目录 第1章设计的目的和意义 (2) 第2章控制系统工艺流程及控制要求 (2) 2.1 生产工艺介绍

2.2 控制要求 第3章总体设计方案 (3) 3.1 系统控制方案 3.2 系统结构和控制流程图 第4章控制系统设计 (5) 4.1 系统控制参数确定 4.2 PID调节器设计 第5章控制仪表的选型和配置 (7) 5.1 检测元件 5.2 变送器 5.3 调节器 5.4 执行器 第6章系统控制接线图 (13) 第7章元件清单 (13) 第8章收获和体会 (14) 参考文献 第1章设计的目的和意义 电加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定

性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 这里,给出了一种简单的温度控制系统的实现方案。 第2章控制系统工艺流程及控制要求 2.1 生产工艺介绍 加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。 加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。 本加热炉环节中,燃料与空气按照一定比例送入加热炉燃烧室燃烧,生成的热量传递给物料。物料被加热后,温度达到生产要求后,进入下一个工艺环节。 加热炉设备主要工艺流程图如图2-1所示。

电加热炉温度控制

基于单片机的电加热炉温度控制系统设计 王丽华1郑树展2 (1、天津职业大学,天津300402;2、天津航空机电有限公司,天津300123) 摘要:温度控制是工业对象中主要的控制参数之一,其控制系统本身的动态特性属于一阶纯滞后环节。以8051单片机为核心,采用温度变送器桥路和固态继电器控温电路,实现对电炉温度的自动控制。该控制系统具有硬件成本低、控温精度较高、可靠性好、抗干扰能力强等特点。 关键词:电加热炉控温固态继电器飞升曲线 0引言 传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1电加热炉温度控制系统的硬件设计 电加热炉温度控制系统的硬件由图1所示各部件组成,它以8051单片机为核心,外扩键盘输入和LED显示温度。电加热炉炉内的实际温度由热电偶测量并转换成毫伏级的电压信号,通过温度变送器桥路实现零点迁移和冷端补偿,经运算放大器7650放大到0~5V,再经过有源低通滤波器滤波后,由A/D转换成数字量。此数字量经数字滤波、标度转换后,一方面通过LED将炉温显示出来;另一方面,将该温度值与被控温度值进行比较,根据其偏差值的大小,采用PID控制,通过PWM脉冲调宽功率放大器控制SSR固态继电器来控制电加热炉炉丝的导通时间,就可以控制电炉丝的加热功率大小,从而控制电炉的温度及升温速度,使其逐渐趋于给定值且达到平衡。 1.1 热电偶的选取 热电偶是温度测量传感器,对它的选择将直接影响检测误差的大小。目前多选K型或S 型(镍铬-镍硅)热电偶。两者相比,K型有较好的温度—热电势的线性度,但它不适宜于长时间在高温区适用;S型有高的精度,但温度—热电势的线性度较差。 A/D转换器 图1中A/D转换芯片采用ADC0809,其转换精度是1/256。若电加热炉工作温度是256℃,这样在(0~256)℃范围A/D的转换精度为256℃/256=1℃/bit,即一个数字量表示1℃,这显然不能满足控制精度为±0.5℃要求。为了提高控制精度,可以选用更高位的A/D转换器,如10位、12位、16位A/D转换器,其控值精度均能满足要求。然而根据实际需要温度控制情况,也可以通过具有零点迁移和冷端补偿功能的温度变送桥路,缩小测温的范围,如

自动控制原理及系统仿真课程设计

自动控制原理及系统仿 真课程设计 学号:1030620227 姓名:李斌 指导老师:胡开明 学院:机械与电子工程学院

2013年11月

目录 一、设计要求 (1) 二、设计报告的要求 (1) 三、题目及要求 (1) (一)自动控制仿真训练 (1) (二)控制方法训练 (19) (三)控制系统的设计 (23) 四、心得体会 (27) 五、参考文献 (28)

自动控制原理及系统仿真课程设计 一:设计要求: 1、 完成给定题目中,要求完成题目的仿真调试,给出仿真程序和图形。 2、 自觉按规定时间进入实验室,做到不迟到,不早退,因事要请假。严格遵守实验室各项规章制度,实验期间保持实验室安静,不得大声喧哗,不得围坐在一起谈与课程设计无关的空话,若违规,则酌情扣分。 3、 课程设计是考查动手能力的基本平台,要求独立设计操作,指导老师只检查运行结果,原则上不对中途故障进行排查。 4、 加大考查力度,每个时间段均进行考勤,计入考勤分数,按照运行的要求给出操作分数。每个人均要全程参与设计,若有1/3时间不到或没有任何运行结果,视为不合格。 二:设计报告的要求: 1.理论分析与设计 2.题目的仿真调试,包括源程序和仿真图形。 3.设计中的心得体会及建议。 三:题目及要求 一)自动控制仿真训练 1.已知两个传递函数分别为:s s x G s x G +=+= 22132)(,131)(

①在MATLAB中分别用传递函数、零极点、和状态空间法表示; MATLAB代码: num=[1] den=[3 1] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) num=[2] den=[3 1 0] G=tf(num,den) [E F]=zero(G) [A B C D]=tf2ss(num,den) 仿真结果: num =2 den =3 1 0 Transfer function: 2 --------- 3 s^2 + s

加热炉控制系课程设计

第1章加热炉控制系统 加热炉控制系统工程背景及说明 加热炉自动控制(automatic control of reheating furnace),是对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。为了保证安全生产,在生产线中增加了安全联锁保护系统。 影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。根据干扰施加点位置的不同,可组成多参数的串级控制。使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。这种方案比较简单,在炼油厂中应用广泛。 这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。一般通过引入阻尼滞后或增加非线性环节来改善控制品质。 在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。压力调节系统投入运行保证燃料管道压力不超过规定上限。当管道压力恢复正常时,温度调节系统通过低选器投入正常运行,出料温度重新受到控制。当进料流量和燃料流量低于允许下限或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火。 随着节能技术不断发展,加热炉节能控制系统正日趋完善。以燃烧过程数学模型为依据建立的最佳燃烧过程计算机控制方案已进入实用阶段。例如,按燃烧过程稳态数学模型组成的微机控制系统已开始在炼油厂成功使用。有时利用计算机实现约束控制,使加热炉经常维持在约束条件边界附近工作,以保证最佳燃烧。

自动控制系统课程设计报告

自动控制系统课程 设计报告 课程名称:自动控制系统课程设计报告 设计题目:错位控制无环流可逆调速系统设计院系: 班级: 设计者: 学号: 同组人: 指导教师: 设计时间:

课程设计(论文)任务书 指导教师签字:系(教研室)主任签字:年月日

目录 一、错位控制无环流可逆调速系统的原理................................................................... - 4 - 1、可逆调速系统的原理.................................................................................... - 4 - 2、环流的介绍.................................................................................................... - 4 - 1、环流的定义............................................................................................. - 4 - 2、环流的分类........................................................................................... - 5 - 3、错位控制无环流系统 ................................................................................. - 5 - 1、静态环流的错位消除原理.................................................................. - 5 - 2、错位控制无环流系统的结构............................................................. - 5 - 3、错位控制无环流系统的优缺点 ........................................................ - 6 - 二、系统的设计 ................................................................................................................... - 6 - 1、主电路的设计及参数选择 ........................................................................ - 6 - 1、变压器的选择...................................................................................... - 6 - 2、晶闸管的选择...................................................................................... - 7 - 3、电抗的选择........................................................................................... - 7 - 2、同步变压器及触发器的设计.................................................................... - 7 - 1、触发电路的设计.................................................................................... - 7 - 2、同步变压器的设计............................................................................. - 8 - 3、保护电路的设计........................................................................................... - 9 - 1、过电流保护........................................................................................... - 9 - 2、过电压保护........................................................................................... - 9 - 3、缓冲电路............................................................................................... - 9 - 4、检测环节 ...................................................................................................... - 10 - 1、转速检测............................................................................................. - 10 - 2、电流检测 ............................................................................................... - 10 - 3、电压检测............................................................................................. - 10 - 5、控制电路的设计......................................................................................... - 11 - 1、AVR电压内环的设计 ..................................................................... - 11 - 2、ACR电流环的设计.......................................................................... - 12 - 3、ASR转速环的设计........................................................................... - 13 - 4、AVR、ACR和ASR的限幅设计 .................................................. - 14 - 5、AR反相器的设计............................................................................. - 14 - 三、设计小结...................................................................................................................... - 15 - 四、参考文献...................................................................................................................... - 15 -

相关主题