搜档网
当前位置:搜档网 › java 编写定时器实例 每天定时执行和N分钟执行一次

java 编写定时器实例 每天定时执行和N分钟执行一次

java 编写定时器实例 每天定时执行和N分钟执行一次
java 编写定时器实例 每天定时执行和N分钟执行一次

Java定时器的使用,这里简单的说两种使用方式。

在这里我用的是线程,可以单独启动。

仅供参考!

第一种:要求程序定时执行某个方法,如:没5分钟扫描数据库tb_test表

package com.jwht.hbgs.datatransfer;

import java.io.IOException;

/**

*

Title:

*

Description:

*

Copyright: Copyright (c) 2005

*

Company:

* @author ASLU

* @version 1.0

*/

public class TsMGap {

public TsMGap() {

}

public void go() throws IOException{

ThreadTimer th=new ThreadTimer();

th.start();//线程启动

}

public static void main(String[] args) { TsMGap tm = new TsMGap();

try{

tm.go();

}catch(Exception e){

e.printStackTrace();

}

}

}

package com.jwht.hbgs.datatransfer;

import java.util.*;

/**

*

Title:

*

Description:

*

Copyright: Copyright (c) 2005

*

Company:

* @author ASLU

* @version 1.0

*/

public class ThreadTimer extends Thread{

public ThreadTimer() {

}

static int num=5;//分钟

public void start(){

//每5分钟执行一次定时任务

RefreshItem ri = new RefreshItem(60*ThreadTimer.num);

}

public static void main(String [] args){

ThreadTimer tm = new ThreadTimer();

tm.start();//启动ThreadTimer中start()方法。

}

public static class RefreshItem {

public RefreshItem(int seconds) {

Timer timer = new Timer();

timer.scheduleAtFixedRate(new RefreshTask(), new Date(), seconds * 1000);

}

class RefreshTask extends TimerTask {

public void run() {

//查询

TsManagerBean tm=new TsManagerBean();

tm.getTsTxSmsinfo();

tm.getTsTxSmsinfo2();

}

}

}

}

package com.jwht.hbgs.datatransfer;

import java.sql.*;

import java.util.*;

import java.util.Date;

import https://www.sodocs.net/doc/0e2662316.html,mon.*;

import java.text.*;

import com.jwht.hbgs.datatransfer.*;

import com.jwht.hbgs.smsoper.*;

/**

*

Title:

*

Description:

*

Copyright: Copyright (c) 2005

*

Company:

* @author ASLU

* @version 1.0

* 2013年11月14日 09:42:03改发送后update iseend=1不删除数据

*/

public class TsManagerBean {

public TsManagerBean() {

}

public void getTsTxSmsinfo2(){

具体实现方法。。。。

}

第二中:要求程序在某个特定时间去执行某项任务,如:要求程序每天晚上23:19:10去执行任务

创建启动线程的ShanChu类

package https://www.sodocs.net/doc/0e2662316.html,.dingshishanchu;

import java.io.IOException;

public class ShanChu {

public ShanChu() {

}

public void go() throws IOException{

ShanChuTimer th=new ShanChuTimer();

th.start();//线程启动

System.out.println("启动定时删除线程。。。");

}

public static void main(String[] args) { ShanChu tm = new ShanChu();

try{

tm.go();

}catch(Exception e){

e.printStackTrace();

}

}

}

创建定时器ShanChuTimer

package https://www.sodocs.net/doc/0e2662316.html,.dingshishanchu;

import java.util.*;

public class ShanChuTimer extends Thread { public ShanChuTimer() {

}

private static final long PERIOD_DAY= 24*60*60*1000;//以毫秒为单位,24*60*60*1000是1天

public void start() {

RefreshItem ri = new RefreshItem();

}

public static void main(String[] args) {

ShanChuTimer tm = new ShanChuTimer();

tm.start();// 启动ThreadTimer中start()方法。

}

// 定制每天的xx:xx:xx执行,

// 每天的date时刻执行task, 仅执行一次

// timer.schedule(task, date);

public static class RefreshItem {

public RefreshItem() {

// timer.scheduleAtFixedRate(new RefreshTask(), new Date(),seconds *

// 200); //1000毫秒=1分钟

// 设置执行时间

Calendar calendar = Calendar.getInstance();

int year = calendar.get(Calendar.YEAR);

int month = calendar.get(Calendar.MONTH);

int day = calendar.get(Calendar.DAY_OF_MONTH);// 每天

//这里说明一点,如果你启动任务的时间(上午10点)晚于你设定的时间(早上8点),程序会立马执行一次,这里需要将day+1默认推迟一天。这里我设定的时间是晚上22点01分18秒,所以只要我在这个时间前启动就ok.

calendar.set(year, month, day, 22, 01, 18);//设置固定时间

Date date = calendar.getTime();

System.out.println("第一次执行时间是:"+date);

Timer timer = new Timer();

timer.schedule(new RefreshTask(), date, PERIOD_DAY);//间隔时间为PERIOD_DAY(1天)

}

class RefreshTask extends TimerTask {

public void run() {

ShanChuBean tm = new ShanChuBean();

System.out.println("执行定时删除进行中。。。");

tm.del();

}

}

}

}

创建具体实现的ShanChuBean类

package https://www.sodocs.net/doc/0e2662316.html,.dingshishanchu;

import java.io.File;

import java.text.SimpleDateFormat;

import java.util.Date;

public class ShanChuBean {

public ShanChuBean() {

}

public void del() {

SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");// 设置日期格式String loadpath = "D:/workspace/sc" + "/dir";

File file = new File(loadpath);// 里面输入特定目录

// System.out.println(loadpath);

// System.out.println("file.length() "+file.length());//需要loadpath指定到文件名,输出文件大

File temp = null;

File[] filelist = file.listFiles();

for (int i = 0; i < filelist.length; i++) {

temp = filelist[i];

if (temp.getName().endsWith("")) {// 获得文件名,如果后缀为“”,这个你自己写,就删除文件

temp.delete();// 删除文件}

System.out.println(df.format(new Date()) + " "

+ temp.getName() + " 删除成功。。。");

}

}

if (filelist.length == 0)

System.out.println("没有文件可删除。。。");

System.out.println("本次执行定时删除完成。。。");

}

}

作业习题 中断及定时器

中断及定时器、串行口习题 一、填空 1.MCS-51的Po口作为输出端口时,每位能驱动个SL型TTL负载. 2.MCS-51有个并行I\O口,其中P0~P3是准双向口,所以由输出转输入时必须先 写入 3.设计8031系统时,_ 口不能用作一般I\O口. 4.MCS-51串行接口有4种工作方式,这可在初始化程序中用软件填写特殊功能寄存 器__ _加以选择. 5.当使用慢速外设时,最佳的传输方式是。 6.当定时器To工作在方式时,要占定时器T1的TR1和TF1_两个控制位. 7.MCS-51有个中断源,有2 个中断优先级,优先级由软件填写特殊功能寄存器加以选择.. 8.用串口扩并口时,串行接口工作方式应选为方式。 9.在串行通信中,有数据传送方向、、三种方式. 10.外部中断入口地址为_ 。 二、判断 1.MCS-51的5个中断源优先级相同。() 2.要进行多机通信,MCS-51串行接口的工作方式应为方式1。() 3.MCS-51上电复位时,SBUF=00H。()。 4.MCS-51有3个中断源,优先级由软件填写特殊功能寄存器IP加以选择.. () 5.用串口扩并口时,串行接口工作方式应选为方式1. () 6.外部中断INTO 入口地址为_0013H() 7.MCS-51外部中断0的入口地址是0003H。(). 8.TMOD中的GATE=1时,表示由两个信号控制定时器的启停。()。 9.使用8751且=1时,仍可外扩64KB的程序存储器。() 10.PC存放的是当前执行的指令。() 11.MCS-51的特殊功能寄存器分布在60H~80H地址范围内。() 12.MCS-51有4个并行I\O口,其中P0~P3是准双向口,所以由输出转输入时必须先写入"0"() 三、选择 1.在中断服务程序中,至少应有一条( ) (A)传送指令(B)转移指令(C)加法指法(D)中断返回指令 2.要使MCS-51能够响应定时器T1中断、串行接口中断,它的中断允许寄存器IE的内容应是() (A)98H (B)84H (C)42 (D)22H 3.D MCS-51在响应中断时,下列哪种操作不会发生( ). (A)保护现场(B)保护PC (C)找到中断入口若悬河(D)保护PC转入中断入口 4.用MCS-51串行接口扩展并行I\O口时,串行接口工作方式应选择( ) (A)方式0 (B)方式1 (C)方式2 (D)方式3 5.MCS-51有中断源() (A)5个(B)2个(C)3个(D)6个 6.MCS-51响应中断时,下面哪一个条件不是必须的() (A)当前指令执行完毕(B)中断是开放的确 (C)没有同级或高级中断服务须(D)必须有RET1指令 7.使用定时器T1时,有几种工作模式() (A)1种(B)2种(C)3种(D)4种 8.计算机在使用中断方式与外界交换信息时,保护现场的工作方式应该是( ) (A)由CPU自动完成(B)在中断响应中完成功之路 (C)应由中断服务程序完成(D)在主程序中完成 9.下面哪一种传送方式适用于处理外部事件( ) (A)DMA (B)无条件传递进(C)中断(D)条件传递 四、编程 1. 1. 8225A控制字地址为300FH,请按:A口方式0输入,B口方式1输出,C口高位输出,C口低位输入,确定8225A控制字并编初始化程序. 2. 2. 编定一个软件延时1S和1min的子程序.设fosc=6Hz,则一个机器周期1μs。

Spring提供的三种定时任务机制及其比较

Spring提供的三种定时任务机制及其比较 定时任务的需求在众多应用系统中广泛存在,在Spring中,我们可以使用三种不同的定时机制,下面一一描述并加以比较 1. 基于Quartz的定时机制

下面详细解释这个类图中涉及的关键类及其使用场景 1.1. SchedulerFactoryBean 这是Spring中基于Quartz的定时机制入口,只要Spring容器装载了这个类,Quartz定时机制就会启动,并加载定义在这个类中的所有trigger Spring配置范例: [xhtml]view plaincopy 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 1.2. CronTriggerBean 实现了Trigger接口,基于Cron表达式的触发器 这种触发器的好处是表达式与linux下的crontab一致,能够满足非常复杂的定时需求,也容易配置

Spring配置范例: [xhtml]view plaincopy 1. 2. 3. 4. 1.3. SimpleTriggerBean 该类也实现了Trigger接口,基于配置的定时调度 这个触发器的优点在于很容易配置一个简单的定时调度策略 Spring配置范例: [xhtml]view plaincopy 1. 2. 3. 4. 5. 6.3600000 7. 8. 9.86400000 10. 11.

单片机中断程序大全

单片机中断程序大全公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

//实例42:用定时器T0查询方式P2口8位控制L E D闪烁#include // 包含51单片机寄存器定义的头文件void main(void) { // EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x01; //使用定时器T0的模式1 TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 TR0=1; //启动定时器T0 TF0=0; P2=0xff; while(1)//无限循环等待查询 { while(TF0==0) ; TF0=0; P2=~P2; TH0=(65536-46083)/256; //定时器T0的高8位赋初值 TL0=(65536-46083)%256; //定时器T0的高8位赋初值 //实例43:用定时器T1查询方式控制单片机发出1KHz音频

#include // 包含51单片机寄存器定义的头文件sbit sound=P3^7; //将sound位定义为P3.7引脚 void main(void) {// EA=1; //开总中断 // ET0=1; //定时器T0中断允许 TMOD=0x10; //使用定时器T1的模式1 TH1=(65536-921)/256; //定时器T1的高8位赋初值 TL1=(65536-921)%256; //定时器T1的高8位赋初值 TR1=1; //启动定时器T1 TF1=0; while(1)//无限循环等待查询 { while(TF1==0); TF1=0; sound=~sound; //将P3.7引脚输出电平取反 TH1=(65536-921)/256; //定时器T0的高8位赋初值 TL1=(65536-921)%256; //定时器T0的高8位赋初值 } } //实例44:将计数器T0计数的结果送P1口8位LED显示 #include // 包含51单片机寄存器定义的头文件sbit S=P3^4; //将S位定义为P3.4引脚

WinCC 中定时器使用方法介绍

1、定时器功能介绍 2、脚本中定时器介绍 3、使用脚本实现更多定时器功能 3.1 整点归档 3.2 WinCC 项目激活时避免脚本初次执行及延迟执行脚本1 定时器功能介绍 WinCC 中定时器的使用可以使 WinCC按照指定的周期或者时间点去执行任务,比如周期执行变量归档、在指定的时间点执行全局脚本或条件满足时打印报表。WinCC 已经提供了一些简单的定时器,可以满足大部分定时功能。但是在有些情况下,WinCC 提供的定时器不能满足我们需求,这时我们就可以通过 WinCC 提供的脚本接口通过编程的方式实现定时的功能,因为脚本本身既可以直接调用 WinCC其他功能,比如报表打印,也可以通过中间变量来控制其他功能的执行,比如通过置位/复位归档控制变量来触发变量记录的执行。WinCC 提供了 C 脚本和 VBS 脚本,本文主要以全局 C 脚本编程为例介绍定时功能的实现。 2 脚本中定时器介绍既然在全局脚本中可以编程控制其他功能的执行,那么首先看看全局脚本的触发: 图1 脚本触发器分类如图1所示:脚本触发器分为使用定

时器和使用变量,定时器又分为周期执行和非周期执行一次,比如每分钟执行一次脚本属于周期执行,指定2012年10月1日执行一次属于非周期执行。使用变量触发脚本,即在变量发生变化时,脚本就执行一次,而变量的采集可以根据指定周期循环采集,或者根据变化采集,根据变化实际是1秒钟采集变量一次。 3使用脚本实现更多定时器功能 利用脚本自身的定时器,可以通过在脚本中编程的方式实现更多其它定时功能。 3.1整点归档 WinCC提供了变量归档,变量归档分为周期归档和非周期归档,不管是周期归档或非周期的归档,都又可以通过一些变量或脚本返回值来控制归档,比如:整点归档。下面的设置结合WinCC脚本,实现了在整点开始归档,归档五分种后停止归档,即每个小时仅归档前五分钟的数据。 软件环境:Windows 7 Professional Service Pack1 , WinCC V7.0 SP3 归档名称:ProcessValueArchive 归档变量:NewTag 归档周期:1 分钟 归档控制变量 startarchive C脚本触发周期:10秒 脚本代码: #include"apdefap.h" int gscAction( void ) { #pragma option(mbcs) #pragma code ("kernel32.dll");

51单片机汇编语言编程:用定时器控制输出矩形波

80C51单片机的时钟频率为12MHz,利用定时器T1和P1.0输出矩形脉冲。 波形只画出了2段:一段为100us 另一段为50us。 要完全的、完整的、详细的编写此程序的过程!谢谢 ------------------------ 最佳答案: 用一个定时器定时50us,也可以达到题目要求。 在我的空间里面有类似的问题和解答。 ORG 0000H SJMP START ORG 001BH ;T1中断入口. SJMP T1_INT START: MOV TMOD, #20H ;设置T1定时方式2 MOV TH1, #206 ;自动重新装入方式. MOV TL1, #206 ;定时时间 MOV IE, #10001000B ;开放总中断和T1中断. SETB TR1 ;启动T1 MOV R2, #3 ;周期是3×50us SJMP $ ;等着吧. T1_INT: SETB P1.0 ;输出高.

DJNZ R2, T1_END ;R2-1 CLR P1.0 ;减到0,就输出低电平. MOV R2, #3 T1_END: RETI ;中断返回. END ;完. ------------------------ 已知51单片机系统晶振频率为12MHz,请利用定时器1工作方式1,中断方式在P2.3输出频率为10Hz的方波。 写出定时设计过程及完整代码 问题补充:用汇编的麻烦写一下 ------------------------ 最佳答案: ORG 0000H SJMP START ORG 001BH ;T1中断入口. SJMP T1_INT START: MOV TMOD, #10H ;设置T1定时方式1 MOV TH1, #(65536-50000) / 256 ;送入初始值.

定时器中断程序设计实验

实验一定时器/中断程序设计实验 一、实验目的 1、掌握定时器/中断的工作原理。 2、学习单片机定时器/中断的应用设计和调试 二、实验仪器和设备 1、普中科技单片机开发板; 2、Keil uVision4 程序开发平台; 3、PZ-ISP 普中自动下载软件。 三、实验原理 805l 单片机内部有两个 16 位可编程定时/计数器,记为 T0 和 Tl。8052 单片机内除了 T0 和 T1 之外,还有第三个 16 位的定时器/计数器,记为 T2。它们的工作方式可以由指令编程来设定,或作定时器用,或作外部脉冲计数器用。定时器 T0 由特殊功能寄存器 TL0 和 TH0 组成,定时器 Tl 由特殊功能寄存器 TLl 和 TH1 组成。定时器的工作方式由特殊功能寄存器 TMOD 编程决定,定时器的运行控制由特殊功能寄存器 TCON 编程控制。T0、T1 在作为定时器时,规定的定时时间到达,即产生一个定时器中断,CPU 转向中断处理程序,从而完成某种定时控制功能。T0、T1 用作计数器使用时也可以申请中断。作定时器使用时,时钟由单片机内部系统时钟提供;作计数器使用时,外部计数脉冲由 P3 口的 P3.4(或 P3.5)即 T0(或 T1)引脚输入。 方式控制寄存器 TMOD 的控制字格式如下: 低 4 位为 T0 的控制字,高 4 位为 T1 的控制字。GATE 为门控位,对定时器/计数器的启动起辅助控制作用。GATE=l 时,定时器/计数器的计数受外部引脚输入电平的控制。由由运行控制位 TRX (X=0,1)=1 和外中断引脚(0INT 或 1INT)上的高电平共同来启动定时器/计数器运行;GATE=0时。定时器/计数器的运行不受外部输入引脚的控制,仅由 TRX(X=0,1)=1 来启动定时器/计数器运行。 C/-T 为方式选择位。C/-T=0 为定时器方式,采用单片机内部振荡脉冲的 12 分频信号作为时钟计时脉冲,若采用 12MHz 的振荡器,则定时器的计数频率为 1MHZ,从定时器的计数值便可求得定时的时间。 C/-T=1 为计数器方式。采用外部引脚(T0 为 P3.4,Tl 为 P3.5)的输入脉冲作为计数脉冲,当 T0(或 T1)输入信号发生从高到低的负跳变时,计数器加 1。最高计数频率为单片机时钟频率的 1/24。 M1、M0 二位的状态确定了定时器的工作方式,详见表。

555定时器的基本应用及使用方法

555定时器的基本应用及使用方法 我们知道,555电路在应用和工作方式上一般可归纳为3类。每类工作方式又有很多个不同的电路。在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳、单稳和无稳,双稳和无稳的组合等。这样一来,电路变的更加复杂。为了便于我们分析和识别电路,更好的理解555电路,这里我们这里按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。每个电路除画出它的标准图型,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。方便大家识别、分析555电路。下面将分别 介绍这3类电路。 单稳类电路 单稳工作方式,它可分为3种。见图示。 第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1 和1.1.2为代号。他们的输入端的形式,也就是电路的结构特点是: “RT-6.2-CT”和“CT-6.2-RT”。

第2种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。他们的输入特点都是“RT-7.6-CT”,都是从2端输入。1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带 有一个RC微分电路。 第3种(图3)是压控振荡器。单稳型压控振荡器电路有很多,都比较复杂。为简单起见,我们只把它分为2个不同单元。不带任何辅助器件的电路为1.3.1;使用晶体管、运放放大器等辅助器件的电路为1.3.2。图中列出了2个常用电路。

双稳类电路 这里我们将对555双稳电路工作方式进行总结、归纳。 555双稳电路可分成2种。 第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)2个单元。单端比较器(2.1.2)可以是6端固定,2段输入;也可是2端固定,6端输入。 第2种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阀值电压的(2.2.2)共2个单元电路。

Java定时任务ScheduledThreadPoolExecutor

Timer计时器有管理任务延迟执行("如1000ms后执行任务")以及周期性执行("如每500ms执行一次该任务")。但是,Timer存在一些缺陷,因此你应该考虑使用ScheduledThreadPoolExecutor作为代替品,Timer对调度的支持是基于绝对时间,而不是相对时间的,由此任务对系统时钟的改变是敏感的;ScheduledThreadExecutor只支持相对时间。 Timer的另一个问题在于,如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以TimerTask抛出的未检查的异常会终止timer 线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被安排但尚未执行的TimerTask永远不会再执行了,新的任务也不能被调度了。 例子: packagecom.concurrent.basic; importjava.util.Timer; import java.util.TimerTask; public class TimerTest { private Timer timer = new Timer(); // 启动计时器 public void lanuchTimer() { timer.schedule(new TimerTask() { public void run() { throw new RuntimeException(); } }, 1000 * 3, 500); } // 向计时器添加一个任务 public void addOneTask() { timer.schedule(new TimerTask() { public void run() { System.out.println("hello world"); } }, 1000 * 1, 1000 * 5); }

Quartz+spring定时器实例用

Spring+Quartz定时器例子如下: 1. javabean类 在Test.QuartzJob中 1.package Test; 2. 3.public class QuartzJob { 4.public void work() 5. { 6. System.out.println("Quartz的任务调度!!!"); 7. } 8. } 1. 2. 7. 8. 9. 10. 11. 13. 14. 15. 16. 17. 18. 19.work 20. 21. 22. 23. 25. 26.

51单片机定时中断C语言的写法步骤

51单片机定时中断C语言的写法步骤 程序说明:51单片机定时器0工作于方式一,定时50ms中断一次 晶振为12M #include void main { TOMD = 0X01;//配置定时器0工作于方式一 TH1 = (65536-50000)/256; //高八位装入初值 TL1 = (65536-50000)%256; //低八位装入初值 ET0 = 1; //开定时器0中断 EA = 1; //开总中断 TR0 = 1; //启动定时器0 while(1) { ; } } void Timer0_int() interrupt 1 { //重新装初值 TH1 = (65536-50000)/256; //高八位装入初值 TL1 = (65536-50000)%256; //低八位装入初值 } /****************************************************************************** *********************************/ 上面是比较好理解的。如果实在要求简洁的话,看下面的,跟上面功能一样 #include void main { TOMD = 0X01;//配置定时器0工作于方式一 TH1 = 0x3c; //高八位装入初值 TL1 = 0xb0; //低八位装入初值 IE = 0x82;//开总中断并开定时器0中断 TR0 = 1; //启动定时器0 while(1) { ; } }

void Timer0_int() interrupt 1 { //重新装初值 TH1 = 0x3c; //高八位装入初值TL1 = 0xb0; //低八位装入初值}

Java每天定时执行任务

Java每天定时执行任务 java定时任务,每天定时执行任务。以下是这个例子的全部代码。 public class TimerManager { //时间间隔 private static final long PERIOD_DAY = 24 * 60 * 60 * 1000; public TimerManager() { Calendar calendar = Calendar.getInstance(); /*** 定制每日2:00执行方法***/ calendar.set(Calendar.HOUR_OF_DAY, 2); calendar.set(Calendar.MINUTE, 0); calendar.set(Calendar.SECOND, 0); Date date=calendar.getTime(); //第一次执行定时任务的时间 //如果第一次执行定时任务的时间小于当前的时间 //此时要在第一次执行定时任务的时间加一天,以便此任务在下个时间点执行。如果不加一天,任务会立即执行。 if (date.before(new Date())) { date = this.addDay(date, 1); } Timer timer = new Timer(); NFDFlightDataTimerT ask task = new NFDFlightDataTimerTask(); //安排指定的任务在指定的时间开始进行重复的固定延迟执行。 timer.schedule(task,date,PERIOD_DAY); } // 增加或减少天数 public Date addDay(Date date, int num) { Calendar startDT = Calendar.getInstance(); startDT.setTime(date); startDT.add(Calendar.DAY_OF_MONTH, num); return startDT.getTime(); }

定时器产品使用说明书

定时器产品使用说明书 定时设置: 1、先检查时钟是否与当前时间一致,如需重新校准,在按住“时钟”键的同时,分别按住“星期”、“小时”、“分钟”键,将时钟调到当前准确时间。 2、按一下“设定”键,显示屏左下方出现“1开”字样(表示第一次开启的时间)。然后按“星期”调整本次设定的星期组合模式,再按“小时”、“分钟”键,输入所需开启的时间。 3、再按一下“设定”键,显示屏左下方出现“1关”字样(表示第一次关闭时间),再按“星期”、“小时”、“分钟”键,输入所需关闭的日期和时间。 4、继续按动“设定”键,显示屏左下方将依次显示“2开、2关、3开、3关……16开、16关”,参考步骤2、3设置以后各次开关时间。设置完成后,按一下“时钟”键返回。 5、如果每天不需设置16组开关,则必须按“清除”键,将多余各组消除,使其显示屏上显示“—:—”图样(不是00:00)。 6、按“模式”键,可以变换工作模式。总共有四种工作模式:A、液晶显示开(代表进入常开模式);B、液晶显示关(代表进入常关模式);C、由开进入自动(表示目前状态为开,等到下一组时间到后开始自动运行);D、由关进入自动(表示目前状态为关,等到下一组定时时间到后开始自动运行)。 当出现以下情况时: 1、定时器没有根据设定的程序开启或关闭,请检查设置程序是否正确或重新调整。 2、定时器长时间不用,显示模糊时,请将定时器接通电源充足,10分钟后无显示,按“复位”键,2-3秒。 3、如以上步骤均不能排除问题,请与公司或经销商联系维修。 注意事项: 1、对于那些因定时开关出错而可能发生的生命相关事故或者对社会产生重大影响的设备(如医疗设备等),请不要使用定时开关。 2、对于那些因定时开关出错而发生重大财产损失的设备(大型加热器或冷库),在使用本定时开关时,请务必是特性和性能的数值有足够的余量,并采取二重电路等安全对策。 3、请勿自行修理、分解或改造。 4、接通电源后请勿接触端子部分。本开关工作在无潮湿、腐蚀及高金属含量气体环境中。请勿沾染油或水。

springquartz实现定时任务的配置方法

Spring+Quartz实现定时任务的配置方法 第一步:.导入相关的jar包 (1)spring.jar (2)quartz-1.6.0.jar (3)相关包 commons-collections-3.2.jar ; commons-logging-1.1.1.jar; log4j-1.2.16.jar 第二步:创建一个类来定义工作 定义Quartz工作的第一步是创建一个类来定义工作。要做到这一点,你需要从Spring 的QuartzJobBean中派生子类。 第三步:配置JobDetail

值得注意的是,在这里你并没有直接声明一个TopTenTask Bean,而是声明了一个JobDetailBean。这是使用Quartz时的一个特点。 JobDetailBean是Quartz的org.quartz.JobDetail的子类,它要求通过jobClass属性来设置一个Job对象。 使用Quartz的JobDetail中的另一个特别之处是TopTenTask的timeout属性是间接设置的。JobDetail的jobDataAsMap属性接受一个java.util.Map,其中包含了需要设置给jobClass的各种属性。 在这里,这个map包含了一个键值为timeout。当JobDetailBean实例化时,它会将5注入到EmailReportJob的timeout属性中。 第四步:配置Trigger 工作已经被定义好了,接下来你需要调度这个工作。 Quartz的org.quartz.Trigger类描述了何时及以怎样的频度运行一个Quartz工作。 Spring提供了两个触发器,SimpleTriggerBean和CronTriggerBean。 SimpleTriggerBean与ScheduledTimerTask类似。你可以用它来指定一个工作应该以怎样的频度运行,以及(可选地)在第一次运行工作之前应该等待多久。 例如,要调度报表工作每24小时运行一次,第一次在1小时之后开始运行,可以按照以下方式进行声明: 3600000 86400000 属性jobDetail装配了将要被调度的工作,在这个例子中是topTenTask Bean。属性repeatInterval告诉触发器以怎样的频度运行这个工作(以毫秒作为单位)。这里,我们

51单片机C语言中断程序定时计数器

51单片机C语言中断程序定时/计数器 程序一 利用定时/计数器T0从P1.0输出周期为1s 的方波,让发光二极管以1HZ闪烁, #include //52单片机头文件 #include //包含有左右循环移位子函数的库#define uint unsigned int //宏定义 #define uchar unsigned char //宏定义 sbit P1_0=P1^0; uchar tt; void main() //主函数 { TMOD=0x01;//设置定时器0为工作方式1 TH0=(65536-50000)/256; TL0=(65536-50000)%256; EA=1;//开总中断 ET0=1;//开定时器0中断 TR0=1;//启动定时器0 while(1);//等待中断产生 }

void timer0() interrupt 1 { TH0=(65536-50000)/256; TL0=(65536-50000)%256; tt++; if(tt==20) { tt=0; P1_0=~P1_0; } } 程序二 利用定时/计数器T1产生定时时钟, 由P1口控制8个发光二极管, 使8个指示灯依次一个一个闪动, 闪动频率为10次/秒(8个灯依次亮一遍为一个周期),循环。#include //52单片机头文件 #include //包含有左右循环移位子函数的库 #define uint unsigned int //宏定义 #define uchar unsigned char //宏定义

可编程定时器使用说明

可编程定时器使用说明 每天最多设定10组开关机,最少时间段为1分钟,最大(电流10A,可正常控制2200W电器工作,是现代家庭和办公的理想产品。 二:使用说明:(如果显示屏字迹不清晰,请先充电2小时以上) 1、键盘开锁:在时钟界面下,长按[取消/恢复]键3秒中以上。键盘开锁。在非时钟界面下,若30秒内未按任何键,会自动回到时钟界面,同时启动键盘锁。上锁后显示屏会有“”符号,解开后“”符号消失。 2、当前时间设定:键盘锁解除后,按住[时钟]键不放,同时按[星期]、[小时]、[分钟]键可调整星期和时钟; 3、程序设定:键盘锁解除后,按[定时]键进入定时状态。每按两次[定时]键时会进入下一组定时界面;若连续按[定时]键;1开、1关、2开、2关、、、、、、、10开、10关、时钟界面、1开、1关、2开、2关、、、、、、反复循环在定时设定界面,按[分钟]键可调整当次定时的分钟;在定时设定界面,按[小时]键可调整当次定时的小时;在定时设定界面,按[星期]键可调整当次定时的星期;在每一“开”或“关”设定界面时都有15种星期组合模式供选择,连续按[星期]键,显示如下 一二三四五六日、一、二、三、四、五、六、日、一三五、二四六、六日、一二三、四五六、一二三四五、一二三四五六、一二三四五六日、、、、、、反复循环; 用户根据控制需要可进行星期组合的选择。 在定时设定界面,按[取消/恢复]键时会将该组定时取消或恢复出来;在定时设定界面,按[时钟]键盘、时返回时钟状态; 4、开/自动/关:若连续[开/自动/关]键:

开、自动、关、自动、开、自动、、、、、、反复循环;有输出时,显示屏有灯符号和绿灯亮,无输出时,显示屏的灯符号消失和绿灯暗。只有“自动”状态时,程序内容才有效,红灯亮表示智能保姆插脚接通电源。 5、复位键:显示有任何异常,按一下背面的复位键,即可得到解决。

定时器中断综合实验

实验2 定时器、中断综合实验 一、实验目的 熟悉MCS-51定时器,串行口和中断初始化编程方法,了解定时器的应用,时钟程序的设计与调试技巧。 二、实验内容 编写程序,用定时器中断现实LED跑马灯实验。 实验内容1: 1).用查表法实现LED跑马灯实验; 2).采用定时器控制跑马灯的变化速度。 三、流程框图 四、实验步骤及程序 ORG 0000H LJMP MAIN ORG 000BH ; T0 中断入口地址 MOV TH0,#0BH ; 62.5毫秒定时 MOV TL0,#0DCH DJNZ R2,T0OUT ; 中断16次为1秒 MOV R2,#16 PUSH ACC ; 保存数据 MOVC A,@A+DPTR ; 查表法LED 左右移 MOV P0,A POP ACC INC A CJNE A,#24,T0OUT ; 24种"花样" CLR A T0OUT: RETI ORG 0050H MAIN: MOV SP,#6FH ; MOV R2,#16 ; 定时器中断次数,@12M MOV A,#00H ; 查表起始值 MOV DPTR,#TABLE MOV TMOD,#00000001B ; 定时器方式1 MOV TH0,#0BH ; 62.5MS MOV TL0,#0DCH SETB EA ; 中端总允许 SETB ET0 ; 允许T0 中断 SETB TR0 ; 启动定时 WAIT: SJMP $ ;原地等待中断

RET TABLE:DB 0FEH,0FDH,0FBH,0F7H ;LED 左右移数据表,共有24种"花样" DB 0EFH,0DFH,0BFH,07FH DB 00H,55H,0AAH,00H DB 7FH,0BFH,0DFH,0EFH DB 0F7H,0FBH,0FDH,0FEH DB 00H,0AAH,55H,00H END 思考:换用T1定时器,定时方式2。 用汇编语言编辑8个LED灯,实现第一秒只有L1不亮,其余七个全亮,第二个L2不亮,其余七个全亮 ORG 0000H SJMP START ORG 000BH SJMP T0_INT START: MOV TMOD, #01H MOV TH0, #3CH ; (65536 - 50000) / 256; MOV TL0, #0B0H ; (65536 - 50000) % 256; SETB TR0 SETB ET0 SETB EA MOV A, #01H MOV R2, #20 SJMP $ T0_INT: MOV TH0, #3CH ; (65536 - 50000) / 256; MOV TL0, #0B0H ; (65536 - 50000) % 256; DJNZ R2, T0_END MOV R2, #20 MOV P0, A RL A T0_END: RETI END 实验内容2: 设计一个实时时钟,用42H显示秒单元,用41H显示分单元,用40H显示时单元。要求每满1秒,秒单元内容加1;秒满60,分单元加1,分满60,时单元加1。时满24 ,时分秒全部清0。 从秒到分,从分到时,通过软件累加现实。P115。 ORG 0000H LJMP MAIN ;上电,跳向主程序 ORG 000BH ;T0的中断入口

实验五 8051单片机定时中断实验

实验五8051单片机定时中断实验 一实验目的: 了解8051系列单片机的定时中断基本工作原理。掌握8051系列单片机定时中断的用法。 二实验原理: 在上一个实验里我们介绍了8051单片机的外中断应用,本实验要介绍的是定时器中断的应用。 8051系列单片机至少有两个16位的内部定时器/计数器,既可以编程为定时器使用,也可以作为计数器使用。如果是计数内部晶振驱动时钟,它是定时器,如果是计数8051的输入管脚的信号,就是计数器。 MCS-51单片机内部的定时/计数器的结构如图5-1所示,定时器T0特性功能寄存器TL0(低8位)和TH0(高8位)构成,定时器T1由特性功能寄存器TL1(低8位)和TH1(高8位)构成。特殊功能寄存器TMOD控制定时寄存器的工作方式,TCON则用于控制定时器T0和T1的启动和停止计数,同时管理定时器T0和T1的溢出标志等。程序开始时需对TL0、TH0、TL1和TH1进行初始化编程,以定义它们的工作方式和控制T0和T1的计数。 图5-1 TMOD特殊功能寄存器的格式参见下表(表5-1): 表5-1 高4位为定时器/计数器1的控制字,低4位为定时器/计数器0的控制字。其中GATE 为门控信号,C/T为定时器或计数器的选择,而M1,M0是工作方式选择位。 当M1M0=00时,T/C工作在方式0。方式0为13位的T/C,其计数器由TH的8位和TL的5

位构成,计数器的计数值范围是: 1—8192(213),但是启动前可以预置计数初值。当C/T为 0时,T/C为定时器,计数脉冲为振荡源12分频的信号;当C/T为1时,T/C为计数器,对输入端T0或T1输入的脉冲进行计数。计数脉冲加到计数器上与否决定于启动信号。当GATE=0时,TR=1时T/C便启动,当GATE=1时,启动受到TR与INT的双重控制,即二者同时为高 时才启动。当计数满时,TH向高位进位,这时中断溢出标志TF置1,即产生中断请求。而当CPU转向中断服务程序时,TF自动清零。 当M1M0=01时,T/C工作在方式1。方式1和方式0的区别仅在于方式0的计数器位数为13位,而方式1的为16位。 当M1M0=10时,T/C工作在方式2。区别于前面的两种工作方式的是,方式2具有自动重装载的功能。TH和TL作为两个8位的计数器,TH中的8位初值始终保持不变,由TL进行8位计数。在计数溢出时不但会产生中断请求,而且自动将TH中的值加载至TL 中,即自动重装载。 当M1M0=11时,T/C工作在方式3。但是这种工作方式只存在于T/C0中,这时TH0与TL0成为两个独立的计数器。只有在T/C1作为串行口的波特率发生器使用,而造成定时器不够用时,T/C0才能工作在方式3。 下面是定时器时间常数计算公式,这个公式在方式1,即16 位定时或计数模式可用。 THX=(65536-定时时长[μS]/(机器周期数/时钟频率[MHz])/256; TLX=(65536-定时时长[μS]/(机器周期数/时钟频率[MHz])%256; 在定时器重装载过程中因为TL1=0可以不写。 三实验内容: 利用中断方式在LED上输出10HZ方波,系统晶体频率11.059MHz。 四实验电路图:

单片机定时器汇编

我们在学单片机时我们第一个例程就是灯的闪烁,那是用延时程序做的,现在回想起来,这样做不很恰当,为什么呢?我们的主程序做了灯的闪烁,就不能再干其它的事了,难道单片机只能这样工作吗?当然不是,我们能用定时器来实现灯的闪烁的功能。例1:查询方式ORG 0000H AJMP START ORG 30H START: MOV P1,#0FFH ;关所灯 MOV TMOD,#00000001B ;定时/计数器0工作于方式1 MOV TH0,#15H MOV TL0,#0A0H ;即数5536 SETB TR0 ;定时/计数器0开始运行 LOOP: JBC TF0,NEXT ;如果TF0等于1,则清TF0并转NEXT处(LOOP:JNB TF0,$) AJMP LOOP ;不然跳转到LOOP处运行 NEXT: CPL P1.0 MOV TH0,#15H MOV TL0,#9FH;重置定时/计数器的初值 AJMP LOOP END 键入程序,看到了什么?灯在闪烁了,这可是用定时器做的,不再是主程序的循环了。简单地分析一下程序,为什么用JBC呢?TF0是定时/计数器0的溢出标记位,当定时器产生溢出后,该位由0变1,所以查询该位就可知宇时时间是否已到。该位为1后,要用软件将标记位清0,以便下一次定时是间到时该位由0变1,所以用了JBC指令,该指位在判1转移的同时,还将该位清0.以上程序是能实现灯的闪烁了,可是主程序除了让灯闪烁外,还是不能做其他的事啊!不对,我们能在LOOP:……和AJMP LOOP指令之间插入一些指令来做其他的事情,只要保证执行这些指令的时间少于定时时间就行了。那我们在用软件延时程序的时候不是也能用一些指令来替代DJNZ吗?是的,但是那就要求你精确计算所用指令的时间,然后再减去对应的DJNZ循环次数,很不方便,而现在只要求所用指令的时间少于定时时间就行,显然要求低了。当然,这样的办法还是不好,所以我们常用以下的办法来实现。程序2:用中断实现 ORG 0000H AJMP START ORG 000BH ;定时器0的中断向量地址 AJMP TIME0 ;跳转到真正的定时器程序处 ORG 30H START: MOV P1,#0FFH ;关所灯 MOV TMOD,#00000001B ;定时/计数器0工作于方式1 MOV TH0,#15H MOV TL0,#0A0H ;即数5536 SETB EA ;开总中断允许 SETB ET0 ;开定时/计数器0允许 SETB TR0 ;定时/计数器0开始运行 SJMP $ ;LOOP: AJMP LOOP ;真正工作时,这里可写任意程序 TIME0:

相关主题