搜档网
当前位置:搜档网 › MTK写参数步骤

MTK写参数步骤

MTK写参数步骤
MTK写参数步骤

安装平台:

1.将MauiMETA_exe_v7.1416.2平台压缩包

解压在电脑的一个路径,如D盘。

2.点击文件夹内的SETUP.EXE,安装程序

点击Finish已经完成安装,在电脑桌面上会出现一个快捷图片选择相应的USB COM,然后点击reconnect,如图

3.点击RECONNECT,红色的点会变动即红色和绿色之间变动。

选择update parameter

5.将手机USB线插入手机,电脑设备管理器弹出USB端口端口Gadget

识别手机端口后,META会自动弹出对话框,去掉CHECK SECTION EXIST

要去掉

按照如图

打钩

电脑会弹出如上格式,找到手机软件内的database,选择BP文件,

加载nvramdb 文件,加载完成后,meta 的配置基本完成。 第三步,点击此按键,保存ini

文件

第二步,点击此按键,从flash 上加载

第一步,点击此按键,弹出窗口,选择BP 文件

以上操作完成后,校准参数已经导入到了手机内成功。

第一步,点击此按键,弹出窗口,选择BP 文件

第二步,点击此按键,加载之前导出的校准数据文件,系统会提示加载成功

第三步,点击此按键,当灰色按键变成黑色,表示校准数据已经导入手机中

中海达七参数计算

HI-RTK道路版简易操作流程 一、架设基准站: 选择视野开阔且地势较高的地方架设基站,基站附近不应有高楼或成片密林(卫星接收不好)、大面积水塘(多路径效应严重)、高压输电线或变压器(有干扰)。基站一般架设在未知点上,后面的说明均征对这种情况。(此种情况下基站无需对中整平) 二、新建项目: 打开HI-RTK道路软件,进入“项目”,选定Unnamed,“套用”,输入项目名称后确认,(选择‘套用’而不是‘新建’的目的是为了使建立的项目里面不含任何人为参数) 然后:项目信息---坐标系统---(将坐标系统名称改为“中国-‘项目名’ ”)并确认每个选项的原始参数是否正确,需要改动的地方请改正---保存---退出---(弹出“是否更新点库”)是。 三、设置基准站: 1. GPS---接收机信息---连接GPS---连接---搜索(接收机)---(搜索到仪器后)停止---(选择仪器号)连接。 2.接收机信息---基准站设置---平滑---(采集10秒后)确认---(查看并确认另外两个选项内容是否正确)---确定---断开蓝牙连接。 四、移动站设置: 1. GPS---接收机信息---连接GPS---连接---搜索(接收机)---(搜索到仪器后)停止---(选择仪器号)连接。 2.接收机信息---移动站设置---(确认每个选项内容)---确定。 五、采集已知点并求取参数: 1.采集已知点:已知点采集的时候建议采用“平滑采集”,按钮为工具栏倒数第二个按钮。(最少采集两个已知点,计算七参数时至少需要三个已知点)

2.输入已知点理论坐标到点库:碎步测量---控制点库---添加(工具栏第一个按钮)---(输入点名,X,Y,H后确认)。 3.参数计算: (主界面)参数---坐标系统---参数计算---(选择计算类型,采集两个已知点时用‘四参数+高程拟合’)---添加---(‘源点’为外业采集的点,‘目标’为输入的已知点,按钮为调用点库信息。)---保存---(继续添加)---解算---运用---(坐标系统)保存---(是否覆盖)确定---确定---(更新点库)是---退出。(请确认点对配对正确) 4.进行碎步采集或者放样。 5.数据导出:从项目或者测量界面进入“记录点库”,点击工具栏最后一个按钮,输入导出文件名、选择导出文件类型后确定,然后手簿连接电脑拷贝出对应数据即可。 这个是最全面,最权威的说明书了。

倾翻机构力能参数计算

倾翻机构力能参数计算 3.1 SolidWorks简介 SolidWorks软件是世界上第一个基于Windows开发的三维CAD系统,由于技术创新符合CAD技术的发展潮流和趋势,SolidWorks公司于两年间成为 CAD/CAM产业中获利最高的公司。良好的财务状况和用户支持使得SolidWorks 每年都有数十乃至数百项的技术创新,公司也获得了很多荣誉。,SolidWorks 所遵循的易用、稳定和创新三大原则得到了全面的落实和证明,使用它,设计师大大缩短了设计时间,产品快速、高效地投向了市场。由于使用了Windows OLE 技术、直观式设计技术、先进的parasolid内核(由剑桥提供)以及良好的与第三方软件的集成技术,SolidWorks成为全球装机量最大、最好用的软件。 SolidWorks软件的特点: 1.第一个在Windows操作系统下开发的CAD软件,与Windows系统全兼容。 2.菜单少,使用直观、简单,界面友好SolidWorks一共只有60几个命令,其余所有命令与Windows命令是相同的;下拉菜单一般只有二层,(三层的不超过5个);图形菜单设计简单明快,非常形象化,一看即知。 3.数据转换接口丰富,转换成功率高。SolidWorks与I-DEAS、ANSYS、 Pro/Engineer、AutoCAD等之间的数据转换均非常成功、流畅。 4.独特的配置功能SolidWorks允许建立一个零件而有几个不同的配置,这对于通用件或形状相似零件的设计,可大大节约时间。 5.特征管理器特征管理器(PropertyManager)是SolidWorks的独特技术,在不占用绘图区空间的情况下,实现对零件的操纵、拖曳等操作。 6.自上而下的装配体设计技术(top-to-down)目前只有SolidWorks提供自上而下的装配体设计技术,它可使设计者在设计零件、毛坯件时于零件间捕捉设计关系,在装配体内设计新零件、编辑已有零件。 7.比例缩放技术可以给模具零件在X、Y、Z方向给定不同的收缩而得到模具型腔或型芯。

室内和室外空气设计参数

第四章室内和室外空气设计参数 4.1内空气设计参数 4.1.1舒适性空调室内空气设计参数 舒适性空调泛指生活环境中如居室、办公室、餐厅等对温度、湿度没有太高的精度要求的空调方式。舒适性空调室内空气的温度、相对湿度要求见表4-1所示。 表4-1 舒适性空调室内设计温湿度及风速 部分建筑的室内空气设计温、湿度见表4-2所示。民用建筑空气调节房间室内计算温度见表1-4-3所示。 表4-2 部分建筑的室内空气设计温、湿度 表4-3 民用建筑空气调节房间室内计算温度

4.1.2工艺性空调室内空气设计参数 工艺性空调室内空气设计参数见表4-4至表4-5所示。 表4-4 工艺性空调室内空气设计参数

表4-5 机械工业部分室内参数要求 4.1.3电子计算机房的温、湿度要求 电子计算机房的温、湿度标准值见表4-6所示。电子计算机房的温、湿度条件见表4-7所示。 表4-6 温、湿度标准值 表4-7 电子计算机房的温、湿度条件

4.2 室外空气设计参数 1、 夏季空调室外计算干球温度t K 室外气象参数可按下面简化公式计算 夏季空调室外计算干球温度 t K = 0.47 t x + 0.53 t r (℃) 式中 t x ——累年最热月平均温度 (℃) t r ——累年极端最高温度 (℃) 2、 夏季空调室的计算湿球温度t s (平均每年不保证50小时) 湿球温度t s 应分区计算 (1) 北部地区 黑龙江、吉林、辽宁、新疆、青海、甘肃、宁夏、内蒙和西藏等省、自治区计算公式如下 t s = 0.72 t sx + 0.28 t sr (℃) (2) 中部地区 陕西、山西、北京、天津、河北、河南、山东、上海、江苏、安徽和湖北的

通过试验确定最佳切削参数

在同样满足零件加工品质的前提下,数控机床提高加工效率关键在于如何使金属切除率达到最大。本文主要讨论了在铝合金材料的加工中,针对特定的数控机床、刀具和装夹系统如何来确定金属切除率最大的切削参数的问题。 一、引言 提高数控机床使用效率是目前大家普遍关心的问题,具有关资料介绍,国外数控机床在两班制工作下开动率达到60%~70%,国内往往只能达到20%~30%。造成数控机床10mm高速钢刀具加工铝合金,刀具允许的最高切削速度为300mm/min,机床转速为8750r/min,而相同规格的合金刀,刀具允许的最高切削速度可达600mm/min甚至更高,机床转速可以达到17510r/min,显而易见,这种机床采用高速刚刀具是不合适的。如果机床设备、加工刀具和加工对象已经明确后,研究如何正确选择切削参数对提高加工效率、降低加工成本具有实际意义。Φ使用率低的原因归纳起来就是管理和技术两方面的问题,刀具和切削参数选择是数控加工的主要技术问题之一。例如18000转的机床,用 什么是正确的切削参数,笔者认为应该是针对特定的机床、特定的刀具和刀夹、特定的加工材料在满足零件加工品质的前提下,使材料的切除率达到最大的一组切削参数。这组参数如何确定,有人提出了通过计算机优化设计选择最佳铣削参数的方法,目前也已经有文献报道可以利用现代切削过程仿真和优化技术,在少量试验的基础上借助合理的数学模型、工程分析和仿真等先进手段,快速获取理想的切削参数数据。而对我们来说,刀具的种类是有限的,几把常用的刀具基本上能完成90%的加工量,在这种情况下,通过切削试验方法来获取这些刀具的正确切削参数是比较现实的手段。 二、试验目的和方法 1.试验目的 在特定机床、刀夹、刀具和刀具长度组合条件下,选定合适的每齿切削量和轴向切深,通过采用一系列不同切削速度及径向切深,观察加工过程的情况,从声音和加工表面的质量来判断,发生加工振颤的情况,从而找出相同的零件加工品质下(平稳的切削,未发生振颤),材料的切除率达到最大的铣削参数。 2.试验条件 数控机床:MIKRON UCP710五轴加工中心,主轴最大转速18000r/min,功率15kW,最大进给速度 20m/min; 刀具:FETTE LW225硬质合金立铣刀螺旋角,刀具供应商推荐的提供的极限参数:加工低硅含量铝合金时,最大切削速度Vc800mm/min,最大进给Fz为0.115mm/齿,最大轴向切深ap15mm,相应径向切深5mm,该刀具是我们最常用的刀具之一;?10mm,长度66mm,2齿,30Φ,直径 夹具:HSK刀柄,Φ42mm; 加工材料:LF5铝合金,该材料是我们最常用的加工材料; 冷却液:Blasocut2000乳化液 3.试验方法 准备外形尺寸80mm×100mm×150mm的工件,把工件装入虎钳,长80mm边高出虎钳40mm,刀具装入HSK刀夹后,露出长度35mm,在工件上加工成高8mm宽1mm的8级台阶,见图1。

二辊轧机力能参数计算-分享

二、轧制压力计算 根据原料尺寸、产品要求及轧制条件,轧制压力计算采用斯通公式。详细计算按如下步骤进行。 1、轧制力计算: 首先要设定如下参数作为设计计算原始数据: 1.1轧制产品计算选用SPCC ,SPCC 常温状态屈服强度MPa S 200=σ; 1.2成品最大带宽,B=1000mm ; 1.3轧制速度,m in /12m in /20m m v MAX 常轧制速度(鉴于人工喂料),正=; 1.4轧辊直径g D ; α cos 1-?≥ h D g 轧制时的单道次压下量-?h ;;数咬入角,取决于摩擦系b μα- ;取用煤油作为润滑剂,则轧制摩擦系数,轧制采06.0=-b b μμ ?=<433.3b actg μα 代入数据计算得 35.1=?h 则mm h D g 17.793cos 1=-?≥ α 05.1=?h 则mm h D g 585cos 1=-?≥ α 2.1=?h 则mm h D g 705cos 1=-?≥ α 取mm D g 860~810= 初定轧辊直径:mm D g 860= 2、根据来料厚度尺寸数据,选择最典型的一组进行轧制压力计算,初步道次分配见下表:

3、轧制压力计算 3.1、第1道次轧制压力计算 3.1.1、咬入条件校核 ?=??= ?2878.3180π R h ,即满足咬入条件 3.1.2、变形区长度l mm h R l 7945.21=??= 3.1.3、平均压下率ε 106.04.0εεε?+?= 00=ε 83.201=ε% 则,%5.126.04.010=?+?=εεε 经第1道次轧制后材料的变形阻力:MPa S 7.3799.334.2256 .01=?+=εσ 3.1.4、求解轧辊弹性压扁后的接触弧长度l ' 依次求解Y 、Z ,最后得出接触弧长度l ' a-求解诺莫图中Y m h k C Y μ σσ)2 (210+- = N mm R C /90900 3= ; MPa k S S 335)2 ( 15.11 0=+=σσ 力轧制时的前张力、后张、-10σσ,人工辅助咬入为无张力轧制,前后 张力均为零; mm h H h m 375.52 =+= 代入以上各项数据,得Y=0.0415 b-求解诺莫图总Z 2 ??? ? ??=m h l Z μ,代入各项数据,得Z=0.105

转坐标系详细步骤

转坐标系详细步骤

————————————————————————————————作者:————————————————————————————————日期: ?

“北京54坐标系”转“西安80坐标系”一、数据说明 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面讲述利用已知的3个以上(本例采用4个点计算)的公共点计算七参数方法转换: 二、利用4个已知公共点计算转换七参数 1、数据准备 (1)将已知54、80坐标系直角坐标拷贝到文本文档,其排列格式如下(图1、图2):不加带号。 图1 54直角坐标 图2 80直角坐标 (2)将已知54、80坐标系直角坐标利用MAPGIS“投影变换”转换为经纬度坐标,且坐标单位为“秒”,这样计算出的参数用来转换为80坐标系时更精确。具体操作步骤如下: 1)启动MAPGIS下“投影变换模块”,点击“投影变换”下“用户文件投影转换”弹出“用户数据点文件投影转换”对话框,如图3; 2)点击“打开文件”,选择已准备的“54直角坐标.txt”文本文档,打开后选择“按指定分隔符”后弹出的对话框点击确定激活“设置分隔符”选项,点击“设置分隔符”,其设置方式为:①“Tal键”、“空格”两个选

图3 图4

项前画勾,②修改“属性名称所在行”,点击其下拉箭头选择“无”字下面一组数据,③将“属性名称”修改为x、y,④“数据类型”修改为“5双精度”,⑤“小数位”修改为“5”或其他均可,但最好至少为“2”,其设置与最终转换出坐标的小数位数相关。设置完成后点击“确定”。如图4。 3)设置“用户投影参数”及“结果投影参数”其设置方式如图5、图6。注意:投影中心点经度一定要输入,如经度为105°,其格式为1050000,“用户投影参数”为“投影平面直角坐标”;“结果投影参数”为“地理坐标系”,且“比例尺分母”为“1”,“坐标单位”为“妙”,“投影中心点经度”要输入。二者“椭球参数”均为“54坐标系”。 图5用户投影参数 图6 结果投影参数 4)以上参数设置完成后点击“投影变换”——“写到文件”,弹出对话框如图7 ,先新建“54经纬度坐标.txt”,选中后点击保存,选择替换。 5)按照上述1)—4)步骤将已知的80直角坐标转换为以“秒”为单位的经纬度坐标。注意:在“用户投影参数”及“结果投影参数”设置时,二者“椭球参数”均为“80坐标系”,其他参数同上。 转换后的54和80坐标系以“秒”为单位的经纬度坐标如下:图7、图8。坐标中小数点前为“6位数”的是“经度”,小数点前为“5位数”的是“纬度”。 图7 54经纬度坐标图8 80经纬度坐标

气动系统压力、流量、气管壁厚、用气量计算

气动系统压力、流量、气管壁厚、用气量计算 1 气动系统相关计算 (1) 1.1 试验用气量计算 (1) 1.2 充气压力计算 (2) 1.3 管径及管路数量计算 (2) 1.3.1 根据流量计计算管径及管路数量 (2) 1.3.2 根据减压阀计算管径及管路数量 (4) 1.3.3 管径及管路数确定 (5) 1.4 气管壁厚计算 (6) 1.5 理论充气时间和一次试验用气量核算 (6) 1气动系统相关计算 1.1试验用气量计算 根据系统要求,最大气流量需求发生于:漏气量为 2.5m3/s(标准大气压下的气体体积)时,筒内压力充至 1.35MPa压力的时间不大于30s,并能保证持续不少于10s。 根据公式P1V1=P2V2(1) 求得单位最小流量:Vmin-0.1MPa=((1.35/0.1)×(0.0675+0.01)/30)+2.5=2.539m3/s 其中0.0675m3是装置密闭腔容积; 0.01m3是管路容积(管路长度取20m)。 因为气源提供的流量在10MPa压力下不小于2.6m3/s(标准大气压),而系统输入压力最大为16MPa,所以气源满足系统流量要求。后文中按照输入

流量为2.6m3/s进行计算。 质量流量(Kg/h)=体积流量×密度,20℃时,标准大气压下气体密度为1.205kg/m3,即质量流量=2.6×1.205×3600=13014kg/h。 1.2充气压力计算 一般密闭腔充气压力设置为目标值的1.05至1.1倍,由于系统要求的漏气量较大,初步设定充气压力为目标值的2.0倍。本装置需对密闭腔充气至最大1.35MPa,即目标值为1.35MPa,充气压力为P:P=2.0×1.35=2.70MPa。 即减压阀出口压力初步设定为2.70MPa。 1.3管径及管路数量计算 1.3.1根据流量计计算管径及管路数量 流量计一般都有量程限制,如果流量过大,就必须将总气量分几路进行输送,以保证单路的输送流量符合流量计量程,根据流量计的量程计算分路数。 表4 流量计计算参数表 量(体积流量=质量流量/减压阀出口密度ρ)。 表5 流量计计算参数表

气动调节阀选型及计算

气动调节阀选型及计算 执行器是控制系统的终端控制元件,是重要的环节,气动调节阀在常用的执行器中约占85﹪以上。控制系统中因气动调节阀造成不能投运或运行不良者有占50﹪-60﹪以上。其中除提供的工艺参数出入较大,阀制造质量欠佳和使用不当外,选型与计算的方法不妥则是一个相当突出的因素。因此,如何合理正确地选择和计算气动调节阀就是自控设计中至关重要的问题了。 调节阀按调节仪表的控制信号,直接调节流体的流量,在控制系统中起着十分重要的作用。要根据使用条件和用途来选择调节阀。选择调节阀项目有:结构型式、公称通经、压力-温度等级、管道连接、上阀盖型式、流量特性、材料及执行机构等。深入研究各个项目和它们之间的相互关系,是极其重要的。选择调节阀必须知道控制系统的各种工艺参数,以及调节仪表、管道连接等基本条件,才能正确地选择调节阀。下面为一般选用调节阀的基本准则:(图一、图二)

(图一) 调节阀的选择 工艺流体条件 流体名称、流量、进/出口 确认选择条件 压力、全开/全关时压差、温度、 比重、粘度、泥浆等。 选择品种规格 调节仪表条件 流量特性、作用型式、调节 仪表输出信号等。 写出规格书 管道连接条件 公称压力、法兰连接型式、 材料等。 (图二) 选型和计算(定尺寸)是选择一个调节阀的两个重要部分。它们是不同的,然而又是互相关联的。以往,各工业部门的自控设计的选阀工作有些基本上没有考虑到它们之间的在联系。对国一般产品来说,用一组工艺参数计算两个不同阀型的流通能力,临界条件下的计算结果最大可相差40%以上。

不同结构的调节阀有其各自的压力恢复特性。此特性用压力恢复系数F L或最大有效压差比X T表示。一般的单、双座阀等属于低压力恢复阀,F L和X T较大;蝶阀和球阀等属于高压力恢复阀,F L和X T较小;偏心旋转阀则介于两者之间。参数F L和X T的引入有助于在计算中根据已知的工艺参数来确定真正有效压差,以计算出精确的流通能力。 F L和X T的数值必须在阀型选定之后才能获得,而阀型的选定不仅与流体的性状、压力、温度、腐蚀性等因素有关,并且与流通能力、可调围、允许压差等参数有关;但是这些参数必须经计算后才能得到,而往往由于这些参数的限制又必须改选阀型;因此问题的关键就在于要设计出一套合理的方法和步骤,把选型和计算作为一个有机的整体综合起来考虑。 气动调节阀选型和计算包括以下几部分。 1.气动调节阀的选型和选材 调节阀的选型按照工艺和自控专业提出的各项要求进行。在选型中主要考虑以下各个方面:流体的性状、静压、温度、压差、腐蚀性、对阀的泄漏要求、阀的动作方式、管道配置、以及流通能力和可调围等。 流体腐蚀性的影响主要体现在阀体和阀芯材料的选择上。由于不能排除某些材料只许在某种特殊的阀型中使用的限制条件,因此并不是每种阀型均可任意选择材料。阀体材料的选取主要考虑流体介质的腐蚀性、静压和材料的许用温度。阀芯材料的选取主要考虑流体介质

轧制力能参数

轧制力能参数总结 一、塑性变形的基本定律 1、 体积不变定律 在压力加工过程中,只要金属的密度不发生变化,变形前后金属的体积就不会产生变化。若设变形前金属的体积为0V ,变形后的体积为1V ,则有: 0V =1V =常数 2、最小阻力定律内容 叙述1:物体在变形过程中,其质点有向各个方向移动的可能时,则物体内的各质点将沿着阻力最小的方向移动。叙述2:金属塑性变形时,若接触摩擦较大,其质点近似沿最法线方向流动,也叫最短法线定律。叙述3:金属塑性变形时,各部分质点均向耗功最小的方向流动,也叫最小功原理 3、弹塑性共存定律内容 物体在产生塑性变形之前必须先产生弹性变形,在塑性变形阶段也伴随着弹性变形的产生,总变形量为弹性变形和塑性变形之和。 二、轧制过程的三阶段 1、咬入阶段 咬入阶段是轧件前端与轧辊接触的瞬间起到前端达到变形区的出口断面(轧辊中心连线)称为咬入阶段。 2、稳定轧制阶段 从轧件前端离开轧辊轴心连线开始,到轧件后端进入变形区入口断面止,这一阶段称为稳定轧制阶段。 3、甩出阶段 从轧件后端进入入口断面时起到轧件完全通过辊缝(轧辊轴心连线),称为甩出阶段。这一阶段的特点类似于第一阶段。 三、轧制过程中变形速度、轧制速度及其计算 一 变形速度及其计算 1、变形速度是指最大变形方向上的变形程度对时间的变化率,或者说是单位时间内的单位 移位体积,其定义表达式为 dt d εε= ? 1 -s 通常用最大主变形方向的变形速度来表示各种变形过程的变形速度。 2求平均变形速度ε h H v h H v h v z z z += +≈ = ? 22 ε

式中 z v ——工具的平均压下速度。 (2)轧制 利用图7-7推导几种形式的压下变形速度的公式。如果接触弧的中点压下速度等于平均压下速度z v ,即 αα α v v v v z =≈=222 sin 2 h H v h H v h v z += +== ? α αε22 按几何关系R h ?≈ α代入上式得 h H R h v +?=?2ε 式中 R ——轧辊半径。 v ——轧辊圆周速度。 如果轧制时按单位时间内的相对变形程度来计算平均变形速度: t H h ?=? ε 则式中的时间t 可为变形区内的金属体积变V 与单位时间内离开的体积离V 的比值,即 )(变hb HB hR V +?= 21 v b h V ??=离 hbv hb HB hR t 2) (+?= 将t 代入到?ε式中得 )(hb HB H R h hbv +?=? 2ε )(F F H R h Fv +?=?02ε 如果轧制板带时,当b ?很小可以忽略不计(B b =)时,上式就可以写成: ) (h H H R h hv +?= ? 2ε 如果轧制的板带较薄时,由于每次的压下量h ?较小,为了简化计算,可视h H ≈,因此上式可以写成: ) (h H R h v +?=? 2ε 2、轧制速度及其计算 1 轧制速度是指轧辊的线速度。在轧制过程中是指与金属接触处的轧辊圆周速度,它不考虑轧辊与轧件之间的相对滑动。它取决于轧辊的转数与轧辊的平均工作直径,即 K D n v 60 π= (秒-1) 式中 v ——轧制速度,米/秒; K D ——轧辊平均工作直径,毫米; n ——每分钟轧辊转数。 2 轧制速度的提高受到轧机的结构和强度、电机能力、机械化与自动化水平、咬入条件、坯 料重量及长度等一系列因素的限制。 五、轧制过程中的纵变形—前滑和后滑

已知七参数输入方法

已知七参数输入方法 我们在测量过程中,常常会遇到要求我们利用已知的七参数进行测量的情况,下面我们来看一下如何在仪器中输入七参数。 1、在主菜单屏幕上选择管理: 七参数:使用严格3D 经典方法产生转换的参数. 该方法使用GPS 测量点(WGS84 椭球 )的直角坐标,并将这些坐标与地 方坐标的直角坐标相比较.通过这种方法,计算出用来将坐标从一个系统转换到另一个系统中平移量,旋转量和尺度因子.经典 3D 转换方法可确定最多7个转换参数(3个平移参数,3个旋转参数,和1个尺度因子). 2、选择坐标系: 3、新建一个坐标系:

4、在名称行里输入一个坐标系统的名字: 5、将光标移至转换一行,点击回车键: 6、点击F2新建:

7、在概要界面输入一个七参数名称,然后点击参数: 8、输入已知的七参数,(也有输入四参数的,即不输旋转参数): 9、在更多界面下选择莫洛金斯基或布沙-沃尔夫,一般选择后者,然后保存: Molodensky-Badekas ——莫洛金斯基 一种转换模型,其旋转原点是系统A 中公共点的重心. Bursa-Wolf ——布沙-沃尔夫 对系统A 来说,旋转原点为笛卡儿坐标系统原点的转换模型.

10、选择做好参数的转换文件,继续: 11、将光标移至椭球行,回车: 在大地测量中,除非特别定义,椭球是 指椭圆绕短半轴旋转形成的数学图形 (有时也称回转椭球体),两个量定义一 个椭球,它们是长半轴的长度; 扁率 f. The Flattening is one of the quantities to specify an ellipsoid. f = (a-b)/a = 1 - sqrt(1-e2) where: a ... semi-major axis b ... semi-minor axis e ... eccentricity 12、选择要用的椭球(西安-80或北京-54) 如果没有需要的椭球,请点击 SHIFT键,在点击F5键即可调 阅所有椭球 13、将光标移至投影行,回车,然后新建,选择横轴莫卡托,然后输入投影参数,保存: 假定东坐标:为避免坐标出现负值,我 国将坐标原点东坐标规定为500,000 米。 中央子午线:定义地图投影经度的中央 线。是使用在地图投影中的带常数。 带宽:投影带的宽度。 注意:投影参数一定要在开始工作前落 实清楚,否则将影响投影后坐标。

穿孔机力能参数的计算方法

穿孔机力能参数的计算 轧制压力、顶头轴向负荷、轧制扭矩和轧制功率是钢管斜轧机工具设计和设备设计中的主要参数。由于斜轧过程中存在有必要应变和多余应变两类变形,因此使得斜轧时力能参数约计算复杂化。目前对这一问题尚不能在理论上作严格的数学处理,而只能用各种近似的简化处理方法,并忽略多余加变的影响.把复杂的应变情况理想化。 计算各种形式斜轧机轧制功率的方法与步骤一样,即可根据: (1)金属对轧辊的压力计算; (2)单位能耗曲线计算。 按金属对轧辊的压力计算,即根据求出的总轧制力,算出轧制力矩和轧制功率。为求总压力,计算合属的变形抗力和平均单位压力,计算轧辊与轧件的接触面积是主要的环节。计算步骤与方式大体与纵轧相同,但应注意斜轧本身所具有的一系列特点,例如必须引入径向压下量、螺距、滑移系数等参量,要考虑顶头袖向力、接触面宽度变化、送进角等因素。 斜轧机轧制力计算公式目前有四种类型: (1)借用纵轧板材的单位压力公式; (2)根据斜轧本身的变形特点,用塑性力学的工程计算法推导出的理论式; (3)用数值法导出的理论式,如有限元法、上限法、变分法; (4)经验公式。 第1种方法虽然是把斜轧过程简化成纵轧过程,不甚合理,但这种方法目前仍被工程界广为采用,后两种根据斜轧特点所推导的理论式,由于在推导中作了大量的简化假定,其准确性有待于实践验证。 接触面积的计算 为计算总轧制压力,须确定接触面积。这里研究在辊式斜轧机上穿孔时的接触面积计算。由于沿变形区长度,接触表面的宽度是变化的(见图3—1),在确定接触面积时需将变形区长度L分成若干等分,而在每一△L段内将接触面积近似地看作为一梯形。从而总的接触面积为各梯形面积之和,即:

MAPGIS中坐标转换中七参数法

MAPGIS 中坐标转换中七参数法 京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,丫平移,Z平移,X旋转(WX,丫旋转(WY,Z旋转(WY,尺度变化(DM。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 下面具体的步骤: 启动“投影变换模块”,单击“文件”菜单下“打开文件”命 令,将演示数据“演示数据_北京54.WT、“演示数据_北京 54.WL、“演示数据—北京54.WP打开。1、单击“投影转换” 菜单下“S坐标系转换”命令,系统弹出“转换坐标值” “话框⑴、在“输入”一栏中,坐标系设置为“北京54坐标系”,单位设置为“线类单位—米”;⑵、在“输出”一栏中,坐标系设置为“西 安80坐标系”,单位设置为“线类单位—米”;⑶、在“转换方法”一栏中,单击“公共点操作求系数”项;⑷、在“输入”一栏中, 输入北京54坐标系下一个公共点的(x、y、z),如图2所示;⑸、在“输出”一栏中,输入西安80坐标系下对应的公共点的(x、y、z), 如图2所示;⑹、在窗口右下角,单击“输入公共点”按钮,右边的数字变为1,表示输入了一个公共点对,如图2所示;⑺、依照相同的方法,再输入另外的2个公共点对;⑻、在“转换方法”一

栏中,单击“七参数布尔莎模型”项,将右边的转换系数项激活;⑼、 单击“求转换系数”菜单下“求转换系数”命令,系统根据输入的3个公共点对坐标自动计算出7个参数,如图3所示,将其记录下来;2、单击“投影转换”菜单下“编辑坐标转换参数”命令,系统弹出“不同地理坐标系转换参数设置”对话框,如图4所示;在“坐标系选项”一栏中,设置各项参数如下:源坐标系:北京54坐标系;目的坐标系:西安80坐标系;转换方法:七参数布尔莎模型;长度单位:米;角度单位:弧度;然后单击“添加项”按钮,则在窗口左边的“不同椭球间转换”列表中将该转换关系列出;在窗口下方的“参数设置”一栏中,将上一步得到的七个参数依次输入到相应的文本框中,如图4所示;单击“修改项”按钮,输入转换关系,并单击“确定”按钮;接下来就是文件投影的操作过程了。 3、单击“投影转换”菜单下“ MAPGI毀影转换/选转换线文件”命令,系统弹出“选择文件”对话框 选中待转换的文件“演示数据_北京54.WL',单击“确定”按 钮; 4、设置文件的Tic点,在“投影变换”模块下提供了两种方法:手工设置和文件间拷贝,这里不作详细的说明; 5、单击“投影转换”菜单下“编辑当前投影参数”命令,系统弹出 “输入投影参数”对话框,如图6所示,根据数据的实际情况来设置 其地图参数坐标系类型:大地坐标系 椭球参数:北京54投影类型:高斯-克吕格投影比例尺分母:1坐标单

铸轧机结构力能参数的计算

铸轧机结构力能参数的计算 3.1铸轧和连铸及连轧以及连铸连轧的区别 3.1.1 连续铸钢简称为连铸 钢的生产过程主要分为炼钢和铸钢两大环节。炼钢的任务是将有关的原料通过炼钢炉炼成质量合格的钢液,铸钢的任务是将成分合格的钢液铸成适合于轧钢和锻压加工所需的一定形状的钢块(连铸坯成钢锭)。铸钢作业是衔接炼钢和轧钢之间的一项特殊作业,其特殊表现为它是把钢液变为固体的凝固过程。当钢液凝固后,在以后的轧钢过程中就不能对质量有本质上的改进了。因此,铸钢作业对产品质量和成本有重大影响。 铸钢生产可以分为钢锭模浇注(简称模铸)和连续铸钢(简称连铸)两大类。模铸是将钢液注入铸铁制作的钢锭模内,冷却凝固成钢锭的工艺过程;连铸是将钢液不断地注入水冷结晶器内,连续获得铸坯的工艺过程。 连铸机主要是由钢包运载装置、中间包、中间包运载装置、结晶器、结晶器振动装置、二次冷却装置、拉坯矫直机、引锭装置、切割装置和铸坯运载装置部分组成。 连铸生产过程: 下面以连铸生产使用最多的弧形连铸机为例说明连铸的一般过程: 从炼钢炉出来的钢液注入到钢包内,经二次精练处理后被运送到连铸机上方,钢液通过钢包底部的水口再注入到中间包内。中间包水口的位置被预先调好的对准下面的结晶器。打开中间包塞棒(成滑动水口)后,钢液流入下口由引锭杆头封堵的水冷结晶器内。在结晶器内,钢液沿其周边逐渐冷凝成坯壳。当结晶器下端出口处有一定厚度时,同时启动拉坯机和结晶器振动装置,使带有液芯的铸坯进入由若干夹辊组成的弧形导向段。铸坯在此一边下行,一边经受二次冷却区中许多按一定规律布置的喷嘴喷出雾化水的强制冷却,继续凝固。在引锭杆出拉坯矫直机后,将其切成定尺铸坯,最后又出坯装置将定尺铸坯运往指定地点。随着钢液的不断注入,铸坯不断向下伸长,并被切割成运走,形成连续浇注的全

arcgis七参数精确转换

在ArcGIS Desktop中进行三参数或七参数精确投影转换 Desktop, 投影, ArcGIS, 参数 ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。下面介绍两种办法来在ArcGIS Desktop中进行这种转换。 方法1:在ArcMap中进行动态转换(On the fly) 假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。 在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations...

点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明了我们想 从什么坐标系统转换到什么坐标系统。

在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输 入各个转换参数。 输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对当前地图的动态投影转换。这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,

设计用全国主要城市室外气象参数资料汇编

省份山东北京北京上海天津设计用室外气象参数单位济南北京密云上海天津拔海高度m 170.331.371.8 5.5 2.5 常年大气压pa 100813101169100847101618101677采暖室外计算温度℃-5.2 -7.5-8.9 1.2-7.0冬季通风室外计算温度℃-3.6 -7.6-8.7 3.5-6.5夏季通风室外计算温度℃30.9 29.929.930.829.9夏季通风室外计算相对湿度%56 58596962冬季空气调节室外计算温度℃-7.7 -9.8-11.7-1.2-9.4冬季空气调节室外计算相对湿 度% 45 37567473夏季空气调节室外计算干球温 度℃ 34.8 33.633.734.633.9夏季空气调节室外计算湿球温 度℃ 27.0 26.326.428.226.9夏季空气调节室外计算日平均 温度℃ 31.2 29.128.831.329.3冬季室外平均风速m/s 2.7 2.7 2.6 3.3 2.1冬季室外最多风向的平均风速m/s 3.5 4.5 3.2 3.0 5.6夏季室外平均风速m/s 2.8 2.2 2.2 3.4 1.7冬季最多风向——ENE NNW NE N NNW 冬季最多风向的频率%18 14211315夏季最多风向——SSW SE SSW S S 夏季最多风向的频率%19 12121411年最多风向——SSW SSW ENE ESE SSW 年最多风向的频率%15 101699冬季室外大气压力Pa 101853 102573102083102647102960夏季室外大气压力Pa 99727 9998799523100573100287冬季日照百分率%53 57533848设计计算用采暖期日数日100 12213140121 设计计算用采暖期初日——11月 26日 11月 14日 11月8 日 12月 31日 11月15 日 设计计算用采暖期终日——3月5 日 3月15 日 3月18 日 2月8 日 3月15 日 极端最低温度℃-14.9 -18.3-23.3-7.7-17.8极端最高温度℃42.0 41.940.739.640.5

球磨机工作参数

第2章球磨机工作参数和效率的关系 为了全面了解球磨系统的特性,深入认识该系统,从众多错综复杂的影响因素中,找出影响球磨机内部参数的主要因素,抛弃次要因素,本章将对影响球磨机内部参数的因素进行分析,把握它们之间的相互制约关系,为过程模型的建立和球磨机内部参数的优化奠定基础。 2.1球磨机简介 通过物理方法进行的任何矿石浓缩处理均需要将矿石从脉石中分离出来,需将矿石粉碎成要求的尺寸。到目前为止,球磨机以其投资成本低、安装快速容易、使用维护费用低、磨出的物料形状好和生产能力上的优势,成为工业上应用最广泛的产品,用于将易碎、有粘性、腐蚀性较小的矿石块料磨碎成要求的尺寸,产生的细屑最少且适应处理特性在很广范围内变化的矿石。其磨矿的基本原理是当球磨机以一定的速度作旋转运动时,装入筒内的钢球在筒体衬板和钢球之间的摩擦力、钢球的重力以及由于磨机旋转而产生的离心力的作用下,将随着筒体作旋转的上升运动,被提升到一定的高度,然后当钢球的重力(实际上是重力的径向分力)大于或等于离心力时,就开始脱离筒体内壁,按照某一轨迹降落。这种周而复始的运动就产生了连续的冲击和研磨作用,从而粉碎物料,其中钢球主要的运动状态如图1所示。 (a)抛落式(b)泻落式 图1钢球的两种主要运动形态 球磨过程是复杂而又多变的生产系统,它具有下列特点:

(1 )影响因素多,是选矿工业中可变参数最多的作业之一,而且各因素之间相互影响、相互制约,检测也比较困难。这些影响参数大致可以分为三大类: (1)物料性质方面有:矿石的可磨度、给料粒度、产品细度等; (2)磨机结构方面有;磨机的结构、尺寸、衬板形状等; (3)磨机操作方面有:介质添加制度(如介质尺寸配比以及材质、介质充填率)、磨机转速、磨机给料量、磨矿浓度等。 上述因素中,第一类是磨矿过程的自变量,也是磨矿过程中干扰的主要来源。第二类被确定以后一般就不改变了(理想情况下)。第三类则是球磨机的工作条件,如果设备维修以及添加钢球的材质都是正常的,则其可改变的条件就是磨机转速、加球制度(介质配比和数量)、磨机给料量和磨矿浓度。一旦磨机加球制度、磨机给料量和磨矿浓度,则只有转速固定是可以变化的。 (2 )非线性:磨矿回路的参数因设备磨损程度不同是变化的,它们之间的关系是非线性的。如球磨机衬板的磨损,改变了其有效容积:钢球消耗量与添加量失调,改变了装球量和钢球的比例。又如,球磨机磨矿效率与其负荷之间的关系就是非线胜的,有最大值,它随工况变化而变化. (3) 时变性:磨矿过程中的许多因素如原矿性质、装球量、磨机衬板厚度等都是时变的。 (4 )滞后大。 (5 )机理复杂。 (6 )随机干扰因素多而且严重,这主要表现为: ①来自不同采区或同一采区不同采段的矿石,可磨性存在很大的差异,人工操作己经难以识别和作出相应操作以适应矿石性质的变化,导致生产率降低,消耗增大,对于贫、难、杂矿石这一问题尤为突出。 ②相关性极强的众多过程变量,如原矿性质、给矿量、磨矿浓度等;种变量的波动会引起其它变量乃至整个作业的改变。 ③非自动化操作时人为干扰因素多,主要起因于磨机操作者的素质和技术水平。由于操作不及时而引起的任何问题,都不仅直接影响该作业或回路,甚至影响整个选矿厂的经济技术指标。 球磨机合理的内部工作参数是取得最佳磨矿效果的必要条件。磨矿理论和实践表

手持GPS三参数计算方法

手持GPS三参数计算方法 南方测绘石家庄工程项目部靳超 新机拿到手之后,设计方都给提供一个投影参数,这对于要求不高的一般用户来说基本可以满足工作需要,而对于一些专业用户来说,就要自己来测算参数。 一般型号的导航型手持GPS自定义坐标系统(User)投影参数设置界面都提供了五个变量(△X、△Y、△Z、△A、△F)需要设置,而实际工作中,后两个参数(△A、△F)针对某一坐标系统来说为固定参数(北京54坐标系△A=-108、△F=0.0000005西安80△A=-3、△F=0),无需改动,需要自己测算的参数主要为前三个(△X、△Y、△Z),一般称为三参数。 测算三参数的基本方法是,首先在已知控制点上测量一个稳定的WGS-84大地坐标(BLH)值,然后,运用专用测量程序既可算出一个三参数来。三参数计算出来后,将其输入GPS中再到已知控制点上观测比对,最好再到另一已知控制点上观测检校,如比对检校差值在规定允许误差范围之内,既可运用于实际工程测量工作。一般来说,只要到一新工区或工程点间距较远(数十至上百公里以外)都要到已知控制点上重新进行观测比对检校,没有问题才能进行实际工作。 三参数的求取步骤如下: 一、获取已知点的经纬度 利用手持GPS到一个已知控制点上测量一个稳定(即精度比较高)的WGS84大地坐标(即B,L,H),也就是在手持GPS中将坐标系设置为:WGS84坐标系,显示格式为:经纬度格式。每种手持机设置的位置有所不同,请参阅说明书进行操作。 二、计算转换参数 一般手持机参数为:△X、△Y、△Z、△A、△F。△A、△F在北京54和西安80为固定值,我们主要计算:△X、△Y、△Z,即三参数。 我们使用COORD4.1(在此,感谢软件的作者:Jerry , 注意网上有其它版本的软件,某些功能可能有错误,如4.2版本)软件来自己求三参数。打开软件如图

气动系统压力、流量、气管壁厚、用气量计算

气动系统压力、流量、气管壁厚、用气量计算

气动系统压力、流量、气管壁厚、用气量计算 1 气动系统相关计算 (3) 1.1 试验用气量计算 (3) 1.2 充气压力计算 (3) 1.3 管径及管路数量计算 (4) 1.3.1 根据流量计计算管径及管路数量 (4) 1.3.2 根据减压阀计算管径及管路数量 (6) 1.3.3 管径及管路数确定 (8) 1.4 气管壁厚计算 (8) 1.5 理论充气时间和一次试验用气量核算 (9)

1气动系统相关计算 1.1试验用气量计算 根据系统要求,最大气流量需求发生于:漏气量为2.5m3/s(标准大气压下的气体体积)时,筒内压力充至1.35MPa压力的时间不大于30s,并能保证持续不少于10s。 根据公式P 1V 1 =P 2 V 2 (1) 求得单位最小流量:Vmin-0.1MPa=((1.35/0.1)×(0.0675+0.01)/30)+2.5=2.539m3/s 其中0.0675m3是装置密闭腔容积; 0.01m3是管路容积(管路长度取20m)。 因为气源提供的流量在10MPa压力下不小于2.6m3/s(标准大气压),而系统输入压力最大为16MPa,所以气源满足系统流量要求。后文中按照输入流量为2.6m3/s进行计算。 质量流量(Kg/h)=体积流量×密度,20℃时,标准大气压下气体密度为1.205kg/m3,即质量流量=2.6×1.205×3600=13014kg/h。 1.2充气压力计算 一般密闭腔充气压力设置为目标值的1.05至1.1倍,由于系统要求的漏气量较大,初步设定充气压力为目标值的2.0倍。本装置需对密闭腔充气至最大1.35MPa,即目标值为1.35MPa,充气压力为P:

相关主题