搜档网
当前位置:搜档网 › “力学”简介、含义、起源、历史与发展

“力学”简介、含义、起源、历史与发展

“力学”简介、含义、起源、历史与发展
“力学”简介、含义、起源、历史与发展

力学

力学是研究物质机械运动规律的科学。自然界物质有多种层次,从宇观的宇宙体系,宏观的天体和常规物体,细观的颗粒、纤维、晶体,到微观的分子、原子、基本粒子。通常理解的力学以研究天然的或人工的宏观对象为主。但由于学科的互相渗透,有时也涉及宇观或细观甚至微观各层次中的对象以及有关的规律。机械运动亦即力学运动是物质在时间、空间中的位置变化,包括移动、转动、流动、变形、振动、波动、扩散等,而平衡或静止,则是其中的一种特殊情况。机械运动是物质运动的最基本的形式。物质运动的其他形式还有热运动、电磁运动、原子及其内部的运动和化学运动等。机械运动并不能脱离其他运动形式独立存在,只是在研究力学问题时突出地考虑机械运动这种形式罢了;如果其他运动形式对机械运动有较大影响,或者需要考虑它们之间的相互作用,便会在力学同其他学科之间形成交叉学科或边缘学科。力是物质间的一种相互作用,机械运动状态的变化是由这种相互作用引起的。静止和运动状态不变,都意味着各作用力在某种意义上的平衡。力学,可以说是力和(机械)运动的科学。

力学在汉语中的意思是力的科学。汉语“力”字最初表示的是手臂使劲,后来虽又含有他义,但都同机械或运动没有直接联系。“力学”一词译自英语mechanics(源于希腊语μηχανη──机械)。在英语中,mechanics是一个多义词,既可释作“力学”,也可释作“机械学”、“结构”等。在欧洲其他语种中,此词的语源和语义都与英语相同。汉语中没有同它对等的多义词。mechanics在19世纪50年代作为研究力的作用的学科名词传入中国时,译作“重学”,后来改译作“力学”,一直使用至今。“力学的”和“机械的” 在英语中同为mechanical,而现代汉语中“机械的”又可理解为“刻板的”。这种不同语种中词义包容范围的差异,有时引起国际学术交流中的周折。例如机械的(mechanical)自然观,其实指用力学解释自然的观点,而英语mechanist是指机械师,不是指力学家。

发展简史

力学知识最早起源于对自然现象的观察和在生产劳动中的

经验。人们在建筑、灌溉等劳动中使用杠杆、斜面、汲水器具,逐渐积累起对平衡物体受力情况的认识。古希腊的阿基米德对杠杆平衡、物体重心位置、物体在水中受到的浮力等作了系统研究,确定它们的基本规律,初步奠定了静力学即平衡理论的基础。古

代人还从对日、月运行的观察和弓箭、车轮等的使用中了解一些简单的运动规律,如匀速的移动和转动。但是对力和运动之间的关系,只是在欧洲文艺复兴时期以后才逐渐有了正确的认识。伽利略在实验研究和理论分析的基础上,最早阐明自由落体运动的规律,提出加速度的概念。I.牛顿继承和发展前人的研究成果(特别是J.开普勒的行星运动三定律),提出物体运动三定律。伽利略、牛顿奠定了动力学的基础。牛顿运动定律的建立标志着力学开始成为一门科学。此后力学的进展在于它所考虑的对象由单个的自由质点转向受约束的质点和受约束的质点系;这方面的标志是J.le R.达朗伯提出的达朗伯原理和J.-L.拉格朗日建立的分析力学。L.欧拉又进一步把牛顿运动定律推广用于刚体和理想流体的运动方程。欧拉建立理想流体的力学方程可看作是连续介质力学的肇端。在此以前,有关固体的弹性、流体的粘性、气体的可压缩性等的物质属性方程已经陆续建立。运动定律和物性定律这两者的结合,促使弹性固体力学基本理论和粘性流体力学基本理论孪生于世,在这方面作出贡献的是C.-L.-M.-H.纳维、A.-L.柯西、S.-D.泊松、G.G.斯托克斯等人。弹性力学和流体力学基本方程的建立,使得力学逐渐脱离物理学而成为独立学科。另一方面,从拉格朗日分析力学基础上发展起来的哈密顿体系,继续

在物理学中起作用。从牛顿到W.R.哈密顿的理论体系组成物理学中的经典力学或牛顿力学。在弹性和流体基本方程建立后,所给出的方程一时难于求解,工程技术中许多应用力学问题还须依靠经验或半经验的方法解决。这使得19世纪后半叶在材料力学、结构力学同弹性力学之间,水力学和水动力学之间一直存在着风格上的显著差别。到20世纪初,在流体力学和固体力学中,实际应用同数学理论的上述两个方面开始结合,此后力学便蓬勃发展起来,创立了许多新的理论,同时也解决了工程技术中大量的关键性问题,如航空工程中的声障问题和航天工程中的热障问题。这种理论和实际密切结合的力学的先导者是L.普朗特和

T.von卡门。他们在力学研究工作中善于从复杂的现象中洞察事物本质,又能寻找合适的解决问题的数学途径,逐渐形成一套特有的方法。从60年代起,电子计算机应用日广,力学无论在应用上或理论上都有了新的进展。力学继承它过去同航空和航天工程技术结合的传统,在同其他各种工程技术以及同自然科学的其他学科的结合中,开拓自己新的应用领域。

力学在中国的发展经历了一个特殊的过程。与古希腊几乎同时,中国古代对平衡和简单的运动形式就已具备相当水平的力学知识,所不同的是未建立起像阿基米德那样的理论系统。在文艺

复兴前的约一千年时间内,整个欧洲的科学技术进展缓慢,而中国科学技术的综合性成果堪称卓著,其中有些在当时世界居于领先地位。这些成果反映出丰富的力学知识,但终未形成系统的力学理论。到明末清初,中国科学技术已显著落后于欧洲。经过曲折的过程,到19世纪中叶,牛顿力学才由欧洲传入中国。以后,中国力学的发展便随同世界潮流前进。

学科性质

力学原是物理学的一个分支。物理科学的建立则是从力学开始的。在物理科学中,人们曾用纯粹力学理论解释机械运动以外的各种形式的运动,如热、电磁、光、分子和原子内的运动等。当物理学摆脱了这种机械(力学)的自然观而获得健康发展时,力学则在工程技术的推动下按自身逻辑进一步演化,逐渐从物理学中独立出来。20世纪初,相对论指出牛顿力学不适用于速度接近光速或者宇宙尺度内的物体运动;20年代,量子论指出牛顿力学不适用于微观世界。这反映人们对力学认识的深化,即认识到物质在不同层次上的机械运动规律是不同的。通常理解的力学

只以研究宏观的机械运动为主,因而有许多带“力学”名称的学科如热力学、统计力学、相对论力学、电动力学、量子力学等在习惯上被认为是物理学的分支,而不属于力学的范围。但由于历史上的原因,力学和物理学仍有着特殊的亲缘关系,特别是在以上各“力学”分支和牛顿力学之间,许多概念、方法、理论都有不少相似之处。

力学与数学在发展中始终相互推动,相互促进。一种力学理论往往和相应的一个数学分支相伴产生,如运动基本定律和微积分,运动方程的求解和常微分方程,弹性力学及流体力学的基本方程和数学分析理论,天体力学中运动稳定性和微分方程定性理论等。有人甚至认为力学是一门应用数学。但是力学和物理学一样,还有需要实验基础的一面,而数学寻求的是比力学更带普遍性的数学关系,两者有各自的研究对象。

力学同物理学、数学等学科一样,是一门基础科学,它所阐明的规律带有普遍的性质。

力学又是一门技术科学,它是许多工程技术的理论基础,又在广泛的应用过程中不断得到发展。当工程学还只分民用工程学(即土木工程学)和军事工程学两大分支时,力学在这两个分支中已起着举足轻重的作用。工程学越分越细,各个分支中许多关键

性的进展都有赖于力学中有关运动规律、强度、刚度等问题的解决。力学和工程学的结合促使工程力学各个分支的形成和发展。现在,无论是历史较久的土木工程、建筑工程、水利工程、机械工程、船舶工程等,还是后起的航空工程、航天工程、核技术工程、生物医学工程等,都或多或少有工程力学的活动场地。力学作为一门技术科学,并不能代替工程学,只指出工程技术中解决力学问题的途径,而工程学则从更综合的角度考虑具体任务的完成。同样地,工程力学也不能代替力学,因为力学还有探索自然界一般规律的任务。

力学既是基础科学又是技术科学这种二重性,有时难免会引起侧重基础研究一面和侧重应用研究一面的力学家之间的不同看法。但这种二重性也使力学家感到自豪,他们为沟通人类认识自然和改造自然两个方面作出了贡献。

研究方法

力学研究方法遵循认识论的基本法则:实践-理论-实践。力学作为基础科学和作为技术科学从不同侧面反映这个法则。力学

机械振动发展史

公元前1000多年,中国商代铜铙已有十二音律中的九律,并有五度谐和音程的概念。在战国时期,《庄子·徐无鬼》中就记载了同频率共振现象。人们对与振动相关问题的研究起源于公元前6世纪毕达哥拉斯(Pythagoras)的工作,他通过试验观测得到弦线振动发出的声音与弦线的长度、直径和张力的关系。意大利天文学家、力学家、哲学家伽利略(Galileo Galilei)经过实验观察和数学推算,于 1 5 8 2年得到了单摆等时性定律。荷兰数学家、天文学家、物理学家惠更斯(c.Huygens)于1 6 7 3年著《关于钟摆的运动》,提出单摆大幅度摆动时并不具有等时性这一非线性现象,并研究了一种周期与振幅无关的等时摆。法国自然哲学家和科学家梅森(M.Mersenne)于1623年建立了弦振动的频率公式,梅森还比伽利略早一年发现单摆频率与摆长平方成反比的关系。英国物理学家胡克(R. Hooke)于1 6 7 8年发表的弹性定律和英国伟大的物理学家、数学家、天文学家牛顿(I. Newton)于1 6 8 7年发表的运动定律为振动力学的发 展奠定了基础。 在下面对振动发展史的简述中,主要是针对线性振动、非线性振动、随机振动以及振动信号采集和处理这三个方面进行的。而关于线性振动和非线性振动发展史的简介中,又分为理论研究和近似分析方法两个方面。

线性振动理论在1 8世纪迅速发展并趋于成熟。瑞士数学家、力学家欧拉(L. Euler)于1728年建立并求解了单摆在有阻尼介质中运动的微分方程;1 7 3 9年研究了无阻尼简谐受迫振动,并从理论上解释了共振现象;1 7 4 7年对九个等质量质点由等刚度弹簧连接的系统列出微分方程组并求出精确解,从而发现线性系统的振动是各阶简谐振动的叠加。法国数学家、力学家拉格朗日.Lagrange)于1 7 6 2年建立了离散系统振动的一般理论。最早被研究的连续系统是弦线,法国数学家、力学家、哲学家达朗伯(J. le R.d,Alembert)于1 7 4 6年发表的《弦振系统是弦线,法国数学家、力学家、哲学家达朗伯(J.1e R.d,Alem bert)于1 7 4 6年发表的《弦振动研究》将他发展的偏微分方程用于弦振动研究,得到了弦的波动方程并求出行波解。瑞士数 学家约翰第一·伯努利(J.Bernoulli)于1 7 2 8年对弦的振动进行了研究,认为弦的基本振型是正弦型的,但还不知道高阶振型的性质。与约翰第一·伯努利为同一家族的瑞士数学家、力学家丹尼尔第一·伯努利.Bernoulli)于1 7 3 5年得到了悬臂梁的振动方程,1 7 4 2年提出了弹性振动理论中的叠加原理,并用具体的振动实验进行验证。

量子力学发展简史

量子力学发展简史 摘要: 相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。终于在1925 年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。 关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理 量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分 支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。 量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。 它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。

电工学简介含义起源历史及发展

电工学简介含义起源历史 及发展 Revised final draft November 26, 2020

电工指研究电磁领域的客观规律及其应用的科学技术,以及电力生产和电工制造两大工业生产体系。电工的发展水平是衡量社会现代化程度的重要标志,是推动社会生产和科学技术发展,促进社会文明的有力杠杆。早在1883年电能开发的萌芽时期,恩格斯就曾经评价了它的意义:“……这实际上是一次巨大的革命。蒸汽机教我们把热变成机械运动,而电的利用将为我们开辟一条道路,使一切形式的能──热、机械运动、电、磁、光──互相转化,并在工业中加以利用。循环完成了。德普勒的最新发现,在于能够把高压电流在能量损失较小的情况下通过普通电线输送到迄今连想也不敢想的远距离,并在那一端加以利用──这件事还只是处于萌芽状态──,这一发现使工业几乎彻底摆脱地方条件所规定的一切界限,并且使极遥远的水力的利用成为可能,如果在最初它只是对城市有利,那末到最后它终将成为消除城乡对立的最强有力的杠杆。”一个世纪以来人类社会的发展历程,充分说明了这一预见的正确性。 电磁是自然界物质普遍存在的一种基本物理属性。因此,研究电磁规律及其应用的电工科学技术对物质生产和社会生活的各个方面,包括能源、信息、材料等现代社会的支柱都有着深刻的影响。电能作为一种,它便于与各种进行转换,从多种途径获得来源(如、、、太阳能发电等);同时又便于转换为其他能量形式以满足社会生产和生活的种种需要(如电动力、电热、电化学能、等)。与其他能源相比,电能在生产、传送、使用中更易于调控。这一系列优点,使电能成为最理想的二次能源,格外受到人们关注。电能的开发及其广泛应用成为继蒸汽机的发明之后,近代史上第二次技术革命的核心内容。20世纪

文献综述振动力学汇总

振动力学 1前言部分 振动力学在其发展过程中逐渐由基础科学转化为基础科学与技术科学的结合.工程问题的需要使振动力学的发展成为必需,而测试和计算技术的进步又为振动力学的发展和应用提供了可能性.除与技术问题的结合以外,学科的交叉不断为振动力学的发展注入新的活力.在数百年发展过程中,振动力学已形成为以物理概念为基础,以数学理论、计算方法和测试技术为工具,以解决工程中振动问题为主要目标的力学分支。 人类对振动现象的认识有悠久的历史。战国时期的古人已定量地总结出弦线发音与长度的关系。在振动力学研究兴起之前,有两个典型的振动问题引起注意,即弦线振动和单摆振动。对单摆摆动的研究起源于Galileo,他在1581年发现摆的等时性。1727年JohnBernoulli研究无重量弹性弦上等距分布等质量质点时,建立无阻尼自由振动系统模型并解出解析解。1728年Euler考察了摆在有阻尼介质中的运动建立并求解了相应的二阶常微分方程。1739年他研究了无阻尼简谐受迫振动,从理论上解释了共振现象。1834年Duhamel将任意外激励视为一系列冲量激励的叠加,从而建立了分析强迫振动的普遍公式.1849年Stokes发现了初位移激励与初速度激励两者响应的联系,并且由此对外激励得到与Duhamel相同的结果. 非线性振动的研究使得人们对振动机制有了新的认识.除自由振动、受迫振动和参数振动以外,还有一类广泛存在的振动,即自激振动.1925年Cartan父子研究了无线电技术中出现的一类二阶非线性微分方程的周期解.1926年vanderPol建立一类描述三极电子管振荡的方称为vanderPol方程,他用图解法证明孤立闭轨线的存在,又用慢变系数法得到闭轨线的近似方程.1928年Lienard证明以 Cartan 方程和vanderPol方程为特例的一类方程存在闭轨线,1929年Андронов阐明了vanderPol的自激振动对应于Poincaré研究过的极限环。 2主题部分

物理学发展简史

物理学发展简史 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一、古典物理学与近代物理学: 1、古典物理学:廿世纪以前所发展的物理学称为古典物理学,以巨观的角度研究物理,可分为 力学、热学、光学、电磁学等主要分支。 2、近代物理学:廿世纪以后(1900年卜朗克提出量子论后)所发展的物理学称为近代物理学, 以微观的角度研究物理,量子力学与相对论为近代物理的两大基石。

一、古典物理学对人类生活的影响: 1、力学:简单机械(杠杆、轮轴、滑轮、斜面、螺旋、劈) …… 2、光学: (一)反射原理: (1)平面镜:镜子…… (2)凹面镜:手电筒、车灯、探照灯…… (3)凸面镜:路口、商店监视镜…… (二)折射原理: (1)凸透镜:放大镜、显微镜、相机…… (2)凹透镜:眼镜、相机…… 3、热学:蒸汽机、内燃机、引擎、冰箱、冷(暖)气机…… 4、电学: (一)利用电能运作:一般电器用品,如:电视机、冰箱、洗衣机…… (二)利用电磁感应:发电机、变压器…… (三)利用电磁波原理:无线通讯、雷达…… 二、近代物理学对人类生活的影响: 1、半导体: (一)半导体:导电性介于导体和绝缘体间之一种材料,可分为元素半导体(如:硅、锗等)和 化合物半导体(如:砷化镓等)两种。 (二)用途: (1)半导体制成晶体管,体积小、耗电量少,具有放大电流讯号功能。 (2)半导体制成二极管具整流能力。 (3)集成电路(IC): (A)1958年发展出「集成电路」技术,系利用长晶、蚀刻、蒸镀等方式于一小芯片上容 纳上百万个晶体管、二极管、电阻、电感、电容等电子组件之技术,而此电路即称为 集成电路。 (B)IC之特性:体积小、效率高、耗电低、稳定性高、可大量生产。 (C)IC之应用:计算机、手机、电视、计算器、手表等电子产品。 (4)计算机信息科技之扩展大辐改变了人类的生活习惯,故俗称第二次工业革命。 2、雷射: (一)原理:利用爱因斯坦「原子受激放射」理论,诱发大量原子由受激态同时做能态之跃迁 并放射同频率之光子,藉以将光加以增强。 (二)特性:聚旋光性好、强度高、光束集中、频率单一(单色光)。 (三)应用:

西方逻辑学发展

逻辑学的发展 逻辑学,就是一门历史悠久的学科,已有两千多年的历史,围绕着逻辑学的定义、研究对象、应对问题,研究方法也经历着历史的演变过程。本文以历史时间顺序为主,以逻辑学研究的基本问题包括研究对象、方法、面临问题、评价为线索,对逻辑学的发展演变脉络做一次梳理。以期明确不同逻辑理论体系的内涵与外延,理清它们之间的区别与联系,研究逻辑学的发展特点与方向。本文作者认为,与其她学科一样,逻辑学,因为需要而产生,因为不足而发展,本文思路也就是这种想法的体现。 根据逻辑学的历史发展阶段的不同,一般可以分为传统逻辑的发展阶段与现代逻辑的发展阶段。 传统逻辑”,就是从古希腊亚里士多德开创至19世纪中期进入现代发展阶段以前的逻辑理论与体系。主要包括亚里士多德逻辑(以三段论演绎体系为中心内容的逻辑体系,或相对与现代为此逻辑体系而言的词项逻辑体系)、中世纪麦加拉学派与斯多葛学派奠定的基础上予以进一步发展的命题逻辑、近代的F、培根的归纳法与穆勒的求因果关系五法。 古希腊就是奴隶主贵族专政的国家,在重视民主氛围的政治生活中, 演讲与辩论很受重视, 为论辩提供工具,为反驳谬误的盛行,亚里士多德提出与确立了以三段演绎体系为中心内容的逻辑学说与体系。亚里士多德以以推理与论证为研究对象,总结了“从前提必然地得出结论的演绎推理规则,建立历史上第一个逻

辑演绎系统,即三段论系统。她把简单命题分解为各个组成部分,如主项、谓项、量项等词项,并对这些词项的逻辑性质与相互关系间的逻辑关系进行研究,主要包括直言直接推理、直言三段论、关系推理等。三段论,又称类演算,即三段论以词项为单位,研究概念或词项之间外延上的关系,类与类,类与个体的关系。虽然亚里士多德的逻辑以三段论为主体, 但也包含有辩证推理、归纳、定义、辩缪、反驳等内容。 研究复合命题推理规律的逻辑理论称为命题逻辑。命题逻辑以简单命题为基本单位作,研究以简单命题以及命题连接词构成的各种复合命题的逻辑性质及其相应的逻辑规律与规则,研究实质蕴含关系,解决了复合命题推理的有效判定与推导问题。命题逻辑把简单命题瞧作一个整体,不对简单命题的内部进行分析。而诸如传统逻辑的三段论等,因其性质取决于简单命题的各词项的性质与关系,涉及到简单命题的内部结构时,命题逻辑就无法进行有效处理。因此词项逻辑就克服了命题逻辑局限。 但词项逻辑对直言命题结构及其推理的分析还就是粗糙的、不够细致的,此外它没有对关系命题的结构及其推理进行分析,因此词项逻辑的工具就是贫乏;并且,命题逻辑、词项逻辑等传统逻辑一般采用自然语言,根据日常语言来研究思维形式的结果,它的真正的逻辑内容较为狭窄贫乏、粗疏浅陋, 从而处理与解决问题的能力有限,总之统逻辑具有不精确性,内容贫乏, 不成系统等特点。因此, 到了近、现代, 一种新的逻辑的产生,这就就

互联网起源发展历程历史.

国际互联网,始于 1969年的美国,又称因特网,是全球性的网络,是一种公用信息的载体, 是大众传媒的一种。互联网是由一些使用公用语言互相通信的计算机连接而成的网络, 即广域网、局域网及单机按照一定的通讯协议组成的国际计算机网络。组成互联网的计算机网络包括小规模的局域网(LAN 、城市规模的区域网(MAN 以及大规模的广域网(WAN 等等。这些网络通过普通电话线、高速率专用线路、卫星、微波和光缆等线路把不同国家的大学、公司、科研部门以及军事和政府等组织的网络连接起来。 各行各业的人需要运用互联网来工作、生活、娱乐、消费,互联网本身是一个产业,同时它也带动了其他所有的产业的发展。计算机网络仅仅是传输信息的媒介, 是一个狭义的硬件网。而互联网是个广义的网, 它的精华则是它能够为你提供有价值的信息和令人满意的服务。互联网也是一个面向公众的社会性组织。世界各地数以万计的人们可以利用互联网进行信息交流和资源共享。互联网是人类社会有史以来第一个世界性的图书馆和第一个全球性论坛。它为用户提供了高效工作环境, 入网的电脑终端可以调阅各种信息资料。人民可以通过互联网进行娱乐与消费,听歌、看视频、购物。随着通讯技术的发展,上网终端已经不限于台式电脑和移动电脑,智能手机、平板电脑、掌上游戏机,甚至谷歌开发出来的眼镜、手表都可以上网。网络无处不在,网络无所不能。 一、从互联网的发展历程来看,从最初的 ARPANET 到如今的万维网。 1、互联网的起源。这一时期推动互联网发展的推动力是美国的冷战思维。 作为对前苏联 1957年发射的第一颗人造地球卫星 Sputnik 的直接反应,以及由苏联的卫星技术潜在的军事用途所导致的恐惧, 美国国防部组建了高级研究项目局(ARPA 。当时, 美国国防部为了保证美国本土防卫力量和海外防御武装在受到前 苏联第一次核打击以后仍然具有一定的生存和反击能力, 认为有必要设计出一种分散的指挥系统:它由一个个分散的指挥点组成,当部分指挥点被摧毁后,其它点仍能 正常工作, 并且这些点之间,能够绕过那些已被摧毁的指挥点而继续保持联系。为了对这一构思进行验证, 1969 美国国防部委托开发 ARPANET ,进行联网的研究。同

“化学”简介、含义、起源、历史与发展

化学 化学是研究物质的性质、组成、结构、变化和应用的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久又富有活力的学科。它的成就是社会文明的重要标志。从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,有赖于科学技术的进步,而化学的贡献在其中起了重要的作用。 化学是重要的基础科学之一,在与物理学、生物学、天文学等学科的相互渗透中,不仅本身得到了迅速的发展,同时也推动了其他学科和技术的发展。例如,核酸化学的研究结果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他天体的化学成分的分析,得出了元素分布的规律,发现了星际空间简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,创建了地球化学和宇宙化学。化学的重大成就,还丰富了自然辩证法的内容,推动了唯物主义哲学思想的发展。 化学的历史发展 原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。火──燃烧──就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶铜、炼铁;以后,又懂得了酿造、染色等等。这些由天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。 古人曾根据物质的某些性质对物质进行分类,并企图追溯其本源及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成,而五行则是由阴阳二气相互作用而成的。此说为朴素的唯物主义自然观,用“阴阳“这个概念来解释自然界两种对立和互相消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。公元前4世纪,希腊也提出与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术已颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼金术,阿拉伯炼金术于中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。英文中化学一字(chemistry)的字根chem,即来源于中世纪的拉丁文炼金术(alchemia)。 炼丹术的指导思想是深信物质能转化,试图在炼丹炉中夺造化之功,人工合成金银或修炼长生不老之药,有目的地将各类物质搭配烧炼,进行实验。为此设计了研究物质变化用的各种器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、结晶、灼烧、熔融、升华、密封等。与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改造后仍然在今天的化学实验室中沿用。炼丹家在实验过程中发明了火药,发现了若干元素(如汞、锌、砷、锑、磷等),制成了某些合金(如黄铜、白铜),还制出和提纯了许多化合物,如明矾等。这些成果我们至今仍在利用。 16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际,更进而注意对物质化学变化本身的研究。在元素的科学概念建立之

振动问题的发展简史

音乐是成为人类展示情感的最佳表达方式之一。人类对振动现象的了解和利用有着漫长的历史 0-1 振动力学发展简史 振动现象的“利”与“害” Tacoma吊桥探险者一号卫星振动落砂机

庄子》 记载了共振现象 振动理论的发展简况 毕达哥拉斯(Pythagoras ) 实验观测到弦线振动发出的声音与弦线长度、直径和张力的关系公元前6世纪 公元16世纪 伽利略(Galilei,G ) 发现了单摆的等时性并利用其自由落体公式计算单摆的周期 注意到单摆大幅摆动对等时性的偏离 两只频率接近时钟的同步化两类非线性现象 公元17世纪 惠更斯(Huygens,C)

.梅森(Mersenne,M) 在实验基础上系统地总结了弦线振动的频率特征 公元18世纪欧拉(Euler,L) ☆建立并求解了单摆在有阻尼介质中运动的微分方程 ☆研究无阻尼简谐受迫振动,从理论上解释了共振现象 ☆对n 个等质量质点由等刚度弹簧的连接系统列出微分方程并求出精确解,从而发现系统振动时各界简谐振动的叠加 1728年1739年1747年 1678年1687年奠定了振动力学的物性和物理基础 牛顿(Newton,I)发表的运动定律 胡克(Hooke,R)发表的弹性定律

(Lagrange,J.L.) ☆从驻波解推得行波解(严格的数学证明在1811年Fourier 提出函数的级数展开理论后完成)☆建立了离散系统振动一般理论1759年 1762年伯努利(Bernoulli,D.I) 采用无穷阶模态叠加方法得到弦线振动的驻波解 1759年 欧拉(Euler,L.)研究梁的横向振动,导出不同边界条件量的频率方程和模态函数 1744年1751年 伯努利(Bernoulli,D.I) 达朗贝尔(d ’Alembert,J.le R) 采用偏微分方程描述弦线振动而得到波动方程并求出行波解 1746年

量子力学的发展史及其哲学思想

十九世纪末期,物理学理论在当时看来已发展到相当完善的阶段.那时,一般的物理现象都可以从相应的理论中得到说明:物体的机械运动比光速小的多时,准确地遵循牛顿力学的规律;电磁现象的规律被总结为麦克斯韦方程;光的现象有光的波动理论,最后也归结为麦克斯韦方程;热的现象理论有完整的热力学以及玻耳兹曼,吉不斯等人建立的统计物理学.在这种情况下,当时有许多人认为物理现象的基本规律已完全被揭露,剩下的工作只是把这些基本规律应用到各种具体问题上,进行一些计算而已。 这种把当时物理学的理论认作”最终理论”的看法显然是错误的,因为:在绝对的总的宇宙发展过程中,各个具体过程的发展都是相对的,因而在”绝对真理的长河中,人们对于在各个一定发展阶段上的具体过程的认识具有相对的真理性.”生产力的巨大发展,对科学试验不断提出新的要求,促使科学试验从一个发展阶段进入到另一个新的发展阶段。就在物理学的经典理论取得上述重大成就的同时,人们发现了一些新的物理现象,例如黑体辐射,光电效应,原子的光谱线系以及固体在低温下的比热等,都是经典物理理论所无法解释的。这些现象揭露了经典物理学的局限性,突出了经典物理学与微观世界规律性的矛盾,从而为发现微观世界的规律打下基础。黑体辐射和光电效应等现象使人们发现了光的波粒二象性;玻尔为解释原子的光谱线系而提出了原子结构的量子论,由于这个理论只是在经典理论的基础上加进一些新的假设,因而未能反映微观世界的本质。因此更突出了认识微观粒子运动规律的迫切性。直到本世纪二十年代,人们在光的波粒二象性的启示下,开始认识到微观粒子的波粒二象性,才开辟了建立量子力学的途径。 量子力学诞生和发展的过程,是充满着矛盾和斗争的过程。一方面,新现象的发现暴露了微观过程内部的矛盾,推动人们突破经典物理理论的限制,提出新的思想,新的理论;另一方面,不少的人(其中也包括一些对突破经典物理学的限制有过贡献的人),他们的思想不能(或不完全能)随变化了的客观情况而前进,不愿承认经典物理理论的局限性,总是千方百计地企图把新发现的现象以及为说明这些现象而提出的新思想,新理论纳入经典物理理论的框架之内。虽然本书中不能详细叙述这个过程。尽管这些新现象在十九世纪末就陆续被发现,而量

逻辑学研究的现状及趋势[1]

第16卷 第1期 2003年03月唐山学院学报 Journal of T angshan Co llege V o l .16N o.1M ar .2003 逻辑学研究的现状及趋势 吴 新 民 (江汉大学人文学院,湖北武汉430056) 摘要:阐述了国际、国内逻辑学研究的基本情况及发展趋势。关键词:逻辑学;现状;发展趋势 中图分类号:B 81 文献标识码:A 文章编号:1672249X (2003)01 0041 02 The Curren t Situa tion s and D evelopm en t Trends of the Study of L og ic W U X in 2m in (Schoo l of H um anities J ianghan U niversity ,W uhan 430056,Ch ina ) Abstract :A n in troducti on is given abou t the cu rren t situati on s &developm en t trends of the study of logic . Key W ords :logic ;cu rren t situati on ;developm en t trend 1 概述 从1983年联合国教科文组织把逻辑学与数学、天文学和空间物理学、地球科学和空间科学、物理学、化学、生命科学一起并称为七大基础学科以来,逻辑学研究一直处在上升的发展中,并日益显示出它具有多方面作用。第一,教导作用:逻辑学能提供关于逻辑形式的知识和关于确定正确思维形式的规则和方法。学习逻辑学能提高思维的逻辑性,防止和识别逻辑错误,增强快速推断的能力等等。第二,方法作用:逻辑学,尤其是现代逻辑学提供的很复杂的逻辑运算和演算技巧作为方法广泛用于解决数学、计算机科学问题。第 三,理论作用:逻辑学中提出了许多理论问题,对它们的研究 既推动了逻辑学自身理论的发展和完善,又对哲学、语言学、思维科学等等产生了重要影响。逻辑学具有基础学科、工具学科和人文学科的三重性质,这是在当代科学体系中逻辑学独有的特征。现在,逻辑科学已经发展成为理论严密、分支众多、应用广泛的学科。按研究对象与研究方法,可将逻辑学分为传统逻辑学与现代逻辑学两大类型。而现代逻辑学又可分为现代演绎逻辑学(现代形式逻辑学)与现代归纳逻辑学两大部分。其中,现代形式逻辑学是现代逻辑学的主体,它的主要分支如表1所示。 表1 现代形式逻辑分支 理论逻辑 应用逻辑 1.基本逻辑 2.元逻辑 1.认知逻辑 2.实践逻辑 3.物理应用逻辑(1)标准逻辑(经典逻辑)A 命题逻辑B 词项逻辑(包括三段论)C 谓词逻辑D 关系逻辑E 数学逻辑a 模型论b 集合论c 递归论d 证明论 (2)非标准逻辑(非经典逻辑)A 模态逻辑B 多值逻辑C 模糊逻辑 D 直觉主义逻辑E 相干逻辑 (1)逻辑语法学(2)逻辑语义学(3)逻辑语用学(1)知道逻辑(2)相信逻辑(3)问题逻辑 (1)优选逻辑(2)命令逻辑(3)义务逻辑 (1)时态逻辑(2)空间逻辑 (3)部分与整体逻辑(4)电路分析逻辑(5)量子论逻辑 收稿日期:20021104;修回日期:20021201 作者简介:吴新民(1958-),男,副教授,主要从事形式逻辑学的教学与研究。

条码技术的起源与发展

条码技术的起源与发展 条码技术主要研究如何将信息用条码来表示,?以及如何将条码所表示的数据转换为计算机可识别的数据。条码技术是目前应用最广的一种自动识别技术。本节将详细介绍条码技术的概念﹑历史﹑特点及发展趋势。 1.条码技术的起源及国外发展现状 随着计算机、信息及通讯技术的发展,信息的处理能力、储存能力、传输通讯能力日益强大。全面、有效的信息采集和输入几乎成为所有信息系统的关键。条码自动识别技术就是在这样的环境下应运而生。它是在计算机、光电技术和通信技术的基础上发展起来的一门综合性科学技术,是信息采集、输入的重要方法和手段。 条码最早出现于上世纪40年代,但得到实际应用和迅速发展还是在近20年。欧美、日本等国家已普遍使用条码技术,而且正在世界各地迅速推广普及,?其应用领域正在不断扩大。 在40年代后期,美国乔·伍德兰德(Joe Wood Land)和贝尼·西尔佛(BenySilver)两位工程师就开始研究用代码表示食品项目以及相应的自动识别设备?,并于1949年获得了美国专利。这种代码图案如图2-2右上图所示。该图案很像微型射箭靶,称作“公牛眼”代码。靶的同心环由圆条和空白绘成。在原理上,?“公牛眼”代码与后来的条码符号很接近,遗憾的是当时的商品经济还不十分发达,而且工艺上也没有达到印制这种代码的水平。然而,20年后,?乔·伍德兰德作为IBM公司的工程师成为北美地区的统一代码——UPC条码的奠基人。?吉拉德·费伊塞尔(Girad Feissel)等人于1959年申请了一项专利,将数字0~9?中的每个数字用七段平行条表示。但是这种代码机器难以阅读,人读起来也不方便。不过,?这一构想促进了条码码制的产生与发展。不久,E·F·布林克尔(E·F·?Brinker)将条码标识应用在有轨电车上。60年代后期,西尔韦尼亚(Sylvania)发明了一种被北美铁路系统所采纳的条码系统。?这两项发明可以说是条码技术最早期的应用。

振动力学课程论文

振动力学课程读书报告 学号: 姓名:

一、历史演变的简述 结构动力学作为振动理论在工程结构中的应用,是与振动理论的研究同时开始的,在这个领域内早期有影响的著作是德国K-Hohenemser和W-Prager的《结构动力学》,土建工程地震研究和飞机结构动力学是结构动力学早期应用的领域,后来这方面的论文和著作犹如雨后春笋,非常广泛和丰富。近几十年来结构动力学经过了深刻的变化,形成了现代结构动力学。 土木工程中历史上多次桥梁的重大事故使工程界很早就开始了桥梁的振动研究,建筑工程中地震灾害的惨痛教训迫使工程界一开始就把注意力集中到建筑物地震响应的预估上。航海事业的发展导致船舶结构动力学的形成,使人们开始研究板壳的振动。航空和航天工程中由于超声速高空飞行、导弹和航天器的特殊要求,已经把结构动力学作为飞机、火箭和航天器动力设计的基础。对于“结构”的概念,原来指土建的结构如梁、板、刚架、连续梁、拱、烟囱、水塔、厂房排架及筒仓等弹性体和塑性体构成的结构系统。接着扩展到航空的飞机结构、航海的船舶结构,包括了板壳及组合结构。后来又扩展到机械结构,例如轴、齿轮、连杆、支架及机架等三维元式的结构。随着振动理论在工程中应用的日益深入,在分析系统的动力学时把机器的机构以至整个机组系统都作为一个广义的结构系统来进行研究。此外,结构的概念也扩展到地质结构和岩石结构,甚至包括了各种接触问题。所以从现代结构动力学的观汽来看,只要可以从数学形式上可以抽象为弹性力学中一维元、二维元或三维元的系统都可以看作广义的结构系统。 组成结构的材料可以是弹性、塑性及脆性材料,如钢铁、有色金属、木材、橡胶、混凝土、钢筋混凝土、岩石、泥土、高分子聚合物及复合材料等。这些材料,有线性的也有非线性的,另外结构系统的组合特性也就是装配特性也有非线性和线性的差别,因此结构系统由其材料和装配特性决定可以是线性系统也可以是非线性系统,描述结构系统的微分方程也就有线性微分方程和非线性微分方程。结构动力学应包括线性振动和非线性振动。严格地说,工程结构系统的响应都是随机的,只是当随机的因素很微弱时才当作确定性振动来分析。

量子力学的发展进程

量子力学的发展进程 黑体2014 摘要:简述了量子力学的发展进程。量子力学是近代物理学的重要组成部分,是研究微观粒子(分子、原子、原子核、基本粒子等)运动规律的一种基础理论。它是本世纪二十年代在总结大量实验事实和旧量子论的基础上建立起来的。它的发展曾经引起物理思想上的巨大变革,它产生的影响,绝不局限于物理学和化学这两门学科,而且还涉及人类认识本身的种种基本问题。因此对它的发展进程进行研究有着特别的重要意义。笔者想在这篇文章中对量子力学的发展进程作一简要的回顾,并就自己在学习周世勋《量子力学教程》这门课程中一些疑惑和感想做一说明。 关键词:量子力学;进程;学习心得

The development process of quantum mechanics Abstract:Briefly describes the development process of quantum mechanics. It is an important part of modern physics, quantum mechanics is the study of microscopic particles (molecules, atoms, nuclei, elementary particles, etc.) a basic theory of the motion law. It is in the 20 s of this century in summing up a lot of experimental facts and the old quantum theory established on the basis of it. Its development has caused physical and ideological change, the impact of it, not limited to the physics and chemistry, the two subjects, but also the basic problem of human cognition itself. So the study of its development process has a special significance. In this article the development process of quantum mechanics makes a brief review of, and in their learning Zhou Shixun in the course of the quantum mechanics course some doubts and thoughts. Key words:Quantum mechanics; Process; The learning

量子力学史简介

近代物理学史论文题目:量子力学发展脉络及代表人物简介 姓名: 学号: 学院: 2016年12月27

量子力学发展脉络 量子力学是研究微观粒子运动的基本理论,它和相对论构成近代物理学的两大支柱。可以毫不犹豫的说没有量子力学和相对论的提出就没有人类的现代物质文明。而在原子尺度上的基本物理问题只有在量子力学的基础上才能有合理地解释。可以说没有哪一门现代物理分支能离开量子力学比如固体物理、原子核粒子物理、量子化学低温物理等。尽管量子力学在当前有着相当广阔的应用前景,甚至对当前科技的进步起着决定性的作用,但是量子力学的建立过程及在其建立过程中起重要作用的人物除了业内人对于普通得人却鲜为人知。本文主要简单介绍下量子力学建立的两条路径及其之间的关系及后续的发展,与此同时还简单介绍了在量子力学建立过程中起到关键作用的人物及其贡献。 通过本文的简单介绍使普通人对量子力学有个简单认识同时缅怀哪些对量子力学建立其关键作用的科学家。 旧量子理论 量子力学是在旧量子论的基础上发展起来的旧量子论包括普朗克量子假说、爱因斯坦光电效应光电子假说和波尔的原子理论。 在19世纪末,物理学家存在一种乐观情绪,他们认为当时建立的力学体系、统计物理、电动力学已经相当完善,而剩下的部分不过是提高重要物理学常数的观测精度。然而在物理的不断发展中有些科学家却发现其中存在的一些难以解释的问题,比如涉及电动力学的以太以及观测到的物体比热总小于能均分给出的值。对黑体辐射研究的过程中,维恩由热力学普遍规律及经验参数给出维恩公式,但随后的研究表明维恩公式只在短波波段和实验符合的很好,而在长波波段和实验有很大的出入。随后瑞利和金森根据经典电动力学给出瑞利金森公式,而该公式只在长波波段和实验符合的很好,而在短波波段会导致紫外光灾。普朗克在解决黑体辐射问题时提出了一个全新的公式普朗克公式,普朗克公式和实验数据符合的很好并且数学形式也非常简单,在此基础上他深入探索这背后的物理本质。他发现如果做出以下假设就可以很好的从理论上推导出他和黑体辐射公式:对于一定频率f的电磁辐射,物体只能以hf为单位吸收

语言与逻辑浅谈

语言与逻辑浅谈 语言与逻辑是一个很大的题目,足以写一本书。本文目的只是想谈谈人们在日常生活所说的「逻辑」究竟是指甚么,以及逻辑与语言的关系。 甚么是逻辑? 在日常语言中,「逻辑」有时被用作「定律」或「常理」的同义词。例如,在语句「你说张三昨天死了,但这不合逻辑,因为他今早还有上学」中,所谓「不合逻辑」是指违反常理。另外又如在语句「这本科幻小说说某星球的温度比绝对零度还低,这是不合逻辑的」中,所谓「不合逻辑」是指违反物理定律。以上两例中所指的逻辑究竟是否等同于逻辑学中所指的逻辑呢? 要回答上述问题,首先要了解逻辑学究竟是研究甚么的?一般而言,逻辑学就是研究正确思维方式的学科。由于推理是人类思维中极重要的一部分,因此逻辑学中很大一部分的内容是研究正确的推理方式。推理的一般格式是给定某些前提(Premises),然后根据这些前提推导出某些结论(Conclusion)。所谓「正确的推理方式」就是运用一些已被证实为正确的推理规则从前提一步一步推出结论。例如,根据前提「如果张三掉下海,他会淹死」和「张三掉下海」可以推出「张三会淹死」,可是却不能从「如果张三掉下海,他会淹死」和「张三淹死」推出「张三掉下海」,因为张三可能是在河中或泳池中淹死的。

逻辑学所研究的不是个别的推理,而是一般的「推理模式」,而这些推理模式可以用符号表示。例如上段的「张三淹死」正确推理便可以表示为:给定前提「如果p,则q」和「p」,可以推出「q」(注1),此推理称为「肯定前件式」(Modus Ponens)。反之,从「如果p,则q」和「q」却不可以推出「p」。在上述正确推理模式中的p和q可以代表任何「命题」(Proposition)(亦作Statement,相当于语言学中的「陈述句」),即如果把p和q 换为任何命题,该推理仍是正确的,而不管p和q这两个命题是否真实或是否有意义。例如,假设p代表「太阳从东边升起」,q代表「一加一等于三」,那么以下推理虽然看似荒谬,但从逻辑上看去却是正确的:根据前提「如果太阳从东边升起,则一加一等于三」和「太阳从东边升起」,可以推出「一加一等于三」。 请注意上段的推理之所以会推出「一加一等于三」这个错误结论,乃在于它的其中一个前提-「如果太阳从东边升起,则一加一等于三」是错误的,而不是整个推理模式有错误。因此逻辑学所关心的是整个推理模式的正确性,而不是个别前提的正确性。逻辑学只能保证从正确的前提出发可以推出正确的结论,至于前提正确与否,并不属于逻辑学的研究范围,而须根据其它学科或常识作出判断。 由此可见,逻辑学所指的正确推理方式是纯粹从形式方面考虑的,而不考虑其实质内容,实质内容是其它学科的研究范围。这一点有点跟

量子力学的发展及应用

量子力学论文题目: 量子力学发展历史及应用领域 学生姓名武术 专业电子科学与技术 学号_ 222009322072082 班级2009 级 2班 指导教师张济龙 成绩 _ 工程技术学院 2011年12 月

量子力学发展历史及应用领域 武术 西南大学工程技术学院,重庆 400716 摘要:量子力学发展至今已有一百年了,它发展的道路并不是一帆风顺的。这一百年虽是艰难的,但是辉煌的。此后,人们发现量子力学与现代科技的联系日益紧密,它的发展潜力是不能低估的。本文从两个部分逐次论述了量子力学的发展及应用。第一部分是量子力学的发展,这部分阐述了早期量子论。第二部分是量子力学的应用,这部分阐明了量子力学在固体物理和信息科学中的应用。 关键词:早期量子论;量子力学的发展;量子力学的应用 量子力学诞生至今一百年。经过一百年的发展,它由原子层次的动力学理论,已经向物理学和其他学科以及高新技术延伸。而事实上,它已超出物理学范围;它不仅是现代物质科学的主心骨,又是现代科技文明建设的主要理论基础之一。 建立在量子概念的量子力学及其物理诠释,促使人类的思想观念产生根本性转变;虽然这新概念很抽象,但就目前文明的空前繁荣而言,量子力学所产生的影响是相当广泛的。而看看量子力学的前沿性进展新貌,则会感到心驰神往。 量子力学可谓是量子理论的第二次发展层次,第一次常称作早期量子论,第三次就是量子场论。本文除了论述这三个层次以外,又说了它在现代物理乃至现代物质科学中的地位,阐述了它应用的状况。 一.量子力学的发展 19世纪末20世纪初,人们认为经典物理发展很完美的时候,一系列经典理论无法解释的现象一个接一个的发现了。经典力学时期物理学所探讨的主要是用比较直接的实验研究就可以接触到的物理现象的定理和理论。牛顿定理和麦克斯韦电磁理论在宏观和慢速的世界中是很好的自然规律。而对于微观世界的

论文分类号查询

论文分类号查询 中图法分类号与中图分类法查询 生物科学属于Q类,医学类属于R类,可以直接转至Q或R类查询 A 马克思主义、列宁主义、毛泽东思想 A1 马克思、恩格斯着作 A2 列宁着作 A3 斯大林着作 A4 毛泽东着作 A49 邓小平着作 A5 马克思、恩格斯、列宁、斯大林、毛泽东、邓小平着作汇编 A7 马克思、恩格斯、列宁、斯大林、毛泽东、邓小平生平和传记 A8 马克思主义、列宁主义、毛泽东思想邓小平理论的学习和研究 -------------------------------------------------------------------------------- B 哲学 B0 哲学理论 B1 世界哲学 B2 中国哲学 B3 亚洲哲学 B4 非洲哲学 B5 欧洲哲学 B6 大洋洲哲学 B7 美洲哲学 B80 逻辑科学(总论) B81 逻辑学 B82 伦理学 B83 美学 B84 心理学 B9 无神论、宗教 -------------------------------------------------------------------------------- C 社会科学总论 C0 社会科学理论与方法论 C1 社会科学现状及发展 C2 社会科学机构、团体、会议 C3 社会科学研究方法 C4 社会科学教育与普及 C5 社会科学丛书、文集、连续性出版物 C6 社会科学参考工具书

C8 统计学 C91 社会学 C92 人口学 C93 管理学 C[94] 系统科学 C95 民族学 C96 人才学 C97 劳动科学 -------------------------------------------------------------------------------- D 政治、法律 D0 政治理论 D1 共产主义运动 D2 中国共产党 D3 各国共产党 D4 工人、农民、青年、妇女运动与组织 D5 世界政治 D6 中国政治 D73/77 各国政治 D8 外交、国际关系 D9 法律 -------------------------------------------------------------------------------- E 军事 E0 军事理论 E1 世界军事 E2 中国军事 E3/7各国军事 E8 战略学、战役学、战术学 E9 军事技术 E99 军事地形学、军事地理学 -------------------------------------------------------------------------------- F 经济 F0 政治经济学 F0-0 马克思主义政治经济学(总论) F01 经济学基本问题 F02 前资本主义社会生产方式 F03 资本主义社会生产方式 F04 社会主义社会生产方式 F05 共产主义社会生产方式 F06 经济学分支学科

相关主题