搜档网
当前位置:搜档网 › 遗传学(终极版)

遗传学(终极版)

遗传学(终极版)
遗传学(终极版)

第一章绪论

1、遗传学:是研究生物遗传和变异的科学

遗传:亲代与子代相似的现象就是遗传。如“种瓜得瓜、种豆得豆”

变异:亲代与子代、子代与子代之间,总是存在着不同程度的差异,这种现象就叫做变异。

2、遗传学研究就是以微生物、植物、动物以及人类为对象,研究他们的遗传和变异。遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异,不会产生新的性状,也就不可能有物种的进化和新品种的选育。遗传、变异和选择是生物进化和新品种选育的三大因素。

3、1953年瓦特森和克里克通过X射线衍射分析的研究,提出DNA分子结构模式理念,这是遗传学发展史上一个重大的转折点。

4.(分离规律)(Mendel’s first law) (孟德尔第一定律)

一对基因在杂合状态互不干扰,保持相互独立,在配子形成时,各自分配到不同的配子中去。正常情况下,配子分离比为1∶1,F2代基因型比是1∶2∶1,F2代表型比为3∶1。

5.(独立分配规律,自由组合规律) (孟德尔第二定律)

控制两对性状的两对等位基因,分别位于不同的同源染色体上。在减数分裂形成配子时,每对同源染色体上的每一对等位基因各自独立分离,而位于非同源染色体上的基因之间则自由组合。

6.遗传的第三定律------连锁遗传规律

1910年以后,摩尔根(Morgan TH)同样发现性状连锁现象,并提出--连锁遗传规律。

7.遗传学的诞生和发展

第二章遗传的物质基础

1.染色质:在细胞尚未进行分裂的核中,可以见到许多由于碱性染料而染色较深的、纤细的网状物,这就是染色质。

2.染色体:含有许多基因的自主复制核酸分子。细菌的全部基因包容在一个双股环形DNA 构成的染色体内。真核生物染色体是与组蛋白结合在一起的线状DNA双价体;整个基因组分散为一定数目的染色体,每个染色体都有特定的形态结构,染色体的数目是物种的一个特征。

3.染色单体:由染色体复制后并彼此靠在一起,由一个着丝点连接在一起的姐妹染色体。

4.细胞的膜体系包括哪些膜结构?细胞质里包括哪些主要的细胞器?各有什么特点?

答:细胞的膜体系包括膜结构有:细胞膜、线粒体、质体、内质网、高尔基体、液泡、核膜。细胞质里主要细胞器有:线粒体、叶绿体、核糖体、内质网、中心体。

5.一般染色体的外部形态包括哪些部分?染色体形态有哪些类型?

答:一般染色体的外部形态包括:着丝粒、染色体两个臂、主溢痕、次溢痕、随体。

一般染色体的类型有:V型、L型、棒型、颗粒型。

6.有丝分裂和减数分裂有什么不同?用图表示并加以说明。

答:有丝分裂只有一次分裂。先是细胞核分裂,后是细胞质分裂,细胞分裂为二,各含有一个核。称为体细胞分裂。

减数分裂包括两次分裂,第一次分裂染色体减半,第二次染色体等数分裂。细胞在减数分裂时核内,染色体严格按照一定的规律变化,最后分裂成为4个子细胞,发育成雌性细胞或者雄性细胞,各具有半数的染色体。也称为性细胞分裂。

减数分裂偶线期同源染色体联合称二价体。粗线期时非姐妹染色体间出现交换,遗传物质进行重组。双线期时各个联会了的二价体因非姐妹染色体相互排斥发生交叉互换因而发生变异。有丝分裂则都没有。

减数分裂的中期I 各个同源染色体着丝点分散在赤道板的两侧,并且每个同源染色体

的着丝点朝向哪一板时随机的,而有丝分裂中期每个染色体的着丝点整齐地排列在各个分裂细胞的赤道板上,着丝点开始分裂。

细胞经过减数分裂,形成四个子细胞,,染色体数目成半,而有丝分裂形成二个子细胞,染色体数目相等。

9.有丝分裂和减数分裂意义在遗传学上各有什么意义在遗传学上?

l 有丝分裂的遗传学意义:(1)维持个体的正常生长和发育。使子细胞获得与母细胞同样数量和质量的染色体(2)保证了物种的连续性和持续性。均等式的细胞分裂,使每一个细胞都得到与当初受精卵所具有的同一套遗传性息

l 减数分裂的遗传学意义:(1)维持物种染色体数目的稳定性(2)为生物的变异提供了重要的物质基础

3.简述DNA双螺旋结构及其特点?

答:根据碱基互补配对的规律,以及对DNA分子的X射线衍射研究的成果,提出了DNA双螺旋结构。

特点:⑴. 两条多核苷酸链以右手螺旋的形式,彼此以一定的空间距离,平行的环绕于同一轴上,很像一个扭曲起来的梯子。⑵. 两条核苷酸链走向为反向平行。⑶. 每条长链的内侧是扁平的盘状碱基。⑷. 每个螺旋为3.4nm长,刚好有10个碱基对,其直径为2nm。

⑸. 在双螺旋分子的表面有大沟和小沟交替出现。

第三章孟德尔遗传定律

第四章连锁与交换规律

第一节连锁与交换*

连锁遗传:同一染色体上的某些基因以及它们所控制的性状结合在一起传递的现象。1906年英国学者贝特森(Bateson)和潘耐特(Pannett)研究香豌豆两对性状遗传时,首先发现的。

一、连锁与交换的遗传现象

连锁现象是1906年英国学者贝特森(Bateson)和潘耐特(Pannett)研究香豌豆两对性状遗传时,首先发现的。后来,摩尔根等发现连锁分二类:完全连锁和不完全连锁。

香豌豆两对相对性状杂交试验.

花色:紫花(P)对红花(p)为显性;

花粉粒形状:长花粉粒(L)对圆花粉粒(l)为显性。

1. 紫花、长花粉粒×红花、圆花粉粒.

2. 紫花、圆花粉粒×红花、长花粉粒.

杂交组合1:紫花、长花粉粒×红花、圆花粉粒;试验结果:

1、F1两对相对性状均表现为显性,F2出现四种表现型;

2、F2四种表现型个体数的比例与9:3:3:1相差很大,并且两亲本性状组合类型(紫长和红圆)的实际数高于理论数,而两种新性状组合类型(紫圆和红长)的实际数少于理论数。

杂交组合2:紫花、圆花粉粒×红花、长花粉粒;试验结果:

1、F1两对相对性状均表现为显性,F2出现四种表现型;

2、F2四种表现型个体数的比例与9:3:3:1相差很大,并且两亲本性状组合类型(紫圆和红长)的实际数高于理论数,而两种新性状组合类型(紫长和红圆)的实际数少于理论数。

(一)完全连锁:位于同一条染色体上的非等位基因,在形成配子过程中,作为一个整体随染色体传递到配子中,同源染色体之间不发生染色体片段的交换,杂合体在形成配子时,只有亲本组合类型的配子。

完全连锁在生物界很少见,只在雄果蝇(XY)和雌家蚕(ZW)中发现(注意雌雄连锁不同)。霍尔丹定律:凡是较少发生交换的个体必定是异配性别的个体。

例如:果蝇的体色、翅膀的遗传

P 灰身残翅BBvv♂×bbVV♀黑身长翅

F1 灰身长翅BbVv ♂× bbvv黑身残翅

bbVv Bbvv

F2 黑身长翅灰身残翅(亲本类型)

因为F1 BbVv♂在形成配子时,只形成了bV和Bv两种配子,即bV完全连锁,Bv也完全连锁。

果蝇的体色、和眼睛颜色遗传:

P 灰身紫眼b+b+prpr × bbpr+pr+黑身红眼

F1 b+bpr+pr × (bbprpr黑身紫眼测交)

测交后代灰身紫眼b+bprpr:bbpr+pr黑身红眼

拟等位基因:完全连锁的、控制同一形性状的非等位基因。

(二)不完全连锁:位于同源染色体上的非等位基因,在形成配子时,除有亲型配子外,还有少数重组型配子产生。(同源染色体的非姊妹染色单体发生交换)例如:果蝇体色、翅膀

的遗传:

P bbVV×BBvv → F1 BbVv♀× bbvv♂

黑长灰残↓

F2 Bbvv bbVv BbVv bbvv

0.42 0.42 0.08 0.08

香豌豆花色、花粉粒形状遗传:

P 紫花、长花粉粒×红花、圆花粉粒

PPLL ↓ ppll

F1紫花、长花粉粒PpLl

↓ 自交

F2紫、长紫、圆红、长红、圆总数

P_L_ P_ll ppL_ ppll

实际个体数4831 390 393 1338 6952

按9:3:3:1推算的理论数3910.5 1303.5 1303.5 434.5 6952

从上图看出,F2代也出现四种表现型,但二种新组合的表现型比理论推算少得多,即象亲本组合的实际数偏多,而重新组合的实际数偏少。

P 紫花、圆花粉粒×红花、长花粉粒

PPll ↓ ppLL

F1紫花、长花粉粒

PpLl

↓自交

F2紫、长紫、圆红、长红、圆总数

P_L_ P_ll ppL_ ppll

实际个体数226 95 97 1 419

按9:3:3:1推算的理论数235.8 78.5 78.5 26.2 419

这二个试验的结果都不能用独立分配规律来解释。

亲组合:亲代原有的组合。

重组合:亲代没有的组合。

二、交叉与交换的关系

1、同源染色体在减数分裂配对时,偶尔在相应的位置发生断裂,然后错接,造成同源染色体中的非姐妹染色单体之间染色体片段的互换,这个过程叫交换或重组

2、每发生一次有效交换,形成1个交叉,将产生两条重组染色体,两条非重组染色体(亲染色体),含有重组染色体的配子叫重组合配子,含有非重组染色体的配子叫亲组合配子。三、交换值及其测定

(一)重组值(交换值)的概念

重组值(率):指重组型配子数占总配子数的百分率。有时也叫交换值。

1、每1次交换,只涉及四条非姊妹染色单体中的2条。

2、发生交换的性母细胞的百分率是重组合配子百分率的2倍。因此如果交换值为4%,则表明有8%的性母细胞发生了交换。

3、重组值的范围0—50%之间,重组值越大,基因之间连锁的程度越小。

(二)重组值(Rf)的测定

1、测交法:用于异花授粉植物是易进行。

测交后代(Ft)的表现型的种类和比例直接反映被测个体(如F1)产生配子的种类和比例。

即算公式:重组值= 交换型的个体数*100%

测交后代个体总数

赫钦森(C. B. Hutchinson, 1922)玉米色粒遗传的测交试验:

籽粒颜色:有色(C)、无色(c);籽粒饱满程度:饱满(Sh)、凹陷(sh)

相引组(相):杂交的双亲是显性基因与显性基因相连锁,隐性基因与隐性基因想相连锁的杂交组合。

相斥(组)相:杂交的双亲中,一个是显性基因与隐性基因相连锁,另

一个是相对应的隐性基因与显性基因相连锁的杂交组合。

C-Sh相引相的重组值为3.6%;

C-Sh相斥相的重组值为3.0%。

相引相测交试验与相斥相测交试验结果分析:

(1)F1产生的四种类型配子比例不等于1:1:1:1;

(2)亲本型配子比例高于50%,重组型配子比例低于50%;

(3)亲本型配子数基本相等,重组型配子数也基本相等。

根据实验计算的重组值(Rf)是估算值,其标准误差Se的计算公式是:

Se= n:是总配子数或测交个体总数。

相引组:Se= =±?

2、自交法:适用于自花授粉的植物。

(1)平方根法:不同的杂交组合计算方法不同

相引组:AB/AB×ab/ab 相斥组:Ab/Ab×aB/aB

F1基因型:AB/ ab Ab/ aB

F2表型4种:A-B-;A-bb;aaB-;aabb

F2后代数量:a1 a2 a3 a4

在相引组中,AB和ab配子是亲型配子,且AB=ab的频率=q.

亲型配子的总频率=AB+ab=2q

重组配子的频率(重组值)=1-2q

在相斥组中,AB和ab配子是重组型配子。

其总频率(重组值)=2q

例如:香豌豆花色和花粉粒的遗传(相引组)

P 紫长×红圆

(PPLL)↓ (ppll)

F 紫长(PpLl)

↓ 自交F2

紫长紫圆红长红圆

P_L_P_llppL_ppll总数

观察数:4831 390 393 1338 6952

频率:0.69 0.06 0.06 0.19=x

P_L之间的重组值=1-2 =1-2 =12.8%

(2)乘积比例法

先用公式求出乘积比例x值,然后查乘积比例法估算重组率表,从而得到重组值,读数是小数。X代表的意义与前边一样。

重组值乘积比例

相斥组x 相引组x

0.00 0.01 0.000000

0.000200

0.000000

0.000136

0.02 0.03 0.04 0.05 0.06 0.000801

0.001804

0.003213

0.000552

0.001262

0.002283

第二节基因定位和连锁遗传图*

一、基因定位的概念

根据重组值确定基因在染色体上的排列顺序和基因之间的距离的方法。

二、基因定位的方法

(一)两点测交(两点试验):以两对基因为基本单位,来进行杂交和测交,计算交换值,求得基因间的距离进行基因定位的一种最基本的方法。

例如:测定玉米第9号染色体上的CShWx(cshwx)这三对基因的次序和位置,用两点测交就要分别进行三个试验,每个试验都要进行1次杂交和1次测交。C—有色,Sh饱满,Wx非糯性。

C—Wx重组值22%

Wx—Sh重组值20%

C—Sh重组值3.6%

CShWx三个基因位于同一条染色体上,他们之间的位置,可根据交换值去掉百分号%的数值即基因间的相对距离。单位用厘摩(cM)或图距单位。

根据重组值C-Sh=3.6 cM ;Wx-Sh=20 cM,三个基因之间的顺序2种情况:

但是又根据Wx-C=22 cM可确定是第一种情况。22cM和23.6cM之间的差异由于实际试验与理论值之间的机误造成的。

该方法的缺点:当基因之间的距离超过5个单位时,往往会因发生双交换而造成不准确;工作繁琐。

(二)三点测验

以三对基因为基本单位,通过一次杂交和测交,同时确定三对基因在染色体上的位置和排列顺序。

优点:省时省工,精确简便,测试背景一致,严格可靠。无论单交换还是双交换都能测出。单交换:位于一对同源染色体上的基因之间分别发生单个交换,3对中仅一对交换。

双交换:位于同源染色体上的3对基因之间,同时发生了两次单交换,实质上是在两个位点上发生了交换,结果只有中间的一对等位基因交换了位置,另外两对基因仍处在同一条染色体上,呈连锁状态。

1、三点测验后代6种表型:例如:果蝇三个突变基因ec—棘眼;sc—稀刚毛;cv—翅无横脉,都位于X染色体上。

P :ec + +/ ec + +×+sccv/ Y

F1;ec++/+sccv×ecsccv/Y 测交后代表型6种:

ec-sc之间的重组值为:62+88/1980=7.6%

ec-cv之间的重组值为:

89+103/1980=9.7%

sc-cv之间的重组值为:

62+88+89+103/1980=17.3%

6种表型实得数

ec + + 810

+ sc cv 828

ec sc + 62

+ + cv 88

+ sc + 89

ec + cv 103

合计1980

亲本基因型应改写:

P:+ec+/+ec+×sc+cv/ Y

F1:+ec+/ sc+cv×ecsccv/Y

2、三点测验后代8种表型:

v-b之间的重组值为:115+105+80+72/1020=36.4%

b-l之间的重组值为:115+105+20+19/1020=25.4%

v-l之间的重组值为:

80+72+20+19/1020=18.7%

玉米vbl三因子杂合体测交后代

8种表型实得数

v b l302

+ + + 298

+ b + 115

v+l105

+b l 80

v+ + 72

+ +l20

v b+ 19

合计1020

另外根据亲本配子和双交换配子的基因型,先来确定基因在染色体上的位置,然后分别计算两端基因与中间基因之间的交换值即可。

v b l302 亲型配子基因型

+ + + 298

+ +l20

v b+ 19 双交换配子基因型

亲型配子基因顺序如何排列才能统过2次交换形成双交换的基因型呢?

v bl排列仅有三种可能:b v l;v bl;v lb。

计算b-l之间的重组值为:115+105+20+19/1020=25.4%;v-l之间的重组值为:80+72+20+19/1020=18.7%。二者相加结果是44.1即b-v之间的交换值。

结论:三点试验中,交换值最大的重组值一定等于另外两个重组值之和减去2倍的双交换值——基因直线排列定律。

任何三点试验中,测交后代的8种表型中,个体数目最少的2种表型是双交换的产物,据此可以直接判断基因的顺序。

三、干涉与并发率

1、干涉(干扰,交叉干涉;I)

同源染色体间一个位置上的交换对邻近位置上的交换发生的影响。

这就是说,在三点测交中,如果两个基因对间的单交换并不影响邻近两个基因对间的交换,根据乘法定理,预期的双交换的频率就是两个单交换频率的乘积。实际上观察到的双交换率往往低于预期值。也就是说,每发生一个单交换,邻近基因也发生一次交换的机会要减少,即存在干涉。这种干涉的大小用并发率来表示。

2、并发率(并发系数;符合系数;C)

实际获得的双交换类型的数目或频率与理论期望得到的双交换类型的数目或频率的比值。并发率= 值在0—1之间

并发率大,干涉小。C=1,没有干涉。

I=1-C,一般情况下,两个基因对之间的距离缩短时,并发率降低,干扰值上升。

四、连锁群和连锁图

1、连锁群(基因连锁群):位于一对同源染色体上的具有一定关系的连锁基因群。连锁群数目等于单倍体染色体数(n)。

一般规律:如果A与B连锁,C与D连锁,则A与C连锁。

如果A与B连锁,B与C不连锁,则A与C不连锁。

2、连锁图(遗传学图;连锁遗传图):根据染色体上的基因之间的相互交换值和排列顺序制定的、表明连锁基因的位置和相对距离的线性图谱。

第五章性别决定与伴性遗传

第一节性别决定

性别也是一种性状,由基因和环境共同决定。性别的实现包括两部分:性别决定(受精时决定)和性别分化(基因与环境共同决定)。

一、性染色体决定性别*

(一)性染色体与常染色体

性染色体是指直接与性别决定有关的一个或一对染色体;其余各对染色体则统称为常染色体。染色体组:二倍体生物的配子中所含的形态、结构和功能彼此不同的一组染色体。用x表示。常染色体组:二倍体生物的配子中所含的常染色体。用A表示。

性染色体异数:雌体和雄体中,性染色体数目不同或形态有差异的现象。

例如,蝗虫、蟑螂雌体2条XX性染色体,雄体只有1条X性染色体。人类女性有2条XX性染色体,男性有1条X和1条Y性染色体。

(二)性染色体决定性别的类型

1、XY型:凡是雄性为两个异型性染色体,雌性为两个同型性染色体的性别决定方式。

在人类,所有哺乳动物,大部分昆虫,某些两栖类、鱼类,雌雄异株的植物(女娄菜、大麻、蛇麻草等)。

人2n=46=44+(XX或XY)=46,(XX或XY)有性生殖时形成的配子的染色体组成:女性一种X,男性2种,X和Y,比例是1:1,所以人群中男:女=1:1。

男22+X 女

22+X 22+Y 44+XX 44+XY

2、ZW型:凡是雌性为两个异型性染色体,雄性为两个同型性染色体的性别决定方式。

有鳞翅目昆虫(蛾、蝶、蚕类)及某些两栖、爬行类、鸟类(鸡)等动物,植物中的洋梅、金老梅属于此类。

家鸡:2n=78 ♀=76+ZZ;♂=76+ZW

3、XO型:♀XX;♂XO。直翅目昆虫:蟋蟀、蟑螂、蝗虫(♀2n=22+XX,♂2n=22+X)、虱子(♀2n=10+XX,♂2n=10+X);植物:花椒,山椒、薯芋。

4、ZO型:♀ZO;♂ZZ。鸭子(♀2n=78+Z,♂2n=78+ZZ)

5、由x染色体的是否杂合决定:小茧烽的性别,在自然状态下小茧蜂和蜜蜂相似,二倍体(2n=20)为雌蜂,单倍体(n=10)为雄蜂。但是在实验室中,获得二倍体雄蜂,其性别决定取决于性染色体是否纯合。性染色体X有三种不同类型:Xa,Xb,Xc。杂合的为♀,纯合的

为♂。

6、性染色体多态性:极少数动物(鱼类)中,性染色体有2条以上,两两组合形成了多种不同的性别决定类型。如:新月鱼类中,三种性染色体,X f、Y M、W F。X f为弱效隐性雌性基因,Y M是雄性基因,W F是强效显性雌性基因。其中W F对X f是显性、W F对Y M是显性。即:X f X f、W F X f、W F Y M是雌性;Y M Y M、X f Y M是雄性。雌雄交配,后代雌雄分离比是不是1:1呢?P172

二、其它类型的性别决定

1、性指数决定性别

性指数:性染色体X和常染色体组数A的比。

果蝇虽然也有x和Y染色体,但是其性别决定的机制和哺乳动物不同,不是取决于Y染色体是否存在,Y染色体只是决定育性。而是取决于性指数。

2、染色体组的倍性决定性别

是由染色体组的倍性决定的。蜜蜂、蚂蚁和黄蜂等膜翅目昆虫等为此类型。

蜜锋的性别决定十分特殊,蜂王的卵与精子与之结合,则形成2n=32的雌体(蜂皇和职蜂)。有少数是不受精的,这些卵发育成雄峰。它们的染色体数为n=16。

3、环境决定性别

性别的表型完全由环境决定,与受精时的遗传成分无关。

例如:海生蠕虫后螠,雌虫6cm左右,雄性构造简单,为雌体的1/500,生活在雌体的子宫中。受精卵孵化成幼虫时,无雌雄之分。如果落在海底就发育成雌虫,如果由于机会,或某种吸力,幼虫落在雌虫口吻上,它就发育成为一个雄虫。幼虫已经落在雌虫的口吻上,把它取下让它在离开雌虫的情况下继续发育,它就发育成为中间类型,且偏雌雄的程度与它在吻上发育的时间长短有关。

自由游泳的幼虫--中性;落在海底--雌虫

落在雌虫口吻上--雄虫;从雌虫上取下--中间性(雄性的程度由其在雌虫吻部停留的时间决定)

4、基因决定性别

对于植物除性染色体决定性别(如雌雄异株的大麻XY型性别决定)外;也有由少数几对等位基因控制个体的性别。例如:正常情况下玉米为雌雄同株异花,决定雌、雄各有一对等位基因。

Ba控制雌花序,只有BaBa,Baba时,在雌穗位置才能形成正常的雌花序。Ba基因突变会导致雌花序不能正常发育,即当baba时,则没有雌花序。Ts控制雄花序,TsTs和Tsts时,才形成正常雄花序,Ts基因突变会导致雄花序不能正常发育(发育成顶端雌花序),即是tsts时,则雄花序变成了雌花序(在雄穗上结玉米粒)。

BaBaTsTs、BabaTsTs 雌雄同株(正常)

BaBatsts、Babatsts 雌株

babaTsTs、babaTsts 雄株

babatsts 双隐性雌株P178图7-4

三、性别分化的控制

性别分化:是受精卵(合子)在性决定的基础上,进行雄性或雌性分化和发育的过程。(一)外界环境条件对性别分化的影响

1、营养:蜜蜂2n=32发育成蜂皇还是工蜂?取决与环境条件:食5-6天王浆,16天发育成蜂皇;食2-3天王浆,21天发育成工蜂。

2、温度高低:某些蛙类、乌龟、鳄鱼。

蛙类:♂XY;♀XX 20℃:♂:♀ =1:1

30℃:♂:♀ =1:0;但♂ XY:♂XX=1:1

3、日照长短:对性别分化的影响——大麻♂♀异株

长日照、N肥多:♀株多。

短日照、N肥少:♂株多。

(二)激素对性别分化的影响

1、自由马丁牛:象雄牛的雌牛(不育),人龙风胎不会出现此现象(两个胎盘)。

2、性反转:个体从原来的性别转变为另一种性。(基因型未改变)

鸡:牝鸡司晨;人性反转:清朝《广阳杂记》“长沙有李氏女,年将二十,许字人矣,忽变男子,往退婚,夫家以为诈,讼之官,官令隐婆验之,果男子矣。”

3、植物性别的控制

乙烯利(40%乙烯利原液1ml加水2.5Kg):能明显增加黄瓜♀花数目;用1%萘乙酸处理黄瓜苗,♀花数目增加8倍。

土壤温度:提高60%,黄瓜♀花数目增加2-4倍。

植物的性变是适应环境的一种方式。原因是植物体内的激素在数量和种类上发生了变化。4、动物性别的控制

(1)分离X、Y两种精细胞:沉降法:一定的气压、温度条件下,使精细胞发生沉降、分离。电泳法:带X染色体的精细胞移向阳极,Y型移向阴极。

(2)外源激素:罗非鱼(非洲鲫鱼)用雄激素处理受精卵或幼仔鱼,可使♀→♂。♂体比♀体大50—70%。可使雌性转变为雄鱼以增产。

(3)受精条件:以酸性(碱性)溶液处理羊的阴道,多产雌羊(雄羊)。

四、人类的性别畸形

指在个体发育中,受到各种因素的影响,使个体的性别发生异常的现象。

(一)性染色体引起的性别畸形

1、Turner氏综合症:(原发性卵巢发育不全症;XO综合症;卵巢退化症),外表为女性,身体矮小(<140cm;,颈短有蹼,发际低,耳低位,小下颌,眼距宽,肘外翻,原发性闭经,无生育能力,第二性征发育不良等。发病率在女性中为1/5000——1/10000。性染色体组成为XO。

2、Klinefelter综合症:(原发性睾丸发育不全症;睾丸退化症),外表为男性,四肢细长,乳胸发育,须毛、体毛少,不育。发病率1/1000。XXY、XXXY、XY/XXY。

3、多X女性(超雌体):为女性(47,XXX;48,XXXX)一般Barr氏小体在两个以上。智力较差,偶有心理变态,体型正常,能育,子女除个别为XXY个体外,一般正常。

4、XYY综合症:

身体高大>180cm),四肢都成比例,智力稍差,也有高于一般的,性格暴烈,没有生育能力。在减数分裂中,同源染色体不分开,导致异常

(二)基因与性别畸形

1、假两性畸形(假两性人):体内生殖腺有一种为假两性人。

(1)男假两性畸形(睾丸女性化):46+XY,外观与女性一样,但无子宫和输卵管,原发性闭经,不生育。体内有睾丸,发育不良,无输精管。原因是X染色体上有一个隐性突变基因tf,X tf Y男性发病,X tf X tf女性会影响到行经年龄。

(2)女假两性畸形(女性男性化):46+XX,生殖器外观为男性,但性腺仅有卵巢。原因是一条X染色体上由于易位或交换,使之带有Y染色体上的睾丸形成基因TDF。

2、真两性畸形(真两性人):体内生殖腺有两种为真两性人。

40%的真两性人:一侧卵巢,另一侧睾丸。

40%的真两性人:一侧卵巢或睾丸,另一侧卵睾丸(一部分卵巢,一部分睾丸)。

20%的真两性人:两侧都是卵睾丸。

(1)男真两性人(XY):第二性征(外表)倾向于男性。

(2)女真两性人(XX):第二性征(外表)倾向于女性。

在身体两侧,一侧为卵巢一侧为睾丸或卵巢睾丸分布于身体同侧。

外生殖器:混合型、男性型、女性型。原因不清楚。

第二节伴性遗传*

一、伴性遗传的概念及特点

(一)伴性遗传(性连锁遗传):指位于性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象。特指X或Z染色体上基因的遗传。

(二)特点:

1、正反交F1结果不同,性状的遗传与性别相联系。

2、性状的分离比在两性间不一致。

3、表现交叉遗传(绞花遗传):母亲把性状传给儿子,父亲把性状传给女儿的现象。

二、伴X隐性遗传:最常见的是红绿色盲,较罕见是血友病,进行性肌营养不良,睾丸女性化和自毁容貌综合征等。

1、果蝇:果蝇眼色:红眼(W)对白眼(w)为显性;

正交

P:红眼(♀)×白眼(♂)→ F1:红眼(♀)×红眼(♂) → F2:? 红眼:? 白眼

反交

P:白眼(♀)×红眼(♂) →F1:红眼(♀)×白眼(♂) →F2:?红眼♀:? 白眼♀:?红眼(♂) :?白眼(♂)

2、人:人红绿色盲、A型血友病等。

三、伴X显性遗传

指位于X染色体上的显性基因控制的性状的遗传。人类的抗维生素D佝偻病基因XR。四、伴Z遗传:位于Z染色体上的基因所决定的遗传现象。

1、伴Z隐性遗传:家蚕中的油蚕由Z染色体隐性基因os控制。正常蚕有显性Os控制。

P ZOsW♀ × ZosZos♂

F1 ZOsZos♂(正常):ZW♀(油蚕淘汰)

2、伴Z显性遗传:鸡的芦花条纹遗传。卢花基因B对非卢花基因b为显性,Bb这对基因位于z染色体上而W染色体上不含有它的等位基因。

以雌芦花鸡(ZBW)与非芦花鸡雄鸡(ZbZb)杂交,F1公鸡的羽毛全是芦花,而母鸡全是非芦花。如果进行反交, 以非芦花雌鸡(ZbW)作母本与芦花雄鸡(ZBZB)杂交,F1公鸡和母鸡的羽毛全是芦花。

五、Y连锁遗传(限雄遗传):Y染色体上的基因控制的性状只能出现在雄性个体中。例:人类外耳廓多毛症(毛耳):成年男性外耳道中长出丛生硬毛,长约2—3cm,伸于耳孔之外。在鱼类中Y连锁遗传的例子还是有的,如背结上的斑点就属于Y连锁遗传。

六、高等植物伴性遗传

女娄菜叶型的遗传:阔叶(B基因控制)和细叶(b基因控制),B和b位于X染色体上,Y 染色体上无对应的基因。♀:XX,♂XY

阔叶×细叶♂→F1阔叶♂

七、从性遗传(性影响遗传):控制性状的基因位于常染色体上,但其性状表现受个体性别影响的现象。人类头发的早秃、绵羊角性状就属于从性遗传。

绵羊角的遗传:

雄性雌性

HH 有角有角

Hh 有角无角

hh 无角无角

第八章细胞质遗传

1、什么叫细胞质遗传?它有哪些特点?试举例说明之。

答:细胞质遗传指由细胞质内的遗传物质即细胞质基因所决定的遗传现象和规律,又称非染色体遗传、非孟德尔遗传、染色体外遗传、核外遗传、母体遗传。

细胞质遗传的特点:⑴. 遗传方式是非孟德尔式的;杂交后一般不表现一定比例的分离。

⑵. 正交和反交的遗传表现不同;F1通常只表现母体的性状,故又称母性遗传。⑶. 通过连续回交能将母本的核基因几乎全部置换掉,但母本的细胞质基因及其所控制的性状仍不消失。⑷. 由附加体或共生体决定的性状,其表现往往类似病毒的转导或感染。

举例:罗兹(Rhoades M. M.)报道玉米的第7染色体上有一个控制白色条纹的基因(ij),纯合的ijij植株叶片表现为白色和绿色相间的条纹。以这种条纹株与正常绿色进行正反杂交,并将F1自交其结果如下:当以绿色株为母本时,F1全部表现正常绿色与非绿色为一对基因的差别,纯合隐性(ijij)个体表现白化或条纹,但以条纹株为母本时,F1却出现正常绿色、条纹和白化三类植株,并且没有一定的比例,如果将F1的条纹株与正常绿色株回交,后代仍然出现比例不定的三类植株,继续用正常绿色株做父本与条纹株回交,直至ij基因被全部取代,仍然没有发现父本对这个性状的影响,可见是叶绿体变异之后的细胞质遗传方式。2、细胞质遗传的物质基础是什么?

答:所有细胞器和细胞质颗粒中的遗传物质均为细胞质遗传的物质基础。细胞器基因组包括:线粒体基因组、叶绿体基因组、动粒基因组、中心粒基因组、膜体系基因组等;非细胞器基因组包括细胞共生体基因组、细胞质粒基因组等。

3、细胞质基因与核基因所何异同?二者在遗传上的相互关系如何?

答:共同点:虽然细胞质基因在分子大小和组成上与核基因有某些区别,但作为一种遗传物质,在结构上和功能上与核基因有许多相同点:⑴. 均按半保留复制;⑵. 表达方式一样:DNA-mRAN核糖体-蛋白质;⑶. 均能发生突变,且能稳定遗传,其诱变因素亦相同。

不同点:细胞质基因突变频率大,具有较强的定向突变性;正反交不一样,基因通过雌配子传递;基因定位困难;载体分离无规律,细胞间分布不均匀;某些基因有感染性。而核基因突变频率较小,难于定向突变性;正反交一样,基因通过雌雄配子传递;基因可以通过杂交方式进行定位;载体分离有规律、细胞间分布均匀;基因无感染性。

遗传学中通常把染色体基因组控制的遗传现象和遗传规律称为核遗传,把细胞质基因所决定的遗传现象和遗传规律称为细胞质遗传,两者在遗传上相互协调和制约,反映了核与质两个遗传体系相互依存和联系的统一关系。一般情况下,核基因在遗传上处于主导的地位,但在某些情况下表现出细胞质基因的自主遗传作用。

4.短暂性母性影响与持久母性影响的区别。

短暂性:只影响子代个体的幼龄期;

持久性:影响子代个体终身。

遗传信息传递方式中心法则中心法则

遗传自主性全自主半自主(受核基因控制)

转录翻译系统各自独立各自独立

转录场所细胞核线粒体和叶绿体

翻译场所细胞质中的核糖体线粒体和叶绿体中的核糖体对性状的控制控制全部性状仅控制线粒体和叶绿体的少量性状

第十五章基因工程和基因组学

2.简述基因工程的施工步骤。

答:基因工程的施工由以下这些步骤:

⑴.从细胞和组织中分离DNA;

⑵.媚苁侗鹛匾霥NA序列的限制性核酸内切酶酶切DNA分子,制备DNA片段;

⑶.将酶切的DNA片段与载体DNA(载体能在宿主细胞内自我复制连接),构建重组

DNA分子;

⑷.将重组DNA分子导入宿主细胞,在细胞内复制,产生多个完全相同的拷贝,即克隆;

⑸.重组DNA随宿主细胞分裂而分配到子细胞,使子代群体细胞均具有重组DNA分子的拷贝;

⑹.从宿主细胞中回收、纯化和分析克隆的重组DNA分子;

⑺.使克隆的DNA进一步转录成mRNA、翻译成蛋白质,分离、鉴定基因产物。10.简述基因工程在工、农、医三方面的成就及发展前景。

答:基因工程在工业上的应用主要是生产医药产品,最典型的例子是通过细菌生产胰岛素,治疗糖尿病。到目前通过细菌已经生产了表皮生长因子、人生长激素因子、干扰素、乙型肝炎工程疫苗等10多种医药产品。

基因工程在农业上的应用:以转基因植物为标志的植物基因工程已经培养出许多抗除草剂、抗虫、抗病、抗逆的优良品种和品系,如在全世界范围内大量推广应用的抗除草剂的大豆、抗棉铃虫的棉花等。通过转基因羊大量表达人类的抗胰蛋白酶;克隆动物的成功,可以挽救濒危的稀有动物。

基因工程在医学上主要是用于遗传疾病的诊断、基因的治疗方面。

基因工程具有巨大和广泛的发展前景,将渗透到人类生活的各个方面。可以创造出营养价值更高、保健作用更好、抗逆性更强的植物种类;转基因动物的进展,可以生产出多种类的用于人类遗传性疾病治疗的药物;人类基因组计划的完成和基因定位的发展、尤其是核酸分子杂交原理和方法与半导体技术结合而发展起来的DNA芯片技术的出现和完善,将在人类遗传疾病的诊断和治疗等方面发挥重要作用。

医学遗传学 答案3

医学遗传学答案3 《医学遗传学》 第3次平时作业得 分教师签名得分批改人一、填空题 1、正常人类女性核型描述为46,XX。正常人类男性核型描述46,XY。P37 2、性状变异在群体中呈不连续分布的称为质量性状,呈连续分布的称为数量性状遗传。的发病率是0、09%,致病基因频率为_______________。女性的发病率为__。P137 11、染色体非整倍性改变可有单体型和三体型两种类型。P68 12、在真核生物中,一个成熟生殖细胞所含的全部染色体称为一个染色体组。其上所含的全部基因称为一个基因组_。P36 13、近亲_婚配会提高后代常染色体隐性遗传病的发病率。 P143第1 页共8 页得分批改人二、单项选择题 1、一对正常夫妇,生了一个苯丙酮尿症的男孩和一个正常的女孩,这女孩为携带者的概率为。 A 、2/3 B、1/4 C、l/2 D、3/4 E、0

2、孟德尔群体是 A、生活在一定空间范围内,能互相交配的同种个体 B、生活在一定空间范围内的所有生物个体 C、生活在一定空间范围内,能互相交配的所有生物个体 D、生活着的所有生物个体 E、以上都不对 3、染色体非整倍性改变的机理可能是P69 A、染色体断裂 B、染色体易位 C、染色体倒位 D、染色体不分离 E、染色体核内复制 4、丈夫是红绿色盲,妻子正常,妻子的父亲是红绿色盲,他们生下色盲孩子的概率是伴X隐形遗传 A、l/2 B、0 C、l/4 D、3/4 E、l 5、着丝粒位于染色体纵轴7/8一近末端区段,为( )P36 A、中着丝粒染色体 B、亚中着丝粒染色体 C、近端着丝粒染色体 D、远端着丝粒染色体 E、中远着丝粒染色体 6、mRNA的成熟过程应剪切掉。

医学遗传学习题一 精讲版资料讲解

█绪论 一、单选题 1、遗传病最基本的特征是() A.先天性:许多遗传病都是先天性疾病,但不是所有遗传病都是先天性疾病 B.家族性:许多遗传病都是家族性疾病,但不是所有遗传病都是家族性疾病 C.遗传物质改变:正确,遗传物质改变可发生在生殖细胞和体细胞 D.罕见性:单基因病一般较为罕见,但多基因病(如高血压等常见疾病)非常常见 E.不治之症:不选 考核点:遗传病的概念 2、有些遗传病家系看不到垂直遗传的现象,这是因为() A.该遗传病是体细胞遗传病:正确,发生在体细胞的突变基因或畸变的染色体(如肿瘤细胞)是不能传递给下一代的 B.该遗传病是线粒体病:线粒体突变可发生在生殖细胞(卵细胞),且可通过母亲传递给后代 C.该病是性连锁遗传病:性连锁病为单基因病,并且是由发生在生殖细胞的基因突变所致 D.该遗传病具有传染性:遗传病一般不具传染性,即不会累及到无血缘关系的个体 E.以上都不是考核点:发生在生殖细胞和体细胞遗传病的区别 3、下列发病率最高的遗传病是() A.单基因病:病种数多(有数千种),但发病率低(群体发病率约4%-8%) B.多基因病:主要是一些常见复杂疾病(如高血压、糖尿病、冠心病等)和先天性畸形(比如唇裂、某些先天性心脏病等)。病种数少(100多种),但发病率最高(群体发病率约15%-20%) C.染色体病:染色体畸变发生频率较高,但胎儿通常在孕早期流产,新生儿发生率5‰左右,已报道100多种染色体综合征 D.线粒体病:病种数少(已知有100多种疾病与线粒体基因组突变有关),发病率很低 E.不能确定:不选 考核点:各类遗传病的发病率差异 4、种类最多的遗传病是() A.单基因病:尽管发病率较低,但种类最多 B.多基因病:尽管发病率较高,但种类少(已知的仅100多种) C.染色体病:已报道病例类型(100多种染色体畸变所致综合征)远少于单基因病 D.体细胞遗传病主要是肿瘤,但种类远少于单基因病 E.线粒体病:种类远少于和基因组异常导致的单基因病

《医学遗传学》作业

西南医科大学成教《医学遗传学》作业姓名年级专业层次 学号成绩: 第一章绪论 一、名词解释 1.遗传病 二、简答题 1.简述遗传性疾病的特征和类型。 第二章遗传的分子基础 一、名词解释 1.多基因家族 2.假基因 二、简答题 1.基因突变的特征是什么?简述其分类及特点。 第三章遗传的细胞基础

一、名词解释 1.Lyon假说 一、简答题 1.简述人类的正常核型(Denver体制)的主要特点。 2.命名以下带型:1q21;Xp22;10p12.1;10p12.11 第四章染色体畸变与染色体病 一、名词解释 1. 相互易位和罗伯逊易位 2.嵌合体 二、简答题 1.简述染色体畸变的主要类型及发生机理。 2.Down综合征的核型有哪些?主要的产生原因是什么?

第五章单基因遗传病 一、名词解释 1.不完全显性和不规则显性 2.交叉遗传 3.遗传异质性 4.基因组印记迹 5.遗传早现 二、简答题 1.请简述AD、AR、XD及XR遗传病的系谱特征。 第六章多基因遗传病 一、名词解释 1.易患性和阈值

2.遗传率 二、简答题 1.多基因假说的主要内容是什么? 2.估计多基因遗传病发病风险时,应综合考虑哪几方面的情况? 第七章线粒体遗传病 一、名词解释 1.mtDNA的半自主性 2.母系遗传 二、简答题 1.线粒体基因组的遗传特征有哪些? 第八章遗传病诊断

一、名词解释 1.基因诊断 二、简答题 1.基因诊断的主要方法有哪些?其与传统的疾病诊断方法相比,具有哪些优势? 第九章遗传病治疗 一、名词解释 1.基因治疗 二、简答题 1.简述基因治疗的主要策略和途径。 2.简述基因治疗的主要步骤。 第十章遗传病预防 一、名词解释

医学遗传学及答案

医学遗传学试卷 姓名 __________ 分数 _______________ 一、名词解释(每题3分,共18分) 1. 核型: 2. 断裂基因: 3. 遗传异质性: 4. 遗传率: 5. 嵌合体; 6. 外显率和表现度: 二、填空题(每空1分,共22分) 1. 人类近端着丝粒染色体的随体柄部次缢痕与( )形成有关,称为( ) )表示,近亲婚配后代基因纯合的可能性用 )和( )两类。 )。核型为46, XX, deL (2)(q35)的个体表明其体内 )或( )变化。 6.细胞分裂早中期、前中期、晚前期或更早时期染色体的带纹,称为( 2. 近亲的两个个体的亲缘程度用( ( )表示。 3. 血红蛋白病分为( 4. Xq27 代表( 的染色体发生了( )。 )-

)和( )的变化。 )造成的( )结构或合成量异常所引起的疾病。 )异常或缺失,使( )的合成受到抑制而引起 的溶血性贫血。 10. 在基因的置换突变中同类碱基卩密喘与卩密喘、瞟吟与瞟吟)的替换称( )-不同类型 碱基(P 密喘与瞟吟)间的替换称为( )<. 11. 如果一条X 染色体XQ27 — Xq28之间呈细丝样结构,并使其所连接的长臂末端形似随体, 则这条X 染色体被称为( )。 12. 多基因遗传病的再发风险与家庭中患者( )以及( )呈正相关。 三、选择题(单选题,每题1分,共25分) 1. 人类1号染色体长臂分为4个区,靠近着丝粒的为()。 A. O 区 B. 1区 C. 2区 D. 3区 E. 4区 2. DNA 分于中碱基配对原则是指( )A. A 配丁,G 配C B. A 配G, G 配T C. A 配 U, G 配 C D. A 配 C, G 配 T E. A 配 T, C 配 U 3. 人类次级精母细胞中有23个()<, A.单价体 B.二价体 C.单分体 D.二分体 E.四分体 4. 46, XY, t (2; 5)(Q21; q31)表示( )<,A —女性体内发生了染色体的插入B. 一男性体 内发生了染色体的易位 C 一男性带有等臂染色体 D. 一女性个体带有易位型的畸变染 色体 E. 一男性个体含有缺失型的畸变染色体 5. MN 基因座位上,M 出现的概率为o. 38,指的是()- A 基因库 B.基因频率 C 基因型频率 D 亲缘系数E.近婚系数 6. 真核细胞中的RNA 来源于( )<,A. DNA 复制 B. DNA 裂解 C. DNA 转化 D. DNA 转录 E .DNA 翻译 7. 脆性X 综合征的临床表现有()。A 智力低下伴眼距宽、鼻梁塌陷、通贯手、趾间距宽 B 智力低下伴头皮缺损、多指、严重唇裂及膊裂C .智力低下伴肌张力亢进。特殊握拳姿势、 摇椅足 D.智力低下伴长脸、大耳朵、大下颁、大睾丸E.智力正常、身材矮小、肘外 翻、乳腺发育差、乳间距宽、颈蹊 8. 基因型为P '邙'的个体表现为( )。A 重型9地中海贫血 B.中间型地中海贫血 C 轻型地中海贫血 D 静止型。地中海贫血E.正常 9. 慢性进行性舞蹈病属常染色体显性遗传病,如果外显率为90%, —个杂合型患者与正常人 结婚生下患者的概率为()<■ A. 50% B. 45% C. 75% D. 25% E. 100% 7. 染色体数日畸变包括( 8. 分子病是指由于( 9. 地中海贫血,是因(

医学遗传学作业4-2及答案

B080 医学遗传学作业4-2及答案 1. 对于常染色体显性遗传病,患者的基因型主要为() A)AA B)Aa C)aa D)XAXa 2. 下列哪一点不符合数量性状的变异的特点() A)相对性状存在着一系列中间过渡类型 B)在一个群体是连续的 C)相对性状间差异明显 D)分布近似于正态曲线 3. 在一个随机杂交的群体中,多基因遗传的变异范围广泛,大多数个体接近于中间类型,极端变异的个体很少。这些变异产生是由() A)多基因遗传基础和环境因素共同作用的结果 B)遗传基础的作用大小决定的 C)环境因素的作用大小决定的 D)群体大小决定的 4. 多基因病的群体易患性阈值与平均值距离越远,则() A)群体易患性平均值越高,群体发病率越高 B)群体易患性平均值越低,群体发病率越低 C)群体易患性平均值越高,群体发病率越低 D)群体易患性平均值越低,群体发病率越高群体易患性平均值越低,而与群体发病率无关 5. 父母都是A血型,生育了一个O血型的孩子,这对夫妇再生育孩子的血型可能是()

A)只能是A血型 B)只能是O血型 C)A型或O型 D)AB型 6. 下列哪一条不符合常染色体显性遗传的特征() A)男女发病机会均等 B)系谱中呈连续传递现象 C)患者都是纯合体(AA),杂合体(Aa)是携带者 D)双亲无病时,子女一般不会发病 7. 一个男孩是甲型血友病(XR)的患者,其父母和祖父母均正常,其亲属中不可能患此病的人是() A)外祖父或舅父 B)姨表兄弟 C)姑姑 D)同胞兄弟 8. 外耳道多毛症属于() A)Y连锁遗传 B)X连锁隐性遗传 C)X连锁显性遗传 D)常染色体隐性遗传 9. 遗传性恶性肿瘤的遗传方式常为() A)常染色体显性遗传 B)常染色体隐性遗传

医学遗传学试题及答案大全(一)

《医学遗传学》答案 第1章绪论 一、填空题 1、染色体病单基因遗传病多基因遗传病线粒体遗传病体细胞遗传病 2、突变基因遗传素质环境因素细胞质 二、名词解释 1、遗传因素而罹患的疾病成为遗传性疾病或遗传病,遗传因素可以是生殖细胞或受精卵 内遗传物质结构和功能的改变,也可以是体细胞内遗传物质结构和功能的改变。 2、主要受一对等位基因所控制的疾病,即由于一对染色体(同源染色体)上单个基因或 一对等位基因发生突变所引起的疾病。呈孟德尔式遗传。 3、染色体数目或结构异常(畸变)所导致的疾病。 4、在体细胞中遗传物质的改变(体细胞突变)所引起的疾病。 第2章遗传的分子基础 一、填空题 1、碱基替换同义突变错义突变无义突变 2、核苷酸切除修复 二、选择题1、A 三、简答题 1、⑴分离律 生殖细胞形成过程中,同源染色体分离,每个生殖细胞中只有亲代成对的同源染 色体中的一条;位于同源染色体上的等位基因也随之分离,生殖细胞中只含有两 个等位基因中的一个;对于亲代,其某一遗传性状在子代中有分离现象;这就是 分离律。 ⑵自由组合律 生殖细胞形成过程中,非同源染色体之间是完全独立的分和随机,即自由组合 定律。 ⑶连锁和交换律 同一条染色体上的基因彼此间连锁在一起的,构成一个连锁群;同源染色体上 的基因连锁群并非固定不变,在生殖细胞形成过程中,同源染色体在配对联会 时发生交换,使基因连锁群发生重新组合;这就是连锁和交换律。 第3章单基因遗传病

一、填空题: 1、常染色体显性遗传、常染色体隐性遗传、X连锁隐性遗传、X连锁显性遗传 2、系谱分析法 3、具有某种性状、患有某种疾病、家族的正常成员 4、高 5、常染色体、无关 6、1/4、2/3、正常、1/2 7、半合子 8、Y伴性遗传9、环境因素10、基因多效性 11、发病年龄提前、病情严重程度增加12、表现型、基因型 二、选择题——A型题 1、B 2、A 3、C 4、D 5、D 6、A 7、D 8、B B型题 1、A 2、D 3、B 4、C 5、D 6、C 7、B 8、C 三、名词解释: 1、所谓系谱(或系谱图)是从先证者入手,追溯调查其所有家族成员(直系亲属和 旁系亲属)的数目、亲属关系及某种遗传病(或性状)的分布资料绘制而成的图解。 2、先证者是指某个家族中第一个被医生或遗传学研究者发现的罹患某种遗传病的患 者或具有某种性状的成员。 3、表现度是基因在个体中的表现程度,或者说具有同一基因型的不同个体或同一个体 的不同部位,由于各自遗传背景的不同,所表现的程度可有显著的差异。 4、外显率是某一显性基因(在杂合状态下)或纯合隐性基因在一个群体中得以表现的 百分率。 5、由于环境因素的作用使个体的表型恰好与某一特定基因所产生的表型相同或相似, 这种由于环境因素引起的表型称为拟表型。 6、遗传异质性指一种性状可由多个不同的基因控制。 7、一个个体的同源染色体(或相应的一对等位基因)因分别来自其父放或母方,而表 现出功能上的差异,因此所形成的表型也有不同,这种现象称为遗传印记或基因组印记、亲代印记。 8、杂合子在生命的早期,因致病基因并不表达或虽表达但尚不足以引起明显的临床症 状,只有达到一定年龄后才才表现出疾病,这一显性形式称为延迟显性。 9、也称为半显性遗传,指杂合子Dd的表现介于显性纯合子和隐性纯合子dd的表现 型之间,即在杂合子Dd中显性基因D和隐性基因d的作用均得到一定程度的表现。

摩尔根

在攻读博士研究生期间和获得博士学位后的10多年里,摩尔根主要从事实验胚胎学的研究。1900年,孟德尔逝世16年后,他的遗传学说才又被人们重新发现。摩尔根也逐渐将研究方向转到了遗传学领域。摩尔根起初很相信这些定律,因为它们是建立在坚实的实验基础上的。但后来,许多问题使摩尔根越来越怀疑孟德尔的理论,他曾用白腹黄侧的家鼠与野生型杂交,得到的结果五花八门。但与此同时,德弗里斯的突变论却越来越使他感到满意,他开始用果蝇进行诱发突变的实验。他的实验室被同事戏称为"蝇室",里面除了几张旧桌子外,就是培养了千千万万只果蝇的几千个牛奶罐。1910年5月,他的妻子兼实验室的实验员发现了一只奇特的雄蝇,它的眼睛不像同胞姊妹那样是红色,而是白的。这显然是个突变体,注定会成为科学史上最著名的昆虫。这时摩尔根家里正好添了第三个孩子,当他去医院见他妻子时,他妻子的第一句话就是"那只白眼果蝇怎么样了?"他的第三个孩子长得很好,而那只白眼雄果蝇却长得很虚弱。摩尔根极为珍惜这只果蝇,将它装在瓶子里,睡觉时放在身旁,白天又带回实验室。它这样养精蓄锐,终于同一只正常的红眼雌蝇交配以后才死去,留下了突变基因,以后繁衍成一个大家系。 这个家系的子一代全是红眼的,显然红对白来说,表现为显性,正合孟德尔的实验结果,摩尔根不觉暗暗地吃了一惊。他又使子一代交配,结果发现了子二代中的红、白果蝇的比例正好是3:1,这也是孟德尔的研究结果,于是摩尔根对孟德尔更加佩服了。 摩尔根决心沿着这条线索追下去,看看动物到底是怎样遗传的。他进一步观察,发现子二代的白眼果蝇全是雄性,这说明性状(白)的性别(雄)的因子是连锁在一起的,而细胞分裂时,染色体先由一变二,可见能够遗传性状,性别的基因就在染色体上,它通过细胞分裂一代代地传下去。 染色体就是基因的载体!摩尔根和他的学生还推算出了各种基因的染色体上的位置,并画出了果蝇的4对染色体上的基因所排列的位置图。基因学说从此诞生了,男女性别之谜也终于被揭开了。从此遗传学结束了空想时代,重大发现接踵而至,并成为20世纪最为活跃的研究领域。为此,摩尔根荣获了1933年诺贝尔生理学及医学奖。他是霍普金斯大学、也是美国的第一位诺贝尔生理学及医学奖得主;也是第二位因遗传学研究成果而荣获诺贝尔奖的科学家 在霍普金斯大学读书和留校任教的岁月里,摩尔根始终保持着对生物学界进展的高度关注。当1900年孟德尔的遗传学研究被重新发现后,不断有遗传学的新消息传到摩尔根的耳朵里。摩尔根一开始对孟德尔的学说和染色体理论表示怀疑。他提出一个非常尖锐的问题:生物的性别肯定是由基因控制的。那么,决定性别的基因是显性的,还是隐性的?不论怎样回答,都会面对一个难以收拾的局面,在自然界中大多数生物的两性个体比例是1:1,而不论性别基因是显性还是隐性,都不会得出这样的比例。为了检验孟德尔定律,摩尔根曾亲自做了实验,他用家鼠与野生老鼠杂交,得到的结果五花八门,根本无法用定律解释;而且,关于染色体上有基因的说法,当时还只是猜测,用猜测的理论来解释孟德尔的遗传学说,坚持"一切通过实验"原则的摩尔根认为那是不可信的。怀疑归怀疑,摩尔根依然在自己的实验室里忙碌着。1908年,他开始用黑腹果蝇(Drosophila melanogaster)作为实验材料,研究

上海交通大学医学院《医学遗传学》在线作业答案

全卷共40 题剩余0 题未作答得分9.8 单选题 1.下列孕妇中,你预期谁出生神管畸形患儿的风险最大。 A.第一例孕妇中只生过一胎无脑儿,此为第二胎 B.第五例孕妇的表姐有一个患脊柱裂的孩子 C.第四例孕妇的婶婶曾生过一胎无脑儿 D.第三例孕妇中生过二胎无脑儿,此为第三胎 E.第二例孕妇生过一胎无脑儿和四个正常孩子 本题答案: 正确 A B C D E 2.男性患者的后代中,女儿都发病,儿子都正常,这种遗传病是。 A.常染色体隐性遗传 B.常染色体显性遗传 C.Y连锁遗传病 D.X连锁隐性遗传病 E.X连锁显性遗传病 本题答案: 正确 A B C D E 3.X连锁隐性遗传病中出现显示杂合子是因为。 A.以上都不对 B.遗传异质性 C.女性的X染色体随机失活 D.基因突变 E.X染色体非随机失活引起 本题答案: 正确 A B C D E 4.一个20岁男青年因乳房肿胀前来外科就诊,体检发现该男青年喉节不明显,腋毛、阴毛稀少,睾丸和阴茎均小于正常。你认为该男青年可能患有何症。 A.真二性畸形 B.先天性睾丸发育不全综合征 C.睾丸女性化综合征 D.XYY综合征 E.Down综合征 本题答案: 正确 A B C D E 5.某地区精神分裂症的群体发病率为0.81%,遗传度为80%。现有一对表型正常的夫妇生有一个此症患儿,问第二胎的再发风险约为多少。 A.9.00 B.0.90 C.0.81

D.0.09 E.0.081 本题答案: 正确 A B C D E 6.抗维生素D佝偻病(MIM307800)属于下列哪一种遗传方式。 A.Y连锁 B.XR C.XD D.AR E.AD 本题答案: 正确 A B C D E 7.常染色体隐性(AR)遗传的杂合子携带者相互婚配,子代的再发风险有多大。 A.1/8 B.1/4 C.1/2 D.1/16 E.0 本题答案: 正确 A B C D E 8.有一个20岁女青年,因原发闭经前来妇产科就诊。体检见该女青年身高1.45米,乳房未发育,外阴幼女型,无阴毛,无腋毛,肘关节外翻,妇科检查子宫似蚕豆大小。你对此女青年有何印象。 A.真两性畸形 B.先天性卵巢发育不全综合征 C.女性假两性畸形 D.睾丸女性化综合征 E.超雌综合征 本题答案: 正确 A B C D E 9.易位型先天愚型(Down综合征)核型的正确书写是。 A.46,XY,t(14q21q) B.46,XY,-21,+t(14q21q) C.46,XY,-14,+t(14q21q) D.46,XY,-14,+t(14p21p) E.45,XY,-14,-21,+t(14q21q) 本题答案: 正确 A B C D E 10.一个性发育不良的女青年,口腔粘膜涂片检查染色质,发现X小体阴性,Y小体阳性,你

医学遗传学

多选: 1. 遗传病的特征: A.疾病垂直传递 B.出生时就表现出症状 C.有特定的发病年龄 D.有特定的病程 E.伴有基因突变或染色体畸变 2. 家族性疾病具有的特征: A.有家族聚集现象 B.有相同的环境因素 C.有相同的遗传环境 D.一定是遗传病 3. 哪些疾病属于单基因疾病: A.体细胞遗传病 B.线粒体遗传病 C.X连锁显性遗传病 D.性染色体病 4. 在猫中,基因BB是黑色,Bb是玳瑁色,bb是黄色,这个基因位于X染色体上,一只玳瑁雌猫与一只黑色雄猫的后代可以是: A.雌猫中黑色与玳瑁色各占一半 B.雄猫中黑色与黄色各占一半 C.雌猫只会有玳瑁色 D.雄猫只会有玳瑁色 5. 不完全连锁指的是: A.二对基因位于同一对染色体上 B.由于互换,这二对基因的位置可以有变化 C.这二对基因位置变化的频率决定于它们之间距离的远近 D.由于互换,这二对基因也可以移到另一对染色体上 6. 一个B型血的母亲生了B型血男孩和O型血女孩,父亲的血型是: A. A型 B.B型 C.AB型 D.O型 7. 父亲血型为AB型,母亲为O型,子女中基本不可能出现的血型是: A.AB型 B.B型 C.O型 D.A型

8. 父亲血型是AB型,母亲是O型,子代中的血型可能是: A.A型 B.O型 C.B型 D.AB型 9. 父亲血型是B型,母亲血型是A型,他们生了一个A型血的女儿,这种婚配型是: A.IBIB×IAIA B.IBi×IAIA C.IBIB×IAi D.IBi×IAi 10. 父亲血型为AB型,母亲血型为AB型,子女中可能有的血型是: A.A型 B.AB型 C.B型 D.O型 11. 常染色体隐性遗传病系谱的特点是: A.患者双亲一定是无病的 B.患者同胞中可能有患病的 C.患者的其他亲属中不可能有患病的 D.患者双亲可能是近亲 12. 常染色体隐性遗传病系谱的特点是: A.患者双亲常无病,但有时为近亲婚配 B.患者同胞中可能有同病患者 C.不连续传递 D.女性患者多于男性患者 13. 常染色体显性遗传病系谱的特征是: A.患者双亲中常常有一方是同病患者 B.双亲常为近亲婚配 C.同胞中的发病比例约为1/2 D.患者子女必然发病 14. X连锁隐性遗传病系谱的特点是: A.男性患者多于女性患者 B.男性患者病重,女性患者病轻 C.交叉遗传 D.男性患者的外祖父一定患病

医学遗传学(丙)必做作业

医学遗传学作业(必做作业) 第一部分:选择题‘填空题’名词解释 第一章绪论(1—2 ,7---11) 一、填空题: 1、生殖细胞或受精卵的遗传物质发生突变所引起的疾病,称为遗传病。具有垂直遗传特征。 2、染色体数目,结构畸变所引起的疾病称为染色体病。 3、基因病是由于基因突变而引起的疾病。其可分为单基因病、多基因病两类。 4、主要受一对等位基因所控制的疾病,既一对染色体上单个基因或一对等位基因发生突变所引 起的疾病称为单基因遗传病。 5、多对基因和环境因素共同作用所引起的疾病称为多基因病。 6、体细胞中遗传物质的突变所引起的疾病称为体细胞遗传病。 7、由于线粒体基因突变导致的疾病称为线粒体病,其呈母系遗传。 8、肿瘤相关基因包括癌基因、肿瘤抑制基因、肿瘤转移基因、肿瘤耐药基因。 二、名词解释: 9、何谓癌家族?(211) 10、何谓家族性癌?(211) 第二章医学遗传学基础知识(15—33) 一、单选题: B 1、脱氧核糖核酸(DNA)所含有的碱基是 A、A、T、G B 、A、T、C、G C、A、G、C、U D、A、C、G C 2、核糖核酸(RNA)所含的碱基是 A、A、T、G B、A、T、 C、G C、A、G、C、U D、A、C、G D 3、哪种碱基不是DNA的成分 A、腺嘌呤 B、鸟嘌呤 C、胸腺嘧啶 D、尿嘧啶 C 4、哪种碱基不是RNA的成分 A、腺嘌呤 B、鸟嘌呤 C、胸腺嘧啶 D、尿嘧啶 C 5、DNA分子中脱氧核糖核苷酸之间连接的化学键是 A、离子键 B、氢键 C、磷酸二酯键 D、糖苷键 B 6、DNA分子中碱基之间连接的化学键是 A、离子键 B、氢键 C、磷酸二酯键 D、糖苷键 A 7、DNA分子中碱基配对原则是指 A、A配T、G配C B、A配G、C配T C、A配U、G配C D、A配T、C配U C 8、RNA分子中碱基配对规律是 A、A配T、G配C B、A配G、C配T C、A配U、G配C D、A配T、C配U C 9、真核细胞染色质和染色体的化学组成为 A、RNA、非组蛋白 B、DNA、组蛋白 C、DNA、组蛋白、非组蛋白 D、RNA、组蛋白 B 10、有丝分裂过程中DNA半保留复制发生在 A、前期 B、间期 C、中期 D、后期 A11、组成核小体的主要化学组成是

医学遗传学(1)

绪论 1.遗传病最基本的特征是(B) A.先天性 B.遗传物质改变 C.家族性 D.罕见性 E. 垂直传递 除遗传物质改变为遗传病的主要发病原因外,遗传病还具有的特点是:垂直传递,先天性和终生性,家族聚集性,传染性。 2.下列哪种疾病不属于遗传病(D) A.单基因病 B.多基因病 C.染色体病 D.感染性疾病 E.体细胞遗传病 遗传病的分类:单基因病,染色体病,多基因病,线粒体遗传病,体细胞遗传病。 3.根据遗传因素和环境因素在不同疾病发生中的作用不同对疾病分类,下列哪项是错误的(D) A.完全由遗传因素决定发病 B.基本上由遗传因素决定发病 C.遗传因素和环境因素对发病都有作用 D.遗传因素和环境因素对发病的作用同等 E.完全由环境因素决定发病 根据遗传和环境因素在不同疾病发生中的作用不同,可将疾病分为四类:完全由遗传因素决定发病,基本

上由遗传决定发病,遗传因素和环境因素对发病都有作用,发病完全取决于决定因素。 4.揭示生物性状的分离律和自由组合律的两个遗传学基本规律的科学家是(A) A.Mendel B.Morgan C.Garrod D.Hardy, Weinberg E.Watson, Crick 遗传学或者是对遗传规律的科学分析是从奥地利神父孟德尔于1865年宣读他的《植物杂交实验》论文开始的。 5.婴儿出生时就表现出来的疾病称为(B) A.遗传病 B.先天性疾病 C.先天畸形 D.家族性疾病 E.后天性疾病 6.一个家庭中有两个以上成员罹患同一种疾病,一般称为(D) A.遗传病 B.先天性疾病 C.先天畸形 D.家族性疾病 E.后天性疾病 7.婴儿出生时正常,在以后的发育过程中逐渐形成的疾病称为(E) A.遗传病 B.先天性疾病 C.先天畸形 D.家族性疾病 E.后天性疾病 8.人体细胞内的遗传物质发生突变所引起的一类疾病称为(A)

医学遗传学作业

医学遗传学作业 一、单选题 1.种类最多的遗传病是________。 A.单基因病 B.多基因病 C.染色体病 2、人类基因组中存在着重复单位为 2~6bp 的重复序列,称为:________。 A. tRNA B. rRNA C. 微卫星 DNA D. 线粒体 DNA E. 核 DNA 3.基因突变对蛋白质所产生的影响不包括________。 A.影响活性蛋白质的生物合成 B. 影响蛋白质的一级结构 C.改变蛋白质的空间结构 D. 改变蛋白质的活性中心 E.影响蛋白质分子中肽键的形成 4.脱氧核糖核酸分子中的碱基互补配对原则为________。 A.A-U,G-C B.A-G,T-C C.A-T,C-G D.A-U,T-C E.A-C,G-U 5.由于突变使编码密码子形成终止密码,此突变为________。 A.错义突变 B.无义突变 C. 终止密码突变 D. 移码突变 E.同义突变 6.DNA复制过程中,5’→3’亲链作模板时,子链的合成方式为________。 A.3′→5′连续合成子链 B.5′→3′合成若干冈崎片段,然后由 DNA 连接酶连接这些冈崎片段,形成完整子链 C.5′→3′连续合成子链 D.3′→5′合成若干冈崎片段,然后由 DNA 连接酶连接这些冈崎片段,形成完整子链 E.以上都不是 7.遗传病特指________。 A.先天性疾病 B.家族性疾病 C.遗传物质改变引起的疾病 D.不可医治的疾病 E.既是先天的,也是家族性的疾病 8._______于 1953 年提出 DNA 双螺旋结构,标志分子遗传学的开始。 A.Jacob 和 Momod B. Watson 和 Crick C. Khorana 和 Holley D. Avery 和 McLeod E. Arber 和 Smith 9.环境因素诱导发病的单基因病为________。 A.Huntington 舞蹈病 B.蚕豆病 D.血友病 A E.镰状细胞贫血 二、填空题 1.孩子为AB型血,他的双亲不可能有______血型。 2.所谓健康,乃是受的代谢方式与保持平衡的结果,一旦这种平衡被打破,就意味着__ _。 3.人类褐色眼受显性基因A控制,蓝色眼受隐性基因a控制。假设一个蓝眼男人与一个褐眼女人婚配,而该女人的母亲为蓝眼。他们婚后生蓝眼小孩的机率为_____。 三、名词解释 1.Down综合征:

医学遗传学作业4-1及答案

B080 医学遗传学4-1作业及答案 1. 近端着丝粒染色体之间通过着丝粒融合而形成的易位称为() A)单方易位 B)串联易位 C)罗伯逊易位 D)复杂易位 2. 四倍体的形成可能是() A)双雌受精 B)双雄受精 C)核内复制 D)不等交换 3. 嵌合体形成的原因可能是() A)卵裂过程中发生了同源染色体的错误配对 B)卵裂过程中发生了染色体的不分离 C)生殖细胞形成过程中发生了染色体的丢失 D)生殖细胞形成过程中发生了染色体的不分离 4. 如果在某体细胞中染色体的数目在二倍体的基础上增加一条可形成() A)单倍体 B)三倍体 C)单体型 D)三体型 5. 46, XY, t(4; 6)(q35; q21)表示()

A)一女性体内发生了染色体的插入 B)一男性体内发生了染色体的易位 C)一男性带有等臂染色体 D)一女性个体带有易位型的畸变染色体 6. 如果染色体的数目在二倍体的基础上减少一条则形成() A)单体型 B)三倍体 C)单倍体 D)三体型 7. 一个体中含有不同染色体数目的三个细胞系, 这种情况称为() A)多倍体 B)非整倍体 C)嵌合体 D)三倍体 8. 染色体数目异常形成的可能原因是() A)染色体断裂和倒位 B)染色体倒位和不分离 C)染色体复制和着丝粒不分裂 D)染色体不分离和丢失 9. 染色体结构畸变的基础是() A)姐妹染色单体交换 B)染色体核内复制

C)染色体断裂及断裂之后的异常重排 D)染色体不分离 10. 某种人类肿瘤细胞染色体数为69条,称为() A)超二倍体 B)亚二倍体 C)四倍体 D)三倍体 11. 若某一个体核型为46, XX/47, XX, +21则表明该个体为() A)常染色体结构异常 B)常染色体数目异常的嵌合体 C)性染色体结构异常 D)性染色体数目异常的嵌合体 12. 某种人类肿瘤细胞染色体数为56条,称为() A)超二倍体 B)亚二倍体 C)亚倍体 D)亚三倍体 13. 染色体非整倍性改变的机理可能是() A)染色体断裂及断裂之后的异常重排 B)染色体易位 C)染色体倒位 D)染色体不分离

遗传基因理论的创立者摩尔根

遗传基因理论的创立者——摩尔根 遗传基因理论的创立者——摩尔根 1910年,美国生物学家摩尔根创立了染色体——遗传基因理论,由此细胞遗传学有了坚实的基础。 1866年,就在孟德尔发表豌豆遗传论文那年,摩尔根出生了。他的父亲担任过美国驻外领事,家庭生活十分优裕。青少年时代,摩尔根喜欢游历自然风光,在游历中产生了对大自然的无限热爱,从而使他后来走上了探索生物奥秘之路。1886年20岁时,摩尔根考入霍普金斯大学研究院读研究生,主要研究生物形态学。他比较了四种水中无脊椎动物的形态变化,确实了它们的种属,写出了《论海蜂蛛》的论文,获得了博士学位。 1900年春天,荷兰的德弗里斯、德国的柯伦斯和奥地利的皇歇马克通过实验,各自得出了和当年孟德尔豌豆遗传机理一样的结论。他们为发表论文查阅过去的文献时,都发现了孟德尔那尘封土埋的论文。惊叹之余,他们在各自的论文中,都把发现生物遗传机理的荣誉让给孟德尔,并把各自的工作说成是对孟理论的证实。从而,蒙在孟德尔论文上的尘土被拂去了,珍珠重新放射出了光辉。这不仅使孟德尔的大名立即传遍的世界,而且使他奠基的遗传学象一株新笋一样拔地而起。 此前,细胞学取得的一系列成就,为这时遗传学的飞速发展奠定了基础。

自从施莱登和许旺创立细胞学之后,人们接连发现了细胞里的原生质,发现了体积约为细胞十分之一的细胞核,发现一切细胞都是细胞分裂自生的。1879年,德国生物学家弗莱明又发现,用碱性莱胺染料可把透明的细胞核内的微粒状物质染色,观察细胞分裂全过程。他用这种方法看到了细胞分裂的“电影”:先把微粒状的染色质聚成丝状,再把这丝状物分成数目相同的两半,形成两个细胞核,生成两个细胞。因此,弗莱明把细胞分裂叫做有丝分裂。1888年,德国生物学家瓦尔德尔把弗莱明的染色质叫做“染色体”,一直使用至今。人们还发现,每种动植物的细胞里都有特定数目的染色体。在细胞分裂之前,染色体数目先增加一倍,因而分裂后的细胞能形成和母细胞数目一样多的染色体。每个精细胞和卵细胞的染色体数目,只有机体一般细胞的一半,精卵结合生成的细胞就有了一整套染色体。 上述细胞学成就,都是在孟德尔遗传学成果被重新发现之前取得的,所以孟德尔遗传研究成果重新发现之后,生物学家们便马上看出了孟德尔的遗传因子和在显微镜下看到的染色体之间联系。最早提出两者相似的是美国细胞学家萨顿,他在1904年提出,染色体和孟德尔说的遗传因子一样,成对地存在着,它们一个来自父本,一个来自母本。但萨 顿不敢做出染色体就是遗传因子的结论,因为细胞里的染色体数目远远少于遗传特征的数目。 不管怎么说,萨顿和他同时的生物学家们,终于使细胞学和遗传学在各自

医学遗传学平时作业2

《医学遗传学》 第2次平时作业 一.填空题(每空1分,共22分) 1.DNA 的组成单位是_______________________________。 2.具有XY 的男性个体,其Y 染色体上没有与X 染色体上相对应的等位基因,则该男性个体称为__________________。 3.凡是位于同一对染色体上的若干对等位基因,彼此间互相连锁,构成一个_____________________。 4.基因表达包括___________________和_________________两个过程。 5.人类体细胞有丝分裂中期的一条染色体由两条____________________构成,彼此互称为________________________。 6.基因诊断的最基本工具包括__________________和______________________。 7.血红蛋白病中,由于珠蛋白_________________异常引起的是异常血红蛋白病,由于珠蛋白________________________异常引起的是地中海贫血。 8.“中心法则”表示生物体内___________________的传递或流动规律。 9.染色体畸变包括__________________和_________________两大类。 10.群体的遗传结构是指群体中的,______________和_____________种类及频率。 11.如果一条X 染色体Xq27-Xq28之间呈细丝样结构,并使其所连接的长臂末端形似随体,则这条X 染色体被称为______________________。

摩尔根(00001)

摩尔根与遗传学

摩尔根与遗传学:研究与教育 2013-05-06 18:26:51 分类:未分类 孟德尔在时属奥匈帝国Brünn地方刊物发表《植物杂交实验》的1866年,摩尔根(Thomas H. Morgan,1866-1945)诞生于美国内战后破落的南方原显贵家族。摩尔根实验室的工作不仅是遗传学的一大步,而且是美国科学的里程碑,代表新世纪美国在生物学上开始系统性地领先世界。摩尔根本人通过自己的研究丰富了遗传学、通过教育培养了美国和世界的科学家。 孟德尔与摩尔根之间 1900年,孟德尔遗传学被重新发现,遗传学相关的名词、概念、方法不断涌现并得到推广,如英国的William Bateson(1861-1926)提出纯合子、杂合子、遗传学(genetics)等词汇(Bateson,1902;1905),丹麦植物学家WilhelmJohannsen(1857-1927)提出表型、基因型和基因等词汇(Johannsen,1909)。英国于1910年开始出版《遗传学杂志》、美国于1916年开始出版《遗传学》杂志,遗传学成为一个学科。

美国哥伦比亚大学EdmundBeecher Wilson (1856-1939)实验室的研究生Walter Sutton (1877-1916)、德国乌兹伯格大学的TheodorBoveri(1862-1915)和其他几位科学家在观察和分析了染色体的行为后,提出染色体可能携带孟德尔的遗传因子。Sutton(1902)观察蚂蚱染色体的文章结束时指出:“我提请注意这样的可能性,父本和母本染色体成对地相关以及它们其后在减数分裂过程的分离…可能是孟德 尔遗传律的物质基础”,他在1903年进一步阐述这一想法。 1901年,美国堪萨斯大学的McClung曾提出马的附着染色体(后称X染色体)决定雄性,这是第一次提出染色体与生物性状的关系,不过具体说X与雄性相关是错的。曾名义上是摩尔根研究生的女科学家Nettie Stevens(1861-1912)于1905年提出甲壳虫的Y染色体与雄性有关,第一次正确提出染色体与具体性状的关系,雄性是XY、雌性是XX。Wilson(1905)很快验证了Stevens的结论。如果基因与染色体有关,而染色体数目少于生物性状,那么染色体上就需要含多个基因,也就应该有基因连锁(Wilson,1905;

16专升本医学遗传学作业1

第一章绪论 (一)A型选择题 1.遗传病特指 A.先天性疾病B.家族性疾病C.遗传物质改变引起的疾病 D.不可医治的疾病E.既是先天的,也是家族性的疾病 2.环境因素诱导发病的单基因病为 A.Huntington舞蹈病B.蚕豆病C.白化病 D.血友病A E.镰状细胞贫血 3.传染病发病 A.仅受遗传因素控制 B.主要受遗传因素影响,但需要环境因素的调节 C.以遗传因素影响为主和环境因素为辅 D.以环境因素影响为主和遗传因素为辅 E.仅受环境因素影响 4.提出分子病概念的学者为 A.Pauling B.Garrod C.Beadle D.Ford E.Landsteiner 5.Down综合征是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病6.脆性X综合征是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病7.Leber视神经病是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病8.高血压是 A.单基因病B.多基因病C.染色体病D.线粒体病E.体细胞病(二)X型选择题 1.遗传病的特征多表现为 A.家族性B.先天性C.传染性 D.不累及非血缘关系者E.同卵双生率高于异卵双生率 2.判断是否是遗传病的指标为 A.患者亲属发病率随亲属级别下降而下降 B.患者亲属发病率随亲属级别下降而升高 C.患者亲属发病率不随亲属级别变化而变化 D.患者家族成员发病率高于一般群体 E.患者血缘亲属发病率高于非血缘亲属 3.参加人类基因组计划的国家有 A.中国B.美国C.加拿大D.英国E.法国 4.人类基因组计划完成的基因图包括 A.遗传图B.物理图C.基因组测序图 D.功能图E.结构图 5.属于多基因遗传病的疾病包括 A.冠心病B.糖尿病C.血友病A D.成骨不全E.脊柱裂(三)名词解释 1.genetic disease

医学遗传学

1,倒位环:臂间倒位携带者形成的倒位环和配子的染色体情况,其中50%配子中既有缺失, 又有重复的异常染色体,也就是说有50%可能性形成不平衡合子。 2四射体:四射体将形成18种类型配子,受精后只有一种为正常人;另一种为异常携带者。其他均为不平衡染色体。因此易位携带者的后代遗传不平衡概率为8 /9。 3典型真核基因结构:1断裂基因:真核基因结构由若干个编码区和非编码区相互隔开又不连续镶嵌而成,为一个连续AA组成的完整蛋白编码2外显子和内含子:GT-AG法则3侧翼序列:启动子,增强子,终止子 4基因的表达:是储存遗传信息的基因经过一系列步骤表现出其生物性状的整个过程,包括基因转录翻译产生蛋白质或者转录产生RNA功能分子 5RNA加工过程包括:1转录:剪接,加帽,加尾2翻译:起始,延伸,终止3翻译后加工:肽链的切断 6突变诱因:物理(高能射线)化学(碱基类似物,碱基修饰剂,DNA掺入剂,抗生素) 生物(病毒真菌细菌) 7突变特征:稀有性(突变率)重演性,可逆性,多方向性,有害性和有利性,随机性,突变的时期(生殖细胞,体细胞) 8突变分子机制:基因突变分为静态突变和动态突变。静态突变分为点突变和片段突变(缺失,重复,重排),点突变是DNA链中一个或一对碱基发生的改变,包括碱基替换(同义,无义,错义,终止密码,调控序列,剪辑位点)和移码突变,片段突变指的DNA链中某些 小片段的碱基序列发生缺失重复重排。动态突变是串联重复的三核苷酸序列随着世代的传递而拷贝数逐代累加。 9,常显(AD ):【完全显性:舞蹈症,短指症,不完全显性:软骨发育不全不规则显性:多 指症共显性,延迟显性】遗传规律:1性别无关,男女发病一样2患者双亲必有一人为患者,同胞一半几率患病3连续遗传4双亲无病子女一般无病 10常隐(AR ):苯丙酮尿症,白化病遗传规律1性别无关,男女发病相等2散发非连续传递3双亲正常但都为携带者4近亲婚配发病率上升 11X显(XD ):抗维生素D佝偻病遗传特征:1女性比男性多2双亲必有一名患者3男性患者女儿全是患者,儿子正常4女性杂合子患者子女有1/2可能为患者5连续遗传 12X隐:红绿色盲,血友病遗传特点:1男性多于女性2双亲无病,儿子可能发病,儿子患病母亲为携带者,女儿有1/2为携带者3男性患者母系中男性可能是患者4女性患者的父 亲一定是患者,母亲为携带者5代与代间可见明显不连续现象 13Y连锁:外耳道多毛症特征:全为男性 14以身高为例:1特征:共显性,微效性,累积性。2虽然数量性状由多基因控制,但每一对基因的遗传方式仍遵循孟德尔遗传分离和自由组合定律3假设人的身高由三对基因控制,ABC 为促进,abc为抑制基因。P:AABBCC*aabbcc F1 : AaBbCc AaBbCc* AaBbCc F1 : 一种基因型一种表现型F2:64种基因型,7种表现型 15血红蛋白分子结构:一种复合蛋白,由四个亚基单位构成的四聚体,每个亚基单位由一 条珠蛋白肽链和一个血红素辅基构成。组成血红蛋白的珠蛋白构成:一对类a链,一对类b 链 16血红蛋白遗传控制:a珠蛋白基因簇---16号染色体短臂b珠蛋白基因簇---11号染色体短臂 17血红蛋白病:基因缺陷导致珠蛋白肽链的结构功能异常 18地中海贫血:基因缺失或缺陷导致珠蛋白多肽链合成量异常a地中海贫血:1Hb Bart ? s 胎儿水肿综合征2血红蛋白H病3标准型a地中海贫血4静止型a型地中海贫血b型地中海贫血:重型中间型轻型

相关主题