搜档网
当前位置:搜档网 › 高二数学导数知识点总结及习题练习

高二数学导数知识点总结及习题练习

高二数学导数知识点总结及习题练习
高二数学导数知识点总结及习题练习

高三专题复习——导数在解题中常用的有关结论(需要熟记):

(1)曲线yf(x)在x x处的切线的斜率等于f(x0),切线方程为

0 y f(x)(xx)f(x)

000

(2)若可导函数yf(x)在xx0处取得极值,则f x。反之,不成立。

()0

(3)对于可导函数f(x),不等式f(x)0(0)的解集决定函数f(x)的递增(减)区间。

(4)函数f(x)在区间I上递增(减)的充要条件是:xIf(x)0(0)恒成立

(5)函数f(x)在区间I上不单调等价于f(x)在区间I上有极值,则可等价转化为方程

fx在区间I上有实根且为非二重根。(若f(x)为二次函数且I=R,则有0)。

()0

(6)f(x)在区间I上无极值等价于f(x)在区间在上是单调函数,进而得到f(x)0或

fx0在I上恒成立

()

(7)若xI,f(x)0恒成立,则f x0;若xI,f(x)0恒成立,则

()

min f(x)0

max

(8)若x0I,使得f(x)0,则f(x)max0;若x0I,使得

0 f x0,则f(x)min0. ()

(9)设f(x)与g(x)的定义域的交集为D若xDf(x)g(x)恒成立则有f(x)g(x)0

min

(10)若对x1I1、x I,

22 f(x)g(x)恒成立,则

12

f xgx.

()()

minmax

若对x1I1,x2I2,使得f xgx,则

()()

12 f xgx.

()()

minmin

若对xI,x

2I2,使得

11 f xgx,则f(x)max g(x)max. ()()

12

(11)已知f(x)在区间I上的值域为A,,g(x)在区间

1 I上值域为B,2

若对x I,

11 x I,使得f(x1)=

22

g(x)成立,则AB。

2

(12)若三次函数f(x)有三个零点,则方程f(x)0有两个不等实根x1、x2,且极大值大

于0,极小值小于0.

(13)证题中常用的不等式:

x

①lnxx1(x0)②ln(x+1)x(x1)③e1x

x

④e1x⑤ln1(1)

xx

x

x12 ⑥l nx11

22

x22x

(x0)

考点一:导数几何意义:角度一求切线方程

1.(2014·洛阳统考)已知函数f(x)=3x+cos2x+sin2x,a=f′3

过曲线y=x 上一点P(a,b)的切线方程为() π

,f′(x)是f(x)的导函数,则4

A.3x-y-2=0B.4x-3y+1=0

C.3x-y-2=0或3x-4y+1=0D.3x-y-2=0或4x-3y+1=0

解析:选A由f(x)=3x+cos2x+sin2x得f′(x)=3-2sin2x+2cos2x,则a=f′ππ

=3-2sin 42

π

32322

+2cos2=1.由y=x上一点P(a,b)的切线的斜率k=3a

得y′=3x,过曲线y=x=3×1=3.又b

=a

3,则b=1,所以切点P的坐标为(1,1),故过曲线y=x3上的点P的切线方程为y-1=3(x-1),即3x-y-2=0.

角度二求切点坐标

2.(2013·辽宁五校第二次联考)曲线y=3lnx+x+2在点P0处的切线方程为4x-y-1=0,则

点P0的坐标是()

A.(0,1)B.(1,-1)

C.(1,3)D.(1,0)

3

解析:选

C由题意知y′=+1=4,解得x=1,此时4×1-y-1=0,解得y=3,∴点P0

x

的坐标是(1,3).

角度三求参数的值

1

2+mx+7

3.已知f(x)=lnx,g(x)=2(m<0),直线l与函数f(x),g(x)的图像都相切,且与f(x)

2x

图像的切点为(1,f(1)),则m等于()

A.-1B.-3

C.-4D.-2

1

解析:选

D∵f′(x)=,∴直线l的斜率为k=f′(1)=1,又f(1)=0,∴切线l的方程为

y

x

=x-1.

g′(x)=x+m,设直线l与g(x)的图像的切点为

(x0,y0),

1 则有x0+m=1,y0=x0-1,y0=2x

7

2

0+mx0+,m<0,于是解得m=-2,故选

D.

2

考点二:判断函数单调性,求函数的单调区间。

2-e x试判断f(x)的单调性并给予证明.

[典例1]已知函数f(x)=x

解:f(x)=x

2-e x,f(x)在R上单调递减,

x,只要证明f′(x)≤0恒成立即可.设g(x)=f′(x)=2x-e x,则g′(x)=2-e x,

f′(x)=2x-e

当x=ln2时,g′(x)=0,当x∈(-∞,ln2)时,g′(x)>0,当x∈(ln2,+∞)时,g′(x)<0. ∴f′(x)max=g(x)max=g(ln2)=2ln2-2<0,∴f′(x)<0恒成立,∴f(x)在R上单调递减.

[典例2](2012北·京高考改编)已知函数f(x)=ax

2+1(a>0),g(x)=x3+bx.

(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;

2=4b时,求函数f(x)+g(x)的单调区间.

(2)当a

2+b,[解](1)f′(x)=2ax,g′(x)=3x

f1=a+1=c,

g1=1+b=c,解得a=b=3.由已知可得

2a=3+b,

22

aa

3+ax2+2+2ax+

,令F′(x)=0,得x1=-

(2)令F(x)=f(x)+g(x)=x4x+1,F′(x)=3x

4

a

x2=-

6 a

2 ,

aa

∵a>0,∴x10得,x<-或x>-;由F′(x)<0得,-26 a

2

a

.

6

∴单调递增区间是-∞,-a

2

a

,-,+∞;单调递减区间为-

6

a

,-

2

a

6.

[针对训练]

2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y

(2013·重庆高考)设f(x)=a(x-5)

轴相交于点(0,6).

(1)确定a的值;

(2)求函数f(x)的单调区间与极值.

解:(1)因为f(x)=a(x-5)

2+6lnx,故f′(x)=2a(x-5)+6

x.

令x=1,得f(1)=16a,f′(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a

1 =(6-8a)·(x-1),由点(0,6)在切线上可得6-16a=8a-6,故a=

2.

1

2+6lnx(x>0),f′(x)=x-5+6 (2)由(1)知,f(x)=

2(x-5)

x x-2x-3

x.令f′(x)=0,解得x

1

=2,x2=3.

当03时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数;当2

9

由此可知f(x)在x=2处取得极大值f(2)=+6ln2,在x=3处取得极小值f(3)=2+6ln3.

2

考点三:已知函数的单调性求参数的范围

2x2+ax(a∈R).[典例](2014山·西诊断

)已知函数f(x)=lnx-a

(1)当a=1时,求函数f(x)的单调区间;

(2)若函数f(x)在区间(1,+∞)上是减函数,求实数a的取值范围

2+x,其定义域是(0,+∞),[解](1)当a=1时,f(x)=lnx-x

2-x-112x

f′(x)=-2x+1=-

xx

2-x-1

2x1

令f′(x)=0,即-=0,解得x=-或x=1.

x2

∵x>0,∴x=1.

当00;当x>1时,f′(x)<0.

∴函数f(x)在区间(0,1)上单调递增,在区间

(1,+∞)上单调递减.

(2)显然函数f(x)=lnx-a

2x2+ax的定义域为(0,+∞),

1-2a-2ax+1ax-1

2x2+ax+1

2x+a=

∴f′(x)=x.

-2a=

xx

1

①当a=0时,f′(x)=

x>0,∴f(x)在区间(1,+∞)上为增函数,不合题意.

②当a>0时,f′(x)≤0(x>0)等价于(2ax+1)〃(ax-1)≥0(x>0),即x≥1

a ,

此时f(x)的单调递减区间为1

,+∞. a

由1

≤1,

a

a>0,

得a≥1.

1

③当a<0时,f′(x)≤0(x>0)等价于(2ax+1)〃(ax-1)≥0(x>0),即x≥-,此时f(x)的单调递

2a

1

减区间

为-,+∞.

2a

1

≤1,

2a

a<0,

1

得a≤-

2.综上,实数a的取值范围是-∞,-

1

2

∪[1,+∞).

[针对训练]

13-a

2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方

y=1.(2014·荆州

质检

)设函数f(x)=

3x2x

(1)求b,c的值;

(2)若a>0,求函数f(x)的单调区间;

(3)设函数g(x)=f(x)+2x,且g(x)在区间

(-2,-1)内存在单调递减区间

,求实数a的取值范围.解:(1)f′(x)=x 2-ax+b,

f0=1,c=1,

由题意得即

f′0=0,b=0.

2-ax=x(x-a)(a>0),

(2)由(1)得,f′(x)=x

当x∈(-∞,0)时,f′(x)>0,

当x∈(0,a)时,f′(x)<0,

当x∈(a,+∞)时,f′(x)>0.

所以函数f(x)的单调递增区间

为(-∞,0),(a,+∞),单调递减区间为(0,a).2-ax+2,(3)g′(x)=x

依题意,存在x∈(-2,-1),使不等式g′(x)=x

2-ax+2<0成立,2

即x∈(-2,-1)时,a

x max=-22,2

当且仅当“x=”即x=-2时等号成立,

x

所以满足要求的a的取值范围是(-∞,-22).

考点四:用导数解决函数的极值问题

a

[典例](2013福·建高考节选)已知函数f(x)=x-1+x(a∈R,e为自然对数的底

数).

e

(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;

(2)求函数f(x)的极值.

a

[解](1)由f(x)=x-1+x,得f′(x)=1-

e a x. e

又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,

a

得f′(1)=0,即1-=0,解得a=e.

ea

(2)f′(x)=1-

x,

e

①当a≤0时,f′(x)>0,f(x)为(-∞,+∞)上的增函数,所以函数f(x)无极值.

②当a>0时,令f′(x)=0,得e

x=a,即x=lna.

x∈(-∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0,所以f(x)在

(-∞,lna)上单调递减,在(lna,+∞)上单调递增,

故f(x)在x=lna处取得极小值,且极小值

为f(lna)=lna,无极大值.

综上,当a≤0时,函数f(x)无极值;

当a>0时,f(x)在x=lna处取得极小值lna,无极大值.

[典例]已知函数f(x)=lnx-ax(a∈R).

(1)求函数f(x)的单调区间;

(2)当a>0时,求函数f(x)在[1,2]上的最小值.

11

[解](1)f′(x)=-a(x>0),①当a≤0时,f′(x)=-a>0,

xx

即函数f(x)的单调增区间为(0,+∞).

11

②当a>0时,令f′(x)=-a=0,可得x=

xa

1

当0

a 1-ax11-ax

x>0;当x>x<0,

a

时,f′(x)=

故函数f(x)的单调递增区间为0,1

a

,单调递减区间

1

a

,+∞.

(2)①当1

a

≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,∴f(x)的最小值是f(2)=ln2-2a.

②当1

a

≥2,即0

1

2

时,函数f(x)在区间

[1,2]上是增函数,∴f(x)的最小值是f(1)=-a.

111

③当1<2

a<2,即

上是增函数,在

a

1

=ln2-a,∴当2

当ln2≤a<1时,最小值为f(2)=ln2-2a.综上可知,1

a

,2上是减函数.又f(2)-f(1)

当0

1

2(x>0),若函数f(x)在x=1处与直线y=-

设函数f(x)=alnx-bx

相切,

2

(1)求实数a,b的值;

(2)求函数f(x)在

1

,e上的最大值.e

a

解:(1)f′(x)=-2bx,

x

∵函数f(x)在x=1处与直

线y=-1

2

相切,

f′1=a-2b=0,a=1,

f1=-b=-

1

2

解得 1

b=

2.

2 1

2,f′(x)=11-x

(2)f(x)=lnx-2x-x=

xx

∵当1

≤x≤e时,令f′(x)>0得

e

1

≤x<1;

e

令f′(x)<0,得1

,1上单调递增,在[1,e]上单调递减,∴f(x)max=f(1)=-e

1

3.

考点六:用导数解决函数极值、

最值问题

[典例](2013北·京丰台高三期末)已知函数f(x)=

2+bx+c

ax

x(a>0)的导函数y=f′(x)的两个零

e

点为-3和0.

(1)求f(x)的单调区间;

3,求f(x)在区间

[-5,+∞)上的最大值.

(2)若f(x)的极小值为-e

x-ax2+bx+ce x

2ax+be

[解](1)f′(x)=

x2

e

-ax

2+2a-bx+b-c

=x,

e

令g(x)=-ax

2+(2a-b)x+b-c,

x>0,所以y=f′(x)的零点就是g(x)=-ax2+(2a-b)x+b-c的零点,且f′(x)与g(x)符因为e

号相同.

又因为a>0,所以-30,即f′(x)>0,

是(-3,0),单调减区间是(-当x<-3或x>0时,g(x)<0,即f′(x)<0,所以f(x)的单调增区间

∞,-3),(0,+∞).

(2)由(1)知,x=-3是f(x)的极小值点,所以有

9a-3b+c

-3=-e

3,

e

g0=b-c=0,

g-3=-9a-32a-b+b-c=0,

解得a=1,b=5,c=5,

2

x+5x+5

所以f(x)=x.

e

因为f(x)的单调增区间是(-3,0),单调减区间是(-∞,-3),(0,+∞),

所以f(0)=5为函数f(x)的极大值,

故f(x)在区间[-5,+∞)上的最大值取f(-5)和f(0)中的最大者.

5

5>5=f(0),所以函数f(x)在区间[-5,+∞)上的最大值是5e5.

而f(-5)=-5=5e

e

[针对训练]

已知函数f(x)=x时,

3+ax2+bx+c,曲线

y=f(x)在点x=1处的切线为l:3x-y+1=0,若x=2

3 y=f(x)有极值.

(1)求a,b,c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小

值.解:(1)由f(x)=x

3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得

2a+b=0,①

2

当x=时,y=f(x)有极值,则f′3 2

3=0,可得4a+3b+4=0,②

由①②,解得a=2,b=-4.由于切点的横坐标为1,

所以f(1)=4.所以1+a+b+c=4.所以c=5.

3+2x2-4x+5,f′(x)=3x2+4x-4.令f′(x)=0,解之,得x

1=-2,x2

(2)由(1),可得f(x)=x

2

3.

当x变化时,f′(x),f(x)的取值及变化情况如下表所示

x-3(-3,-2)-2-2,2

3

2

3

2

,11

3

f′(x)++0-0++

f(x)813 95 274

所以y=f(x)在[-3,1]上的最大值为13,最小值为95 4.

考点七:利用导数研究恒成立问题及参数求解

[典例](2013全·国卷Ⅰ)设函数f(x)=x

2+ax+b,g(x)=e x(cx+d).若曲线

y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.

y=f(x)和曲线

(1)求a,b,c,d的值;

(2)若x≥-2时,f(x)≤kg(x),求k的取值范围

[解](1)由已知得f(0)=2,g(0)=2,

f′(0)=4,g′(0)=4.

x(cx+d+c),故b=2,d=2,a=4,d+c=4.

而f′(x)=2x+a,g′(x)=e

从而a=4,b=2,c=2,d=2.

2+4x+2,g(x)=2e x(x+1).

(2)由(1)知,f(x)=x

x(x+1)-x2-4x-2,设函数F(x)=kg(x)-f(x)=2ke

xx

则F′(x)=2ke(x+2)-2x-4=2(x+2)(ke-1).

由题设可得F(0)≥0,即k≥1.

令F′(x)=0得x1=-lnk,x2=-2.

2

(ⅰ)若1≤k<e,则-2<x1≤0.从而当x∈(-2,x1)时,F′(x)<0;当x∈(x1,+∞)时,F′(x)>0,即F(x)在(-2,x1)上单调递减,在(x1,+∞)上单调递增,故F(x)在[-2,+∞)上的最小值为

2

F(x1).而F(x1)=2x1+2-x1-4x1-2=-x1(x1+2)≥0.

故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.

2,则F′(x)=2e2(x+2)(e x-e-2).从而当x>-2时,F′(x)>0,即F(x)在(-2,

(ⅱ)若k=e

+∞)上单调递增,

而F(-2)=0,故当x≥-2时,F(x)≥0,即f(x)≤kg(x)恒成立.

2,则F(-2)=-2ke-2+2=-2e-2〃(k-e2)<0.从而当x≥-2时,f(x)≤kg(x)不可

(ⅲ)若k>e

能恒成立.

综上,k的取值范围是[1,e2].

[针对训练]

1

设函数f(x)=

2x

2+e x-xe x.

(1)求f(x)的单调区间;

(2)若当x∈[-2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.

解:(1)函数f(x)的定义域为(-∞,+∞),

∵f′(x)=x+e

x-(e x+xe x)=x(1-e x),

x

若x=0,则f′(x)=0;若x<0,则1-e>0,所以f′(x)<0;

x<0,所以f′(x)<0.∴f(x)在(-∞,+∞)上为减函数,

若x>0,则1-e

即f(x)的单调减区间为(-∞,+∞).

(2)由(1)知,f(x)在[-2,2]上单调递减.

故[f(x)]min=f(2)=2-e

2,∴m<2-e2时,不等式

f(x)>m恒成立.

2).故m的取值范围为(-∞,2-e

考点八、利用导数证明不等式问题

[针对训练]

1

2-1

(2014·东北三校联考)已知函数f(x)=2x3ax

3(a>0),函数g(x)=f(x)+e x(x-1),函数g(x)的导

函数为g′(x).

(1)求函数f(x)的极值;

(2)若a=e,

(ⅰ)求函数g(x)的单调区间;

g′(x)≥1+lnx恒成立.

(ⅱ)求证:x>0时,不等式

解:(1)f′(x)=x-axa,

2=-axx-1

1

∴当f′(x)=0时,x=0或x=,又a>0,

a

1

a

∴当x∈(-∞,0)时,f′(x)<0;当x∈0,

1

f′(x)>0;当x∈,+∞时,f′(x)<0,

a

∴f(x)的极小值为f(0)=0,

时,

f(x)的极大值为f 1

a

1

2.

6a

12-1

3+e x(x-1),g′(x)=x(e x-ex+1).(2)∵a=e,∴g(x)=

2x3ex

x-ex+1,则h′(x)=e x-e,

(ⅰ)记h(x)=e

当x∈(-∞,1)时,h′(x)<0,h(x)是减函数;x∈(1,+∞)时,h′(x)>0,h(x)是增函数,

∴h(x)≥h(1)=1>0,则在(0,+∞)上,g′(x)>0;在(-∞,0)上,g′(x)<0,∴函数g(x)的单调递增区间是(0,+∞),单调递减区间

是(-∞,0).

xx

(ⅱ)证明:

x>0时,g′(x)=x(e-ex+1)≥1+lnx?e-ex+1≥由(ⅰ)知,h(x)=e x-ex+1≥1,

x-ex+1≥1,1+lnx

x

1-x

记φ(x)=1+lnx-x(x>0),则φ′(x)=,在区间

(0,1)上,φ′(x)>0,φ(x)是增函数;

x

在区间

(1,+∞)上,φ′(x)<0,φ(x)是减函数,

∴φ(x)≤φ(1)=0,即1+lnx-x≤0,1+lnx

≤1,x

∴e x-ex+1≥1≥x-ex+1≥1≥1+lnx

,即g′(x)≥1+lnx恒成立.x

高二数学必考知识点归纳整理5篇

高二数学必考知识点归纳整理5篇 学习高中数学知识点的时候需要讲究方法和技巧,更要学会对高中数学知识点进行归纳整理。 高二数学知识点总结1 一、随机事件 主要掌握好(三四五) (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。 (2)四种运算律:交换律、结合律、分配律、德莫根律。 (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。 二、概率定义 (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率;(2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算; (4)公理化定义:满足三条公理的任何从样本空间的子集集合到

[0,1]的映射。 三、概率性质与公式 (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B 互不相容,则P(A+B)=P(A)+P(B); (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则P(A-B)=P(A)-P(B); (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B); (4)全概率公式:P(B)=∑P(Ai)P(B与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式. 高二数学知识点总结2 空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变; ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。 柱体、锥体、台体的表面积与体积

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

高二数学导数知识要点总结

高二数学《导数》知识要点总结 导数:导数的意义-导数公式-导数应用 1、导数的定义:在点处的导数记作. 2.导数的几何物理意义:曲线在点处切线的斜率 ①k=f/表示过曲线y=f上P)切线斜率。V=s/表示即时速度。a=v/表示加速度。 3.常见函数的导数公式:①;②;③; ⑤;⑥;⑦;⑧。 4.导数的四则运算法则: 5.导数的应用: 利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数; 注意:如果已知为减函数求字母取值范围,那么不等式恒成立。 求极值的步骤: ①求导数;

②求方程的根; ③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值; 求可导函数最大值与最小值的步骤: ⅰ求的根;ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。 导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧! 导数是微积分中的重要基础概念。当函数y=f 的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'或df/dx。 导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线

斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。 对于可导的函数f,x↦f'也是一个函数,称作f的导函数。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也于极限的四则运算法则。反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的操作,它们都是微积分学中最为基础的概念。 设函数y=f在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,也在该邻域内时,相应地函数取得增量Δy=f-f;如果Δy与Δx之比当Δx →0时极限存在,则称函数y=f在点x0处可导,并称这个极限为函数y=f在点x0处的导数记为f',也记作y'│x=x0或dy/dx│x=x0

高中数学知识点总结(精华版)

高中数学知识点总结 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1 个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

(完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试(一) 时间:120分钟总分:150分 一、选择题(每小题5分,共60分) 1 .函数f(x)= x sinx 的导数为( A. f ‘ (x) = 2 x sinx + . x cosx 2. 若曲线y = x 2 + ax + b 在点(0, b)处的切线方程是x — y +1 = 0, 则() A . a = 1, b = 1 B . a =— 1, b = 1 C . a = 1, b =— 1 D . a =— 1, b =— 1 3. 设 f(x) = xlnx ,若 f ‘(x o )= 2,则 x 0 =( ) In2 A . e 2 B . e C^^ D . ln2 4. 已知 f(x) = x 2 + 2xf ‘ (1),贝S f ‘ (0)等于( ) B . f ‘ (x) = 2 x sinx — x cosx , sinx 厂 C . f (x)= 2 x + x cosx D . f ‘ sinx 厂 (x)= 2 x — x cosx 1 -3 -3

6. 如图是函数y= f(x)的导函数的图象,给出下面四个判断:

①f(x)在区间[—2,—1]上是增函数; ②x=—1是f(x)的极小值点; ③f(x)在区间[—1,2]上是增函数,在区间[2,4]上是减函数; ④x= 2是f(x)的极小值点. 其中,所有正确判断的序号是() A .①② B .②③C.③④ D .①②③④ 7. 对任意的x€ R,函数f(x) = x3+ ax2+ 7ax不存在极值点的充要条件是() A. O w a w 21 B. a= 0 或a = 7 C. a<0 或a>21 D. a= 0 或a= 21 8某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q= 8 300—170P—P2,则最大毛利润为(毛利润 =销售收入—进货支出)() A . 30 元B. 60 元C. 28 000元D. 23 000 元 x 9. 函数f(x) = —g(a

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高二数学导数测试题(经典版)

1 / 4 一、选择题(每小题5分,共70分.每小题只有一项是符合要求的) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2.已知物体的运动方程是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0的时刻是( ). A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ). A B . C .23 D .23 或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ). A .[0,]π B .2[0,)[,)23 ππ π C .2[,)3ππ D .2[0,)(,)223 πππ 5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( 3 x ). C .(3,)-+∞ D .(,3)-∞- 7.已知函数32 ()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小 值分别为( ). A .427 ,0 B .0,427 C .427- ,0 D .0,4 27 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形的面积是( ). A. 415 B.417 C.2ln 21 D.2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ).

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高二数学导数知识点总结

高二数学《导数》知识点总结 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f-f,发现的因子E就是我们所说的导数f'。 二、17世纪----广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。 三、19世纪导数----逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim。1823年

柯西在他的《无穷小分析概论》中定义导数如果函数y=f在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε-δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。 四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。 一、早期导数概念----特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f-f,发现

高二数学知识点总结大大全(必修)

高二数学会考知识点总结大全(必修) 第1章空间几何体1 1 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图 11 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则: 长对齐、高对齐、宽相等 33直观图:斜二测画法 44斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于y轴的线长度变半,平行于x,z轴的线长度不变;(3).画法要写好。 5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一)空间几何体的表面积 1棱柱、棱锥的表面积:各个面面积之和2 圆柱的表面积 3 圆锥的表面积2r rl Sπ π+ = 4 圆台的表面积2 2R Rl r rl Sπ π π π+ + + = 5 球的表面积2 4R Sπ = (二)空间几何体的体积 1柱体的体积h S V? = 底 2锥体的体积h S V? = 底 3 1 3台体的体积h S S S S V? + + =) 3 1 下 下 上 上 ( 4球体的体积3 3 4 R Vπ = 第二章直线与平面的位置关系 2.1空间点、直线、平面之间的位置关系 2.1.1 1 平面含义:平面是无限延展的 2 平面的画法及表示 (1)平面的画法:水平放置的平面通常画成 一个平行四边形,锐角画成450,且横边画成 邻边的2倍长(如图) (2)平面通常用希腊字母α、β、γ等表示, 如平面α、平面β等,也可以用表示平面的平 行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 2 2 2r rl Sπ π+ = D C B A α

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项是符合要求的) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2.已知物体的运动方程是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0的时刻是( ). A .0秒、2秒或4秒 B .0秒、2秒或16秒 C .2秒、8秒或16秒 D .0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处的切线互相垂直,则0x 等于( ). A B . C .23 D .23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( ). A .[0,]π B .2[0,)[,)23 ππ π C .2[,)3ππ D .2[0,)(,)223πππ 5.设'()f x 是函数()f x 的导数,'()y f x =的图像如图 所示,则()y f x =的图像最有可能的是( ). 6.函数3 ( )2f x x ax =+-在区间[1,) +∞内是增函数,则实数a 的取值范围是( ). A .[3,)+∞ B .[3,)-+∞ C .(3,)-+∞ D .(,3)-∞- 7.已知函数3 2 ()f x x px qx =--的图像与x 轴切于点(1,0),则()f x 的极大值、极小值分别为( ). '()f x

A . 427 ,0 B .0,427 C .427- ,0 D .0,4 27 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形的面积是( ). A. 415 B. 4 17 C. 2ln 21 D. 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A .01b << B .1b < C .0b > D .12 b < 10.21y ax =+的图像与直线y x =相切,则a 的值为( ). A .18 B .14 C .1 2 D .1 11. 已知函数()x x x f cos sin +=,则=)4 ('π f ( ) A. 2 B.0 C. 22 D. 2- 12.函数3 ()128f x x x =-+在区间[3,3]-上的最大值是( ) A. 32 B. 16 C. 24 D. 17 13.已知 (m 为常数)在 上有最大值3,那么此函数在 上的最小值为 ( ) A . B . C . D . 14.dx e e x x ? -+1 0)(= ( ) A .e e 1 + B .2e C . e 2 D .e e 1- 二、填空题(每小题5分,共30分) 15.由定积分的几何意义可知? --2 22 4x =_________. 16.函数 )0(ln )(>=x x x x f 的单调递增区间是 . 17.已知函数()ln f x ax x =-,若()1f x >在区间(1,)+∞内恒成立,则实数a 的范围为______________. 18.设 是偶函数,若曲线 在点 处的切线的斜率为1,则该曲线在 处的切线的斜率为_________.

高中数学知识点总结精华版

高中数学必修+选修知识点归纳 新课标人教A版

一、集合 1、 把研究的对象统称为元素,把一些元素组成的总 体叫做集合。集合三要素:确定性、互异性、无 序性。 2、 只要构成两个集合的元素是一样的,就称这两个 集合相等。 3、 常见集合:正整数集合:*N 或+N ,整数集合: Z ,有理数集合:Q ,实数集合:R . 4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系 1、 一般地,对于两个集合A 、B ,如果集合A 中任 意一个元素都是集合B 中的元素,则称集合A 是 集合B 的子集。记作B A ?. 2、 如果集合B A ?,但存在元素B x ∈,且A x ?, 则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:?.并规定: 空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n 2个子 集,21n -个真子集. §1.1.3、集合间的基本运算 1、 一般地,由所有属于集合A 或集合B 的元素组成 的集合,称为集合A 与B 的并集.记作:B A Y . 2、 一般地,由属于集合A 且属于集合B 的所有元素 组成的集合,称为A 与B 的交集.记作:B A I . 3、全集、补集?{|,}U C A x x U x U =∈?且 §1.2.1、函数的概念 1、 设A 、B 是非空的数集,如果按照某种确定的对应 关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,. 2、 一个函数的构成要素为:定义域、对应关系、值 域.如果两个函数的定义域相同,并且对应关系完 全一致,则称这两个函数相等. §1.2.2、函数的表示法 1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法: (1)定义法:设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. 步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则: ()()21x f x f -=… (2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性 1、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f =-,那么就称函数()x f 为 偶函数.偶函数图象关于y 轴对称. 2、 一般地,如果对于函数()x f 的定义域内任意一个 x ,都有()()x f x f -=-,那么就称函数()x f 为 奇函数.奇函数图象关于原点对称. 知识链接:函数与导数 1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在 ))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方 程是))((000x x x f y y -'=-. 2、几种常见函数的导数 ①' C 0=;②1 ' )(-=n n nx x ;

高二数学函数的单调性与导数测试题

选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是() A.b2-4ac>0B.b>0,c>0 C.b=0,c>0 D.b2-3ac<0 [答案] D [解析]∵a>0,f(x)为增函数, ∴f′(x)=3ax2+2bx+c>0恒成立, ∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0. 2.(2009·广东文,8)函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) [答案] D [解析]考查导数的简单应用. f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x, 令f′(x)>0,解得x>2,故选D. 3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+∞) B.(-∞,2] C.(-∞,-1)和(1,2) D.[2,+∞) [答案] B [解析]令k≤0得x0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2]. 4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)

的导函数),下面四个图象中,y =f (x )的图象大致是( ) [答案] C [解析] 当01时xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此否定A 、B 、D 故选C. 5.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( ) A.? ????-π,-π2和? ?? ??0,π2 B.? ????-π2,0和? ?? ??0,π2 C.? ????-π,-π2和? ?? ??π2,π D.? ????-π20和? ?? ??π2,π

高二数学选修2-2导数的计算

导数的计算 教学目标:1、能根据导数的定义推导部分基本初等函数的导数公式; 2、能利用导数公式求简单函数的导数。 教学重难点: 能利用导数公式求简单函数的导数,基本初等函数的导数公式的应用 一、 用定义计算导数 问题1:如何求函数()y f x c ==的导数? 2.求函数()y f x x ==的导数 3.函数2()y f x x ==的导数 4.函数1()y f x x == 的导数 5 .函数y = 二 1.基本初等函数的导数公式表 分几类 1、幂函数 2.三角函数 3指数函数 4.对数函数 补充 1 ()f x x = '21 ()f x x =- ( )f x = '()f x =

2公式的应用 典型题一、求导数 A x y x y x y x y y x y cos )6(log )5(ln )4(1)3(5 )2()1(125==== ==、求下列函数的导数 例 思考 求()f x '的方法有哪些? 3.导数的四则运算法则: 问题 ln x x ?如何求? 推论:[]''()()cf x cf x = 提示:积法则,商法则, 都是 前导后不导, 前不导后导, 但积法则中间是加 号, 商法则中间是减号.。 常见错误:[]'''()()()()f x g x f x g x ?= ' ''()()(()0)()()f x f x g x g x g x ??=≠???? 典型题二、导数的四则运算法则 例题3根据基本初等函数的导数公式和导数运算法则,求下列函数的导数. (1)323y x x =-+

(2)sin y x x =?; (3)2(251)x y x x e =-+?; (4)cos x y x lnx =- A 变式练习1 1y x x =+ sin (cos )x y x x e =- cos x y x = +lnx 2sin y x x = sin cos x y x = A 变式2.求下列函数的导数 (1)y=23x +3cosx, (2)y=(1+2x)(2x-3) (3)y=sin x x (4)y=2 ln 1x x + A 变式3.已知f (x )=xcosx ﹣sinx ,则f′(x )=( ) 解:∵f (x )=xcosx ﹣sinx , ∴f ′(x )=cosx ﹣xsinx ﹣cosx=﹣xsinx , 已知函数f (x )=2 x lnx ,则f′(x )等于( ) 函数y=e x sinx 的导数等于( ) A . e x cosx B . e x sinx C . ﹣e x cosx D . e x (sinx+cosx ) 分析: 利用导数乘法法则进行计算,其中(e x )′=e x ,sin ′x=cosx . 解答: 解:∵y=e x sinx , ∴y ′=(e x )′sinx+(e x )?(sinx )′ =e x sinx+e x cosx

2020最新高二数学知识点归纳总结5篇精选

2020最新高二数学知识点归纳总结5篇精选高中学生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。下面就是我给大家带来的高二数学知识点总结,希望能帮助到大家! 高二数学知识点(一) 第一章:集合和函数的基本概念,错误基本都集中在空集这一概念上,而每次考试基本都会在选填题上涉及这一概念,一个不小心就是五分没了。次一级的知识点就是集合的韦恩图,会画图,集合的“并、补、交、非”也就解决了,还有函数的定义域和函数的单调性、增减性的概念,这些都是函数的基础而且不难理解。在第一轮复习中一定要反复去记这些概念,的方法是写在笔记本上,每天至少看上一遍。 第二章:基本初等函数:指数、对数、幂函数三大函数的运算性质及图像。函数的几大要素和相关考点基本都在函数图像上有所体现,单调性、增减性、极值、零点等等。关于这三大函数的运算公式,多记多用,多做一点练习基本就没多大问题。函数图像是这一章的重难点,而且图像问题是不能靠记忆的,必须要理解,要会熟练的画出函数图像,定义域、值域、零点等等。对于幂函数还要搞清楚当指数幂大于一和小于一时图像的不同及函数值的大小关系,这也是常考常错点。另外指数函数和对数函数的对立关系及其相互之间要怎样转化问题也要了解清楚。 第三章:函数的应用。主要就是函数与方程的结合。其实就是的实根,即函

数的零点,也就是函数图像与X轴的交点。这三者之间的转化关系是这一章的重点,要学会在这三者之间的灵活转化,以求能最简单的解决问题。关于证明零点的方法,直接计算加得必有零点,连续函数在x轴上方下方有定义则有零点等等,这是这一章的难点,这几种证明方法都要记得,多练习强化。这二次函数的零点的Δ判别法,这个倒不算难。 高二数学知识点(二) 第一章:三角函数。考试必考题。诱导公式和基本三角函数图像的一些性质只要记住会画图就行,难度在于三角函数形函数的振幅、频率、周期、相位、初相,及根据最值计算A、B的值和周期,及等变化时图像及性质的变化,这一知识点内容较多,需要多花时间,首先要记忆,其次要多做题强化练习,只要能踏踏实实去做,也不难掌握,毕竟不存在理解上的难度。 第二章:平面向量。个人觉得这一章难度较大,这也是我掌握最差的一章。向量的运算性质及三角形法则平行四边形法则难度都不大,只要在计算的时候记住要同起点的向量。向量共线和垂直的数学表达,这是计算当中经常要用的公式。向量的共线定理、基本定理、数量积公式。难点在于分点坐标公式,首先要准确记忆。向量在考试过程一般不会单独出现,常常是作为解题要用的工具出现,用向量时要首先找出合适的向量,个人认为这个比较难,常常找不对。有同样情况的同学建议多看有关题的图形。 第三章:三角恒等变换。这一章公式特别多。和差倍半角公式都是会用到的公式,所以必须要记牢。由于量比较大,记忆难度大,所以建议用纸写之后贴在桌子上,天天都要看。而且的三角函数变换都有一定的规律,记忆的时候可以结合起来去记。除此之外,就是多练习。要从多练习中找到变换的规律,比如一般

(完整版)高二数学选修2-2导数单元测试题(有答案)

导数复习 一.选择题 (1) 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (3) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (4) 函数,93)(2 3-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的 个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 .10设函数()1 x a f x x -= -,集合M={|()0}x f x <,P=' {|()0}x f x >,若 M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1 D.2 14.经过原点且与曲线y =5 9++x x 相切的方程是( ) A.x +y =0或25 x +y =0 B.x -y =0或25 x +y =0 C.x +y =0或 25 x -y =0 D.x -y =0或 25 x -y =0 15.设f (x )可导,且f ′(0)=0,又x x f x )(lim 0 '→=-1,则 f (0)( ) A.可能不是f (x )的极值 B.一定是f (x )的极值 C.一定是f (x )的极小值 D.等于0 16.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0 B.1 C.n n )221(+- D.1)2 ( 4++n n n 17、函数y=(x 2-1)3+1在x=-1处( ) A 、 有极大值 B 、无极值 C 、有极小值 D 、无法确定极值情况 18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( ) A 、3 10 B 、3 13 C 、3 16 D 、3 19 19.过抛物线y=x 2 上的点M (4 1,21)的切线的倾斜角是( ) A 、300 B 、450 C 、600 D 、900 20.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( ) a b x y ) (x f y ?=O

相关主题