搜档网
当前位置:搜档网 › 电动机单相运行分析及预防

电动机单相运行分析及预防

电动机单相运行分析及预防
电动机单相运行分析及预防

电动机单相运行分析及预防

发表时间:2012-07-17T14:34:29.823Z 来源:《赤子》2012年第10期供稿作者:王宝成邓福勇

[导读] 本文根据自己多年的工作实际和有关资料,现提出预防电动机单相运行的措施。

王宝成邓福勇(牡丹江市佳日热电有限公司,黑龙江牡丹江 157013)

摘要:在现代工业生产中,电动机的应用非常广泛,但是在生产当中电动机因缺相运行而造成烧毁的事故在生产中占有很大的比例,怎样减少这些问题的出现,全面提高电动机的使用效率,是一个值得认真思考的问题,本文根据自己多年的工作实际和有关资料,现提出预防电动机单相运行的措施,仅供参考,不足之处,请提出宝贵意见。

关键词:电动机;单相运行原因;预防措施

1 电动机单相运行产生的原因及预防措施

1.1 熔断器熔断

(1)故障熔断:主要是由于电机主回路单相接地或相间短路而造成熔断器熔断。

预防措施:选择适应周围环境条件的电动机和正确安装的低压电器及线路,并要定期加以检查,加强日常维护保养工作,及时排除各种隐患。

(2)非故障性熔断:主要是熔体容量选择不当,容量偏小,在启动电动机时,受启动电流的冲击,熔断器发生熔断。

熔断器非故障性熔断是可以避免的,不要片面认为在能躲过电机的启动电流的情况下,熔体的容量尽量选择小一些的,这样才能够保护电机。我们要明确一点那就是熔断器只能保护电动机的单相接地和相间短路事故,它绝不能作为电动机的过负荷保护。

1.2 正确选择熔体的容量

一般熔体额定电流选择的公式为:

额定电流=K×电动机的额定电流

(1)耐热容量较大的熔断器(有填料式的)K值可选择1.5~2.5。

(2)耐热容量较小的熔断器K值可选择4~6。

对于电动机所带的负荷不同,K值也相应不同,如电动机直接带动风机,那么K值可选择大一些,如电动机的负荷不大,K值可选择小一些,具体情况视电机所带的负荷来决定。

此外,熔断器的熔体和熔座之间必需接触良好,否则会引起接触处发热,使熔体受外热而造成非故障性熔断。

在安装电动机的过程中,应采用恰当的接线方式和正确的维护方法。

(1)对于铜、铝连接尽可能使用铜铝过渡接头,如没有铜铝接头,可在铜接头出挂锡进行连接。

(2)对于容量较大的插入式熔断器,在接线处可加垫薄铜片(0.2mm),这样的效果会更好一些。

(3)检查、调整熔体和熔座间的接触压力。

(4)接线时避免损伤熔丝,紧固要适中,接线处要加垫弹簧垫圈。

1.3 主回路方面易出现的故障

(1)接触器的动静触头接触不良。

其主要原因是:接触器选择不当,触头的灭弧能力小,使动静触头粘在一起,三相触头动作不同步,造成缺相运行。

预防措施:选择比较适合的接触器。

(2)使用环境恶劣如潮湿、振动、有腐蚀性气体和散热条件差等,造成触头损坏或接线氧化,接触不良而造成缺相运行。预防措施:选择满足环境要求的电气元件,防护措施要得当,强制改善周围环境,定期更换元器件。

(3)不定期检查,接触器触头磨损严重,表面凸凹不平,使接触压力不足而造成缺相运行。

预防措施:根据实际情况,确定合理的检查维护周期,进行严细认真的维护工作。

(4)热继电器选择不当,使热继电器的双金属片烧断,造成缺相运行。

预防措施:选择合适的热继电器,尽量避免过负荷现象。

(5)安装不当,造成导线断线或导线受外力损伤而断相。

预防措施:在导线和电缆的施工过程中,要严格执行“规范”严细认真,文明施工。

(6)电器元件质量不合格,容量达不到标称的容量,造成触点损坏、粘死等不正常的现象。

预防措施:选择适合的元器件,安装前应进行认真的检查。

(7)电动机本身质量不好,线圈绕组焊接不良或脱焊;引线与线圈接触不良。

预防措施:选择质量较好的电动机。

2 单相运行的分析和维护

根据电动机接线方式的不同,在不同负载下,发生单相运行的电流也不同,因此,采取的保护方式也不同。

例如:Y型接线的电动机发生单相运行时,其电机相电流等于线电流,其大小与电动机所带的负载有关。

当△型接线的电动机内部断线时,电动机变成∨型接线,相电流和线电流均与电动机负载成比例增长,在额定电流负载下,两相相电流应增大1.5倍,一相线电流增加到1.5倍,其它两相线电流增加√3/2倍。

当△型接线的电动机外部断线时,此时电动机两相绕组串联后与第三组绕组并联接于两相电压之间,线电流等于绕组并联之路电流之和,与电动机负荷成比例增长,在额定负载情况下,线电流增大3/2倍,串接的两绕组电流不变,另外一相电流将增大1/2倍。在轻载情况下,线电流从轻电流增加到额定电流,接两相绕组电流保持轻载电流不变,第三相电流约增加1.2倍左右。

所以角型接线的电动机在单相运行时,其线电流和相电流不但随断线处的不同发生变化,而且还根据负载不同发生变化。综上所述,造成电动机单相运行的原因无非是以下的几种原因造成的:

(1)环境恶劣或某种原因造成一相电源断相。

(2)保险非正常性熔断。

同步电动机经常出现的故障及原因分析通用版

解决方案编号:YTO-FS-PD944 同步电动机经常出现的故障及原因分 析通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

同步电动机经常出现的故障及原因 分析通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 经常发现的故障现象有: ①定子铁芯松动,运行中噪声大。 ②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。 ③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。 ④转子线圈绝缘损伤,起动绕组笼条断裂。 ⑤转子磁极的燕尾楔松动、退出。 ⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄

大型高压同步电动机

大型高压同步电动机,由于其具有一系列优点,特别是能向电网发送无功功率,改善电网质量,在各行各业得到广泛应用。我公司球磨机用同步电动机曾在一段时期内频繁损坏,直接影响到我公司的生产和设备的安全运行。因此正确分析判断同步电机的故障原因,并提出相应对策,就成了我们的当务之急。 一、事故征象 我公司现有16台1300KW/6KV同步电动机。在2000年以前平均每年要出现2~3次电机烧损的事故。其事故主要征象为:定子绕组端部绑线崩断,电机定子绕组过热,起动绕组笼条开焊、断裂,电机起动及运行中出现异常声响,经常启动失败等现象。 尤其是在1999年1月12日我公司7#同步电动机运行过程中突然放炮,造成7#同步电动机定子线圈局部严重烧坏,高压电缆接头烧损,电流互感器崩坏,由于7#同步机脱扣装置拒动,保护不能正常动作,持续大电流引起密地变电所密27选Ⅱ线保护动作跳闸,影响到选Ⅱ所带其它用电设备停机。 二、事故原因的基本判断分析 1、电机质量分析: 电机的正常使用寿命一般应在20年左右。统计我公司所损坏的同步电动机,运行寿命大多在10年以下,尤其是这台7#同步电动机大修后,投运仅4个月便出现了这次放炮烧损事故。 在事故分析中,部分电气技术人员将事故的主要原因归结到电机的大修上。这种大面积的电机损害事故,将事故原因归结到电机质量上,我对此提出异议。建议将视线转移到对励磁系统的分析上;事实证明,电机修理厂在电机返修中对其重点部位进行了种种加强措施,甚至于提高了绝缘等级,但效果并不显著。损坏事故仍不断出现。 2、励磁系统原因分析: 针对同步电动机起动运行过程中发生异常声响、电机定子绕组过热、起动绕组笼条开焊、断裂等诸多现象,在排除电机质量原因引起事故的条件下,有必要对现行的励磁系统进行合理的分析,从而找出电机频繁损坏的真正原因:励磁系统设计不合理。 三、励磁系统存在的主要问题与电机故障原因的内在联系 1、励磁装置起动回路设计不合理,使同步电机经常处在脉振情形下起动。 原主电路为桥式半控励磁装置,其原理图如图1所示。 电机在起动过程中,在转子线圈内将感应一交变电势,其正半波通过ZQ形成回路,产生+if;而其负半波则通过KQ及RF形成回路,产生-if。由于负载电路不对称,形成+if与-if 电流不对称,if曲线如图2所示。电机定子电流因此也产生强烈脉振,其曲线如图3。电机因而遭受到脉振转矩的强烈振动。造成整个厂房大厅内都可以听到电机起动过程发出的强烈振动声。这种声音一直持续到电机起动结束才消失。

电动机系统节能技术

电动机系统节能技术 电动机系统节能技术概述 电动机节能概念: 主要包括更新淘汰低效电动机及高耗电设备;节能电动机概念和技术,合理匹配电动机系统,提高电动机效率;以先进的电力电子技术传动方式改造传统的机械方式,实现被拖动装置控制和设备制造;推广软启动装置、无功补偿装置、计算机自动控制系统技术、优化电动机系统的运行和控制。 高效电动机: 高效电动机(YX、YX 等系列)通常指高效率三相异步电动机。效率水平能达到或超过电动机能效国家标准(GB18613-2002)所规定的节能评价值的电动机。 电动机能效国家标准: 电动机能效国家标准是“中小型三相异步电动机能效限定值及节能评价值”,国标号为GB18613-2002。由国家质量监督检验检疫总局于2002年1月10日发布,2002年8月1日实施。能效限定值是电动机最低效率允许值,是强制性指标;节能评价值是高效电动机的认

定值,是推荐性指标。 高效电动机节能效果: 高效电动机与普通电动机相比,优化了总体设计,选用了高质量的铜绕组和硅钢片,降低了各种损耗,损耗下降了20%-30%,效率提高2%-7%;投资回收期一般为1-2年,有的短至几个月。 (54)YX2型高效节能电动机 为了节约能源和保证企业的连续安全生产,要求企业装有的电动机均应处于合理、经济运行状态,即电动机在运行中要有高的效率和功率因数,且使用寿命长,性能良好,安全可靠。 但实际运行中的电动机等设备,绝大多数不能满足上述要求。以我油田采油三厂为例,在增压注水系统中运行的电动机,绝大多数存在着匹配不合理、选用电动机容量裕度过大等问题,便“大马拉小车”的现象十分突出,造成电能大量浪费。其原因既有电机设计,制造方面的问题,又有以往在电动机的选用上,忽视了设备的运行经济指标,使电动机的运行效率和功率因数偏低所致。为了改变这一状况,现积极采用高效节能电动机。下面以南阳防爆电机厂新开发设计的

同步电动机的起动分析

同步电动机的起动 1.同步电机的基本原理 同步发电机和其它类型的旋转电机一样,由固定的定子和可旋转的转子两大部分组成。一般分为转场式同步电机和转枢式同步电机。 图1.1给出了最常用的转场式同步发电机的结构模型,其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。 转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主磁场、转子磁场) 气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。 除了转场式同步电机外,还有转枢式同步电机,其磁极安装于定子上,而交流绕组分布于转子表面的槽内,这种同步电机的转子充当了电枢。图中用AX、BY、CZ三个在空间错开120 分布的线圈代表三相对称交流绕组。 图1.1同步电机结构模型 1.1工作原理 主磁场的建立:励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主

磁场。 载流导体:三相对称的电枢绕组充当功率绕组,成为感应电势或者感应电流的载体。 切割运动:原动机拖动转子旋转(给电机输入机械能),极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组(相当于绕组的导体反向切割励磁磁场)。 交变电势的产生:由于电枢绕组与主磁场之间的相对切割运动,电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势。通过引出线,即可提供交流电源。 感应电势有效值:每相感应电势的有效值为E0 =4.44fNψ Φ 感应电势频率:感应电势的频率决定于同步电机的转速n和极对数p ,即 f=pn/60 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电枢绕组的对称性,保证了感应电势的三相对称性。 1.2同步转速 同步转速从供电品质考虑,由众多同步发电机并联构成的交流电网的频率应该是一个不变的值,这就要求发电机的频率应该和电网的频率一致。我国电网的频率为50Hz ,故有: n=60f/p=3000/p 要使得发电机供给电网50Hz的工频电能,发电机的转速必须为某些固定值,这些固定值称为同步转速。例如2极电机的同步转速为3000r/min,4极电机的同步转速为1500r/min,依次类推。只有运行于同步转速,同步电机才能正常运行,这也是同步电机名称的由来。 1.3运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。 分析表明,同步电机运行于哪一种状态,主要取决于定子合成磁场与转子主极磁场之间的夹角δ,δ称为功率角。

同步电动机经常出现的故障及原因分析

同步电动机经常出现的故障及原因分析 经常发现的故障现象有:①定子铁芯松动,运行中噪声大。②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。④转子线圈绝缘损伤,起动绕组笼条断裂。⑤转子磁极的燕尾楔松动、退出。⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 2 传统励磁技术存在的缺陷 2.1 励磁装置起动回路及环节设计不合理 同步电动机励磁装置主回路中的主桥分为:全控桥式和半控桥式,下面分别以这两种方式分析。 ①半控桥式励磁装置:由三只大功率晶闸管和一只大功率二极管组成,如图1所示。电动机在起动过程中,存在滑差,在转子线圈内将感应-交变电势,其正半波通过ZQ形成回路,产生+if,其负半波则通过KQ,RF形成回路,产生-if,如图2所示,由于回路不对称,则形成的-if与+if也不对称,致使定子电流强烈脉动,波形如图3所示。使电动机因此而强烈振动,直到起动结束才消失。 ②全控桥工励磁装置:由6只大功率晶闸管组成,如图4所示。

在起动过程中,随着滑差减小,当转速达到50%以上时,励磁感应电流负半波通路时通时断,同样形成+if与-if电流不对称从而形成脉振转矩,造成电动机强烈振动。 ③投励时“转子位置角”不合理。无论是全控桥还是半控桥,电动机起动过程投励时,都产生 沉闷的冲击,这种冲击,同样会造成电机损害,这是“转子位置角”不合理所致。 以上所出现的脉振、投励时的冲击,并不一定一次性使电机损坏,但每次起动都会使电机产生疲劳,造成电机内部损害,积而久之,必然造成电机内部故障。 2.2 将GL型反时限继电器兼做失步保护 传流动磁装置将GL型继电器兼做失步保护,当电机失步时,它不能动作(如带风机类负载)或不及时动作(如带往复式压缩机类负载),使电动机或励磁装置损坏。 ①失励失步:是指同步电动机励磁绕组失去直流励磁或严重欠励磁,使同步电动机失去静态稳定,滑出同步,此时丢转不明显,负载基本不变,定子电流过流不大,电机无异常声音,GL型继电器往往拒动或动作时限加长,且失励失步值班人员-不易发现,待电动机冒烟时,已失步较长时间,已造成了电机或励磁装置损害。但不一定当场损坏电机,而是造成电机内部暗伤,经常出现电机冒烟后,停机检查又查不出毛病,电机还可以再投入运行。

保护

4.5 3~10 KV电动机的保护 4.5.1 设计规范对保护置要求 (1)对电压为3KV及以上的异步电动机和同步电动机的下列故障及异常运行方式,应装设相应的保护装置: 1)定子绕组相间短路; 2)定子绕组单相接地; 3)定子绕组过负荷; 4)定子绕组低电压; 5)同步电动机失步; 6)同步电动机失磁; 7)同步电动机出现非同步冲击电流。 (2)对电动机绕组及引出线的相间短路,装设相应的保护装置,应符合下列规定: 1)2MW以下的电动机,宜采用电流速断保护,保护装置宜采用两相式。 2)2MW及以上的电动机,或电流速断保护灵敏系数不符合要求的2MW以下电动机,应装设纵联差动保护。 3)保护装置应动作于跳闸。对于具有自动灭磁装置的同步电动机,保 护装置尚应动作于灭磁。 (3)对单相接的故障,当接地电流大于5A时,应装设有选择性的单相接地保护;当接地电流小于5A时可装设接地检测装置。 单相接地电流为10A及以上时保护装置动作于跳闸;单相接地电流为10A以下时,保护装置可动作于跳闸或信号。 (4)对电动机的过负荷应装设过负荷保护,并应符合下列规定:

1)生产过程中易发生过负荷的电动机应装设过负荷保护。保护装置应根据负荷特性,带时限作用于信号或跳闸。 2)起动或自起动困难、需要防止起动或自起动时间过长的电动机,应装设过负荷保护,保护装置应动作于跳闸。 (5)对母线电压短时降低或中断,应装设电动机低电压保护,并应符合下列规定: 1)当电源电压短时降低或短时中断后又恢复时,需要断开的次 要电动机和有备用自动投入机械的电动机,应装设低电压保护。 2)根据生产过程不允许或不需要自起动的电动机,应装设低电压保护 3)在电源电压长时间消失后须从电力网中自动断开的电动机,应装设低电压保护。 4)保护装置应动作于跳闸。 (6)对同步电动机失步,应装设失步保护。 失步保护带时限动作,对于重要电动机,动作于再同步控制回路;不能再同步或根据生产过程不需要再同步的电动机,应动作于跳闸。(7)对同步电动机失磁可引起母线电压严重降低,易装设专用失磁保护。失磁保护应带时限动作于跳闸。 (8)2MW及以上以及不允许非同步冲击的同步电动机,应装设防止电源短时中断在恢复时造成非同步冲击的保护。保护装置应确定保在电源恢复前动作。重要电动机的保护装置,应作用于再同步控制回路;不能再同步或根据生产过程不需要再同步的电动机,保护装置应动作于跳闸。 4.5.2 保护配置 3~10kV电动机的继电保护配置见表4—17

DB13_T2025-2014电动机系统变频调速节能改造规程

ICS03.080.01 A 12 DB13 河北省地方标准 DB 13/T 2025—2014 电动机系统变频调速节能改造规程 2014-07-07发布2014-07-31实施河北省质量技术监督局发布

DB13/T 2025—2014 前言 本标准按照GB/T 1.1-2009给出的规则起草。 本标准由石家庄市质量技术监督局提出。 本标准起草单位:河北玖翔节能技术有限公司、河北省冶金行业协会、石家庄经济学院、河北省产 品质量监督检验院、石家庄市节能监察中心。 本标准主要起草人:刘庆荣、焦辉广、王大勇、刘勇军、杨计延、陈俊芬、秦彭、于洋、刘东水、 王孟。

电动机系统变频调速节能改造规程 1 范围 本标准规定了电动机系统变频调速节能改造的总则、改造、验收与维护服务。 本标准适用于电动机系统变频调速节能改造项目。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 24915 合同能源管理技术通则 GB/T 13471-2008 节电技术经济效益计算与评价方法 GB 50168 电气装置安装工程 电缆线路施工及验收规范 GB/T 19012-2008质量管理 顾客满意 组织处理投诉指南 3 总则 3.1 基本原则 电动机系统节能改造应遵守国家法律法规及产业政策要求,执行国家、行业和地方相关技术标准的规定,遵循安全、环保、节能、适用的原则。 3.2 基本要求 3.2.1 节能改造单位应具备电动机系统能耗基准确定及测试能力,并与之相匹配的技术人员和检测仪器。 3.2.2 现场设备工况采集时须遵守用能企业相关安全操作规程。 4 改造 4.1 改造准备 4.1.1 确定改造意向 根据用能单位电动机系统的能耗管理现状、拟改造的节能项目需求,确定改造意向。 4.1.2 采集电动机系统设备工况 统计了解用能企业电动机系统的运行情况,采集各设备数据。采集数据时应以实测数据为主,同时采集额定数据及1年内运行记录。工况采集表参见附录A。 4.1.3 进行节能诊断 4.1.3.1 计算、分析采集数据,确定节能潜力。

电机系统节能改造

电机系统节能改造 一、概述 电机是一种应用量大、使用范围广的高耗能动力设备。据统计,我国的总装机容量约为4亿千瓦,年耗电量约为6000亿kwh,约占工业用电的70—80%。我国以中小型电机为主,约占80%,而中小型电机耗损的电量却占总损耗量的90%。电机在我国的实际应用中,同国外相比差距很大,机组效率为75%,比国外低10%;系统运行效率为30—40%,比国际先进水平低20—30%。因此在我国中小型电机具有极大的节能潜力,推行电机节能势在必行。 由于异步电机结构简单、制造方便、价格低廉、坚固耐用、运行可靠,可用于恶劣的环境等优点,在工农业生产中得到了广泛的应用。特别是对各行各业的泵类和风机的拖动上非彼莫属,因此,拖动泵类和风机的电机节能工作倍受重视。 随着科学技术的飞速发展,特别是电力电子技术、微电子技术、自动控制技术的高度发展和应用使变频器的节能效果更为显著。它不但能实现无级调速,而且在负载不同时,始终高效运行,有良好的动态特性,能实现高性能、高可靠性、高精度的自动控制。相对于其它调速方式(如:降压调速、变极调速、滑差调速、交流串级调速等),变频调速性能稳定、调速范围广、效率高,随着现代控制理论和电力电子技术的发展,交流变频调速技术日臻完善,它已成为交流电机调速的最新潮流。变频调速装置(变频器)已在工业领域得到广泛应用。 使用变频器调速信号传递快、控制系统时滞小、反应灵敏、调节系统控制精度高、使用方便、有利于提高产量、保证质量、降低生产成本,因而使用变频器是厂、矿企业节能降耗的首选产品。 变频电机节电器是一种革命性的新一代电机专用控制产品,基于微处

理器数字控制技术,通过其内置的专用节电优化控制软件,动态调整电机运行工程中的电压和电流,在不改变电机转速的条件下,保证电机的输出转矩与负荷需求精确匹配,从而有效避免电机因出力过度造成的电能浪费。 交流电动机是当前应用最广泛的电机,约占各类电动机总数的85%,它具有结构简单、价廉、不需维护等优点,但它的弱点是调速困难,因而在许多应用场合受到限制或借助机械方式来实现调速。 变频器就负载类型而言主要有两方面的典型应用:1、恒转矩应用;2、变转矩应用。就应用的目的而言主要有:1、以改进工艺为主要目的,确保工艺过程中的最佳转速、不同负载下的最佳转速以及准确定位等。以其优良的调速性能,提高生产率、提高产品质量、提高舒适性,使设备合理化,适应或改善环境等。2、以节能为主要目的——以流量或压力需要调节的风机、泵类机械的转速控制来实现节能,改造效果非常显著。 二、变频调速的原理 在企业所使用的耗电设备中风机、水泵、空压机、液压油泵、循环泵等电机类负载占绝大多数。由受到技术条件限制,这类负载的流量、压力或风量控制系统几乎全部是阀控系统,即电机由额定转速驱动运转,系统提供的流量、压力或风量恒定,当设备工作需求发生变化时,由设在出口端的溢流、溢压阀或比例调节来调节负载流量、压力或风量、从而满足设备工况变化的需要。而经溢流溢压阀或比例调节阀溢流溢压后,会释放大量的能量,这部分耗散的能量实际上是电机从电网吸收能量中的一部分,造成了电能极大的浪费。从这类负载的工作特性可知,其电机功率与转速立方成正比,而转速又与频率成正比。如果我们改变电机的工作方式,让它不总是在额定工作频率下运转,而是改由变频调整控制系统进行启停控制和调整运行,则其转速就可以在0~2900r/min的范围内连续可调,即输出的流量、压力或风量也随之可在0~100%范围内连续可调,使之与负载的

同步电动机经常出现的故障及原因分析(通用版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 同步电动机经常出现的故障及原 因分析(通用版)

同步电动机经常出现的故障及原因分析(通 用版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 经常发现的故障现象有: ①定子铁芯松动,运行中噪声大。 ②定子绕阻端部绑线崩断,绝缘蹭坏,连接处开焊,导线在槽口处端点断裂引起短路。 ③转子励磁绕组接头处产生裂纹、开焊绝缘局部烧焦。 ④转子线圈绝缘损伤,起动绕组笼条断裂。 ⑤转子磁极的燕尾楔松动、退出。 ⑥电刷滑环松动,风叶断裂等故障。 以上故障现象有的出现在同步电动机仅运行2—3年内,甚至半年内。一般认为是电动机制造质量问题。但许多电机制造厂,虽对制造工艺中的关键部位加强措施,但没有明显效果,故障现象仍然屡屡发生。 通过对同步电动机及励磁装置运行数据进行数理统计分析,对电

动机起动,投励运行中的各种典型状态波形摄片,研究分析表明,同步电动机出现上述故障,不是制造问题,而是传统励磁技术存在缺陷。 XX设计有限公司 Your Name Design Co., Ltd.

论电动机及其工作系统节能技术研究的意义与前景

论电动机及其工作系统节能技术研究的意义与前景 摘要能源是国民经济发展的基础资源,节能应成为当今人类关注的大事,电动机及其工作系统电效能的提高应首当重视。明确提出:电动机及其工作系统节能技术的内涵是:按照本技术领域一个世纪来已为理论阐明的重大课题,实现与完成实用电动机及其工作系统经济运行达到最佳“整体电效能”的基本技术—信控技术。节电产品与节能技术,前者是“流”后者是“源”,二者是“牵引”与“推动”的关系。权衡节能技术及其产品的准则是“整体电效能”提高与否。任何一个装置介入系统中就成为系统的一个“元素”,该“元素”对系统的影响与作用量化为“权重值向量”。提出建立“评价模型”来评估产品的优劣。电动机节电技术的前景归纳为“深化技术”,“强化管理”。 关键词节电技术电动机及其工作系统整体电效能评价模型权重向量 能源是国民经济发展的基础资源,是制约生产力发展的重要因素。电能是一种广泛利用的优质能源,电力是工业动力之源,电动机是将电能转换成机械能的枢纽,当今世界上一切电力拖动基本上都是通过这一形式来实现的。电动机的广泛应用,近百年来使整个世界的生产力获得了迅猛发展,同时它的耗电(世界各国)一直占驻国家总电量的一半以上,现代社会随着生产力的发展,运行电动机的总量还在与日俱增,更加速了电力的生产,加速了一次能源(煤、石油)的开采,据有关文献的估计,还有一个世纪,这些有限的一次能源诸将开采殆尽。因此,提高现有能源的利用效益应成为当今人类关注的大事。对于占驻主要耗电量的电动机及其供配电系统的电效益的提高应首当重视。这方面有待国家统筹方略。 1.明析电动机及其工作系统节能技术的内涵,节能产品与节能技术的关系节能产品与节能技术其内涵相关,但二者寓于不同范畴。节能产品是一种装置,节能技术是创造与应用节能产品的技术基础。二者在内缘上,前者是“流”,后者是“源”;在外延关系上是“牵引”与“推动”的作用。 今天,许多人们对节能技术的内涵,仅仅从某一局部的具体技术实践来描述。如称“调频调速”是电动机节电技术;“可控硅电流通角控制用于控制电动机电流”是电动机节能技术,……,诸此种种,如同上世纪八十年代,有些人们竟把白炽灯回路里串入二极管的做法认为是发现了“电光源节电技术”,还有人把这一做法衍试到日光灯电路中串入一根电阻丝而制作的日光灯节电器一时甚嚣尘上。对这样的技术实践,如果只从某一角度来认识或许也是对的,但很不全面,尚不足以表达其实质内容。 数十年乃至电动机问世一个多世纪以来,本行技术界为进一步提高电动机及其工作系统的“整体电效能”的课题上不断深入探讨。为我们今天在关于电动机及其工作系统节电技术的研究与实践,阐明了理论依据,指明了技术方向。根据文献的论述,当今电动机及其工作系统节能技术的基本内涵,应该是:“按照本技术领域已为理论家所阐明的几大课题目标:1)动态Y/ △双向转换,2)就地无功补偿,3)清除电网谐波改善供电质量,实现完成实用电动机及其工作系统经济运行达到最佳“整体电效能”的基本技术——信息处理与智能全自动控制技术”。 这个电动机及其系统节能技术的内涵,明确了课题的既定内容,以及达标的整体效果和实现目标的技术途径。从课题的展开到归结,其权衡的准则只有一个,那就是电动机及其工作系统的“整体电效能”。整体电效能提高了就是节电,没提高就是不节电,降低了就是费电。这里还要着重指出的是“整体”而不是某一局部。

同步电动机常见启动故障分析及处理

同步电动机常见启动故障分析及处理 摘要:同步电动机能否顺利启动,不仅影响到同步电动机自身的安全,还影响到生产系统,为了快速、准确的发现故障、排除故障,对同步电动机常见的启动故障分析就显得非常必要。文章结合维修实践,分析了同步电动机常见启动故障,并给出了具体的处理措施,为今后同步电动机启动故障的维修提供了方法,具有一定的参考价值。 0 引言 同步电动机由于其功率因数高,运行效率高,稳定性好,转速恒定等优点广泛应用于工业生产中。熟悉同步电动机启动故障,并及时排除故障,对电 动机本身及生产系统都具有现实意义,为了能及时、准确排除故障,必须对 同步电动机常见故障进行详细的分析。 1 常见故障 1)同步电动机通电后,不能启动。 同步电动机接通电源后,不能启动和运行,一般有以下几方面的原因:(一)电源电压过低,由于同步电动机启动转矩正比于电压的平方,电源电压过低,使得电机的启动转矩大幅下降,低于负载转矩,从而无法启动,对此,应提高电源电压,以增大电机的启动转矩。(二)电动机本身的故障检查电动机定、转子绕组有无断、短路,开焊和连接不良等故障,这些故障都使电机无法建立起额定的磁场强度,从而电动机无法启动;检查电动机轴承有无损坏,端盖有无松动,如果轴承损坏或端盖松动,造成转子下沉,与定子铁心相擦,从而导致电机无法启动。对定、转子绕组故障可用低压摇表,逐步查找,视具体情况,采取相应的处理方法,对轴承和端盖松动故障,每次开车前都应盘车,看电动机转子转动是否灵活,如轴承(或轴瓦)损坏,应及时更换。(三)控制装置故障此类故障多为励磁装置的直流输出电压调整不当或无输出,造成电动机的定子电流过大,致使电机过流保护动作或引起电机的失磁运行,此时,检查励磁装置的输出电压、电流是否正常,电压、电流波形是否正常,如电压或电流波形不正常,为了节省时间,更换备用触发板。(四)机械故障如被拖动的机械卡住,

电动机保护措施与装置

电动机知识 电动机保护措施与装置 为了防止电动机发生故障而损坏,甚而使事故扩大,对电动机一般有以下几种电气保护措施: 1)短路保护对电动机及其线路的短路大电流作及时的切断保护,一般采用熔丝或断路器的电磁瞬时脱扣作短路保护。 2)过载(过负荷)保护电动机一般采用热继电器(与接触器配合)或断路器的热脱扣器进行过载保护。 3)断相运行保护(又称缺相运行保护或两相运行保护)缺相运行保护也是一种过载保护,在条件允许时,应单独设置缺相运行保护装置。常用保护方法有: (1)采用带断相保护装置的热继电器作缺相保护; (2)欠电流继电器断相保护; (3)零序电压继电器断相保护; (4)断丝电压继电器断相保护; (5)利用速饱和电流互感器保护; (6)电子式断相保护线路。 4)失压和欠压(低电压)保护为了防止电动机在过低电压下起动和运行,一般采用交流接触器的电磁机构,断路器的失压脱扣器,自耦减压起动器的欠压脱扣器及电压继电器等。 5)接地或接零保护当电动机外壳带电时,防止人接触及机壳而触电的保护装置。 〃电动机启动困难或根本不能起动的原因及 〃锤片式粉碎机的常见故障及排除方法 〃合理选用配电变压器的容量 〃电动机正常运行时对三相电压的要求 〃实现电动机继电接触控制需要基本的控制

〃潜水排污泵及井用潜水电泵四大常见冷却 〃电动机的正反转控制 〃电机发生以下故障应立即切断电源 〃冬季收藏农机具要七防 Domain:https://www.sodocs.net/doc/039234053.html, dnf辅助More:d2gs2f 〃电动机单线远程正反转控制电路图_电路 〃同步电动机的结构_电路图 〃直流无刷电动机原理与控制_电路图 〃塔机电气系统维护及故障排查方法 〃电动机工作电流超限报警电路_电路图 〃申励电动机的半波调速电路_电路图 〃高压数字绝缘电阻测试仪厂家为您解读电 〃三个接触器控制的星形-三角形降压起动 〃电动机刀开关控制线路_电路图 〃五菱之光微型车启动困难、无怠速、易熄 〃海尔XQG52-HDY800等玫瑰钻系列滚筒式洗 〃接触器控制的单向运行控制线路_电路图 〃防爆油桶泵的优势分析 〃频器容量问题解决注意事项简析 〃基于UC3637的直流电动机PWM控制电路图_ 〃电动机轴承异响故障分析及应对措施 〃多台电动机逐一星形三角形起动电路_电 〃变频器的暂停减速功能 〃变频器过压类故障的分析 〃变频器启动前的直流制动功能 〃变频器与电动机的距离 收录时间:2014年02月24日15:05:08 来源:《高效饲料加工技术问答》作者:

电动机的节电技术分析

关于电动机节电的技术分析 电机班——姚驰宇 电动机作为将电能转化为机械能的一种转换装置,在各个领域得到了广泛应用,电动机消耗的电能约占全国总用电60%~70%。电动机节电应以节约用电和提高电动机的综合效益为原则,合理选择并控制电动机的运行,使其处于经济运行状态,另外,对电动机进行节能改造,降低电动机的能量损耗,从而提高电动机的运行效率。 第一部分 电动机的能量损耗 电动机能量损耗主要包括恒定损耗、负载损耗及杂散损耗。 1.恒定损耗 恒定损耗是指电动机运行时的固有损耗,它与负载电流大小无关,包括铁芯损耗和机械损耗。 (1)铁心损耗Fe P (含空载杂质损耗),主要指主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗,其大小取决于组成电动机的铁心材料、频率及磁通密度,与输入电压U 的平方成正比。铁耗一般占异步电动机总损耗的20%~25%。 (2)机械损耗fW P ,通常包括轴承摩擦损耗及通风系统损耗,对于绕线式转子还存在电刷摩擦损耗。轴承摩擦损耗正比于转速的平方,通风损耗正比于转速的三次方。机械损耗一般占总损耗的10%~50%。 2.负载损耗 负载损耗主要是指电动机运行时,转子、定子绕组通过电流而引起的损耗,包括定子铜耗1Cu P 和转子铜耗2Cu P ,其大小取决于负载电流及绕组电阻值,铜耗约占总损耗的20%~70%。 3.杂散损耗(附加损耗) 杂散损耗s P 主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗,杂散损耗约占总损耗的10%~15%。 第二部分 电动机的经济运行 1.电动机经济运行 电动机经济运行是指电动机在满足生产机械运行要求时,以节能和提高综合经济效益为原则,选择电动机类型,运行方式及功率匹配,使电动机在效率高、损耗低、经济效益最佳状态下运行。 2.效率特性

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

电机系统节能技术发展分析

电机系统节能技术发展分析

电机系统包括电动机,被拖动装置,传动系统,控制(调速)系统以及管网负荷等,是一个涉及多学科、多专业、多领域的复杂系统。电机系统首先是通过电动机将电能转化为机械能,再通过被拖动装置(如风机,水泵,压缩机,机床,传送带等)做功,实现各种所需的功能。 电机系统节能是二十一世纪电机行业产品发展的必然趋势,目前世界各国在本行业都向绿色化、高效化、智能化方向发展,大家已经意识到电机系统节能技术在本行业乃至全国经济社会发展中的重要作用,已经纷纷投入到电机系统节能技术的研究中,正积极通过法令推动电机系统降低损耗、提高效率。 电机系统用于各行各业,涉及各种复杂多样的工况,不同的负载特性,千差万别的工艺过程,因此,电机系统节能工程技术是在首先满足负载要求功能的前提下,选用合适的系统部件,并将它们合理组合匹配,以使系统综合节能效果和系统性价比达到最佳或较佳的综合工程技术。 以下是国外某权威机构推荐的不同节能措施及可能达到的节能量。 表不同节能措施的节能量 注1:具体节能措施不是上述措施的简单累加,而可能是上述一种或多种措施的组合。

从上表可知,除管网外,电机系统节能的所有措施,主要是围绕电动机来展开的,如设计、制造和选用通用或专用高效或超高效电动机,电动机和负载合理匹配的正确选型以及设计和制造出既能满足负载特性要求,又能得到很好节能效果且性价比高的专用高效电动机或高效机组(如电机-水泵、电机-风机机组等),通过调速驱动,软启动,调压控制,功率因数补偿等措施节能,电能的质量控制等。并且如果高效电动机和高效终端设备和调速装置不能合理的匹配(通用高效电动机往往难以在许多复杂负载情况下使系统达到高效),综合节能效果将不理想,造成“高成本的高效电机和高效终端设备或调速装置组合在一起不节能或节能不明显“的结果。因此,电机系统节能工程是一个复杂的系统工程。 我国目前在通用电机产品本体节能技术研究方面已经开展了一些工作,但在其成套化,系统化,工程化应用方面尚有大量工作要做,我国在专用高效电机的工程化技术研究和应用方面与国外先进水平差距很大,在电机系统综合节能工程技术研究和系统节能产品工程技术研究方面,与国外先进水平差距很大。 1、国外电机系统节能发展现状 发达国家政府对电机及系统节能技术的研究开发投入了巨额财政资助,除辅以政策法规推动之外,还积极推动全世界的电机及系统节能技术的发展,如“中国电机系统节能项目”就是由联合国工业发展组织和美国能源部提供援助资金,国外电机及系统的发展具有以下特点: 1)、高效、超高效电机市场推进速度加快 主要发达国家都在各自的发展计划中提出了明确的强制推行高效电机的时间如表4。 表4.各国高效、超高效电机推进情况

10KV电动机保护

10(6)kV同步电动机断电失步保护及同ZCH和BZT装置的配合 作者:尹世华/张铁锴 摘要:介绍了大型同步电动机断电失步保护及同ZCH,BZT装置的配合实施方案及解决办法。论述了电源短时中断时同步电动机的过渡过程及对ZCH和BZT的影响;介绍了同步电动机断电失步保护的典型接线。 关键词:同步电动机功率因数ZCH BZT 失步保护 大型同步电动机有许多优点,尤其是能发送无功功率,提高功率因数,节约电能。它的运行安全性和连续性对于生产具有重大影响。同步电动机的控制相对异步机来讲也复杂一些,主要体现在电机起动过程控制以及运行时的控制。起动控制主要是异步运行牵入同步的过程,而运行的控制主要体现在同步机受到各种扰动后的控制。影响同步机正常运行的扰动主要体现在:①带励失步。电机带有正常或接近正常的直流励磁,而定转子磁场又不同步。这主要是因为相邻线路短路后母线电压大幅度瞬间降低或母线电压长时间降低以及电机负荷突增等因素。②欠励失步。直流励磁系统失去直流励磁或严重欠励而使电机失步。③断电失步。当供电系统故障或电源切换时,使同步机的电源出现短时间中断而致使电机失步。 1 电源短时中断时同步电动机的过渡过程及对ZCH,BZT的影响 (1) 断电时同步电动机的过渡过程 断电失步易使同步机遭受到严重损伤的主要原因是在电源恢复瞬间电机遭受到的非同期冲击,此时的非同期冲击包括非同期电流和非同期转矩,其值往往远大于电机出口短路时的冲击电流和冲击转矩,是电机设备所不能承受的。在实际生产中断电失步往往是由于短路故障造成的,图1 所示为一典型的电气系统接线。

当K1或K2点发生短路时,在切除短路故障的同时,同步机的电源就中断了,在ZCH或BZT装置动作后,供电电源将重新恢复。若电源中断时间过长(一般大于0.2 s) ,超出同步机的稳定极限,同步电动机就会失步。从短路开始至电源恢复这一过程中,同步机的各项参数变化见图2,其中| u| =f (t) 为电压幅值随时间变化的曲线;n = f(t) 为同步机转速随时间变化的曲线,fu=f(t) 为同步机机端电压频率随时间变化的曲线。 在电源中断的短时间内,依靠同步机本身的惯性以及直流励磁,同步机将由电动工况转为发电工况,向系统发送无功功率,此时机端母线电压不但不会降低,反而会有一定程度的上升,而其频率会随电机转

4A电机系统节能项目案例

电机系统节能项目案例 项目(A) 1、项目简介 ××集团股份有限公司电机系统节能改造项目 A、项目概况: 该集团在当地三个工业园区下属有塑料厂、注塑厂、PVC塑料型材厂、非金属材料厂等多家企业,企业能源消耗基本上全部使用电力能源。在这些下属企业中,注塑机、大容量风机、冷却水泵、球磨机、分级机、破碎机等三百多台(约七千千瓦容量)电动设备均有节能潜力。除此之外,这三个工业园区的企业供电质量较差,功率因数低、电网谐波的畸变率也较大。鉴于上述情况,集团组织各下属企业分别将所属大容量设备电动机及配电系统采用当前先进的DK—J型智能节电器和POWER PASSIVE FILTER消谐和无功补偿装置进行全面的大范围的电机系统节能改造。 B、主要设备选型: 电机部分 (1)塑料厂 改造设备名称 台数 节能设备型号 台数 75KW空气处理器 1 DK—J—75 1 110KW冷冻机组 1 DK—J—110 55KW空压机 3 DK—J—55 1 37KW冷却水泵 6 DK—J—37 2 …………………… …………………… …………………… 合计755KW 23台 10

…… (4)非金属材料厂 改造设备名称 台数 节能设备型号 台数 75KW破碎机 1 DK—J—75 1 710KW、500KW球 磨机 各1 DK—J—110 各1 500KW引风机 1 DK—J—55 1 37KW分级机 6 DK—J—37 6 …………………… …………………… …………………… 合计2658KW 50台 30 电力系统部分 系统名称 节能设备型号 容量 台数 第一工业园 PPF—5N PPF—7N 5580KVAR,2325 KVA 50KVA,120 KVA 各1套 第二工业园PPF—5N PPF—7N 1000KVAR 60KVA 3套 1套 第三工业园PPF—5N PPF—7N 930KVAR 50KVA 2套 1套 合计 8 此外,在塑料厂还对生产线进行了更新,引进了国外先进生产线,同时添置了先进的空气热交换系统,对生产过程中的热能进行了回收利用。 2、改造前企业能耗状况 2006年,塑料厂总耗电能6700万度,产品总量74662吨,单位产品耗电量898度。企业原生产线没有对生产过程中的热能进行回收利用,且对电机节能没有足够

电动机纵联差动保护

电动机纵联差动保护 一、比率制动差动保护 (1)电动机二次额定电流 1 n TA I n =? (2)差动保护最小动作电流 I s =K rel (·K cc ·K er +Δm )I n ap K K rel ——可靠系数,取K rel =2 ap K ——外部短路切除引起电流互感器误差增大的系数(非周期分量系数)=2 ap K K cc ——同型系数,电流互感器同型号时取K cc =0.5,不同型号时K cc =1 K er ——电流互感器综合误差取K er =0.1 Δm ——通道调整误差,取Δm =0.01~0.02 I s =2 (2×0.5×0.1+0.02)I n =0.24 I n 一般情况下,取I s =(0.25~0.35)I n ,当不平衡电流较大时,I s =0.4I n (3)确定拐点电流I t 有些装置中拐点电流是固定的,如I t = I n ;当拐点电流不固定时可取I t = (0.5~0.8)I n (4)确定制动特性斜率s 按躲过电动机最大起动电流下差动回路的不平衡电流整定 最大起动电流I st ·max 下的不平衡电流I umb ·max 为 I umb ·max =(·K cc ·K er +Δm ) I st ·max ap K =2,K cc =0.5,K er =0.1,Δm=0.02,I st ·max =K st I n (取I st =10) ap K I umb ·max =(2×0.5×0.1+0.02)10I n =1.2I n 比率制动特性斜率为 t n st s umb rel I I K I I K s ??= ?max K rel =2,当I s =0.3 I n ,I t =0.8 I n ,K st =7 2 1.20.30.3470.8n n n n I I s I I ×?==? 一般取s =0.3~0.5 (5)灵敏系数计算 电动机机端最小两相短路电流为 (2)1 2K L I x x = ?′+ x ′- 电动机供电系统处最小运行方式时折算到S B 基准容量的系统阻抗标幺值 U B - 电动机供电电压级的平均额定电压U B =6.3(10.5)kV X L - 电动机供电电缆折算到S B 基准容量的阻抗标幺值 制动电流(2)res TA 2K I I n =相应的动作电流为

相关主题