搜档网
当前位置:搜档网 › HPLC测定杭白菊茎叶蒙花苷含量

HPLC测定杭白菊茎叶蒙花苷含量

HPLC测定杭白菊茎叶蒙花苷含量
HPLC测定杭白菊茎叶蒙花苷含量

HPLC测定杭白菊茎叶的蒙花苷的含量

【摘要】目的:测定杭白菊茎叶中蒙花苷的含量。方法:以甲醇-乙腈(15:85)为流动相a,0.1%磷酸溶液为流动相b,梯度洗脱;色谱柱为welch materials aq-c18 (5μm, 4.6mm×250mm);检测波长:334nm;流速:1.0ml/min;进样量:20μl。结果:蒙花苷在0.401~2.05µg线性关系良好,平均回收率为98.67%,rsd 小于1.68%。13批杭白菊茎叶中蒙花苷的含量为(0.258±0.089)%。结论:本方法重现性好,专属性强,为杭白菊茎叶的质量控制和开发利用提供科学依据。

【关键词】杭白菊茎叶;蒙花苷;含量测定

杭白菊是菊科植物菊chrysanthemum morifolium (ramat.)的干燥头状花序,具有“散风清热,平肝明目”等功效[1],临床上主要用于治疗风热感冒、头痛眩晕、目赤肿痛等疾病。国内外对杭白菊(花序)的化学成分、药理作用、测定方法等方面已有大量研究[2-6]],目前关于杭白菊茎叶的研究也有少量报道[7-9]]。具报道杭白菊茎叶也具有“清肝明目、解毒消肿”等功效[10],药理研究表明其具有有抗氧化、抗菌等作用[11]。为了进一步研究杭白菊茎叶的药用价值,本试验对4个不同种植产地的杭白菊茎叶中的蒙花苷进行了含量测定,本研究为杭白菊茎叶的综合开发利用提供依据。

1仪器与材料

仪器:waters 2695 高效液相色谱仪:(四元泵、2998光(电)二

实验三阿司匹林的含量测定-两步滴定法复习课程

实验三阿司匹林的 含 量测定-两步滴定法

阿司匹林片的含量测定 一.实验目的 1. 掌握酸碱滴定法测定药物含量的基本方法及有关计算; 2. 熟悉两步滴定法测定阿司匹林片的原理 3. 了解片剂分析的基本操作技术。 二.实验原理 《中国药典》现行版采用两步酸碱滴定翻测定阿司匹林片的含量。 程式如下: INciOHM SO. -^Xa SO +H0 二、实验药品及仪器 实验药品:阿司匹林片10片,中性乙醇,酚酞指示液(取酚酞 100mL使溶解),氢氧化钠滴定液,硫酸滴定液; 具体反应方 (jtOHJCOOH C OOH ^H a COON* + 3NaOH —> 3H-O^- 用返滴定法测定时; + NaOH 0.2g,加乙醇 C7I.COOII+ NMH t CH. COONa+ IL O nr K i3OCOCHs

实验仪器:移液管,研钵,分析天平、锥形瓶、称量纸、玻璃棒、酸式滴定 管、碱式滴定管,水浴锅。 四?试验内容及步骤 1. 取阿司匹林片10片,精密称定,研细,精密称取适量0.3g-0.4g,置锥形瓶中; 2. 加中性乙醇(对酚酞指示液显中性)20mL,振摇,使阿司匹林溶解,加酚酞指示液3滴,滴加氢氧化钠滴定液(0.1mol/L)至溶液显粉红色; 3. 再精密加氢氧化钠滴定液(0.1mol/L)40mL,置水浴上加热15分钟并时时振摇,迅速放冷至室温,用硫酸滴定液(0.05mol/L)滴定至红色消失为终点。 4. 并将滴定结果用空白试验校正,即得。每1ml氢氧化钠滴定液(O.1mol/L)相当于18.02mg 的C9H8O4。 五?操作注意事项 1.加中性乙醇20mL振摇使阿司匹林溶解,由于片剂中赋形剂的存在,溶液仍显白色混浊。 2.第一次中和应迅速,但不可剧烈摇荡,否则引起酯键水解, 影响测定结果。近终点时,应轻轻震荡中和至溶液呈粉红色并持续15秒不退色为准。长时间震荡由于空气中二氧化碳的影响,红色又消失。 3.实验温度应保持在98~100摄氏度。水浴温度不够或加热时间短均可因水解反应不完全而使含量偏低。 六?实验数据记录及含量的计算

总花色苷含量测定

总花色苷含量测定—分光光度法 1、综合国内外资料,主要有以下几种计算吸光值A 的方法[1]: (1) 当叶绿素是该样品中主要存在的干扰色素时,需消除叶绿素吸收含量的影响;此时, 计算公式为: A = (Amax - A620) - 0.1(A650 - A620) (2) 含有其它干扰物质时花色苷总量的测定: a) 直接法:在新鲜的植物提取物中,因为很少含有在花色苷的最大吸收区发生吸收的干扰物质,花色苷总量可以直接由可见区最大吸收波长处的吸光度来测定。 计算公式为: A = Amax 直接法吸收光谱测定:用××分光光度计于250 - 800nm 下全波长扫描,得到花色苷在0.1 % 盐酸—80 % 乙醇中的可见光区最大吸收波长,在此最大波长下测定各样品的吸光值A 。 b) pH 示差法:在加工或储藏过程中,会产生褐色降解物,这些降解物和花色苷具有相同的能量吸收范围。这类花色苷总量的测定,通常用pH示差法[8] 。 计算公式为: A = (Amax - A700) pH1.0 - (Amax - A700) pH4.5 pH 示差法吸收光谱测定:先确定合适的稀释因子,使样品在λmax下的吸光度在分光光度计的线性范围内;然后制备两个样品稀释液,其中一个用氯化钾缓冲液(0.025M,pH1.0) 稀释,另一个用醋酸钠缓冲液(0.4M,pH4.5) 稀释,将稀释液平衡15min 后,用蒸馏水做空白,分别测定两种样品稀释液在λmax和700nm处的吸光值A。 2、花色苷总含量的测定[2]:通过波长扫描,确定××花色苷在可见区的最大吸收波长为λmax。利用花色苷的结构特性,当pH为1.0时在λmax处有最大吸收峰,而当pH 为4.5时,花色苷转变为无色查尔酮形式,在λmax处无吸收峰,用示差法计算溶液中总花色苷含量。 计算公式为: C (mg/ g) = (A0 - A1) ×V ×n ×M / (ε×m ) 式中: A0 、A1 —分别为pH1.0、pH4.5时花色苷在λmax处的吸光值 V —提取液总体积(mL ) n —稀释倍数 M —cy-3-glu (矢车菊- 3-葡萄糖苷)的相对分子质量(449.4) ε—cy-3-glu的消光系数( 29600) m —样品质量( g)

阿司匹林含量测定

阿司匹林含量测定 摘要:阿司匹林是一种常见的非甾体解热镇痛药,现在也用于心血管疾病的治疗,由于其历史悠久,所以至今已经有许多对于阿司匹林含量的测定,例如酸碱滴定法,紫外分光光度法,高效液相色谱法等。2010版中中国药典中主要记载的方法主要有直接滴定法和高效液相色谱法。 关键词:阿司匹林,含量,体内,体外 正文: 一. 阿司匹林原料药的含量测定: 1. 体外: 1.1 直接滴定法: 取阿司匹林原料药约0.4g,精密称定,加入中性乙醇(对酚酞指示液显中性)20ml振摇,完全溶解后,加3滴酚酞指示剂,用氢氧化钠滴定液(0.1mol/L)直接滴定。氢氧化钠滴定液(0.1mol/L)的滴定度T为18.02mg/ml,即每1ml 的氢氧化钠滴定液(0.1mol/L)相当于18.02mg的C9H8O4。滴定至溶液从无色变成淡粉红色即为滴定终点。记录滴定液的消耗量V。 含量(%)=(V*T/W)*100% = (V*18.02/(0.4*1000))*100% 1.2 水解后剩余滴定法:[1] 取阿司匹林原料药约1.5g,精密称定,加氢氧化钠滴定液(0.5mol/L)50.0ml 混合,缓缓煮沸10分钟,放冷,加酚酞指示剂,用硫酸滴定液(0.25mol/L)滴定,并将滴定结果用空白试验校正。每1ml的氢氧化钠滴定液(0.5mol/L)相当于45.04mg的C9H8O4。 含量(%)=(V0—V)*F*T/W*100% =(V0—V)*F*18.02/(0.4*1000)*100% (V0为空白实验消耗的硫酸滴定液的体积(ml);V为样品测定时消耗硫酸滴定液的体积(ml);W为阿司匹林样品的取样量(g);F为硫酸滴定液的浓度的校正因素;T为氢氧化钠滴定液的滴定度。) 1.3 HPLC法测定阿司匹林原料药含量 以C18柱(150mm*4.6mm,5μm)为色谱柱,0.2%庚烷磺酸钠—乙腈(85:15)(用冰醋酸调PH至 3.4)为流动相;检测波长为280nm;柱温30℃;流速;

花色苷纯化分离及鉴定研究进展.

收稿日期 :2013-11-20; 修稿日期 :2013-12-04 基金项目 :国家自然科学基金 (31271836 ; 湖南省研究生创新课题 (CX2012B290 作者简介 :魏一枝 (1990- , 女 , 硕士 , 研究方向为农产品加工及贮藏工程。通信作者 : 邓洁红 (1967- , 女 , 教授 , 博士生导师 , 研究方向为园艺产品深加工理论与技术 , 通信地址 :410128湖南长沙市芙蓉区湖南 农业大学食品科技学院 , E-mail :hongjiedeng@163.com 。花色苷纯化分离及鉴定研究进展 魏一枝 1, 邓洁红 1, 2, 王维茜 1, 刘永红 3 (1.湖南农业大学食品科技学院 , 长沙 410128; 2.食品科学与生物技术湖南省重点实验室 , 长沙 410128; 3.湖南生物机电职业技术学院 , 长沙 410127 摘要 :花色苷是高等植物中最重要的水溶性色素。因其种类繁多、来源广泛、安全无毒并有一定的 营养和保健功效而引起国内外的广泛关注 , 具有十分重要的开发价值和广阔的应用前景。文中介绍了国内外花色苷分离纯化 (层析法、高速逆流色谱、膜分离法、固相萃取、以及花色苷鉴定 (高效液相色谱 -串联质谱法 , 核磁共振法的研究方法 , 并对各种方法进行了分析评价。对全面认识和开发利用花色苷具有一定的参考价值。 关键词 :花色苷 ; 纯化 ; 分离 ; 鉴定

中图分类号 :TS264.4文献标志码 :A 文章编号 :1005-1295(2014 01-0050- 05doi :10.3969/j.issn.1005-1295.2014.01.013 Researchon Isolation and Identification of Anthocyanins WEI Yi-zhi 1, DENG Jie-hong 1, 2 , WANG Wei-qian 1, LIU Yong-hong 3 (1.College of Food Science and Technology , Hunan Agricultural University , Changsha 410128, China ; 2.Key Laboratory of Food Science and Biological Technology of Hunan Province , Changsha 410128, China ; 3.Hunan Biological and Electromechanical Polytechnic , Changsha 410127, China Abstract :Anthocyanins are the most important water-soluble pigment in plants.It caused widespread concern at home and abroad because of its variety and wide range of sources , safety and rich in nutrition and health effects , it has a very important development value and broad application prospects.The present paper mentioned some methods for anthocyanin separation and purification (chromatography , high-speed countercur-rent chromatography , membrane separation , solid phase extraction , and identification (high performance liq-uid chromatography-tandem mass spectrometry , nuclear magnetic resonance spectroscopy . Key words :anthocyanin ; purification ; separation ; identification 0引言 随着人们对食品安全意识的提高 , 开发和应

花青素含量测定

花青素含量测定 实验目的:掌握花青素含量测定的简单方法。 实验原理:花青素又称花色素,是苯并吡喃衍生物,属于多酚类化合物,常与一个或多个葡萄糖、鼠李糖、半乳糖、阿拉伯糖等通过糖苷键形成花色苷,是自然界一类广泛存在于植物中的水溶性天然色素,也是树木叶片中的主要呈色物质,在植物细胞液泡不同的pH 条件下,呈现不同的颜色。大量研究表明:花色苷具有很强的抗氧化作用,可以清除体内的自由基;降低氧化酶的活性;可以降低高血脂大鼠的甘油脂水平,改善高甘油脂脂蛋白的分解代谢;抑制胆固醇吸收,降低低密度脂蛋白胆固醇含量;抗变异、抗肿瘤、抗过敏、保护胃粘膜等多种功能J。苹果花青素主要存在于果皮中,是果皮颜色形成的重要物质。苹果中的花青素由植物次生代谢重要途径一苯丙烷类代谢形成,同位素示踪揭示花青素的碳原子分别来自苯丙氨酸和乙。苹果中的花青素由矢车菊素的三种糖苷组成,分别是矢车菊素-3一半乳糖苷、矢车菊素-3-阿拉伯糖苷和矢车菊素一7·阿拉伯糖苷J。苹果中花青素的含量主要受温度、日照等因素影响,特别是紫外光可以明显提高花青素的合成效率,因此苹果的向阳面较背阳面红L4J。Jerneja等研究表明富士苹果成熟前期是其花青素形成的重要阶段,其中矢车菊素一3一半乳糖苷占总花青素92 %~98%J。 器材与试剂: 实验仪器:分光光度计,电子天平,恒温箱,剪刀,烧杯,量筒,移液管 实验试剂:0.1mol/L HCL, 矢车菊素一3一半乳糖苷,甲醇,蒸馏水 实验材料:苹果 实验内容: 1、作标准曲线:采用l %盐酸甲醇配置矢车菊素-3-半乳糖苷标准系列溶液,浓度分别为100、20.0、10.0、5.0、2.5、1.0 ~g/m L 。用分光光度计测出OD值(波长530nm),计算出标准曲线。 2、选2个苹果,把苹果皮削出,称取5g的果皮加入10m L l %盐酸甲醇溶液匀浆,在40 ℃下提取1h,离心后取上清液在波长530nm测出OD值。 3、计算出苹果中花青素的含量。

阿司匹林含量的测定

实验十三阿司匹林含量的测定—中与滴定法 一. 实验目的 学习药品乙酰水杨酸含量的测定方法,了解该药的纯品(即原料药)与片剂分析方法的差异。 二. 实验原理 乙酰水杨酸(阿司匹林)就是最常用的药物之一。它就是有机弱酸(pKa=3、0),结构为 摩尔质量为180、16g·mol-1,微溶于水,易溶于乙醇。在NaOH或Na2CO3等强碱性溶液中溶解并分解为水杨酸(即邻羟基苯甲酸)与乙酸盐: 由于它的pKa较小,可以作为一元酸用NaOH溶液直接滴定,以酚酞为指示剂。为了防止乙酰基水解,应在10 C以下的中性冷乙醇介质中进行滴定,滴定反应为: 直接滴定法适用于乙酰水杨酸纯品的测定,而药片中一般都混有淀粉等不溶物,在冷乙醇中不易溶解完全,不宜直接滴定,可以利用上述水解反应,采用反滴定法进行测定。药片研磨成粉状后加入过量的NaOH标准溶液,加热一定时间使乙酰基水解完全,再用HCI标准溶液回滴过量的NaOH,以酚酞的粉红色刚刚消失为终点。并将滴定的结果用空白试验校正,根据滴定液使用量,计算阿司匹林的含量。 三.仪器与试剂 仪器:瓷研钵,碱式滴定管,酸式滴定管,移液管,容量瓶 试剂:阿司匹林药片,HCl溶液:0、1 mol·L-1,NaOH溶液:0、1 mol·L-1,无水乙醇,酚酞指示液(取酚酞0、2g,加乙醇100mL使溶解) 四、实验步骤 1、取供试品10片,精密称定,研细,精密称取阿司匹林0、3~0、4g,置锥形瓶中; 2、加中性乙醇(对酚酞指示液显中性)20mL,振摇使阿司匹林完全溶解后,加酚酞指示液3滴,滴加氢氧化钠滴定液(0、1mol/L)至溶液显粉红色,记录下所用氢氧化钠的体积数V1 、

植物花色苷含量检测试剂盒说明书 可见分光光度法

植物花色苷含量检测试剂盒说明书可见分光光度法 注意:正式测定之前选择2-3个预期差异大的样本做预测定。 货号:BC1380 规格:50T/24S 产品内容: 提取液:液体30mL×1瓶,4℃保存。 试剂一:液体30mL×1瓶,4℃保存。 试剂二:液体30mL×1瓶,4℃保存。 产品说明: 花色苷是一类可食用的易溶于水等溶剂的天然色素。花色苷使植物呈现多彩的颜色,本身更具有多种保健作用,因而在天然食用色素、保健品和医药行业都有着广阔的应用前景。 根据花色苷在不同pH下的结构性质测定花色苷含量,在pH为1时花色苷在530nm处有最大吸收峰,而当pH 为4.5时,花色苷转变为无色查尔酮形式在530nm处无吸收峰,通过测定不同pH下的530nm和700nm处的吸光度值计算样本中花色苷的含量。 自备实验用品及仪器: 可见分光光度计、离心机、水浴锅、可调式移液器、1mL玻璃比色皿、研钵/匀浆器和蒸馏水。 操作步骤: 一、样本处理: 按照样品质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g样品,加入1mL提取液),充分匀浆后转移到EP管中,封口膜封口防止挥发,60℃浸提30min,期间可震荡数次,提取后提取液定容至1mL。12000rpm,常温离心10min,取上清液待测。 二、测定步骤: (1)可见分光光度计预热30min,蒸馏水调零。 (2)加样表:

试剂名称(μL)测定管1测定管2 样品100100 试剂一900- 试剂二-900充分混匀后测定测定管1和测定管2分别在530nm和700nm处的吸光度,测定管1在530nm和700nm处的吸光值记为A1、A1’,测定管2在530nm和700nm处的吸光值记为A2、A2’,计算ΔA=(A1-A1’)-(A2-A2’)。 三、花色苷含量计算: 1、按样本鲜重计算: 花色苷含量(μmol/g鲜重)=[ΔA÷(ε×d)×103×F]×V提取÷W=0.037×ΔA×F÷W。 2、按样本蛋白浓度计算: 花色苷含量(μmol/mg prot)=[ΔA÷(ε×d)×103×F]×V提取÷(Cpr×V提取)=0.037×ΔA×F ÷Cpr。 F:稀释倍数,该反应体系下为10;d:比色皿光径,1cm; W:样品质量,g;ε:花色苷的摩尔消光系数,2.69×104mL/mmol/cm; V提取:提取液总体积,1mL;103:单位换算系数,1mmol=103μmol; Cpr:样品蛋白浓度,mg/mL(蛋白浓度需用PBS单独提取后自行测定)。 注意事项: 1、如果A1大于1,可以适当加大稀释倍数,保证总体积1mL不变,如50μL上清液和950μL试剂一(相当于 稀释20倍);如果A1小于0.1,可以适当缩小稀释倍数,保证总体积不变,如500μL上清液和500μL试剂一(相当于稀释2倍),使A1保持在0.1~1范围内,可提高检测灵敏度;注意应同样调整上清液和试剂二体积比例;计算时以实际稀释倍数代入下述公式中。 2、因提取液会使蛋白变性,若使用蛋白浓度计算需用PBS单独提取后自行测定。

阿司匹林的合成鉴定与含量的测定

应用化学实验二准备实验卡

实验 容 1.乙酰水酸的合成 在干燥的100 mL锥形瓶中加入3.2 g干燥的水酸,8mL新蒸的乙酸酐和5滴浓H2SO4,旋摇锥形瓶使水酸全部溶解后,在水浴上加热5~10min,控制水浴温度在85~90o C,冷至室温, 即有乙酰水酸结晶析出。如不结晶,可用玻璃棒磨擦瓶壁并将反应物置于冰水中冷却使结晶 产生。加入50mL H2O,混合物继续在冰水中冷却使结晶完全。减压过滤,用滤液反复淋洗锥 形瓶,直至所有晶体被收集到布氏漏斗,用少量冷H2O洗涤结晶,继续抽气将溶剂尽量抽干, 称量,粗产物约2.8g。 将粗产物转移到150mL烧杯中,在搅拌下加入25mL NaHCO3饱和溶液,加完后继续搅拌几分钟,直至无CO2气泡产生。抽滤,副产物聚合物应被滤出,用5~10 mL H2O冲洗漏斗, 合并滤液,倒入预先盛有5 mL浓HCl和10mL H2O配成溶液的烧杯中,搅拌均匀,即有乙酰 水酸沉淀析出。将烧杯置于冰水浴中冷却,使结晶完全,抽滤,再用少量冷H2O洗涤2次, 压干,将结晶移到表面皿上,取少量晶体放入100℃烘箱中干燥30分钟。后取几粒结晶加入 盛有5 mL H2O的试管中,加入1~2滴1%FeCl3溶液,观察有无颜色反应。若出现颜色反应, 须再进行精制。 2.产物中乙酰水酸含量的测定紫外光谱法 产物用稀NaOH溶液溶解,乙酰水酸水解生成水酸二钠。该溶液在296.5 nm左右有个吸收峰,测定稀释成一定浓度乙酰水酸的NaOH水溶液的吸光度值,并用已知浓度的水酸的NaOH 水溶液作一条标准曲线,则可从标准曲线上求出相当于乙酰水酸的含量。根据两者的相对分 子质量,即可求出产物中乙酰水酸的浓度 板书 设计 一、实验原理 COOH OH +(CH3CO)2O H2SO4 △ COOH OCCH3 O +CH3COOH 二、实验步骤及方法 (一)乙酰水酸的制备及鉴定 1.乙酰水酸的制备 2.粗产物纯化 3.乙酰水酸的精制及鉴定 (二)产物中乙酰水酸含量的测定 1.绘制标准溶液曲线 2.测量及计算乙酰水酸含量 三、实验观察与结果 四、思考题

液相色谱使用方法(花色苷)

一、摘要 ⑴、葡萄皮色素来源较为丰富。葡萄果皮花色苷不但含量高, 而且种类多, 葡萄花色苷作为一种天然食用色素, 安全、无毒,且具有降低肝脏及血清中脂肪含量、抗氧化、抗肿瘤、延迟血小板凝集等多种生理和药用活性功能对葡萄皮花色苷的提取技术及稳定性的研究具有重要意义 ⑵、目前为止花色苷的定量分析方法主要有直接比色法、pH示差法、亚硫 酸脱色法、色谱法,本次实训我们采用液相色谱法对花色苷进行提取。 ⑶、用于液相色谱法提取葡萄酒中的花色苷前要进行样品的预处理,再测定 其中的花色苷来判断葡萄酒或者葡萄皮中的花色苷,标定是否合格以及是否符合国家标准。 二、关键词 ⑴花色苷⑵液相色谱⑶分光光度计 三、正文 引言 花色苷的提取方法有溶剂浸提法、微波辅助萃取法、酶解法超高压辅助提取法、本次我们是利用微波萃取,微波是一种频率300~300 000 MHz的电磁波。在微波场中吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分 被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对较弱的萃取剂中。由于传统提取过程中能量累积和渗透过程以无规则的方式发生,萃取的选择性较差,只能通过改变溶剂性质或延长溶剂萃取时间来获得,同时又受限于溶解能力和扩散系数,效果不够理想;微波因其能对

萃取体系中不同组分进行选择加热,因而能使目标组分直接从基体分离萃取。微 波萃取受溶剂亲和力的限制较小,可供选择的溶剂较多。另外,微波加热则利用 分子极化或离子导电效应直接对物质进行加热,避免了传统加热过程因热传导、 热辐射造成的热量损失,加热效率高、升温快速均匀,缩短了萃取时间。具有设 备简单、适用范围广、重现性好、萃取效率高、萃取时间短、能耗低、污染轻等 特点。用液相色谱法来检测葡萄酒及葡萄皮中的花色苷,用等度及梯 度检测花色苷的存在来判断其营养成分。 ⑴、材料及方法 ①仪器及试剂 材料:葡萄皮 仪器:超声波提取器、紫外-可见分光光度计、安捷伦-高效液相 色谱仪 试剂:甲醇、甲酸、水 ②实验方法 葡萄皮花色苷提取液的制备 干葡萄皮→粉碎→加入提取液→超声波辅助提取→花色苷提取液 称取 1g 粉碎过的干葡萄皮,按 1:40(g/mL)的料液比加入酸性乙醇提取液,用超声波清洗器辅助提取。超声波辅助提取条件定为:频率 40KHZ,功率 500W,工作状态 100%。超声波辅助提取 40min 后过滤得到花色苷提取液,用722可见光分光光度计在530nm下测定吸光值,以吸光值为考察指标,确定提取效果。 在提取液乙醇浓度为 60%,提取液 pH 1.0 的条件下,于 30℃、40℃、50℃、

阿司匹林中乙酰水杨酸含量的测定

荧光光度法测定阿司匹林中乙酰水杨酸的含量 一、实验目的 1.掌握用荧光法测定药物中的乙酰水杨酸含量的方法。 2.掌握970CRT 型荧光分光光度计的操作方法。 3.加深对荧光光度法原理的理解。 二、实验原理 1.荧光光度法原理 (1)常温下,处于基态的分子吸收一定的紫外可见光的辐射能成为激发态分子,激发态分子通过无辐射跃迁至第一激发态的最低振动能级,再以辐射跃迁的形式回到基态,发出比吸收光波长长的光而产生荧光。在稀溶液中,当实验条件一定时,荧光强度I F 与物质的浓度c 成线性关系: 即Kc I F (这是荧光光谱法定量分析的理论依据)。 (2)荧光光谱 激发光谱:固定测量波长(选最大发射波长),化合物发射的荧光强度与照射光波长的关系曲线。激发光谱曲线的最高处,处于激发态的分子最多,荧光强度最大。 荧 光强度 波长

发射光谱:固定激发光波长(选最大激发波长), 化合物发射的荧光强度与发射光波长关系曲线。 固定发射光波长进行激发光波长扫描,找出最大激发光波长,然后固定激发光波长进行荧光发射波长扫描,找出最大荧光发射波长。激发光波长和发射荧光波长的选择是本实验的关键。 2. 荧光光度法测定阿司匹林中乙酰水杨酸的含量 通常称为ASA 的乙酰水杨酸(阿司匹林)水解即生成水杨酸(SA )(如下式)。而在阿司匹林中或多或少存在一些水杨酸,用醋酸—氯仿作为溶剂,然后用荧光法可以分别测定其含量,少许醋酸还可以增加二者的荧光强度(本次实验只测定阿司匹林中乙酰水杨酸的含量)。在1%的乙酸—氯仿中乙酰水杨酸的激发光谱和荧光光谱如图所示:(为了消除药片之间的差异,可以取几片一起研磨,然后取部分由代表性的样品进行分析) 三、仪器与试剂: 仪器:970CRT 型荧光分光光度计及附件;容量瓶:1000mL 2只,100 mL 2只,50mL 8只;l0mL 吸管2支;铁架台;研钵;称量瓶;玻璃棒;烧杯;定量滤纸;电子天平。 试剂:冰醋酸;氯仿;乙酰水杨酸;阿司匹林;丙酮。 四、实验步骤: 1. 接通电源,打开氙灯,再打开主机,然后打开计算机启动工作站并初始化仪器,预热30min 左右。 (CH 3CO)2O H 2O (ASA) (SA)

花青苷(花色苷)种类、提取及检测

花青苷种类、提取及检测 一.种类 花色素均具有类黄酮的基本结构,由两个苯环和一个含氧杂环组成的(C6-C3-C6)C15化合物(如图),根据B环羟基化和甲基化位置和数目的不同而将花色素主要分为六类:天竺葵色素((Pelargonidin)、矢车菊色素((cyanidin)、芍药色素(peonidin)(3'-甲基矢车菊色素)、飞燕草色素(delphinidin)、矮牵牛色素(petunidin)(3',5'-甲基飞燕草色素)和锦葵色素(malvidin)( 3',5'-二甲基飞燕草色素)。不同植物中花色素发生糖苷化的位点(C3、C5和C7位等)和数目的差异,及酞化程度的不同使植物中存在着不同的花色素普,其结构复杂,但都以这六种花色素为基本结构(Grotewold,2006)。 二.提取 国内外学者对花青苷的提取做了大量研究,提取目的及目标花青苷不同,提取方法略有差异。花青苷易溶于水、甲醇、乙醇等极性溶液,花青苷的稳定性受酶、温度、氧气、光、pH值、金属离子等理化性质的影响,在中性和碱性条件下不稳定。 提取过程常采用酸性溶液,酸能够破坏植物细胞膜并溶解水溶性色素,甲醇溶液提取效率高于乙醇及水溶液。花青苷一般用于食品着色,考虑到甲醇的不安全因素,一般选用体积分数为1%的乙醇溶液。采用盐酸酸化可保持提取液pH值较低,阻止无酰基花青苷的降解。随着盐酸被浓缩,pH 值升高,导致花青苷的降解。为获得更接近于天然状态的花青苷,采用弱有机酸或中性溶剂做初步提取,弱有机酸多用甲酸、乙酸、丙酸、柠檬酸和酒石酸,中性溶剂一般采用丙酮作提取剂。粗提后的花青苷提取液浓度很低,浓缩时一般不超过40℃,时间也不宜太长。 1. 2. 花青苷含量的测定:用0.1%的盐酸甲醇浸提叶片2 h后,测657nm、530nm处的吸光度。 3.

花色苷研究

花色苷的研究状况 引言 花色苷又称花青素,属酚类化合物中的类黄酮,是构成花瓣、果实等颜色的主要水溶性色素,自然界中已知的花色素有22大类。食品中重要的花色素有矢车菊色素、天竺葵色素、飞燕草色素、芍药色素、牵牛色素和锦葵色素等6类[1]。花色苷作为一种天然食用色素,安全、无毒、资源丰富,而且具有一定的营养和药理作用,在食品、化妆品和医药领域有着巨大应用潜力[2]。花色苷对人体具有许多保健功能如清除体内自由基、抗肿瘤、抗癌、抗炎、抑制脂质过氧化和血小板凝集、预防糖尿病、减肥、保护视力等。目前花色苷作为一种天然色素,安全、无毒,且对人体具有许多保健功能,已被应用于食品、保健品、化妆品、医药等行业,随着人们崇尚自然消费观念的转变,花色苷必将得到更加广泛的应用。 摘要 本文对花色苷的资源分布、结构性质、稳定性研究、提取、定性定量分析方法以及发展前景进行了综述。 1.花色苷的资源分布 花色苷广泛存在于被子植物的花、果实、茎、叶、根器官的细胞液中,分布于27 个科,72 个属的植物中。广泛存在于紫甘薯、葡萄、血橙、红球甘蓝、蓝莓、茄子皮、樱桃、红橙、红莓、草莓、桑葚、山楂皮、紫苏、黑(红)米、牵牛花等植物的组织中。 2.花色苷的结构及性质

花色苷的结构如右图所示, 不同的R1、R2代表不同的花色苷类型。食品中重要的6中花色苷如表1。 表1 花色苷溶于水和乙醇,不溶于乙醚、氯仿等有机溶剂,花色苷在酸性溶液中存在4种平衡转换如图1:

自然界中的游离态花色苷极其少见,通常常与 1 个或多个葡萄糖(glucose)、鼠李糖(rhamnose)、半乳糖(galactose)、木糖(xylose)、阿拉伯糖(arabinose)等通过糖苷键连接形成花色苷,3-单糖苷、3-双糖苷、3,5-二糖苷和3,7-二糖苷是4类最常见的花色素配糖形式,其中矢车菊素-3-葡萄糖苷在自然界中分布最广[3]。 3.花色苷的稳定性研究 影响花色苷稳定性的因素有很多,pH值、氧气、温度、花色苷浓度和结构、光、金属离子、酶,以及其他辅助因素等均能使花色苷的颜色产生变化。 3.1 PH 在较低的 pH时(pH<2),花色苷主要以红色的花色烊阳离子形式存在,当pH 为3~6 时,花色苷主要以无色的甲醇假碱和查尔酮假碱的形式存在,而在中性或者微酸环境下花色苷以紫色或浅紫色中性的醌式碱的形式存在,当 pH 上升到 8~10 时,主要以蓝色离子

植物花色苷含量试剂盒说明书

货号:MS1515 规格:100管/96样 植物花色苷含量试剂盒说明书 微量法 正式测定前取2-3个预期差异较大的样本做预测定 测定意义: 花色苷是一类易溶于极性溶剂的天然色素,属黄酮类化合物。花色苷广泛存在于植物的根、茎、叶、花和果实中,使其呈现由红到紫等不同颜色,是植物主要的呈色物质。 测定原理: 采用pH示差法测定花色苷含量,当pH为1.0时花色苷在530nm处有最大吸收峰,而当pH 为4.5时,花色苷转变为无色查尔酮形式,在530处无吸收峰, 利用此特性分别测定在不同pH 下的530nm和700nm处的吸光度值。pH示差法减少了溶液pH和溶剂差异的影响,排除了其他非花色苷类物质对检测结果的干扰。 自备实验用品及仪器: 可见分光光度计/酶标仪、水浴锅、可调式移液器、微量石英比色皿/96孔板、研钵和蒸馏水。 试剂的组成和配制: 提取液:液体100 mL× 1瓶,4℃保存; 试剂一:液体20 mL× 1瓶,4℃保存; 试剂二:液体20 mL × 1瓶,4℃保存; 花色苷的提取: 按照烘干样品质量(g):提取液体积(mL)为1:5~10的比例(建议称取约0.1g烘干样品,加入1mL提取液),充分匀浆后转移到EP管中,提取液定容至1 mL,盖紧后4℃浸提24 h,8000 g,常温离心10 min,取上清液待测。 测定步骤: 1、分光光度计或酶标仪预热30min以上;试剂一和试剂二25℃(室温)预热10min以上; 2、取20 μL上清液和180 μL试剂一(相当于稀释10倍),40℃水浴20min,分别测定530nm 和700nm处的吸光值,分别记为A1和A2。 3、取20 μL上清液和180 μL试剂二(相当于稀释10倍),40℃水浴20min,分别测定530nm 和700nm处的吸光值,分别记为A3和A4。 4、计算△A=(A1-A2)-(A3-A4) 注意:如果A1大于1,可以适当加大稀释倍数,保证总体积200 μL不变,如10 μL上清液和190 μL 试剂一(相当于稀释20倍);如果A1小于0.1,可以适当缩小稀释倍数,保证总体积不变,如100 μL上清液和100 μL试剂一(相当于稀释2倍),使A1保持在0.1~1范围内,可提高检测灵敏度;同样调整上清液和试剂二体积比例;计算时以实际稀释倍数代入下述公式中。 花色苷含量计算: a.用微量石英比色皿测定的计算公式如下 花色苷含量(μg/g干重)=[ΔA×V÷(ε×d)×M×F×106]÷W=16.7×ΔA× F÷W V:提取液体积,1×10-3L;ε:花色苷的摩尔消光系数,2.69×104 L / mol /cm;d:比色皿 第1页,共2页

果汁、饮料、天然着色剂及其酒中总花色苷含量的测定

37.1.68 AOAC Official Method 2005.02 Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines pH Differential Method First Action 2005 (Applicable to the determination of monomeric anthocyanins in fruit juices, beverages, natural colorants, and wines within the range of 20–3000 mg/L as cyanidin-3-glucoside equivalents.) See Table 2005.02 for the results of the interlaboratory study supporting acceptance of the method. A. Principle Monomeric anthocyanin pigments reversibly change color with a change in pH; the colored oxonium form exists at pH 1.0, and the colorless hemiketal form predominates at pH 4.5. The difference in the absorbance of the pigments at 520 nm is proportional to the p i g m e n t c o n c e n t r a t i o n. R e s u l t s a r e e x p r e s s e d o n a cyanidin-3-glucoside basis. Degraded anthocyanins in the polymeric form are resistant to color change regardless of pH and are not included in the measurements because they absorb at pH 4.5as well as pH 1.0. B. Apparatus (a ) pH meter .—Standardized with pH 4.0 and 7.0 standard buffer solutions. (b ) Visible spectrophotometer .—Performance of the spectrophotometer at 520 nm should be verified with reference standards for wavelength accuracy, photometric accuracy,photometric linearity, and stray light. (c ) Glass or disposable cuvets for spectrophotometer .—1 cm pathlength. (d ) Volumetric flasks .—50 mL. C. Reagents (a ) pH 1.0 buffer (potassium chloride, 0.025M).—Weigh 1.86 g KCl into a beaker and add distilled water to ca 980 mL. Measure the pH, and adjust pH to 1.0 (±0.05) with HCl (ca 6.3 mL). Transfer to a 1 L volumetric flask, and dilute to volume with distilled water.(b ) pH 4.5 buffer (sodium acetate, 0.4M).—Weigh 54.43 g CH 3CO 2Na·3H 2O in a beaker, and add distilled water to ca 960 mL.Measure the pH, and adjust pH to 4.5 (±0.05) with HCl (ca 20 mL).Transfer to a 1 L volumetric flask, and dilute to volume with distilled water. D. Preparation of Test Solution Perform all dilutions in 50 mL volumetric flasks, B (d ). Use volumetric pipets for addition of the test portion. The maximum test portion added should be £10 mL (1 part test portion, 4 parts buffer)so as not to exceed the buffer capacity of the reagents. Determine the appropriate dilution factor by diluting the test portion with pH 1.0 buffer, C (a ), until absorbance at 520 nm is within the linear range of the spectrophotometer. (For most spectrophotometers, the absorbance should be between 0.2 and 1.4AU.) Using this dilution factor, prepare 2 dilutions of the test sample, one with pH 1.0 buffer and the other with pH 4.5 buffer. E. Determination Determine absorbance of test portion diluted with pH 1.0 buffer,C (a ), and pH 4.5 buffer, C (b ), at both 520 and 700 nm. The diluted test portions are read versus a blank cell filled with distilled water.Measure absorbance within 20–50 min of preparation. Note : The reason for measuring the absorbance at 700 nm is to correct for haze. However, if the diluted test portion is excessively turbid, clarify by centrifuging or filtering before measurement. Use a filter (e.g., Millipore TM membrane filter, £1.2 m m pore size,Millipore Corp., Bedford, MA) that will not absorb the anthocyanins. ? 2006 AOAC IN T ER N A T IONAL Table 2005.02. Interlaboratory study results for the determination of total monomeric anthocyanin pigment content by the pH differential method Material Mean, mg/L a No. of labs, a (b) b s r c RSD r , %d s R e RSD R , %d r f R g HorRat Cranberry juice cocktail 13.610 (1)0.57 4.16 1.098.00 1.59 3.050.74Red wine 201.611 (0) 5.29 2.6215.997.9314.81 44.76 1.10Natural colorant 640.811 (0)11.97 1.8736.52 5.7033.52 102.25 0.94Strawberry juice 63.610 (1) 2.43 3.82 6.4410.12 6.8118.03 1.18Raspberry juice 336.711 (0)10.80 3.2117.62 5.2330.24 49.320.79Elderberry juice 3006.8 10 (0)31.78 1.06191.84 6.3888.97 537.15 1.33Standard 44.8 11 (0) 0.53 1.19 1.20 2.69 1.49 3.37 0.3 a Expressed as cyanidin-3-glucoside equivalents. b a = Number of laboratories retained after removal of outliers; (b) = number of laboratories removed as outliers. c s r = Repeatability standar d deviation.d RSD = Relativ e standard deviation.e s R = Reproducibility standard deviation. f r = Repeatability value.g R = Reproducibility value.

阿司匹林片剂中乙酰水杨酸含量的测定

分析化学实验报告:实验__ 实验日期________年____月____日 实验4-6 设计性实验 学院/专业/班级:实验序号: 姓名:教师评定:____________ 合作者: 【所选实验题目】 阿司匹林片剂中乙酰水杨酸含量的测定 【实验要求】 ①由学生自行选做上述的一个实验题目(但保持每个实验题目的选作人数基本相等),然后由学生根据本课程的理论及实验知识,查阅相关文献,独立设计实验方案,由教师审阅通过后进行实验,并完成实验报告; ②在实验设计时应遵循以下原则:(1)首先确定分析方法及滴定方式;(2)根据所测样品的大概含量(教师提供),自己确定如何称取试样;(3)要考虑到实验中干扰因素及排除方法;(4)试剂及指示剂尽量选择实验室提供的试剂;(5)在保证实验准确度要求的前提下,要尽量节约使用试剂及试样; ③在考虑上述几点后,与实验前完成预习报告,包括(1)分析方法及简单原理;(2)所需试剂;(3)具体实验步骤;(4)实验注意事项;(5)参考资料;(6)数据记录及处理的表格及相关计算公式; ④教师审阅通过后,学生自行完成实验及实验报告,并对自己设计的实验方案进行评价及问题讨论,如果实验中的实际做法与预习报告有差异,以加以说明或重新写过。 【分析方法及简单原理】 乙酰水杨酸(阿司匹林)是最常用的解热镇疼药之一,是有机弱酸(pKa=3.0),摩尔质量为180.16 g/mol,微溶于水,易溶于乙醇;干燥中稳定,遇潮水解。阿司匹林片剂在强碱性溶液中溶解并分解[乙酰水杨酸中的酯结构在碱性溶液中很容易水解为水杨酸(邻羟基苯甲酸)和乙酸盐], 水杨酸(邻羟基苯甲酸)易升华,随水蒸气一同挥发。水杨酸的酸性较苯甲酸强,与 Na2CO3 或 NaHCO3 中和去羧基上的氢,与 NaOH 中和去羟基上的氢。由于药片中一般都添加一定量的赋形剂如硬脂酸镁、淀粉等不溶物(不溶于乙醇),不宜直接滴定。因此其含量的测定经常采用返滴定法(误差:无事先中和去游离酸,乙酰水杨酸片剂中由于含有少量稳定剂酒石酸和枸橼酸,制剂工艺过程中又可能水解产生水杨酸和醋酸,)。将药片研磨成粉状后加入过量的 NaOH 标准溶液,加热一段时间使乙酰基水解完全。再用 HCl 标准溶液回滴过量的NaOH(碱液在受热是易吸收CO2,用酸回滴定时会影响测定结果,故需要在同样条件下进行空白校正)滴定至溶液由红色变为接近无色(或恰褪至无色)即为终点。此时,PH=7-8。

相关主题