搜档网
当前位置:搜档网 › 光伏发电成本及投资效益分析(含数字图标)

光伏发电成本及投资效益分析(含数字图标)

光伏发电成本及投资效益分析(含数字图标)
光伏发电成本及投资效益分析(含数字图标)

一、影响光伏发电的成本电价的因素

光伏发电的成本可以用下式表示:

Tcost=Cp(1/Per+Rop+Rloan*Rintr-isub)/Hfp (1)

式(1)即为光伏发电的成本电价的计算公式(史博士定律)。它表示出了光伏电站的成本电价Tcost与光伏电站的单位装机成本Cp、投资回收期Per、运营费用比率Rop、贷款状况(包括贷款占投资额的比例Rloan和贷款利息Rintr两个参数)、年等效满负荷发电小时数Hfp、该电站所享受到的其它补贴收入系数等六大因素的具体关系。

有了式(1)的光伏发电成本分析模型,可以对现阶段光伏发电成本做一个简要分析。本分析不考虑电站的其它补贴收入,即令式(1)中的isub=0。

1.1单位装机成本对电价的影响

按照回收期20年,贷款比例为70%,贷款利率7%,运营费用2%计算。假设当地的年满负荷发电时间Hfp=1500小时,则不同的单位装机成本所对应的成本电价见表1-1。

表1-1装机成本Cp对于成本电价的影响

1.2日照时间对于成本电价的影响

按照回收期20年,贷款比例为70%,贷款利率7%,运营费用2%计算。假设单位装机成本为12000元/KW,则不同的满负荷发电时间所对应的成本电价见表1-2。

表1-2年满负荷发电时间对于成本电价的影响

可见,年满负荷发电时间对于成本电价的影响非常大。通常年满负荷发电时间与日照时间是直接相关的。但是,电站系统的设计方式、系统参数、系统追日与否,对年满负荷发电时间的影响都很大。下表给出几个地方的年日照时间与年满负荷发电时间的对照表。

表1-3影响年满负荷发电时间的因素

由上表可见,年日照时间对于年满负发电时间的影响是最大的,但在同样的年日照时间下,采用不同的系统安装方式,以及是否进行功率优化差异也是很大的。

例如,在年日照时间2800小时的地区(我国西北绝大多数是这类地区),固定支架的年满负荷发电时间为1456小时,但如果全部采用追日系统,并增添功率优化模块,则年满负荷发电时间可以达到1808小时。当然,年满负荷发电时间的增加需要投入的增大。但在组件不变的情况下,追加投入还是经济的。

对于追日支架等,除了考虑一次投入外,同时还要考虑当地的气候条件和安装条件,例如,屋顶通常不适宜安装追日系统。对于常有大风的地面电站,那么对于跟踪支架的维修费用可能影响较大。

1.3贷款状况对于成本电价的影响

目前,对于大型地面光伏电站的建设,多多少少都要采用部分银行贷款。银行贷款占总投资的比例以及贷款利息对于光伏电站的成本电价影响十分巨大。

这里,假定装机成本为12000元/KW,按照投资回收期20年,年满负荷发电时间1500小时,运营费用2%的计算条件,对于不同的贷款条件所对应的成本电价进行计算,结果见表1-4。

表1-4贷款条件对于成本电价的影响(电价单位:人民币元/度)

从表1-4可见,在其余条件均给定的条件下,仅贷款条件的变化,光伏电价就可能从0.56元/度升高到1.28元/度。

对于光伏电站的建设来说,贷款利息当然是越低越好。贷款比例的升高也会导致成本电价的提升,但由于自有资本金占用少,所以,适当提高贷款比例也未必是坏事。这要通过计算内部收益率和根据能够得到的最低利率来确定最合适的贷款比例。本文对此不作深入讨论。

1.4投资回收期对于成本电价的影响

假设单位装机成本为12000元/KW,运营费用按照2%计算。年等效满负荷发电时间按照1500小时计算。在两种贷款条件下,则不同的投资回收期所对应的成本电价见表1-5。

表1-5年满负荷发电时间对于成本电价的影响(电价单位:人民币元/度)

本帖隐藏的内容

由表(1-5)可见,如果全部采用自有资金投入,投资回收期设定在25年,目前的光伏发电成本电价仅为0.48元/度。这个价格已经低于许多地方的火电上网电价。而如果设定投资回收期为5年的话,则成本电价高达1.76元。因此,投资回收期的设定对于光伏发电的成本电价的影响也是巨大的。

在我国,火力发电厂的投资回收期通常为15~30年,而核电的投资回收期更高达50年。因此,对于光伏发电的可行性分析计算时,按照20年或者25年的投资回收期计算是较为合理的。从表(2-5)可见,在70%贷款的条件下,如果电价定为0.95元,则20年可回收投资,如果电价定为0.87元/度,则25年可回收投资。

1.5运营维护费对于光伏发电成本电价的影响

设定单位装机成本为12000元/KW,按照回收期20年,贷款比例为70%,贷款利率7%,年等效满负荷发电时间为1500小时,则不同的运营费用所对应的成本电价见表1-6。

表1-6运营费用对于成本电价的影响

由表(1-6)可见,运营费用对于光伏发电成本电价的影响也是较大的。同样一个电站,如果运营费用控制在1%,则成本电价可为0.87元/度;而如果成本控制在5%,则成本电价会飙升到1.51元/度。因此,对于电站的运营和维护的成本一定要精打细算。

二、现阶段的光伏发电成本及投资效益分析

2.1现阶段光伏发电的装机成本

根据式(2-1),光伏发电的装机成本如下:

Civs=Cpan+Cstr+Casb+Ccab+Cbas+Ctrc+Cpom+Cinv+Cdis+Ctrf+Cacc+Ccon+Cmon+Ceng+Cman +Cland

我们根据目前的光伏产业的成本,以一个10MW的光伏电站为例,分别计算,得出目前的光伏电站的装机成本,见表2-1。假定电站地点在青海某地戈壁滩,土地价格按照3000元/亩计算。

表2-1 2011年四季度在青海省一个10MW光伏电站的装机成本

以上费用中,第1~5项(表中红字部分)的价格是由光伏产业的行情决定的,这部分金额为8080万元,占总投资68.7%;第6~9项(表中绿色部分)是由钢材和铜材的市场价格决定的,金额为1510万元,占12.8%;第10~15则是土建与安装施工费用,取决于当地的施工条件和业主和项目公司的管理水平,金额为2020万元,占总投资17.2%;最后一项土地价格为150万元,占1.3%。

2.2光伏电站投资效益

2.2.1上网电价为1.15元/度的投资收益

以上述电站为例。当地年日照时间为3100小时,经过试验测算,年等效满负荷发电时间为1538小时(固定支架,已扣除站内消耗)。电价经过国家发改委审批为1.15元/度。电站发电的运营维护采用三班两倒方式,共设立15人,年运营维护费用大约为180万元。

项目方资本金为3176万元;银行贷款8000万元,年利率为7.5%,每年利息为600万元。此外,该项目每年减排约20000吨二氧化碳,可产生125万元的CDM指标收入。

利用式(2-5)电站的年税前利润:

Iint=P*Hfp*Tarif+Isub–Cop–Cfn

=10000*1538*1.15+1250000-1800000–6000000

=10,439,600.00元

如果电站按照10年加速折旧,则每年折旧费用约1116万元,前10年可不用交税,每年的税前利润可以用来归还银行贷款。假设每年除利息外,再归还1000万元贷款本金,八年还清,则利息将逐年递减75万元。

运营财务状况表见表2-2。

表2-2青海某地10MW光伏电站运营财务状况表(上网电价:1.15元/度)

由表(2-2)可见,该光伏电站用9年的时间即可收回全部投资(累计现金流超过资本金投入,贷款还清)。平时,在每年归还1000万元银行贷款后,还可有100万现金净流入,且每年递增大约50余万元。到第九年,银行本金还清,每年净现金流流入为1546万元。

2.2.2上网电价为1元/度的投资收益

2012年后,国内大部分电价变为1元/度。这样,如果对同样一个上述电站,每年还款余额改为800万元,这样,财务状况见表2-3。

表2-3青海某地10MW光伏电站运营财务状况表(上网电价:1元/度)

由表2-3可见,如果上网电价为1元/度,则项目投资回收期为10年(累计现金流入超过资本金投入,贷款还清)。到第10年后,因为折旧完成,因此,增值税和所得税大幅增加,每年两税合计大约600万元,即便如此,每年项目公司依然有1084万元的现金净流入。

2.2.3系统改进的电站投资收益

上述电站没有采用固定支架,没有追日并且没有进行功率优化,如果增加追日系统和固定支架,则投资需要增加1600万元,从而使电站总投资从11160万元增加到12760万元。考虑贷款9000万元,自有资本金为3760万元。但这样,电站的年满负荷发电时间可以增加到1860小时,但运营费用也相应增加到200万元/年。按照这个条件,再对该电站进行测算可知(表略),增加电站优化系统,虽然使总投资增加了1600万元,而且维护费用也增加了20万元/年,但由于增加了发电量,因此,投资回收期反而缩短到9年零一个月。收回投资后,每年的现金流增加了280万元。因此,投资效益是明显的。实践证明,任何能够低成本而有效地增加光伏组件发电量的技术,都对提高光伏电站的投资回报率有很大的帮助。

三、结语

目前,国家发改委制定了1元/度的上网电价。由上述分析可见,在现有的光伏发电系统的价格下,在我国西北地区或其它年满负荷发电时间大于1500小时的地区建设光伏电站,投资回收期为10年内。投资回报率超过了火力发电。

光伏发电成本及投资效益分析(含数字图标)

一、影响光伏发电的成本电价的因素 光伏发电的成本可以用下式表示: Tcost=Cp(1/Per+Rop+Rloan*Rintr-isub)/Hfp (1) 式(1)即为光伏发电的成本电价的计算公式(史博士定律)。它表示出了光伏电站的成本电价Tcost与光伏电站的单位装机成本Cp、投资回收期Per、运营费用比率Rop、贷款状况(包括贷款占投资额的比例Rloan和贷款利息Rintr两个参数)、年等效满负荷发电小时数Hfp、该电站所享受到的其它补贴收入系数等六大因素的具体关系。 有了式(1)的光伏发电成本分析模型,可以对现阶段光伏发电成本做一个简要分析。本分析不考虑电站的其它补贴收入,即令式(1)中的isub=0。 1.1单位装机成本对电价的影响 按照回收期20年,贷款比例为70%,贷款利率7%,运营费用2%计算。假设当地的年满负荷发电时间Hfp=1500小时,则不同的单位装机成本所对应的成本电价见表1-1。 表1-1装机成本Cp对于成本电价的影响 1.2日照时间对于成本电价的影响 按照回收期20年,贷款比例为70%,贷款利率7%,运营费用2%计算。假设单位装机成本为12000元/KW,则不同的满负荷发电时间所对应的成本电价见表1-2。 表1-2年满负荷发电时间对于成本电价的影响 可见,年满负荷发电时间对于成本电价的影响非常大。通常年满负荷发电时间与日照时间是直接相关的。但是,电站系统的设计方式、系统参数、系统追日与否,对年满负荷发电时间的影响都很大。下表给出几个地方的年日照时间与年满负荷发电时间的对照表。 表1-3影响年满负荷发电时间的因素

由上表可见,年日照时间对于年满负发电时间的影响是最大的,但在同样的年日照时间下,采用不同的系统安装方式,以及是否进行功率优化差异也是很大的。 例如,在年日照时间2800小时的地区(我国西北绝大多数是这类地区),固定支架的年满负荷发电时间为1456小时,但如果全部采用追日系统,并增添功率优化模块,则年满负荷发电时间可以达到1808小时。当然,年满负荷发电时间的增加需要投入的增大。但在组件不变的情况下,追加投入还是经济的。 对于追日支架等,除了考虑一次投入外,同时还要考虑当地的气候条件和安装条件,例如,屋顶通常不适宜安装追日系统。对于常有大风的地面电站,那么对于跟踪支架的维修费用可能影响较大。 1.3贷款状况对于成本电价的影响 目前,对于大型地面光伏电站的建设,多多少少都要采用部分银行贷款。银行贷款占总投资的比例以及贷款利息对于光伏电站的成本电价影响十分巨大。 这里,假定装机成本为12000元/KW,按照投资回收期20年,年满负荷发电时间1500小时,运营费用2%的计算条件,对于不同的贷款条件所对应的成本电价进行计算,结果见表1-4。 表1-4贷款条件对于成本电价的影响(电价单位:人民币元/度)

光伏成本计算公式

光伏发电成本电价分析的数学模型 史珺 上海普罗新能源有限公司光伏技术研究所 摘要:光伏发电从2005年进入产业化以来,成本不断降低。目前,我国国家发改委制定了1元/度的光伏发电的上网标杆电价。但许多投资者对于光伏发电的成本却感到难以分析,而不敢贸然投资。本文给出了光伏发电成本的数学分析模型,讨论了影响光伏成本电价的因素,如装机成本、日照时间、贷款状况、预期的投资回收期、以及运营费用等。并根据该模型对现阶段光伏发电的投资效益进行了一个投资分析。计算结果表明,在我国西北地区,按照1元/度的上网电价,目前投资光伏电站的投资回收期为10年。 关键词:光伏发电;成本;投资效益;数学模型 中图分类号:TK51 文献标识码:A ...... (前略) 光伏发电的成本,也就是每度电多少钱,不能简单地根据装机成本分析,它与如下五大因素有关: 1)装机成本、2)日照条件(年满负荷发电时间)、3)贷款状况(贷款利息和贷款在总投资的比例)、4)投资回收期(折旧年限)、5)运营维护费用。由于这五大因素每个因素都有其独立的变化性,相互的影响也十分明显。例如,同样的装机成本放在不同的地域、或者同样地域、同样的装机成本、但投资采用了不同的贷款比例,或者采用不同的折旧年限,等等,都会带来截然不同的光伏发电成本价格。 为了进行准确的光伏发电成本的测算,需要对于光伏发电的成本进行详细而科学的分析,这里,给出了一个光伏发电的成本电价的数学分析模型。

1发电成本构成 1.1 装机成本C ivs 装机成本就是一个光伏电站的总投入,它也是光伏电站公司的财务报表上的固定资产。由如下式构成: C ivs= C pan+C str+C asb+C cab+ C bas+ C trc+ C pom+ C inv+ C dis+ C trf+C acc+C con+C mon+C eng+C man+C land(1) 其中,C pan为光伏组件成本;C str为组件支架成本,C asb为安装费,C cab为电缆成本,C bas 为支架基础成本,C trc为追踪系统成本,C pom为功率优化系统成本,C inv为逆变器成本,C dis为高低压配电系统成本,C trf为变压器成本,C acc为外线接入费用,C con为土建(基础、配电房、中控室、宿舍、道路)成本,C mon为电站监控系统成本, C eng为施工与安装费用,C man为施工管理费,C land为土地购置费用。式(1)所计算出的C ivs为装机成本,它实际上就是电站的总投入,也是电站的固定资产。 1.2 运营管理成本(C op) 主要是电站维护和管理费用,光伏电站可以按照总体固定投资提取某一比例进行估算。由于光伏发电在营运过程中,不需要原材料,也没有运动磨损不部件,因此,维护费用很低,也完全可以预见。光伏电站的运营管理成本可用下式表达: C op = C ivs * R op( 2) 其中,R op为运营费率,指运营费用占总投资的比例。通常,维护费用除了人员工资外,主要是备件费用。根据目前为止的光伏电站经验,运营费率通常在1~3%之间。装机容量越大的电站,比例越低。 1.3 财务费用(C fn): 主要是贷款利息。这是光伏电站运营中变数最大的一项。它取决于贷款占总投资的比例R loan和贷款利率R intr:

mw光伏电站投资成本

1mw光伏电站投资成本 分布式发电通常是指利用分散式资源,装机规模较小的、布置在用户附近的发电系统,它一般接入低于35千伏或更低电压等级的电网。分布式光伏发电特指采用光伏组件,将太阳能直接转换为电能的分布式发电系统。 目前应用最为广泛的分布式光伏发电系统,是建在城市建筑物屋顶的光伏发电项目。该类项目必须接入公共电网,与公共电网一起为附近的用户供电。如果没有公共电网支撑,分布式系统就无法保证用户的用电可靠性和用电质量。 那么如果是建一个1MW光伏电站需要的投资成本是多少呢? 对于这个问题不好直接给具体的答案。因为一个光伏电站的投资成本的多少涉及到很多部分:1.电站建造需要的场地2.光伏太阳能组件 3.光伏线缆 4.支架 5.逆变器这些是建造光伏电站的必须部分。投资额可以根据你的具体安装光伏组件的总功率来计算,目前这个规模的电站的建造成本大概是8元/w左右,因此1MW的电站话费应该自800万人民币左右。 具体的可以参考下表:

那么有朋友就会问了,我投资这么多收益怎么样呢? 项目的投资效益有主要关注以下几个要素:场址的资源水平、电价、上网电量、投资水平等。为了方便读者查询。本文提供收益查询表格见下表。使用表格前,只需要确定当地资源的峰值小时数,确认投资水平,即可估算查询出项目融资前税前的内部收益率的大致范围。 为了更加清楚的计算出光伏电站的收益,爱普特光能科技给您举例说明: 如某地拟建一个光伏电站,通过查询市场价及获得类似项目经验,可知,现在组件的市场价格为4元/W,逆变站的投资为0.5元/W,电气设备及安装为2.5元/W。接入系统投资为0.35

元/W,建筑工程投资为0.65元/W、估算其他费用为0.8元/W(包括土地、设计、生产准备、建设管理费)。最后估算项目静态总投资为为8.8元/W。 通过分析项目的资源情况,项目电价为0.95元,项目峰值小时数为1800小时,假设项目所发电量可以全部上网,通过查表可知,峰值小时数为1800小时,投资9元/W的项目的融资前税前的内部收益率为9.94%,所以,利用内插法估算在已知投资水平下项目的投资内部收益率在11.51%。

我国光伏发电成本变化分析

我国光伏发电成本变化分析 近年来,特别是“十二五”期间,我国光伏发电发展取得了可喜的成绩,光伏装机规模和发电量均快速增长,至2015 年底,我国光伏发电累计装机容量达到4318 万千瓦(其中地面光伏电站为3712 万千瓦,分布式光伏为606 万千瓦),并网容量4158 万千瓦,年发电量383 亿千瓦时,约占全球光伏装机的1/5 ,并超过德国(光伏装机容量为3960 万千瓦)成为世界光伏装机第一大国。预计2020 年我国光伏装机容量将达到1.2 ~1.5 亿千瓦,2030 年光伏装机将达4~5 亿千瓦,以满足我国2020 年非化石能源占一次能源消费比重达到15% 、2030 年比重达到20% 的能源发展目标。我国光伏发电的快速发展、装机规模的不断扩大,带动了光伏行业的技术进步和材料价格下降,也带来了光伏装机和发电成本的下降,将使我国光伏发电由最初的主要依赖政策补贴转变为逐渐走向电力市场实现平价上网。 光伏电池组件效率持续提升、成本不断下降太阳能光伏发电系统的核心是太阳能电池,又称光伏电池。近年来,中国太阳能电池与组件规模迅速扩大的同时,产业化太阳能电池与组件效率也大幅提升,太阳能电池每年绝对效率平均提升 0.3% 左右。2014 年,高效多晶太阳能电池产业化平均效率达17.5% 以上,2014 年底最高测试值已达20.76%; 单晶

太阳能电池产业效率达19% 以上,效率已达到或超过国际平均水平。2015 年底,我国多晶及单晶太阳能电池产业化平均效率分别达到18.3% 和19.5% 。 伴随着太阳能电池效率持续提升,太阳能电池组件成本 也在大幅下降。2007 年我国太阳能电池组件价格为每瓦约4.8 美元(36 元),2010 年底我国太阳能电池的平均成本为每瓦1.2 ~1.4 美元,2014 年底每瓦降至0.62 美元(3.8 元)以下,7 年时间成本下降到了原来的1/10(见下图),光伏组件成本已在2010 ~2013 年间大幅下降。2015 年,我国晶硅组件平均价格为0.568 美元/瓦,光伏制造商单晶硅太阳能电池组件的直接制造成本约0.5 美元/瓦,多晶硅太阳能电池组件成本已降至0.48 美元/瓦以下。 同样条件下,美国平均每瓦组件的制造成本为0.68 ~0.70 美元,受制造成本影响,目前全球光伏产业也逐渐向少数国家和地区集中,中国大陆、台湾地区、马来西亚、美国是当今全球排在前四位的主要光伏制造产业集中地。预计未来3~5 年,中国晶体硅太阳能电池成本将下降至每瓦0.4 美元左右(2.5 元)。 光伏发电系统单位建设成本持续下降已建地面光伏电站初始投资的大小占光伏电站总成本的大部分,土地费用等占整

屋顶光伏电站成本计算与效益分析

屋顶光伏电站成本计算与效益分析 一、补贴说明: 光伏发电每度电国家补贴元每度补贴20 年,各个地方还有地方补贴,北京为元每度补贴 5 年。 二、方式说明 (一)全自发自用 指的是屋顶光伏所发电量全额消纳。 此方式投资回报率最高,例如商业用电元每度,光伏发电国家每度电补贴元(按照实际用量算)补贴20 年,在此基础上北京市政府再给补贴每度电元(各地政策不一样),那么一度电实际产生的价值为元(省了元电费再加上元补贴)在此基础上的投资回报率非常高,年收益率在30%左右。 (二)自发自用余额上网指的是屋顶光伏所发电量不能全额消纳,剩余电量上网卖给供电局。 此方式自用部分同上,上网部分按照当地上网电价加国家补贴计算。例如北京上网电价元每度,那么一度电的实际价值为元加元。此方式投资回报率取决于用电量,用电量越大回报率就越高。 (三)全额上网 指的是屋顶光伏所发电量全部卖给供电局,根据各地上网电价不同,一般 元每度电。此方式投资回报率较低,年收益率在15%左右。 根据前段时间炒得很热的“绿屋顶行动”计划,我们也总结了一下,测算方法如下

成本核算: 光伏发电成本目前大约7元/瓦,10平米屋顶大概能安装1kw的光伏,也就是说10 平米的屋顶成本7000 元。 发电量计算: 1kw 的光伏组件光照一小时能发电1 度(理论值),年发电量是 按照年日均光照时间计算的,以北京为例,北京的日均光照时间大约为小时,那么1kw的光伏组件每天能发电度(理论值) 案例分析: 以1w平米屋顶做例子,1w平米可安装1000kw的光伏组件,那么投资成本为700w1w平米屋顶每天可发电1000*=4200度(理论),年发电1533000度。 如果是自发自用,每度电能产生元的价值,那么一年能产生1533000*=3096660 元,也就是说2 年多就能回本,屋顶光伏发电设备的理论使用寿命是25年(实际还要长)也就是说后面20多年都是纯利润。(实际发电量因设备损耗等原因会低一些,但也不会太多,投资回报率在 3 年多一点。) 三、合作方式 租赁屋顶: 由我公司出资按照平米数计算每年支付屋顶租金。(具体费用根据用电量和并网方式计算) 电费打折:屋顶光伏所发电量给予企业价格折扣。(一般为9折左右,根据具体项目不同进行确定) 自行出资建设:由我方承担工程施工,企业出资建设,之后电站 由企业持有,免费用电加补贴。 合资建设:由企业和我方共同出资建设,根据出资比例逐年进行

光伏成本计算公式

光伏成本计算公式 Revised by Hanlin on 10 January 2021

光伏发电成本电价分析的数学模型 史珺 上海普罗新能源有限公司光伏技术研究所 摘要:光伏发电从2005年进入产业化以来,成本不断降低。目前,我国国家发改委制定了1元/度的光伏发电的上网标杆电价。但许多投资者对于光伏发电的成本却感到难以分析,而不敢贸然投资。本文给出了光伏发电成本的数学分析模型,讨论了影响光伏成本电价的因素,如装机成本、日照时间、贷款状况、预期的投资回收期、以及运营费用等。并根据该模型对现阶段光伏发电的投资效益进行了一个投资分析。计算结果表明,在我国西北地区,按照1元/度的上网电价,目前投资光伏电站的投资回收期为10年。 关键词:光伏发电;成本;投资效益;数学模型 中图分类号:TK51 文献标识码:A ...... (前略) 光伏发电的成本,也就是每度电多少钱,不能简单地根据装机成本分析,它与如下五大因素有关: 1)装机成本、2)日照条件(年满负荷发电时间)、3)贷款状况(贷款利息和贷款在总投资的比例)、4)投资回收期(折旧年限)、5)运营维护费用。由于这五大因素每个因素都有其独立的变化性,相互的影响也十分明显。例如,同样的

装机成本放在不同的地域、或者同样地域、同样的装机成本、但投资采用了不同的贷款比例,或者采用不同的折旧年限,等等,都会带来截然不同的光伏发电成本价格。 为了进行准确的光伏发电成本的测算,需要对于光伏发电的成本进行详细而科学的分析,这里,给出了一个光伏发电的成本电价的数学分析模型。 1发电成本构成 装机成本C ivs 装机成本就是一个光伏电站的总投入,它也是光伏电站公司的财务报表上的固定资产。由如下式构成: C ivs = C pan +C str +C asb +C cab + C bas + C trc + C pom + C inv + C dis + C trf +C acc +C con +C mon +C eng +C man +C land (1) 其中,C pan 为光伏组件成本;C str 为组件支架成本,C asb 为安装费,C cab 为电缆成 本,C bas 为支架基础成本,C trc 为追踪系统成本,C pom 为功率优化系统成本,C inv 为逆 变器成本,C dis 为高低压配电系统成本,C trf 为变压器成本,C acc 为外线接入费用, C con 为土建(基础、配电房、中控室、宿舍、道路)成本,C mon 为电站监控系统成 本, C eng 为施工与安装费用,C man 为施工管理费,C land 为土地购置费用。式(1)所 计算出的C ivs 为装机成本,它实际上就是电站的总投入,也是电站的固定资产。 运营管理成本(C op )

光伏发电成本计算

光伏发电成本计算 光伏发电成本取决于三个因素: 1.配件成本。 即光伏逆变器、太阳能电池板等。其次就是不同的光伏安装公司有自己的定价标准。光伏板约30000元。逆变器约1500元。电池、铁锂(全新)约10000元。控制器(光伏专用)约500元。电线约200元、支架约200元。合计大概为42400元。 2.装机容量(也就是功率)。 家庭光伏电站建设成本和装机容量(功率)成对比,要根据当前实际的用电量情况来判断需要安装多少千瓦的光伏电站,这样比较经济。也可以建设稍大功率的电站,这样用不完的电可以并网卖给国家。一般家庭电站2--5千瓦足够了。 3.光伏政策,也就是补贴政策。

2013年8月26日,国家发改委确定,分布式光伏发电国家级补贴为0.42元/度(税前),原则期限20年。此外,还有地方补贴,不同省份地区补贴力度都不一样,这个需要咨询当地的政策。 具体以家建光电5千瓦光伏电站为例成本计算: 以家庭建5千瓦光伏电站为例,安装需要考虑楼顶上是否有充足面积,电站每千瓦需要10平方米左右的电池板,5千瓦就需要50平方米。以目前家用光伏电站建造市价,各种费用加起来平均1瓦10元左右。 1.电池板:市场较好材质为4元/瓦,5千瓦≈2万元 2.安装材料费(城市):铝合金材质支架≈5000元,普通钢材支架≈3000元(如在农村屋顶多为尖顶的,不需要支架,会省些钱) 3.配套仪器:汇流箱≈400-500元(汇集所有电池板的电流,外加防雷功能,目前多数都不单独设立,而把这一功能放到其他仪器上)逆变器(质量好的)≈1万元(把电池板产生的直流电变成适合家用电器的交流电,还有防短路、通信等功能)

光伏发电成本

、 史珺博士于2011年11月28日公布了其所研究的光伏发电的成本电价的数学模型[1]。由于光伏电站总投资与装机容量通常成正比关系,如果用Cp代表单位装机容量的装机成本,Tcost代表光伏发电的成本电价,则: Tcost=Cp(1/Per+Rop+Rloan*Rintr-isub)/Hfp (1) 式(1)即为光伏发电的成本电价的计算公式。它表示出了光伏电站的成本电价与光伏电站的单位装机成本Cp、投资回收期Per、运营费用比率(每年的运营费用占电站总投入的比例)Rop、贷款状况(包括贷款占投资额的比例Rloan 和贷款利息Rintr两个参数)、年等效满负荷发电小时数Hfp(相当于1KW装机容量一年所发电量的千瓦时数)等五大因素的具体关系。此外,还有该电站所享受到的其它补贴收入系数isub(电站每年的电价外补贴占电站总投资的比例。 有了上面的光伏发电成本分析模型,可以对现阶段光伏发电成本做一个简要分析。 2.1平价上网的装机成本 光伏目前降价的动因是因为上网电价还高于火力发电。而所谓的平价上网,就是,上网电价与火力发电价格持平。目前,比较一致的看法是,如果光伏上网电价能够达到0.5元/度,则就毫无争议地低于火力发电了。为此,对式(1)进行变化可得: Cp=Tcost*Hfp/(1/Per+Rop+Rloan*Rintr-isub) (2) 首先,我们按照光伏发电企业的商业惯例对式(2)的各参数做出。首先是投资回收期Per,定义为20年,运营费率Rop定义为2%,贷款比例Rloan为70%,贷款利息按照7%计算,而CDM等收入按照投资的1.2%计算,即isub=1.2%;令Tcost=0.5元/度,同时假定Hfp=1500小时。在这样的条件下,光伏发电就具有了价值。将上述参数带入式(2),可以得到: Cp=0.5*1500/(0.05+0.02+0.7*0.07–0.012)=7009元/KW。 再变更一下不同的商业条件,可以计算一下所对应的装机成本要求,可得到表2-1。 表2-1 不同商业条件下,成本电价为0.5元/度时的装机成本

光伏发电系统度电成本的变化趋势研究

光伏发电系统度电成本的变化趋势研究 发表时间:2016-12-09T16:04:27.367Z 来源:《电力设备》2016年第19期作者:杜鸿润赵彩昆 [导读] 我国光伏发电的快速发展、装机规模的不断扩大,带动了光伏行业的技术进步和材料价格下降。 (内蒙古鲁电蒙源电力工程有限公司内蒙古呼和浩特 010000) 摘要:我国光伏发电的快速发展、装机规模的不断扩大,带动了光伏行业的技术进步和材料价格下降,也带来了光伏装机和发电成本的下降,下文探讨光伏发电系统度电成本的变化趋势。 关键词:光伏发电系统度电成本趋势 近年来,特别是“十二五”期间,我国光伏发电发展取得了可喜的成绩,光伏装机规模和发电量均快速增长,至2015年底,我国光伏发电累计装机容量达到4318万千瓦(其中地面光伏电站为3712万千瓦,分布式光伏为606万千瓦),并网容量4158万千瓦,年发电量383亿千瓦时,约占全球光伏装机的1/5,并超过德国(光伏装机容量为3960万千瓦)成为世界光伏装机第一大国。预计2020年我国光伏装机容量将达到1.2~1.5亿千瓦,2030年光伏装机将达4~5亿千瓦,以满足我国2020年非化石能源占一次能源消费比重达到15%、2030年比重达到20%的能源发展目标。 一、光伏电池组件效率持续提升、成本不断下降 太阳能光伏发电系统的核心是太阳能电池,又称光伏电池。近年来,中国太阳能电池与组件规模迅速扩大的同时,产业化太阳能电池与组件效率也大幅提升,太阳能电池每年绝对效率平均提升0.3%左右。2014年,高效多晶太阳能电池产业化平均效率达17.5%以上,2014年底最高测试值已达20.76%;单晶太阳能电池产业效率达19%以上,效率已达到或超过国际平均水平。2015年底,我国多晶及单晶太阳能电池产业化平均效率分别达到18.3%和19.5%。 伴随着太阳能电池效率持续提升,太阳能电池组件成本也在大幅下降。2007年我国太阳能电池组件价格为每瓦约4.8美元(36元),2010年底我国太阳能电池的平均成本为每瓦1.2~1.4美元,2014年底每瓦降至0.62美元(3.8元)以下,7年时间成本下降到了原来的1/10(见下图),光伏组件成本已在2010~2013年间大幅下降。2015年,我国晶硅组件平均价格为0.568美元/瓦,光伏制造商单晶硅太阳能电池组件的直接制造成本约0.5美元/瓦,多晶硅太阳能电池组件成本已降至0.48美元/瓦以下。 二、光伏发电系统单位建设成本持续下降 已建地面光伏电站初始投资的大小占光伏电站总成本的大部分,土地费用等占整体建设及运行维护的成本一般不大,暂不考虑其影响。光伏电站初始投资大致可分为光伏组件、并网逆变器、配电设备及电缆、电站建设安装等成本,其中光伏组件投资成本占初始投资的50%~60%。因此,光伏电池组件效率的提升、制造工艺的进步以及原材料价格下降等因素都会导致未来光伏发电成本的下降。有关测算表明,光伏组件效率提升1%,约相当于光伏发电系统价格下降17%。伴随着太阳能电池效率的持续提升和组件成本的大幅下降,再加上“十二五”期间光伏发电装机快速增加产生的规模化效应和光伏发电产业链的逐渐完善等因素,不仅光伏组件价格下降,逆变器价格也大幅下滑,因此,近年我国光伏电站单位千瓦投资也在不断下降。 地面光伏电站度电成本主要受寿命期内光伏发电总成本和总发电量的影响。在未考虑光伏电力输送成本及其他电网服务成本的前提下,根据已建典型项目,测算2015年并网光伏度电成本平均水平为0.7元/千瓦时(含税)。分布式光伏发电的建设成本与地面电站的建设成本构成相近,初始投资亦占分布式光伏电站总成本的一大部分,只在建设地点、装机规模和发电用途上会有差别。分布式光伏电站建设成本与地面光伏电站成本的变化趋势相同,近年来呈下降趋势。但由于分布式光伏电站土地费用占整体建设及运行维护的成本比地面电站稍高,且由于分布式光伏发电的建设选址特殊,占用场地的属性以及后期设备运维方式等问题需具体协调解决,给分布式光伏发电的发展带来了不确定性。因此,分布式光伏发电的建设成本略高于地面光伏电站建设成本。2015年,根据典型项目测算的我国分布式光伏发电建设成本约为8000~9000元/千瓦,度电成本约为0.8元/千瓦时(含税)。 三、未来光伏发电建设成本变化趋势分析 根据目前发展趋势,业内预计到2020年,中国晶体硅太阳能光伏组件价格将下降至每瓦0.4美元左右(仍低于IEA预测的国际平均价格水平),2020年之后到2030年,光伏组件的售出价格下降幅度可能低于组件成本下降幅度。尽管如此,由于光伏发电技术的发展进步,高效电池或其他新型电池的研发和普及,带来转换效率的提升和使用寿命的延长,将会导致太阳能光伏发电成本的进一步下降。届时,太阳能光伏组件的成本占电站总成本的比例也将显著下降,同时,投资贷款利率在“十三五”期间也可能处于下行通道中。 对于分布式光伏,综合以上有利因素,在未考虑电力输送成本及其他电网服务成本的前提下,保守估计2020年分布式光伏发电单位造价水平在7500~8000元/千瓦,2030年单位造价水平在4000~5000元/千瓦,仍略高于地面光伏电站。伴随着组件效率的不断提高,逆变器及组件价格的持续降低趋势,以及未来发展模式创新、规模效应等,分布式光伏发电系统总造价在上述预测基础上仍存在下降空间。四、光伏发电上网电价及未来走势分析 近年来我国光伏发电发展取得的巨大成绩也主要得益于国家和地区对于太阳能发电的大力支持和补贴政策。国家将根据光伏发电发展规模、发电成本变化情况等因素,逐步调减光伏电站标杆上网电价和分布式光伏发电电价补贴标准。随之,除国家补贴外,各省、市(区、县)为鼓励光伏发电行业的发展,也纷纷对区域内的光伏发电项目出台政策扶持,但政策期限一般截至2015年,目前光伏投资企业还在期待各省能继续出台光伏发展扶持政策。以2016年为开端,中国光伏发电补贴正式进入了下降通道,未来度电补贴可能会逐渐减少。分析原因,第一,我国光伏发电已具备一定的竞争力。第二,为实现低碳减排目标,可再生能源发展的力度会持续不衰,至2020年光伏装机规模可能达到1.5亿千瓦。随着光伏发电装机规模的日益增加,补贴额度也在不断提高,而长期的高额补贴难以维持,补贴缺口会逐渐增加。第三,补贴作为一种支持和促进政策,在产业发展初期是十分有利和必要的,但若长期过分依赖财政补贴,则不利于行业技术和管理各方面的进步。因此,为降低成本,减轻财政负担,促进光伏技术进步,提高光伏发电市场竞争力,保持中国光伏行业的持续和健康发展,光伏发电必然要逐渐脱离补贴,走进电力竞争市场。 总而言之,近年来,我国光伏发电产业发展迅速,光伏电池组件效率持续提升,材料成本不断下降,地面光伏电站和分布式光伏系统

光伏组件计算公式

光伏发电系统设计计算公式 1.转换效率 η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中: Pin=1KW/㎡=100mW/cm2。 2.充电电压 Vmax=V额× 1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数 1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池

7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~ 2.0根据当地污染程度、线路长短、安装角度等 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~ 2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230:无人维护+可靠使用时,K取251:无人维护+环境恶劣+要求非常可靠时,K取276 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等: 安全系数:

光伏电站运维度电成本探讨

光伏电站运维度电成本探讨 度电成本(Levelized Cost Of Electricity,简称LCOE),即每度光伏电量的成本。在目前标杆电价下,光伏电站的LCOE水平,基本 代表了电站的赢利能力。LCOE主要受发电量和总成本的影响。其中,总成本=初始投资+运营维护费用+设备维修费用; 寿命期内发电量主要取决于:太阳能资源水平、系统配置、运行方式、电站PR值、融资成本、智能化运维水平。 可见,影响LCOE的因素很多。其中,除“太阳能资源水平”为不可 控因素外,其他的各项因素都可以改善和优化。本文通过建立典型地面电站项目模型,仅从“初始投资成本”、“PR值”两个角度,分 析一下逆变器选型对于LCOE的影响。 1 典型地面电站模型 为了进行准确的分析,本文建立了一个典型的光伏电站模型,相关条件如下: 1)电站地点:假设在西部某地,纬度为35°~40°,海拔3000m以内,太阳能总辐射年总量为1800kWh/m2(I类资源区)。 2)电站规模:50MW;其中,光伏组件60MW、逆变器50MW,系统配置按“光伏组件:逆变器=1.2:1”考虑; 3)选用260W多晶硅组件,按10年衰减10%、25年衰减20%进行发 电量计算;整个电站系统效率按80%考虑。 4)其他:固定式运行方式,方阵倾角采用35°,年峰值小时数为2100h;独立柱基,以110kV电压等级送出;

7)假设不同情形下,未提及的光伏电站所有其他条件均相同。 8)除从“汇流箱~箱变”之外,其他设备造价估算如下表。 光伏电站部分投资估算表 一、配电设备 说明:上述费用不包含汇流箱、直流配电柜、逆变器、箱变、直流电缆、交流电缆等费用。 8)运营维护费和设备维修费用:为简化计算,按平均每年1000万、25年25000万元考虑。 2 三种型式逆变器设计方案

电力光伏系统设计计算公式

光伏电能发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

中国光伏电站投资成本分析

中国光伏电站投资成本分析 xx 年中国光伏电站投资成本分析 中国产业* 的《xx-2020 年太阳能发电站行业市场监测及投资前景预测报告》显示: xx 年8 月30 日,国家发改委发出《关于发挥价格杠杆作用促进光伏产业健康发展* 》(发改价格[xx]1638 号),根据各地太阳能资源条件和建设成本,将全国(不含西藏地区)分为3 类太阳能资源区,制定相应地面光伏电站标杆上网电价(含税)。 地面光伏电站标杆上网电价 本次出台政策的资源分区基本按照国内太阳能资源从西北向东南逐步降低的大趋势分布划分。3类资源区有以下特点(由于政策中未 含西藏自治区,以下分析均不包含西藏): (1)I 类资源区主要集中在我国西北地区,包含少量华北北部地区。该类区域的纬度约在北纬35 度-49 度之间,大部分地区分布在我国纬度较高的地区,分布较为集中,总辐射较高,约在5400-7200 MJ/m2。

(2)II 类资源区主要集中在我国华北、东北地区,包含少量西北、西南南部地区。该类区域的纬度在北纬21 度-53 度之间,分布范围很广,总辐射值的变化范围也很大,约在3600-7200MJ/m2之间,但除新疆南部、青海西南部、四川东部和云南东部外,其他大部分区域总辐射值在4500- 6300MJ/m2之间,在国内属中等水平。新疆南部、青海西南部部分地区总辐射值较高,可达到7200 MJ/mz2;而四川东部、云南东部部分地区总辐射值较低,仅3600 MJ/m2。 (3)III 类资源区主要集中在华东、中南地区,包含少量西南和西北的南部地区。该类区域纬度在北纬18 度-39 度之间,大部分区域位于我国纬度较低区域,该区域总辐射值约在3600-5700MJ/m2。但在该区域中辐射较高的区域基本为沿海的少量区域,其他区域总辐射值约在3600-5200 MJ/m2 之间。 根据已有项目,从III 类资源区中各挑选一个规模为20 M W。的代表性项目,进行资源及发电量分析。 根据政策,执行标杆上网电价期限原则上为20 年,因此本文发电年限按20 年计算。 3 个项目20 年平均发电量及等效满发小时数

解析光伏电池度电成本

解析度电成本光伏发电离平价上网还有多远? 2016-05-16 09:07:24来源:财新-无所不能 前言 我们首先要确定,平价上网中的“价”是多少。不同的电,价是不一样的。 图1:电价的分类 目前光伏的标杆电价在0.8~0.98元/kWh之间,上表中, 工商业电价:一般在1元/kWh左右,如果在工商业侧并网,则光伏已经实现了平价上网; 大工业电价:一般在0.6~0.9元/kWh之间,如果在大工业侧并网,则光伏已经接近实现了平价上网; 居民和农业售电电价:由于享受国家的交叉补贴,价格较低,距离光伏电价还比较远。

光伏实现平价上网的终极目标,是能在发电侧跟火电的上网电价PK。目前,火电的脱硫标杆电价在0.25~0.5元/kWh之间,光伏标杆电价距离其还有很远的距离。 光伏要实现“平价上网”,最快的途径就是以分布式的形式在用户侧并网,这是煤电、水电、核电等形式所不具备的特长。因此,扫清分布式光伏发展的障碍,是光伏实现平价上网最有效的途径。 一、度电成本的定义 如前言中所述,光伏电力的价格与火电相去甚远,只有降低度电成本才能实现“平价上网”的终极目标。那什么是“度电成本”。我查阅了资料,找到两种“度电成本”的定义。 定义一:国内财务软件常用的测算公式(公式1) 上述公式中,将总投资(初始投资扣除残值后和25年运营成本加和)除以总发电量,非常简单明了、易于理解。因此,在国内的财务评价中被广泛使用。但其缺点是没有考虑资金的时间成本。 定义二:国际上的测算公式(公式2)

陈荣荣、孙韵琳等人在《并网光伏发电项目的LCOE分析》中,介绍了国际上的测算度电成本的计算公式。 在公式2中,充分考虑了资金的时间价值,用折现率i将不同时间的成本都折成现值;同时,也考虑不同时间的发电量会带来不同的现金流,因此也对发电量进行折现。这种计算方法的缺点是讲解、计算都比较复杂。 个人认为,由于所有的资金都有使用成本,公式2更能体现电量真正的成本。由于国内的财务分析均以公式1为基础,为便于理解,本文也以公式1进行计算和分析。 然而,必须强调的是:由于未考虑资金的时间价值, 度电成本≠光伏电力成本≠合理利润下的售电电价 因此,度电成本达到0.3元/kWh时,并不意味着可以实现平价上网。 虽然度电成本不能等同于光伏电力成本,但其变化的趋势可以反映光伏电力成本的变化趋势。因为,下文通过对度电成本影响因素、程度的分析,来找出实现平价上网的途径。

光伏行业成本分析(1)

武汉轻工大学毕业设计(论文) 光伏行业成本分析 姓名:曾娟 学院:经济与管理学院 学号: 018011200050 专业:会计 年级:11级 2014年 8 月 20 日

摘要 目前我国的光伏产业虽然拥有了世界第一的光伏电池制造能力,但由于发展时间短,光伏产业的配套体系尚未完全建立,光伏发电成本还有较大的下降空间。由于目前光伏组件成本偏高导致发电成本高于传统发电方式,因此光伏技术降低成本是主导方向,成本控制是关键。高效率、低成本将成为太阳能光伏发电的发展趋势,光伏产品应用也将更多的从地面和屋顶电站向自给式、分布式应用发展,最终实现清洁电力的平价上网。而且成本将决定光伏企业的命运,“企业要创新,就要着力研究市场需求,更加贴近生产,贴近效能,完善工艺,降低成本。”只有更低的价格、更好的品牌,才能够在光伏行业傲视群雄。 关键词:成本控制;光伏行业;成本; Abstract At present, China's PV industry, though they have the world's first PV industry cell manufacturing capacity, but because of the development time is short, the PV industry supporting system has not been fully established, the cost of PV industry power generation there is a large decline

in space. Due to the current high cost of PV modules cost of producing power than traditional power generation, thus reducing the cost of PV industry technology is the dominant orientation, cost control is the key. High efficiency and low cost will become the development trend of solar PV, PV applications will also be more power plants from the ground and the roof to the self-development of distributed applications, and ultimately clean power parity Internet has become an important energy provider. And the cost of PV companies will determine the fate of the "enterprise to innovate, we must strive to study the market demand, closer to production, close to the performance, improve processes, reduce costs." Only lower prices, better brand, to be able in the PV industry industry chasing. Keywords: cost control; PV industry; costs;

分布式光伏发电系统的运行维护成本怎么计算

分布式光伏发电系统的运行维护成本怎么计算 分布式光伏发电系统的运行维护主要是对系统的机械安装、电气连接的日常检测,对光伏组件的清洗,对部分失效部件的更换等简单操作,成本相对较低,对于10 千瓦以下的系统维护成本几乎可以忽略不计,但是MW 级的电站应当预算1%-3%维护成本进入系统的总 投资,每次每平方米的清洗成本在0.5-0.8 元不等,主要取决于当地人工成本和运维服务提供人员的多少。 如何核算分布式光伏发电业主的补贴收益? 补贴收益分为三个部分,一部分是国家补贴,一部分是自发自用抵消的用电费用,一部分是剩余电量上网的脱硫煤收购电价,其中所有电量全部自用的补贴收益为(本地电价+分布式发电国家补贴)* 全部发电量,部分电量自发自用,部分余电上网的补贴收益(自发自用的 比例*本地电价+分布式发电国家补贴+上网比例*脱硫煤收购电价)* 全部发电量。 分布式光伏发电系统有哪些建设和商业模式

分布式光伏发电项目所依托的建筑物以及设施应具有合法性,如果业主具有项目单位与项目所依托的建筑物所有权可以采用自建方式,业主出资建设,业主获得收益,如果项目单位与项目所依托的建筑及设施所有人非统一主体时,项目单位与建筑物及设施的所有人签订建筑物及设施的使用或租用协议,视经费方式与电力用户签订合同能源管理服务协议。 工商业用户安装光伏发电系统有什么好处? 工商业用户安装光伏发电系统的好处有:工商业用电量大,电价 高,自发自用的比例大,回收期短,收益率高。另外光伏系统有节能减排的社会效益,能够帮工业用户完成节能减排指标,同时可以降低企业的用电成本,提高企业竟争力。 用户资金不足可以申请银行货款建设分布式光伏发电系统吗?借 款人需要具备哪些条件? 除项目资本金外和资金,可以申请银行货款解决,近期部分银行和其他金融机构已经开始向分布式用户提供贷款等金融服务,如国家开发银行已联合国家能源局制定《关于支持分布式发电金融服务的意 见》,明确了国家开发银行给予分布式光伏发电信贷支持的对像形式和条件等政策,一般而言信用状况良好、无重大不良记录的企事业法人以及具备完全民事责任的自然人都可以申请银行贷款。县级可利用小额贷款和互助资金解决部分农户筹资难的问题。 申请银行贷款需要准备哪些资料?贷款发放需要哪些条件? 申请银行贷款的借款人一般需准备的材料,自然人身份证明、个人资产证明或企业经营执照、公司章程、近三年财务审计报告、项目备案、电网接入批复、用地或屋顶租赁协议、电力购买协议、能源管理合同等有关文件,一般情况贷款发放前应完成项目备案以及电力购买协议、能源管理合同等有关协议的签订。

相关主题