搜档网
当前位置:搜档网 › MATLAB代码 解线性方程组的迭代法

MATLAB代码 解线性方程组的迭代法

MATLAB代码  解线性方程组的迭代法
MATLAB代码  解线性方程组的迭代法

解线性方程组的迭代法

1.rs里查森迭代法求线性方程组Ax=b的解

function[x,n]=rs(A,b,x0,eps,M)

if(nargin==3)

eps=1.0e-6;%eps表示迭代精度

M=10000;%M表示迭代步数的限制值elseif(nargin==4)

M=10000;

end

I=eye(size(A));

n=0;

x=x0;

tol=1;

%迭代过程

while(tol>eps)

x=(I-A)*x0+b;

n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0);

x0=x;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

2.crs里查森参数迭代法求线性方程组Ax=b的解

function[x,n]=crs(A,b,x0,w,eps,M)

if(nargin==4)

eps=1.0e-6;%eps表示迭代精度

M=10000;%M表示迭代步数的限制值

elseif(nargin==5)

M=10000;

end

I=eye(size(A));

n=0;

x=x0;

tol=1;

%迭代过程

while(tol>eps)

x=(I-w*A)*x0+w*b;

n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0);

x0=x;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

3.grs里查森迭代法求线性方程组Ax=b的解

function[x,n]=grs(A,b,x0,W,eps,M)

if(nargin==4)

eps=1.0e-6;%eps表示迭代精度

M=10000;%M表示迭代步数的限制值

elseif(nargin==5)

M=10000;

end

I=eye(size(A));

n=0;

x=x0;

tol=1;%前后两次迭代结果误差

%迭代过程

while(tol>eps)

x=(I-W*A)*x0+W*b;%迭代公式

n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0);

x0=x;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

4.jacobi雅可比迭代法求线性方程组Ax=b的解

function[x,n]=jacobi(A,b,x0,eps,varargin)

if nargin==3

eps=1.0e-6;

M=200;

elseif nargin<3

error

return

elseif nargin==5

M=varargin{1};

end

D=diag(diag(A));%求A的对角矩阵

L=-tril(A,-1);%求A的下三角阵

U=-triu(A,1);%求A的上三角阵

B=D\(L+U);

f=D\b;

x=B*x0+f;

n=1;%迭代次数

while norm(x-x0)>=eps

x0=x;

x=B*x0+f;

n=n+1;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

5.gauseidel高斯-赛德尔迭代法求线性方程组Ax=b的解function[x,n]=gauseidel(A,b,x0,eps,M)

if nargin==3

eps=1.0e-6;

M=200;

elseif nargin==4

M=200;

elseif nargin<3

error

return;

end

D=diag(diag(A));%求A的对角矩阵

L=-tril(A,-1);%求A的下三角阵

U=-triu(A,1);%求A的上三角阵

G=(D-L)\U;

f=(D-L)\b;

x=G*x0+f;

n=1;%迭代次数

while norm(x-x0)>=eps

x0=x;

x=G*x0+f;

n=n+1;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

6.SOR超松弛迭代法求线性方程组Ax=b的解

function[x,n]=SOR(A,b,x0,w,eps,M)

if nargin==4

eps=1.0e-6;

M=200;

elseif nargin<4

error

return

elseif nargin==5

M=200;

end

if(w<=0||w>=2)

error;

return;

end

D=diag(diag(A));%求A的对角矩阵

L=-tril(A,-1);%求A的下三角阵

U=-triu(A,1);%求A的上三角阵

B=inv(D-L*w)*((1-w)*D+w*U);

f=w*inv((D-L*w))*b;

x=B*x0+f;

n=1;%迭代次数

while norm(x-x0)>=eps

x0=x;

x=B*x0+f;

n=n+1;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

7.SSOR对称逐次超松弛迭代法求线性方程组Ax=b的解function[x,n]=SSOR(A,b,x0,w,eps,M)

if nargin==4

eps=1.0e-6;

M=200;

elseif nargin<4

error

return

elseif nargin==5

M=200;

end

if(w<=0||w>=2)

error;

return;

end

D=diag(diag(A));%求A的对角矩阵

L=-tril(A,-1);%求A的下三角阵

U=-triu(A,1);%求A的上三角阵

B1=inv(D-L*w)*((1-w)*D+w*U);

B2=inv(D-U*w)*((1-w)*D+w*L);

f1=w*inv((D-L*w))*b;

f2=w*inv((D-U*w))*b;

x12=B1*x0+f1;

x=B2*x12+f2;

n=1;%迭代次数

while norm(x-x0)>=eps

x0=x;

x12=B1*x0+f1;

x=B2*x12+f2;

n=n+1;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

8.JOR雅可比超松弛迭代法求线性方程组Ax=b的解function[x,n]=JOR(A,b,x0,w,eps,M)

if nargin==4

eps=1.0e-6;

M=10000;

elseif nargin==5

M=10000;

end

if(w<=0||w>=2)%收敛条件要求

error;

return;

end

D=diag(diag(A));%求A的对角矩阵

B=w*inv(D);

%迭代过程

x=x0;

n=0;%迭代次数tol=1;

%迭代过程

while tol>=eps

x=x0-B*(A*x0-b);

n=n+1;

tol=norm(x-x0);

x0=x;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

9.twostep两步迭代法求线性方程组Ax=b的解

function[x,n]=twostep(A,b,x0,eps,varargin)

if nargin==3

eps=1.0e-6;

M=200;

elseif nargin<3

error

return

elseif nargin==5

M=varargin{1};

end

D=diag(diag(A));%求A的对角矩阵

L=-tril(A,-1);%求A的下三角阵

U=-triu(A,1);%求A的上三角阵

B1=(D-L)\U;

B2=(D-U)\L;

f1=(D-L)\b;

f2=(D-U)\b;

x12=B1*x0+f1;

x=B2*x12+f2;

n=1;%迭代次数

while norm(x-x0)>=eps

x0=x;

x12=B1*x0+f1;

x=B2*x12+f2;

n=n+1;

if(n>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

10.fastdown最速下降法求线性方程组Ax=b的解

function[x,n]=fastdown(A,b,x0,eps)

if(nargin==3)

eps=1.0e-6;

end

x=x0;

n=0;

tol=1;

while(tol>eps)%以下过程可参考算法流程r=b-A*x0;

d=dot(r,r)/dot(A*r,r);

x=x0+d*r;

tol=norm(x-x0);

x0=x;

n=n+1;

end

11.conjgrad共轭梯度法求线性方程组Ax=b的解

function[x,n]=conjgrad(A,b,x0)

r1=b-A*x0;

p=r1;

n=0;

for i=1:rank(A)%以下过程可参考算法流程if(dot(p,A*p)< 1.0e-50)%循环结束条件

break;

end

alpha=dot(r1,r1)/dot(p,A*p);

x=x0+alpha*p;

r2=r1-alpha*A*p;

if(r2< 1.0e-50)%循环结束条件

break;

end

belta=dot(r2,r2)/dot(r1,r1);

p=r2+belta*p;

n=n+1;

end

12.preconjgrad预处理共轭梯度法求线性方程组Ax=b的解function[x,n]=preconjgrad(A,b,x0,M,eps)

if nargin==4

eps=1.0e-6;

end

r1=b-A*x0;

iM=inv(M);

z1=iM*r1;

p=z1;

n=0;

tol=1;

while tol>=eps

alpha=dot(r1,z1)/dot(p,A*p);

x=x0+alpha*p;

r2=r1-alpha*A*p;

z2=iM*r2;

belta=dot(r2,z2)/dot(r1,z1);

p=z2+belta*p;

n=n+1;

tol=norm(x-x0);

x0=x;%更新迭代值

r1=r2;

z1=z2;

end

13.BJ块雅克比迭代法求线性方程组Ax=b的解

function[x,N]=BJ(A,b,x0,d,eps,M)

if nargin==4

eps=1.0e-6;

M=10000;

elseif nargin<4

error

return

elseif nargin==5

M=10000;%参数的默认值

end

NS=size(A);

n=NS(1,1);

if(sum(d)~=n)

disp('分块错误!');

return;

end

bnum=length(d);

bs=ones(bnum,1);

for i=1:(bnum-1)

bs(i+1,1)=sum(d(1:i))+1;

%获得对角线上每个分块矩阵元素索引的起始值

end

DB=zeros(n,n);

for i=1:bnum

endb=bs(i,1)+d(i,1)-1;

DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);

%求A的对角分块矩阵

end

for i=1:bnum

endb=bs(i,1)+d(i,1)-1;

invDB(bs(i,1):endb,bs(i,1):endb)=inv(DB(bs(i,1):endb,bs(i,1):endb));

%求A的对角分块矩阵的逆矩阵

end

N=0;

tol=1;

while tol>=eps

x=invDB*(DB-A)*x0+invDB*b;%由于LB+DB=DB-A

N=N+1;%迭代步数

tol=norm(x-x0);%前后两步迭代结果的误差

x0=x;

if(N>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

14.BGS块高斯-赛德尔迭代法求线性方程组Ax=b的解

function[x,N]=BGS(A,b,x0,d,eps,M)

if nargin==4

eps=1.0e-6;

M=10000;

elseif nargin<4

error

return

elseif nargin==5

M=10000;

end

NS=size(A);

n=NS(1,1);

bnum=length(d);

bs=ones(bnum,1);

for i=1:(bnum-1)

bs(i+1,1)=sum(d(1:i))+1;

%获得对角线上每个分块矩阵元素索引的起始值

end

DB=zeros(n,n);

for i=1:bnum

endb=bs(i,1)+d(i,1)-1;

DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);

%求A的对角分块矩阵

end

LB=-tril(A-DB);%求A的下三角分块阵

UB=-triu(A-DB);%求A的上三角分块阵

N=0;

tol=1;

while tol>=eps

invDL=inv(DB-LB);

x=invDL*UB*x0+invDL*b;%块迭代公式

N=N+1;

tol=norm(x-x0);

x0=x;

if(N>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

15.BSOR块逐次超松弛迭代法求线性方程组Ax=b的解

function[x,N]=BSOR(A,b,x0,d,w,eps,M)

if nargin==5

eps=1.0e-6;

M=10000;

elseif nargin<5

error

return

elseif nargin==6

M=10000;%参数默认值

end

NS=size(A);

n=NS(1,1);

bnum=length(d);

bs=ones(bnum,1);

for i=1:(bnum-1)

bs(i+1,1)=sum(d(1:i))+1;

%获得对角线上每个分块矩阵元素索引的起始值

end

DB=zeros(n,n);

for i=1:bnum

endb=bs(i,1)+d(i,1)-1;

DB(bs(i,1):endb,bs(i,1):endb)=A(bs(i,1):endb,bs(i,1):endb);

%求A的对角矩阵

end

LB=-tril(A-DB);%求A的下三角阵

UB=-triu(A-DB);%求A的上三角阵

N=0;

tol=1;

iw=1-w;

while tol>=eps

invDL=inv(DB-w*LB);

x=invDL*(iw*DB+w*UB)*x0+w*invDL*b;%块迭代公式

N=N+1;

tol=norm(x-x0);

x0=x;

if(N>=M)

disp('Warning:迭代次数太多,可能不收敛!');

return;

end

end

matlab实验十七__牛顿迭代法(可打印修改)

实验十七牛顿迭代法 【实验目的】 1.了解牛顿迭代法的基本概念。 2.了解牛顿迭代法的收敛性和收敛速度。 3.学习、掌握MATLAB软件的有关命令。 【实验内容】 用牛顿迭代法求方程的近似根,误差不超过。 3210 ++-=3 10- x x x 【实验准备】 1.牛顿迭代法原理 2.牛顿迭代法的几何解析 3.牛顿迭代法的收敛性 4.牛顿迭代法的收敛速度 5.迭代过程的加速 6.迭代的MATLAB命令 MATLAB中主要用for,while等控制流命令实现迭代。 【实验重点】 1.牛顿迭代法的算法实现 2.牛顿迭代法收敛性和收敛速度 【实验难点】 1.牛顿迭代法收敛性和收敛速度 【实验方法与步骤】 练习1用牛顿迭代法求方程在x=0.5附近的近似 3210 ++-= x x x

根,误差不超过。 310-牛顿迭代法的迭代函数为 322()1()()321 f x x x x g x x x f x x x ++-=-=-'++相应的MATLAB 代码为 >>clear; >>x=0.5; >>for i=1:3 >>x=x-(x^3+x^2+x-1)/(3*x^2+2*x+1) >>end 可算的迭代数列的前3项0.5455,0.5437,0.5437。经三次迭代,就大大超过了精度要求。 练习2 用牛顿迭代法求方程的近似正实根,由此建2(0)x a a =>立一种求平方根的计算方法。 由计算可知,迭代格式为,在实验12的练习4中1()()2a g x x x =+已经进行了讨论。 【练习与思考】 1.用牛顿迭代法求方程的近似根。 ln 1x x =2.为求出方程的根,在区间[1,2]内使用迭代函数进行310x x --=迭代,纪录迭代数据,问迭代是否收敛?对迭代进行加速,对比加速前的数据,比较加速效果。 3.使用在不动点的泰勒公式,证明牛顿迭代法收敛原理。*x

jacobi G-S,超松弛迭代法MATLAB程序

function iteration A=[10,1,2,3,4; 1,9,-1,2,-3; 2,-1,7,3,-5; 3,2,3,12,-1; 4,-3,-5,-1,15]; b=[12,-27,14,-17,12]'; x0=[0,0,0,0,0]'; tol=1e-12; disp('jacobi迭代法的结果和次数如下:') [x,k]=Fjacobi(A,b,x0,tol) disp('G-S迭代法的结果和次数如下:':') [x,k]=Fgseid(A,b,x0,tol) disp('超松弛的结果和次数如下:':') [x,k]=Fsor(A,b,x0,1.2,tol) disp('共轭梯度法的结果和次数如下:':') [x,k]=Fcg(A,b,x0,tol) %jacobi迭代法 function [x,k]=Fjacobi(A,b,x0,tol) max=300; D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); B=D\(L+U); f=D\b; x=B*x0+f; k=1; while norm(x-x0)>=tol x0=x; x=B*x0+f; k=k+1; if(k>=max) disp('μü′ú3?1y300′?£?·?3ì×é?é?ü2?ê?á2'); return; end end %G-S迭代法 function [x,k]=Fgseid(A,b,x0,tol) max=300; D=diag(diag(A)); L=-tril(A,-1); U=-triu(A,1); G=(D-L)\U; f=(D-L)\b; x=G*x0+f; k=1; while norm(x-x0)>=tol x0=x; x=G*x0+f; k=k+1; if(k>=max) disp('μü′ú3?1y300′?£?·?3ì×é?é?ü2?ê?á2'); return; end

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

MatLab求解线性方程组

MatLab解线性方程组一文通 当齐次线性方程AX=0,rank(A)=r

MATLAB样例之雅克比迭代法

要求: 下面分别使用雅克比迭代法和高斯-赛德尔迭代法求一个方程组的近似解用的线性方程组是按实验要求给的: 7*x1+x2+2*x3=10 x1+8*x2+2*x3=8 2*x1+2*x2+9*x3=6 雅克比迭代法的matlab代码:(老师写的) A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(any(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); while 1 x1=B*x0+f K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end 高斯-赛德尔迭代法matlab代码:(自己改的)

A=[7,1,2;1,8,2;2,2,9]; b=[10;8;6]; if(all(diag(A))==0) error('error,pause') end eps=input('误差限eps='); N=input('迭代次数N='); D=diag(diag(A)); B=inv(D)*(D-A); f=inv(D)*b; K=0; x0=zeros(size(b)); x00=x0; while 1 x11=B*x0+f; x00(1,1)=x11(1,1); x12=B*x00+f; x00(2,1)=x12(2,1); x13=B*x00+f; x00(3,1)=x13(3,1); x1=x00 K=K+1; fprintf('第-次迭代的近似解为',K) disp(x1'); if norm(x1-x0,inf)N fprintf('迭代超限') end x0=x1; end

MATLAB解线性方程组的直接方法

在这章中我们要学习线性方程组的直接法,特别是适合用数学软件在计算机上求解的方法. 3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b)

高斯-赛德尔迭代法matlab程序

disp('划分为M*M个正方形') M=5 %每行的方格数,改变M可以方便地改变剖分的点数 u=zeros(M+1);%得到一个(M+1)*(M+1)的矩阵 disp('对每个剖分点赋初值,因为迭代次数很高,所以如何赋初值并不重要,故采用对列线性赋值。') disp('对边界内的点赋初值并使用边界条件对边界赋值:') for j=1:M-1 for i=1:M-1 u(i+1,j+1)=100*sin(pi/M*j)/M*(M-i);%对矩阵(即每个刨分点)赋初值 end end for i=1:M+1 u(1,i)=100*sin(pi*(i-1)/M);%使用边界条件对边界赋值 u(1,M+1)=0; end u tic %获取运行时间的起点 disp('迭代次数为N') N=6 %迭代次数,改变N可以方便地改变迭代次数 disp('n为当前迭代次数,u为当前值,结果如下:') for n=1:N for p=2:M i=M+2-p; for j=2:M u(i,j)=0.25*(u(i,j-1)+u(i+1,j)+u(i-1,j)+u(i,j+1));%赛德尔迭代法 end end n %输出n u %输出u end disp('所用的时间:') t=toc %获取算法运行需要的时间 [x,y]=meshgrid(0:1/M:1,0:1/M:1); z=u(1,:); for a=2:M+1 z=[z;u(a,:)];%获取最终迭代的结果,幅值给z,z的值代表该点的点位值 end mesh(x,y,z)%绘制三维视图以便清楚地显示结果 mesh(x,y,z,'FaceColor','white','EdgeColor','black') %绘制三维视图以便清楚地显示结果

lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序

一、实验目的及题目 1.1 实验目的: (1)学会用高斯列主元消去法,LU 分解法,Jacobi 迭代法和Gauss-Seidel 迭代法解线性方程组。 (2)学会用Matlab 编写各种方法求解线性方程组的程序。 1.2 实验题目: 1. 用列主元消去法解方程组: 1241234 123412343421233234x x x x x x x x x x x x x x x ++=??+-+=??--+=-??-++-=? 2. 用LU 分解法解方程组,Ax b =其中 4824012242412120620266216A --?? ?- ?= ? ?-??,4422b ?? ? ?= ?- ?-?? 3. 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组: 123234 1231234102118311210631125x x x x x x x x x x x x x -+=-??-+=-??-+=??-+-+ =? 二、实验原理、程序框图、程序代码等 2.1实验原理 2.1.1高斯列主元消去法的原理 Gauss 消去法的基本思想是一次用前面的方程消去后面的未知数,从而将方程组化为等价形式: 1111221122222n n n n nn n n b x b x b x g b x b x g b x g +++=??++=????= ? 这个过程就是消元,然后再回代就好了。具体过程如下: 对于1,2, ,1k n =-,若() 0,k kk a ≠依次计算

()() (1)()()(1)()()/,,1, ,k k ik ik kk k k k ij ij ik kj k k k i i ik k m a a a a m a b b m b i j k n ++==-=-=+ 然后将其回代得到: ()() ()()()1/()/,1,2,,1 n n n n nn n k k k k k kj j kk j k x b a x b a x a k n n =+?=??=-=--? ? ∑ 以上是高斯消去。 但是高斯消去法在消元的过程中有可能会出现() 0k kk a =的情况,这时消元就无法进行了,即使主元数() 0,k kk a ≠但是很小时,其做除数,也会导致其他元素数量级的严重增长和舍入误差的扩散。因此,为了减少误差,每次消元选取系数矩阵的某列中绝对值最大的元素作为主元素。然后换行使之变到主元位置上,再进行销元计算。即高斯列主元消去法。 2.1.2直接三角分解法(LU 分解)的原理 先将矩阵A 直接分解为A LU =则求解方程组的问题就等价于求解两个三角形方程组。 直接利用矩阵乘法,得到矩阵的三角分解计算公式为: 1111111 11 1,1,2,,/,2,,,,,1,,,2,3, ()/,1,2, ,i i i i k kj kj km mj m k ik ik im mk kk m u a i n l a u i n u a l u j k k n k n l a l u u i k k n k n -=-===?? ==?? =-=+??=??=-=++≠?? ∑∑且 由上面的式子得到矩阵A 的LU 分解后,求解Ux=y 的计算公式为 11 111,2,3,/()/,1,2, ,1 i i i ij j j n n nn n i i ij j ii j i y b y b l y i n x y u x y u x u i n n -==+=??? =-=?? =??? =-=--?? ∑∑ 以上为LU 分解法。

线性方程组求解matlab实现

3.1 方程组的逆矩阵解法及其MATLAB 程序 3.1.3 线性方程组有解的判定条件及其MATLAB 程序 判定线性方程组A n m ?b X =是否有解的MATLAB 程序 function [RA,RB,n]=jiepb(A,b) B=[A b];n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB ,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n ,所以此方程组有唯一解.') else disp('请注意:因为RA=RB> A=[2 3 -1 5;3 1 2 -7;4 1 -3 6;1 -2 4 -7]; b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果为 请注意:因为RA=RB=n ,所以此方程组有唯一解. RA = 4,RB =4,n =4 在MATLAB 工作窗口输入 >>X=A\b, 运行后输出结果为 X =(0 0 0 0)’. (2) 在MATLAB 工作窗口输入程序 >> A=[3 4 -5 7;2 -3 3 -2;4 11 -13 16;7 -2 1 3];b=[ 0; 0; 0; 0]; [RA,RB,n]=jiepb(A,b) 运行后输出结果 请注意:因为RA=RB> A=[4 2 -1;3 -1 2;11 3 0]; b=[2;10;8]; [RA,RB,n]=jiepb(A,B) 运行后输出结果 请注意:因为RA~=RB ,所以此方程组无解. RA =2,RB =3,n =3 (4)在MATLAB 工作窗口输入程序

MATLAB实现迭代法最佳松弛因子的选取

迭代法最佳松弛因子的选取 一、问题提出: 针对矩阵430341014A ?? ??=-?? ??-?? ,b=[24;30;-24],用SOR 迭代求解。并选出最佳松弛 因子。理论分析 1.24ω==≈。做出()L ωρ关于ω函数 的图像。 二、理论基础 选取分裂矩阵M 为带参数的下三角矩阵)(1 wL D w M -=, 其中w>0为可选择的松弛因子. 于是,由 ?????+=+f Bx x x k k ) ()1()0() (初始向量 (k=0,1,…,)可构造一个迭代法,其迭代矩阵为A wL D w I L w 1)(---≡ =).)1(()(1wU D w wL D +--- 从而得到解Ax=b 的主次逐次超松弛迭代法. 解Ax=b 的SOR 方法为 ?????+=+f Bx x x k k ) ()1()0() (初始向量 (k=0,1,…,) (1) 其中 w L =).)1(()(1wU D w wL D +---(2) b wL D w f 1)(--= 下面给出解Ax=b 的SOR 迭代法的分量计算公式.记 ,),...,,...,() () () (1)(T k n k i k k x x x x = 由(1)式可得 ,))1(()()()1(wb x wU D w x wL D k k ++-==-+ ).()()()1()()1(k k k k k Dx Ux Lx b w Dx Dx -+++=++ (3) 由此,得到解Ax=b 的SOR 方法的计算公式

?????????==--+==∑∑-==++.),1,0;,...,2,1(/)(,),...,(11) (1)()1()0()0(1)0(为松弛因子 w k n i a x a x a b w x x x x x ii i j n i j k j ij k j ij i k i k i T n (4) 或 ?? ?? ? ??????==--=??+==∑∑-==++.,...),1,0;,...,2,1()/(,,),...,(.11)()1() () 1()0()0(1)0(为松弛因子w k n i a x a x a b w x x x x x x x i j n i j ii k j ij k j ij i i i k i k i T n (5) ※ 若要求选取出最佳松弛因子,则有两种方法: ⑴、 给出w 的最佳范围,当取不同的w 值时,会求出不同的谱半径R 的值, 然后判断出值最小的谱半径。那么这个最小的谱半径所对应的w ,即为所求最佳松弛因子。 ⑵、 给出w 的最佳范围,当取不同的w 值时,由(2)式进行迭代,看它们在 相同精度范围内的迭代次数,找出迭代次数最低的那一个,其所应用的w 即为最佳松弛因子。 三、实验内容: 从表格中可以看出,迭代次数随着松弛因子的增长而呈现先减后增的趋势,当谱半径最小时,其迭代次数最小。则表示出谱半径最小时,其松弛因子为最佳松弛因子。

实验一用matlab求解线性方程组

实验1.1 用matlab 求解线性方程组 第一节 线性方程组的求解 一、齐次方程组的求解 rref (A ) %将矩阵A 化为阶梯形的最简式 null (A ) %求满足AX =0的解空间的一组基,即齐次线性方程组的基 础解系 【例1】 求下列齐次线性方程组的一个基础解系,并写出通解: 我们可以通过两种方法来解: 解法1: >> A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; >> rref(A) 执行后可得结果: ans= 1 -1 0 0 0 0 -1 1 0 0 0 0 由最简行阶梯型矩阵,得化简后的方程 ??? ??=+--=+--=-+-0 22004321 43214321x x x x x x x x x x x x

取x2,x4为自由未知量,扩充方程组为 即 提取自由未知量系数形成的列向量为基础解系,记 所以齐次方程组的通解为 解法2: clear A=[1 -1 1 -1;1 -1 -1 1;1 -1 -2 2]; B=null(A, 'r') % help null 看看加个‘r’是什么作用, 若去掉r ,是什么结果? 执行后可得结果: B= 1 0 1 0 0 1 0 1 ?? ?=-=-0 04321x x x x ?????? ?====4 4432221x x x x x x x x ??? ??? ??????+????????????=????? ???????1100001142 4321x x x x x x , 00111????? ? ??????=ε, 11002????? ???????=ε2 211εεk k x +=

二分法、简单迭代法的matlab代码实现

实验一非线性方程的数值解法(一) 信息与计算科学金融崔振威201002034031一、实验目的: 熟悉二分法和简单迭代法的算法实现。 二、实验内容: 教材P40 2.1.5 三、实验要求 1根据实验内容编写二分法和简单迭代法的算法实现 2简单比较分析两种算法的误差 3试构造不同的迭代格式,分析比较其收敛性 (一)、二分法程序: function ef=bisect(fx,xa,xb ,n, delta) % fx是由方程转化的关于x的函数,有fx=0。 % xa解区间上限 % xb解区间下限 % n最多循环步数,防止死循环。 %delta为允许误差 x=xa;fa=eval(fx); x=xb;fb=eval(fx); disp(' [ n xa xb xc fc ]'); for i=1: n xc=(xa+xb)/2;x=xc;fc=eval(fx); X=[i,xa,xb,xc,fc]; disp(X), if fc*fa<0 xb=xc; else xa=xc; end if (xb-xa)

k=0; while abs(x-xO)>eps & k> fplot('[x A5-3*x A3-2*x A2+2]',[-3,3]);grid 得下图: 由上图可得知:方程在[-3,3]区间有根。 (2 )、二分法输出结果 >> f='xA5-3*xA3-2*xA2+2' f = X A5-3*X A3-2*X A2+2 >> bisect(f,-3,3,20,10A(-12)) 2.0000 - 3.0000 0 -1.5000 0.0313

Matlab线性方程组求解(Gauss消去法)

Matlab线性方程组求解 1. Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); %计算行列式 end det=det*a(n,n); for k=n:-1:1 %回代求解 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k);

end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 2. 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法 [n,m]=size(a); nb=length(b); det=1; %存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0; %选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n

matlab 迭代法[精品]

matlab 迭代法[精品] 1. 矩阵 122,211,,,,,,,,,A,111A,222, 11,,,,,,,,221,,112,,,, 证明:求解以为系数矩阵线性方程组的Jacobi迭代式收敛的,而A1 Gauss-Seidel方法是发散的;求解以为系数矩阵线性方程组的A2实验名称Gauss-Seidel是收敛的,而Jacobi方法是发散的. 2. 矩阵 1aa,,,,Aaa,1 ,,,,aa1,, (a) 参数取什么值时,矩阵是正定的. a (b) 取什么值时,求以为系数矩阵线性方程组的Jacobi迭代式收aa 敛的. 1、根据迭代收敛性的充分必要条件来判断Jacobi迭代式与Gauss-Seide 迭代式的收敛性,迭代收敛性仅与方程组系数矩阵有关,与右端无关;而且不依赖于初值的选取。实验目的 2、根据矩阵的判断定理求得矩阵元素a的取值,同时根据矩阵线性方程组的Jacobi迭代式收敛的充分条件(严格对角占优)来求a得取值。 1、(1)检验线性方程组的Jacobi迭代式的收敛性: function jacobi(A) D=zeros(3); for i=1:3 D(i,i)=A(i,i); 实验内容end (算法、程B=D^(-1)*(D-A); 序、步骤和k=max(abs(eig(B))) 方法) if k<1

'该线性方程组的Jacobi迭代式是收敛的' else k>=1 '该线性方程组的Jacobi迭代式是发散的' end (2)检验线性方程组的Gauss-Seide迭代式的收敛性: function Gauss(A) D=zeros(3); L=zeros(3); U=zeros(3); for i=1:3 D(i,i)=A(i,i); end L(2:3,1)=A(2:3,1); L(3,2)=A(3,2); U(1,2:3)=A(1,2:3); U(2,3)=A(2,3); B=-(D+L)^(-1)*U; k=max(abs(eig(B))) if k<1 '该线性方程组的Gauss-Seidel迭代式是收敛的' else k>=1 '该线性方程组的Gauss-Seidel迭代式是发散的' end 2、(1)参数取什么值时,矩阵是正定的.(矩阵的特征值全为正) a >> syms a >> A=[1 a a;a 1 a;a a 1]; >> eig(A) ans = 2*a+1 1-a

Matlab求解线性方程组非线性方程组

求解线性方程组 solve,linsolve 例: A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1]; %矩阵的行之间用分号隔开,元素之间用逗号或空格 B=[3;1;1;0] X=zeros(4,1);%建立一个4元列向量 X=linsolve(A,B) diff(fun,var,n):对表达式fun中的变量var求n阶导数。 例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式 diff(F); %matlab区分大小写 pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式 非线性方程求解 fsolve(fun,x0,options) 为待解方程或方程组的文件名;fun其中 x0位求解方程的初始向量或矩阵; option为设置命令参数 建立文件fun.m: function y=fun(x) y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ... x(2) - 0.5*cos(x(1))+0.3*sin(x(2))]; >>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve')) 注: ...为续行符 m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。Matlab求解线性方程组 AX=B或XA=B 在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。如: X=A\B表示求矩阵方程AX=B的解; 的解。XA=B表示矩阵方程B/A=X. 对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。 如果矩阵A不是方阵,其维数是m×n,则有: m=n 恰定方程,求解精确解; m>n 超定方程,寻求最小二乘解; m

matlab迭代法代码

matlab 迭代法代码 1、%用不动点迭代法求方程x-e A x+4=0的正根与负根,误差限是 10A-6% disp(' 不动点迭代法 '); n0=100; p0=-5; for i=1:n0 p=exp(p0)-4; if abs(p-p0)<=10(6) if p<0 disp('|p-p0|=') disp(abs(p-p0)) disp(' 不动点迭代法求得方程的负根为 :') disp(p); break; else disp(' 不动点迭代法无法求出方程的负根 .') end else p0=p; end end

if i==n0 disp(n0) disp(' 次不动点迭代后无法求出方程的负根') end p1=1.7; for i=1:n0 pp=exp(p1)-4; if abs(pp-p1)<=10(6) if pp>0 disp('|p-p1|=') disp(abs(pp-p1)) disp(' 用不动点迭代法求得方程的正根为 ') disp(pp); else disp(' 用不动点迭代法无法求出方程的正根 '); end break; else p1=pp; end end if i==n0

disp(n0) disp(' 次不动点迭代后无法求出方程的正根 ') end 2、%用牛顿法求方程x-e A x+4=0的正根与负根,误差限是disp(' 牛顿法') n0=80; p0=1; for i=1:n0 p=p0-(p0-exp(p0)+4)/(1-exp(p0)); if abs(p-p0)<=10(6) disp('|p-p0|=') disp(abs(p-p0)) disp(' 用牛顿法求得方程的正根为 ') disp(p); break; else p0=p; end end if i==n0 disp(n0) disp(' 次牛顿迭代后无法求出方程的解 p1=-3; for i=1:n0 p=p1-(p1-exp(p1)+4)/(1-exp(p1)); 10A-6 ') end

【良心出品】不动点迭代法matlab程序

实验四 姓名:木拉丁。尼则木丁班级:信计08-2 学号:20080803405 实验地点:新大机房 实验目的:通过本实验学习利用MATLAB不动点迭代法,抛物线法,斯特芬森迭代法解非线性方程组,及其编程实现,培养编程与上机调试能力。 实验要求:①上机前充分准备,复习有关内容,写出计算步骤,查对程序; ②完成实验后写出完整的实验报告,内容应该包括:所用的算法语言, 算法步骤陈述,变量说明,程序清单,输出计算结果,结果分析等等; ③用编好的程序在Matlab环境中执行。 迭代法 MATLAB程序: function pwxff(f,x0,x1,x2,d,n) f=inline(f); x(1)=x0; x(2)=x1; x(3)=x2; w1=(f(x(2))-f(x(3)))/(x(2)-x(3)); t1=(f(x(1))-f(x(3)))/(x(1)-x(3)); t2=(f(x(1))-f(x(2)))/(x(1)-x(2)); w2=1/(x(1)-x(2))*(t1-t2); w=w1+w2*(x(3)-x(2));

for k=3:n x(k+1)=x(k)-2*f(x(k))/(w+sqrt(w^2-4*f(x(k))*w2)); if abs(x(k+1)-x(k))

线性方程组求解Matlab程序(精.选)

线性方程组求解 1.直接法 Gauss消元法: function x=DelGauss(a,b) % Gauss消去法 [n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 for i=k+1:n if a(k,k)==0 return end m=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-m*a(k,j); end b(i)=b(i)-m*b(k); end det=det*a(k,k); end

det=det*a(n,n); for k=n:-1:1 %回代 for j=k+1:n b(k)=b(k)-a(k,j)*x(j); end x(k)=b(k)/a(k,k); end Example: >> A=[1.0170 -0.0092 0.0095;-0.0092 0.9903 0.0136;0.0095 0.0136 0.9898]; >> b=[1 0 1]'; >> x=DelGauss(A,b) x = 0.9739 -0.0047 1.0010 列主元Gauss消去法: function x=detGauss(a,b) % Gauss列主元消去法

[n,m]=size(a); nb=length(b); det=1;%存储行列式值 x=zeros(n,1); for k=1:n-1 amax=0;% 选主元 for i=k:n if abs(a(i,k))>amax amax=abs(a(i,k));r=i; end end if amax<1e-10 return; end if r>k %交换两行 for j=k:n z=a(k,j);a(k,j)=a(r,j);a(r,j)=z; end z=b(k);b(k)=b(r);b(r)=z;det=-det; end

线性方程组的迭代解法(Matlab)

第六章线性方程组的迭代解法 2015年12月27日17:12 迭代法是目前求解大规模稀疏线性方程组的主要方法之一。包括定常迭代法和不定常迭代法,定常迭代法的迭代矩阵通常保持不变,包括有雅可比迭代法(Jacobi)、高斯-塞德尔迭代法(Gauss-Seidel)、超松弛迭代法(SOR) 1.雅可比迭代法(Jacobi) A表示线性方程组的系数矩阵,D表示A的主对角部分,L表示下三角部分,U表示上三角部分。 A=D+L+U 要解的方程变为Dx+Lx+Ux=b x=D^(-1)(b-(L+U)x) 所以Jocabi方法如下: Matlab程序 function [x,iter] =jacobi(A,b,tol) D=diag(diag(A)); L=D-tril(A); U=D-triu(A); x=zeros(size(b)); for iter=1:500 x=D\(b+L*x+U*x); error=norm(b-A*x)/norm(b); if(error

相关主题