搜档网
当前位置:搜档网 › PMSM and BLDC

PMSM and BLDC

PMSM and BLDC
PMSM and BLDC

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device Designer Reference Manual

56800E

16-bit Digital Signal Controllers

DRM077

Rev 0

11/2005

https://www.sodocs.net/doc/0b5128098.html,

PMSM and BLDC Demonstration using the

56F8013 Device

Designer Reference Manual

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify that you have the latest information available, refer to https://www.sodocs.net/doc/0b5128098.html,

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Revision History

Date Revision

Level

Description

Page

Number(s)

11/20050Initial release N/A

TABLE OF CONTENTS

Table of Contents, Rev. 0

Freescale Semiconductor i

Preliminary

Chapter 1 Introduction

1.1

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Chapter 2

Benefits and Features of the 56F8013 Controller

2.1

Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Chapter 3

Motor Drive System

3.1Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.2Motor Drive System Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13.3Introduction to System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

3.3.1Hardware Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-23.3.2Software Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-53.4

Specification and Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

Chapter 4 PMSM Theory

4.1Permanent Magnet Synchronous Motor (PMSM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14.2PMSM Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14.3

Digital Control of a Permanent Magnetic Synchronous Motor . . . . . . . . . . . . . . . . . . . 4-2

Chapter 5

Design Concept of a PMSM Vector Control Drive and BLDC Control Drive

5.1PMSM Vector Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15.2Procedure for Sliding Mode Observer (SMO). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45.3Forward and Inverse Clarke Transformation (a,b,c to á,a and backwards) . . . . . . . . . 5-55.4Forward and Inverse Park Transformation (á, a to d-q and backwards) . . . . . . . . . . . 5-65.5Rotor Speed Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-65.6

Speed Regulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-7

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

ii

Freescale Semiconductor

Preliminary

5.7PFC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-75.7.1Inductor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-85.7.2Output Capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-95.7.3Main Switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-95.7.4Output Diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-95.7.5Inductor Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10

Chapter 6

Hardware Implementation

6.156F8013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16.2High-Voltage Power Stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36.3Sensor Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4

6.3.1DCBus Voltage Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46.3.2DCBus Current Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46.3.3Phase Current Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56.3.4Phase Voltage Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56.3.5Power Supply Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56.4Protection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-56.5PFC Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6

6.5.1Drive Circuit Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76.5.2Sample Circuit Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-76.6

Detailed Motherboard Configurations for ACIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8

Chapter 7

Software Design

7.1Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17.2Rotor Speed Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-87.3Space Vector Pulse Width Modulation (SVPWM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-87.4Fault Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-87.5

PFC Software Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-8

Chapter 8

JTAG Simulation and SCI Communication

8.1JTAG Simulation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18.2

SCI Communication Function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

Table of Contents, Rev. 0

Freescale Semiconductor iii

Preliminary

Chapter 9 Operation

9.1Switch-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19.2During Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19.3Switch-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19.4

Cautions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

iv Freescale Semiconductor

Preliminary

LIST OF FIGURES

3-1System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3-2IRAMS10UP60A Circuit Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 4-1System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 4-2Pulse Width Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3 5-1PMSM System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5-2Stator Reference Voltage, Vref. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2 5-3BLDC Sensorless Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3 5-4Clarke Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 5-5Park Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 5-6PFC Configuration Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 6-1Demonstration System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1 6-2Hierarchy Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2 6-3Motor Control System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3 6-4DCBus Sampling Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 6-5Bus Link Current Sample Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-4 6-6Methods to Detect Phase Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5 6-7Protection Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 6-8Main PFC Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-6 6-9PFC Drive Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 6-10PFC Sampling Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 6-11PMSM Jumper Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8 6-12BLDC Jumper Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9 7-1PMSM Block Diagram (Part 1 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 7-2PMSM Block Diagram (Part 2 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 7-3PMSM Block Diagram (Part 3 of 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-4 7-4BLDC Block Diagram (Part 1 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-5 7-5BLDC Block Diagram (Part 2 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-6 7-6BLDC Block Diagram (Part 3 of 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 7-7Simple PFC Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 7-8Discrete Voltage Loop Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 8-1Communication Board’s Frame Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 8-2System Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 8-3Connections for JTAG Simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2 8-4CodeWarrior Development Tool Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3 8-5SCI Communication Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4

List of Figures, Rev. 0

Freescale Semiconductor v Preliminary

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

vi Freescale Semiconductor

Preliminary

LIST OF TABLES

6-1Configuration of the 56F8013’s Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

List of Tables, Rev. 0

Freescale Semiconductor vii Preliminary

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

viii Freescale Semiconductor

Preliminary

About This Document

This manual describes the use of a 56F8013 device in a Permanent Magnet Synchronous Motor (PMSM) and Brushless DC (BLDC) motor demonstration.

Audience

This manual targets design engineers interested in developing a PMSM vector control and BLDC control drive application.

Organization

This User’s Manual consists of the following sections:

?Chapter1, Introduction, explains how a PMSM, a BLDC and a 56F8013 device facilitate a vector control drive design.

?Chapter2, Benefits and Features of the 56F8013 Controller, highlights the advantages in using a 56F8013 controller.

?Chapter3, Motor Drive System, details the features and design of a motor drive system.

?Chapter4, PMSM Theory, describes software, control and configuration of an Permanent Magnet Synchronous Motor.

?Chapter5, Design Concept of a PMSM Vector Control Drive and BLDC Control Drive, details the design concept of PMSM and BLDC drives.

?Chapter6, Hardware Implementation, describes how to set up the hardware needed for the PMSM and BLDC demonstration application.

?Chapter7, Software Design, explains the software system design.

?Chapter8, JTAG Simulation and SCI Communication, describes the application’s debugging and communications functions.

?Chapter9, Operation, explains how to use the application.

?Appendix A, Schematics, contains schematics for the PMSM and BLDC demonstration application.

?Appendix B, PMSM and BLDC Demonstration Bill of Materials, lists all parts used in the application.

Preface, Rev. 0

Freescale Semiconductor ix Preliminary

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

x

Freescale Semiconductor

Preliminary

Conventions

This document uses the following notational conventions:

Typeface, Symbol

or Term

Meaning

Examples

Courier

Monospaced Type Code examples //Process command for line flash Italic

Directory names, project names, calls, functions, statements, procedures, routines, arguments, file names, applications, variables, directives, code snippets in text

...and contains these core directories:

applications contains applications software......CodeWarrior project, 3des.mcp is......the pConfig argument....

...defined in the C header file, aec.h ....

Bold

Reference sources, paths, emphasis ...refer to the Targeting DSP56F83xx Platform manual....

...see: C:\Program Files\Freescale\help\tutorials Blue Text Linkable on-line

...refer to Chapter 7, License....Number

Any number is considered a positive value, unless pre-ceded by a minus symbol to signify a negative value 3V -10DES -1

ALL CAPITAL LETTERS # defines/

defined constants # define INCLUDE_STACK_CHECK Brackets [...]Function keys ...by pressing function key [F7]

Quotation marks, “...”

Returned messages

...the message, “Test Passed” is displayed....

...if unsuccessful for any reason, it will return “NULL”...

Definitions, Acronyms, and Abbreviations

The following list defines the acronyms and abbreviations used in this document. As this template develops, this list will be generated from the document. As we develop more group resources, these acronyms will be easily defined from a common acronym dictionary. Please note that while the acronyms are in solid caps, terms in the definition should be initial capped ONLY IF they are trademarked names or proper nouns.

BLDC Brushless DC Motor

ADC Analog-to-Digital Conversion

COP Computer Operating Properly

DCM Discontinuous Current Mode

EMF Electro-Magnetic Force

EVM Evaluation Module

FOC Field-Oriented Control

GPIO General Purpose Input/Output

HMI Human Machine Interface

I2C or I2C Inter-Integrated Circuit

IC Integrated Circuit

IGBT Insulated-Gate Bipolar Transistor

IM Induction Motor

IPM Integrated Power Module

ISR Interrupt Service Routine

LPF Low-Pass Filter

PFC Power Factor Correction

PI Proportional-Integral

PLL Phase Locked Loop

PMSM Permanent Magnet Synchronous Motor

PWM Pulse Width Modulation or Modulator

RMS Root Mean Square

SCI Serial Communication Interface

SMO Sliding Mode Observer

SPI Serial Peripheral Interface

SV Space Vector

SVPWM Space Vector Pulse Width Modulation

V CE Collector to Emitter Voltage

Preface, Rev. 0

Freescale Semiconductor xi Preliminary

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

xii Freescale Semiconductor

Preliminary

Introduction

Introduction, Rev. 0

Freescale Semiconductor 1-1

Preliminary

Chapter 1 Introduction

1.1 Introduction

This manual describes the design of a 3-phase Permanent Magnet Synchronous Motor (PMSM) sensorless vector control drive and a Brushless DC (BLDC) Motor drive without postiion encoder

coupled to the motor shaft. It uses a Freescale 56F8013 with Processor Expert TM (PE) software support. A PMSM consists of a magnetic rotor and wound stator construction. Its wound stators can rapidly

dissipate heat to the motor housing and environment. In contrast, a brush motor traps the heat under a non-conductive air gap, resulting in greater efficiency and power density for the PMSM design and providing high torque-to-inertia ratios. A PMSM motor generates magnetic flux using permanent

magnets in the rotors, which are driven by the stators applying a synchronous rotational field. On the other hand, the flux that is applied by the stators (the armature-reaction flux) generates torque most effectively when it is perpendicular to flux generated by the rotors. To maintain near-perpendicularity between stator flux and rotor flux, two control methods with position-speed feedback loop are popularly used for controlling a PMSM: Field-Oriented Control and Brushless DC Control.

A PMSM abandons the excitation winding and the rotor turns at the same speed as the stator field. The PMSM’s design eliminates the rotor copper losses, giving very high peak efficiency compared with a traditional induction motor. The power-to-weight ratio of a PMSM is also higher than induction machines. Progress in the field of power electronics and microelectronics enables the application of PMSMs for high-performance drives, where, traditionally, only DC motors were applied. Thanks to sophisticated control methods, a PMSM offers the same control capabilities as high performance four-quadrant DC drives.

A PMSM/BLDC is a excellent alternative in an appliance application. This application will employ sensorless Field-Oriented Control (FOC) to control a PMSM and a sensorless algorithm to control

BLDC, using the 56F8013 device, which can accommodate the complicated sensorless FOC algorithm.The PMSM/BLDC drive system will meet the air conditioning and compressor requirements while it runs. The system demonstrates the features of the 56F8013 in motor control. The flexible Human Machine Interface (HMI) communicates between the control board and a PC and its simplified form, using the push buttons on the processor board, make the system easy to use.

This drive application allows sensorless vector control of the PMSM and BLDC running in a dual closed-loop control without the speed/position sensor coupled to the shaft.

This document describes the Freescale 56F8013 controller’s features, basic PMSM and BLDC theory, the system design concept, and hardware implementation and software design, including the PC master software visualization tool.

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

1-2 Freescale Semiconductor

Preliminary

Features

Benefits and Features of the 56F8013 Controller, Rev. 0

Freescale Semiconductor 2-1

Preliminary

Chapter 2

Benefits and Features of the 56F8013 Controller

The 56F8000 family of devices offers an excellent complement of peripherals and a broad range of memory and packages.

2.1 Features

Some of the 56F8000 devices’ benefits include:

?

High-performance 56800E Core

—Superior 16-bit, fixed-point signal processing performance provided by the bus architecture

and the controller core —Excellent control and protocol processing capability and code density —Superior MCU control performance ?

Performance-leading Flash Memory

—Unbeatable, field-proven reliability in the harshest environments —Features that enable emulation of EEPROM —Flexible, full in-circuit Flash programmability

—Performance-enhancing interfacing and bus structure, enabling the superior signal

processing capability from Flash —Flash security protection features for IP protection ?

Voltage Regulator and Power Supervisor

—The chips come equipped with an on-board voltage regulator and power supervisor. When

supplied with a 3.3V voltage, the chip creates all required internal voltages.—Includes features such as Power-On Reset (POR) and low-voltage detection, eliminating

external components and saving system costs ?

On-chip Relaxation Oscillator

—Some 56F8000 devices are equipped with a precision on-chip, factory-trimmed oscillator

(0.25% of 8MHz), enabling the elimination of an external crystal and providing system cost savings ?

On-Chip Clock Synthesis (OCCS)

—56F8000 digital signal controllers are capable of using an external clock input

—The OCCS capability includes a flexible, programmable Phase-Locked Loop (PLL), enabling

selection of an exact operating frequency —The OCCS also includes unique loss-of-lock detection, allowing the detection of a cut crystal

and the proper safety-critical shut down

?16-bit Timer

—56F8000 devices are equipped with powerful timer modules. Each timer module has four independent 16-bit timers that can be:

—Cascaded

—Used for input capture

—Used to generate output waveforms

—Used to trigger the ADC

—Used to generate auxiliary PWM waveforms

—Used as a Digital-to-Analog Converter (DAC) when utilized in conjunction with an external low-pass filter

—Optionally synchronized together with a common start signal

—Operated at rates up to 96Mhz

?3-Phase PWM Module

—The high-performance 15-bit PWMs can be used in edge-aligned and center-aligned modes, as well as in complementary and independent modes, and have programable dead time

generation

—Excellent resolution, with a clock rate of up to 96Mhz

—These PWM modules have a sophisticated set of programmable fault lines that do not require

a system clock for proper operation

—These and other features make these PWM modules industry leaders in safety, reliability, and performance

—Enhanced features to support digital power conversion, power factor correction, lighting, and motor control

—Hardware support for advanced phase-shifting PWM techniques

?Analog-to-Digital Converter (ADC) Module

—Each high-performance 12-bit ADC has two sample and hold circuits, enabling simultaneous or sequential conversion at a rate of up to 1.125s per conversion

—ADCs can be used in single-ended or differential modes and have a sophisticated set of unique features, including:

—Superior absolute accuracy

—High/low and zero-crossing detection

—Offset

—ADCs can be triggered through variety of methods, including PWM synchronization

—ADCs have a sophisticated set of standby and power down modes for improved low-power performance

—The ADC’s two sample-and-holds circuits can be configured separately to enable two independent sampling rates or start triggers

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

2-2 Freescale Semiconductor

Preliminary

Features

?Inter-Integrated Circuit (I2C) Serial Bus Interface

—Compatible with I2C Bus standard

—Features include:

—Multi-master operation

—Software programmable for one of 256 different serial clock frequencies

—Arbitration-lost interrupt with automatic mode switching from master to slave

—Calling-address identification interrupt

?Serial Communication Interface (SCI)

—This module operates as a full-duplex Universal Asynchronous Receiver Transmitter (UART)—Fully interrupt driven and programmable, providing a multitude of operating modes and baud rates

?Serial Peripheral Interface (SPI)

—This synchronous serial interface is double buffered

—Operates in wide variety of modes, rates, and bit lengths, enabling the glueless connection to external peripherals and other processors at rates up to 16Mbps

?General Purpose Input/Output (GPIO)

—All digital and analog signal pins for the on-board peripherals can also be individually assigned to be GPIO and individually assigned a direction

—In addition to I/O capability, the GPIO can also generate interrupts

—Each GPIO has programmable pull-ups

—The GPIO also has a push-pull mode to efficiently implement a keypad interface ?Computer Operating Properly (COP)

—Assists software recovery from runaway code

—The COP is a free-running down counter which, once enabled, is designed to generate a reset when reaching zero

—Software must periodically service the COP to clear the counter and prevent a reset

—The COP enhances end-system reliability and safety

?JTAG/EOnCE TM

—This enhanced on-board emulation module enables true full-rate emulation without the need for expensive hardware emulators

—To perform powerful, non-intrusive, real-time debugging, simply attach to the processor with the industry-standard JTAG interface

Benefits and Features of the 56F8013 Controller, Rev. 0

Freescale Semiconductor2-3 Preliminary

PMSM and BLDC Sensorless Motor Control using the 56F8013 Device, Rev. 0

2-4 Freescale Semiconductor

Preliminary

相关主题