搜档网
当前位置:搜档网 › 06 天线倾角规划调整

06 天线倾角规划调整

06 天线倾角规划调整
06 天线倾角规划调整

目 录

6-13

附录C 时间色散...................................................6-11附录B R 与r 方向上路径损耗差10dB .....................................6-11附录A 小区半径的概念..............................................6-106.6 结论.........................................................6-106.5.2 城市.....................................................6-86.5.1 农村和山区................................................6-8

6.5 改善覆盖的倾角调整方法...........................................6-76.4.2 注意事项..................................................6-66.4.1 应用实例..................................................6-5

6.4 实际应用.......................................................6-36.3.3 天线下倾角计算方法.........................................6-26.3.2 天线垂直半功率角...........................................6-26.3.1 天线增益与半功率角的关系....................................6-2

6.3 天线倾角设计...................................................6-16.2 问题分析.......................................................6-1

6.1 概述

..........................................................6-1

第6章 天线倾角规划调整.................................................

第6章天线倾角规划调整

6.1 概述

在移动通信网络建设初期基站站间距大数量少站型也不大频率资源

相对比较丰富在这一阶段的网络规划时很少对天线倾角作详细规划基站

功率常常以满功率发射对于越区覆盖则主要通过增加邻区的办法予以解决

但随着GSM网络的迅速发展城市中的基站越来越密集在一个中等城市通

常分布数十个基站在省会城市则达到数百个基站并且基站密度越来越高

站型也越来越大如果对越区覆盖仍采用老办法网络质量将难以保证因

此有必要在规划阶段就对倾角基站静态发射功率进行更加细致合理的规划

减轻优化阶段的工作量

天线下倾对覆盖的影响在ASSET规划软件中可以很好模拟在这里我们主要

探讨没有规划软件的情况下如何确定天线下倾角并且也为现场优化调整提

供理论依据

本文探讨的方法经过两年来的应用效果良好但因无线信号传播与环境密

切相关如高楼密集区损耗山体水面或巨型玻璃墙幕反射等会对电波传

播产生影响本方法不一定能适应所有传播环境但是在规划时仔细考

虑小区蜂窝结构的规则性以及小区覆盖范围和目标可以为无线网络质量奠

定一个十分良好的基础

本文提出的天线倾角调整方法主要解决越区覆盖带来的干扰问题本方法对

解决塔下黑现象也有作用不同之处在于对垂直半功率角的考虑不同

采用本方法可以避免盲目的反复的天线倾角调整并由此带来的用户抱怨

文中的天线倾角无特别声明均指下倾角

6.2 问题分析

对于联通GSM900移动GSM900GSM1800各自的频率资源不等其带宽

分别为6M1015M10M以6M和10M带宽为例

(1) 常规频率复用站间距较大可以实现的最大站型为S222和S444在这

种情况下即使各小区的天线倾角为0度基站发射机以满功率发射越区覆

盖不太严重通过个别小区的频点调整和增加邻区可以解决越区覆盖问题

仍然可以保证较好的网络质量但前提是站间距较大适用于站间距大于

1.5km的网络如站间距3.5km3km频率900MHz功率40W合路器

损耗S222为5dB S444为8dB天线高度40m增益15dBi馈线长度

50m手机最低接收电平-90dBm计算时没有考虑地物损耗对于

GSM1800站间距更小

(2) 常规频率复用基站较密当站间距小于1.5km时对于上述S222和

S444站型越区覆盖趋于严重受干扰频点的调整困难

(3) 紧密复用基站密集站间距小于1km站型较大采用紧密复用的频率

规划技术如MRP1311此时如仍对倾角不加以合理规划同频

邻频干扰将十分严重

对于后两种情况必须增大倾角控制越区覆盖带来的干扰对于第一种情

况虽然越区覆盖导致的干扰不十分严重但通过合理调整倾角可以减少

邻区数目降低规划难度和减少切换缓解主要小区拥塞同时使各小区的

服务范围更加合理

6.3 天线倾角设计

6.3.1 天线增益与半功率角的关系

在设计天线倾角时必须考虑的因素有天线的高度方位角增益垂直半

功率角以及期望小区覆盖范围

根据天线理论在天线增益一定的情况下天线的水平半功率角与垂直半功

率角成反比其关系可以表示为

(1)

G a?10lg[32400/( $ )]

其中Ga为天线增益单位dBi

为垂直半功率角单位度

为水平半功率角单位度

从上式可知如果只知道天线的增益和水平半功率角就可以计算出垂直半

功率角板或叫垂直波束宽度从后文可以看出垂直半功率角在计算倾角

时的意义

上式也说明当天线增益较小时天线的垂直半功率角和水平半功率角通常

较大而当天线增益较高时天线的垂直半功率角和水平半功率角通常较小6.3.2 天线垂直半功率角

天线的垂直方向图有一个主瓣和多个副瓣构成在水平线之上的副瓣称为第

一二上副瓣在水平线之下的称为第一二下副瓣主瓣上增益下降

一半即3dB处就是半功率点上下半功率点之间的夹角称作半功率角

天线垂直方向图如图6-1所示

图6-1 Kathrein 730 368 垂直方向图

图6-1中天线的垂直半功率角为13度

6.3.3 天线下倾角计算方法

对于分布在市区的基站

当天线无倾角或倾角很小时各小区的实际服务范围取决于天线高度方位角增益

发射功率

以及地形地物等此时覆盖半径可以采用

Okumura-Hata

GSM900或

COST231

GSM1800

公式计算当小区半径小于1km

时应采用Walfish-Ikegami

公式当天线倾角较大

因上述公式中没有考虑倾角

无法计算出实际的覆盖半径如有比较准

确的传播模型和数字地图ASSET

可以计算

此时可以根据天线垂直半功率角和倾角大小按三角几何公式直接估算方法如下假设所需覆盖半径为

D(m)

天线高度为

H(m)

倾角为垂直半功率角为

则天线主瓣波束与地平面的关系如图6-2所示

图6-2 天线下倾示意图

从上图可以看出当天线倾角为0度时天线波束主瓣即主要能量沿水平方向

辐射当天线下倾度时主瓣方向的延长线最终必将与地面一点A 点相 交由于天线在垂直方向有一定的波束宽度因此在A 点往B 点方向仍会有较强的能量辐射到根据天线技术性能在半功率角内天线增益下降缓慢

超过半功率角后

天线增益迅速下降因此在考虑天线倾角大小时可以认为半功率角延长线到地平面交点B 点内为该天线的实际覆盖范围

根据上述分析以及三角几何原理可以推导出天线高度

下倾角

覆盖距离

三者之间的关系为

(H/D)+/2

(2)

=arctan

其中

小区覆盖半径为

D(m)

天线高度为

H(m)

天线垂直半功率角为

倾角为

上式可以用来估算倾角调整后的覆盖距离

优化现场实际使用效果显示该式具有较强的指导意义

但应用该式时有限制条件倾角必须大于半功率角

之一半距离D 必须小于无下倾时按公式计算出的距离式中垂直波束宽度可以查具体天线技术指标或计算得出下面计算了基站天线高度为40

米垂直波束宽度为17

6.5度时的覆盖距离与

天线倾角的关系

覆 盖 距 离-- 倾 角

20040060080010001200140016001800200022002400260028003000320034003600380040004200440046008

9

10

11

12

13

14

15

16

倾 角

距离米

图6-3 覆盖距离与倾角关系垂直波束宽度17度天线高度40米

覆盖距离--倾角

0200400600800100012001400160018002000220024002600280030000

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

倾角

距离米图6-4 覆盖距离与倾角关系垂直波束宽度6.5度天线高度40米

从以上两图可以看出

在天线高度和倾角一定时覆盖距离与天线的垂直波束宽度间的关系

垂直波束宽度越小越区覆盖越容易被控制因此垂直波束宽度小的天线对控制市区的越区覆盖比较有利

必须注意的是

调整倾角后除了可以控制越区覆盖外还可以改善基站附近

的室内覆盖但远离基站处的覆盖将变差

6.4 实际应用

为了便于实际运用和考虑相邻小区间必要的部分区域重叠密集市区基站到覆盖目标距离D

可以简化为小区设计半径即站间距的

2/3天线高度H 指

基站与覆盖目标的相对高度并且本文我们只讨论近似平原地区天线下倾

分为机械下倾和电子下倾

电子下倾在还分成预置下倾和电调下倾公式(2)

的计算是针对机械下倾天线的当采用电子下倾时要注意计算出的下倾角减去电子下倾角后才是实际要调整的下倾角

对于机械下倾方式倾角不宜超过10

否则大于10度后天线波瓣变形会对其他小区造成意想不到的干扰当需要的下倾角超过10

度后需要考虑采用电子下倾天线在规划时或适当降低天线高度在优化时

因此在规划密集市区的网络时建议采用电子下倾天线一般可以采用预置6度左右的电子下倾天线同时主力话务层的天线高度不宜超过35米

6.4.1 应用实例

假设已知天线Kathrein 730 368参数为增益15.5dBi 水平半功率角有时

也叫水平波束宽度65度则根据公式(1)可计算出该天线的垂直半功率角为

14度查Kathrein 天线手册该天线的实际垂直波束宽度为13度

要注意到公式(1)是理论计算值实际的天线受设计水平和制造工艺的影响

与理论值存在差异当小区半径较大时垂直半功率角差1度将导致计算

出的小区半径差异近100

当小区半径较小时垂直半功率角的偏差对计

算的小区半径影响较小因此本文所述方法对基站密集的市区环境更适用结合市区常用天线和常见天线高度2535米根据公式(2)可以计算出在

2505008001000米小区半径下的天线倾角

其他情况可以类推

表6-1 计算天线下倾角

8.5

35

1000

13

65度增益15.5dBi

83010001365度增益15.5dBi 82510001365度增益15.5dBi 9358001365度增益15.5dBi 8.5308001365度增益15.5dBi 8258001365度增益15.5dBi 10.5355001365度增益15.5dBi 10305001365度增益15.5dBi 9255001365度增益15.5dBi 14352501365度增益15.5dBi 133********度增益15.5dBi 12252501365度增益15.5dBi 16352001365度增益15.5dBi 153********度增益15.5dBi 14252001365度增益15.5dBi 下倾角天线高度小区半径(R)

垂直半功率角

天线型号

天线15.5dBi/65度/13度

7891011121314151617200

300400500

600

7008009001000

小区半径R(m)下倾角度

下倾角度 h=25m 下倾角度 h=30m

下倾角度 h=35m

图6-5 15.5dBi/65度

/13度天线下倾角

从图6-5

可见

对于例子中的情况Kathrein 730 368天线

天线高度35米以下

当小区半径大于500

米即站间距大于750

米时可以通过单纯的机械下倾方

式来控制越区覆盖

但当小区半径小于300米即站间距小于450m

时仅仅

依靠天线机械下倾无法保证很好控制覆盖范围

下倾角已经超过10度波束

将变形

此时只能依靠进一步降低天线高度或更换电子下倾天线来解决越区覆盖问题

6.4.2

注意事项

为了避免越区覆盖带来的干扰建议在实际规划时对于市区宏蜂窝

天线高度

2535

米如果平均站间距小于800

则选择电子下倾天线预置倾角6

度在优化时如果市区宏蜂窝存在越区覆盖带来的干扰问题且天线高度超过

35米则优先考虑降低天线高度其次考虑更换预置下倾角天

线

调整下倾角时

不管机械下倾还是电子下倾都应避免第一副瓣正对水平方向机械下倾方式还应考虑天线后瓣上翘以后的影响

本方法不是覆盖电平计算方法小区边缘的覆盖电平强度仍应按相应的传播

模型计算

以上倾角计算方法主要适用于站距1200米即R=800m 以内的密集基站组

当基站距离覆盖目标大于800米时

大面积覆盖仍是最重要的关注点估算

天线下倾角时可以不必考虑垂直半功率角的影响

由于市区无线传播环境的复杂性倾角设置还必须考虑附近山体水面和高

大玻璃墙幕的发射这种反射容易造成意外的与其他基站同邻频干扰甚至自

身时间色散效应见附录C也必须考虑楼顶平台前方密集建筑群山

坡等对电波的阴影效应但是实际组网中有时也会结合基站周围地理环境利

用大楼或山体等的阻挡来控制覆盖范围此时需要与下倾角综合考虑

密集市区组网还必须考虑当天线主瓣正对街道而带来的隧道效应和意外越区

覆盖一般情况下密集市区应避免天线主瓣正对比较宽直的街道

注意本文不考虑天线高度低于周围建筑物平均高度的微蜂窝微蜂窝天线

一般不需要下倾

6.5 改善覆盖的倾角调整方法

以上介绍的是避免越区覆盖导致干扰的倾角调整和规划的方法以改善覆盖

为目的的天线倾角调整方法与上述方法略有不同

6.5.1 农村和山区

农村或山区的基站天线通常架设较高当天线高度超过100米后容易出现基

站近处覆盖不好即塔下黑由于全向天线的垂直半功率角较小一般

是67度有些厂家天线的垂直半功率角只有5度采用全向站时更容易

出现塔下黑的问题

对于这样的站址如果是全向站可以采用预置下倾天线如果是定向站

可以按下述方法调整天线的机械下倾角当然如果不计成本的话也可以采

用预置下倾天线

根据需要改善覆盖的目标距离天线倾角计算方法如下

=arctan

(H/D)(3)

其中覆盖目标距离为D(m)天线高度为H(m)倾角为

例如假设有一位于山顶的全向站天线相对山下路面的高度为732米

2400英尺忽略手机天线高度如果要改善10公里 6.2英里处的覆盖

天线倾角应该为4.2度

图6-6 高站址

对于该全向站

如果覆盖目标明确可以采用预置4度倾角的电子下倾全向天线如果不想影响更远处的覆盖可以选择有零点填充的全向天线覆盖目标距离与倾角的关系如图

6-7

倾角

图6-7 以改善覆盖为目标的倾角计算

由图6-7可知如果1km 以内存在重要覆盖目标时天线高度不能超过70米当天线高度160米在1公里处有重要覆盖目标时倾角应为9度考虑到设置高站址的目的通常要兼顾远处覆盖因此在实际应用中最好让水平线之下

的天线垂直半功率点对准覆盖目标以避免覆盖距离减少太多

=arctan

(H/D) /2(4)

其中覆盖目标距离为D(m)天线高度为H(m)天线垂直半功率角为

倾角为

全向11dBi天线的垂直半功率角按公式(1)计算得7度因此对于160米的全向

站要改善1公里出的覆盖时天线的预置倾角应为5.5度考虑实际的天线型

号可以选择Kathrein 736 349全向天线其技术指标为增益10.5dBi垂直半

功率角7度预置下倾角5度此为计算举例该型天线尚未认证也可以

选择海天的HTQ0936011(5)天线其技术指标为增益11dBi垂直半功率角

7度预置下倾角5度

6.5.2 城市

在城市里由于建筑物的影响有时尽管基站天线不高但附近室内覆盖效果

也会不好出现这种情况时如果是全向站则首先改造成定向站如果已

经是定向站则根据天线与覆盖目标的相对高度H以及其间的距离D按公

式(3)计算出倾角选择合适的电子下倾天线规划时或调整天线机械倾角

优化时

通常市区中的塔下黑受天线所在的楼顶平台影响很大把天线安装在楼

顶边缘即可避免塔下黑的问题

6.6 结论

天线下倾角规划和调整是无线网络规划优化时关键参数之一倾角的计算

方法根据其目的不同可分为以解决越区覆盖导致的干扰为目的的倾角计算

方法和以改善基站近处的覆盖为目的的倾角计算方法

采用本文所述方法可以避免天线倾角调整的盲目性

附录A 小区半径的概念

图6-8 三扇区蜂窝布局图

图6-8是标准的三扇区蜂窝状布局从图中可以看出基站间距离等于R+r

而R=2*r在实际估算小区覆盖半径时通常用R来表示这是因为这个方向是

定向天线主瓣方向为表达方便这里我们命名为R方向在两个扇区的

交叠处即任一小区天线主瓣方向逆时针或顺时针旋转60度小区需要覆

盖的距离变为r=R/2命名为r方向两者的路径损耗大约相差10dB见附

录B即r方向需要的EIRP有效辐射功率比R方向小10dB

根据此特征在市区基站布局中通常采用水平半功率角为60-65度的定向天线

因为它们的水平方向图具有这一特点如果用R来作为小区半径那么小区

面积S=0.6495*R*R整个基站阿服务面积为3S但是有些时候人们把r也称

为小区半径此时小区面积S=2.5981*r*r所以在论述这类问题的时候

需要说明究竟用什么做小区半径

附录B R与r方向上路径损耗差10dB

考虑图6-9的小区

B 图6-9 标准六边形小区

对于上图的标准小区在r 方向上要比在R

方向上少覆盖一半的距离即r=R/2

为了保持覆盖的均匀

这个小区的边缘的场强应该基本相等即RxlvelB=RxlevelC 再假设从小区A 发射出的EIRP 在R 方向上为EIRPR 在r 方向上为EIRPr

路径损耗我们选用城市HATA 模型假设天线高度为h

从A 点到B 点的路径损耗为

EIRPR-RXLEVB=69.55+21.66lgf-13..82lgh+(44.9-6.55lgh)lgR 从A 点到C 点的路径损耗为

EIRPr-RXLEVc=69.55+21.66lgf-13..82lgh+(44.9-6.55lgh)lgr 两式相减

整理得

EIRPR-EIRPr=(44.9-lgh)*(lgR-lgr)=(44.9-lgh)*lg(R/r)代入R=2*r 得

EIRPR-EIRPr=0.3*(44.9-6.55lgh

可以计算机模拟得出在基站高度h 从5m 到100m

递增时

EIRPR-EIRPr

从12减到9.5可以近似算为10dB 见图

6-10

图6-10 EIRPR-EIRPr

附录C 时间色散

时间色散主要指到达接收机的主信号和其他多径信号因在空间传播时间或传

播距离上的差异而带来的同频干扰问题GSM协议规定接收机的均衡器必须

具有16微秒等效距离4.8km的时间窗时间差在16微秒内的多径信号是

无害的甚至可能还对接收有利而时间差大于16微秒的多径信号会被接收机

当作是主信号的同频干扰信号此时需要考虑它们之间的电平差是否满足

C/I值即主信号大于多径信号9dB以上华为BTS接收机均衡器时间窗大于

20微秒

天线下倾角的计算方法

天线下倾角的计算方法 一、基础理论 1、定义 天线下倾角=机械下倾角+电子下倾角 机械下倾角:通过天线的上下安装件来调整的,这种方式是以安装抱杆为参照物,与天线形成夹角来计算的。 电子下倾角:通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大 小,改变合成分量场强强度,从而使天线的垂直方向性图下倾 2、理论计算 已知:H--天线的高度, D--小区的覆盖半径, β-天线的垂直平面半功率角, P—预制下倾角,为可选项,计算α--天线的俯仰角 答:α=arctg(H/D)+β/2-{P} 二、实例说明 1、某县级市平均站间距为443米,本地区采购的天线水平半功率角为65°,垂直半功 率为6°,内置电子下倾角分两类:0度,6度,采购原则如下:总下倾角小于等于 9度的,采购电子下倾角为0度的天线,总下倾角大于9度的,采购电子下倾角为 6度的天线。假设本期新增的基站均为三扇区定向站,请分别计算站高为20米、30 米、40米、50米的基站,天线下倾角分别是多少,机械下倾角分别是多少? 答:

(1)根据上图所示,且新增基站为三扇区定向站,小区半径R=站间距D/1.5=443÷1.5≈295(米) (2)通过《天线下倾角与覆盖距离计算》软件计算 20米站高基站:总下倾角=7°,机械下倾角=总下倾角-电子下倾角=7°-0°=7°

=9° 40米站高基站:总下倾角=11°,机械下倾角=总下倾角-电子下倾角=11°-6°=5°

-6°=7° 总结:根据以上经验可以推算出,在该地区20米站高基站天线下倾角为7°, 站高每增加5米,天线下倾角增加1° 三、运行软件

卫星通信基础知识(六)卫星天线的方位 仰角 极化角

卫星通信基础知识(六)卫星天线的方位仰角极化角 要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。 1、方位角 从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。我国处于北半球的东方,约在东经75-135度,北纬18-55度之间。所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线。卫星在地球上的投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。如亚太6号卫星的星下点是位于赤道上的东经134度的位置。我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。卫星天线的方位角计算公式是: A=arctg{tg(ψs-ψg)/sinθ}----------(1) 公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。图1是卫星的方位角示意图。方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。即可完成方位角的调整。2、仰角仰角是接收站所在地的地平面水平线于天线中心线所形成的角度, 如图2所示。仰角的计算公式是: .-----------------⑵仰角的调整最好是用量角器加上一个垂针作成的仰角调整专用工具进行调整。方位角和仰角的调整顺序是,先调整好仰角,在调整方位角。3、极化角国内或区域卫星一般都是线极化,线极化分为水平极化(以E‖表示)和垂直极化(以E⊥表示)。地面接收天线极化的定义是以卫星接收点的地平面为基准,天线馈源(或极化器)矩形波导口窄边平行于地平面,则电场矢量平行于地平面,定义为水平极化;反之馈源矩形波导口窄边垂直于地平面定义为垂直极化如图3所示。

天线俯仰角

天线的覆盖范围主要取决于天线高度、下倾、天线增益、天线口功率、无线链路等因素。 一般网络规划对市区可按照: (a) 繁华商业区; (b) 宾馆、写字楼、娱乐场所集中区; (c) 经济技术开发区、住宅区; (d) 工业区及文教区;等进行分类。 一般来说: (a)(b)类地区应设最大配置的定向基站,女口8/8/8站型,站间距在 0.6~ 1.6km; (c) 类地区也应设较大配置的定向基站,如6/6/6站型或4/4/4站型,基站站间距取 1.6~ 3km; (d) 类地区一般可设小规模定向基站,如2/2/2站型,站间距为3?5km;若 基站位 于城市边缘或近郊区,且站间距在5km以上,可设以全向基站。 上几类地区内都按用户均匀分布要求设站。郊县和主要公路、铁路覆盖一般可设全 向或二小区基站,站间距离5km-20km 左右。 覆盖的目的就是为了给客户带来更好无线业务服务,不过还需要注意几个方

面: 1、看覆盖环境,不同的地区采用不同下倾方式和天线挂高; 2、看天线类型、参数,是否带电倾角,看天线参数以及其方向图进行评估; 3、实地CQT测试,更加贴近用户的方式。 天线高度的调整 天线高度直接与基站的覆盖范围有关。一般来说,我们用仪器测得的信号覆盖范围受两 方向因素影响: 一是天线所发直射波所能达到的最远距离; 二是到达该地点的信号强度足以为仪器所捕捉。 900MHz 移动通信是近地表面视线通信,天线所发直射波所能达到的最远距离(S)直接与收发信天线的高度有关,具体关系式可简化如下: S=2R(H+h) 其中: R-地球半径,约为6370km; H-基站天线的中心点高度; h-手机或测试仪表的天线高度。 由此可见,基站无线信号所能达到的最远距离(即基站的覆盖范围)是由天线高度 决定的。 GSM 网络在建设初期,站点较少,为了保证覆盖,基站天线一般架设得都较高。随着近几年移动通信的迅速发展,基站站点大量增多,在市区已经达到大约500m 左右为一个站。

如何调试卫星天线角度介绍

如何调试卫星天线角度介绍 1、卫星转发器 卫星转发器,是这样的设备,接收地面发射站发来的14GHz或6GHz的微弱的上行电视信号,经频率变换(一次变频、二次变频)为不同的下行频率12GHz或4GHz,再由技术处理放大到一定功率向地球发射,有卫星电视接收设备接收。每一路音视频和数据通道都是由一个卫星转发器进行接收处理然后再传输,每一个转发器所处理的信号都有一个中心频率及一个特定的带宽,目前卫星转发器主要使用L、S、C、Ku和Ka频段。 2、水平极化、垂直极化 极化通常是指与电波传播方向垂直的平面内,瞬时电场矢量的方向。在极化波中,以地平线为准,当极化方向与地面平行时,称为水平极化。当极化方向与地面垂直时,称为垂直极化。 3、卫星天线 卫星天线的作用是收集由卫星传来的微弱信号,并尽可能去除杂讯。大多数天线通常是抛物面状的,也有一些多焦点天线是由球面和抛物面组合而成。卫星信号通过抛物面天线的反射后集中到它的焦点处。 4、馈源 馈源的主要功能是将天线收集的信号聚集送给高频头(LNB),馈源在

接收系统中的作用是非常重要的。 馈源的种类 锥形馈源 环形馈源 圆锥馈源 梯状馈源 6、LNB高频头 高频头(Low Noise Block)即下行解频器,其功能是将由馈源传送的卫星经过放大和下变频,把Ku或C波段信号变成L波段,经同轴电缆传送给卫星接收机。 调试过程 由于一般用户都没有场强仪等专用设备,因此本文将介绍的是如何使用指南针、量角器等常用设备寻星。 器材准备:卫星天线、高频头(馈源一体化)、卫星接收机、电视机、指南针、量角器以及连接线若干。 计算寻星所需参数 对于固定式天线系统,需要根据天线所在地的经纬度及所要接收卫星的经度计算出天线的方位角和仰角,并以此角度调整天线使其对准相应的卫星。

天线下倾角调测

下倾角一般指天线向下和水平面之间的角度.一个合适的下倾角能加强本覆盖区域的信号强度,同时也能减少小区之间的信号盲区或弱区,也不会导致小区与小区之间交叉覆盖、相邻的关系混乱,一个合理的下倾角是保证整个移动通信网络质量的基本保证,所以目前天线下倾角的调整是我们网络优化中的一个非常重要的事情。 一般的天线下倾角共分为机械下倾角跟电子下倾角,机械下倾角是通过人工来调整天线物理下倾来实现,电子下倾角就是通过电子仪器来调整天线的阵子来实现。在这里我再明确一下,就是我们在施工过程中必须严格按照设计图纸来调整下倾角,机械下倾角和电子下倾角设计是多少度就应该是多少度,包括在我们在验收文档里面,下倾角是不允许有偏差的,就算相差一度也是不行的! 根据我们目前的设备,我主要就讲解下京信天线和安德鲁天线的电调仪使用方式。 目前我们使用的安德鲁电调仪

安德鲁的电调仪是没有自带显示屏的,所以我们需要用电脑联接电调仪再联接到天线来调整天线的电子下倾角,

联接天线后,打开软件,点击面板上“Find Dcvices”按钮 软件开始执行新的搜索任务,进度条显示搜索进程,界面下方状态栏显示伴随进程正在搜索的内容

完成搜索后弹出对话框,检查已搜索出的设备,如果正确点击“YES”,反之点击“NO”。 经过搜索发现天线后,界面内会弹出一个对话框,显示目前发现驱动器的数量。 同时,软件界面内会显示出已搜索到的天线驱动器的基本信息,其数据显示结构。

进入编辑选择窗口。 在编辑窗口内填写所有的信息后,点击“Configure”,跳出对话框询问点击“YES”,再次跳出对话框点击’“OK”。

定向天线天线下倾角的设置

定向天线天线下倾角的设置 摘要:天线下倾角设置是否合理,将对天线的覆盖产生重要的影响,同时会对相邻小区形成不良的影响,因此,正确的理解天线下倾角的设置原理,合理的设置天线下倾角,将对无线基站设计起到积极的作用,使基站能够发挥更好的作用,为无线用户提供更好的服务。 关键词:GSM 下倾覆盖 1、概述 在过去两个月的工作中,我主要从事无线基站的设计,在勘查和设计的过程中,发现了不少需要解决的问题,针对这些问题,我收集了一些资料进行学习和整理,希望能够为自己和同事在将来的查勘设计过程中提供相关技术应用的理论依据,其中,一个比较重要的课题就是定向天线下倾角的设置。 2、天线下倾的方法 2.1 天线倾角的作用 为了使信号限制在自己的小区覆盖范围内,并且降低对其他同频小区的干扰,使定向天线波束图形向下倾斜一定角度是非常有效的方法。天线下倾技术是利用天线的垂直方向性有效控制干扰和覆盖的重要手段: 1)天线下倾可以使小区覆盖范围变小; 2)天线下倾安装使天线在干扰方向上的增益减小,相当于天线在垂直面上去耦增加; 3)天线下倾后加强了本覆盖区内的信号强度,既改善了小区的场强,又增加了抗同频干扰的能力。 2.2 天线下倾的方法 有两种使天线方向图向下倾斜的方法: 1)机械下倾,通过机械调整改变天线向下倾角。 2)电调下倾。通过改变天线阵的激励系数来调整波束的倾斜角度。 两种不同的下倾方法将产生不同的辐射情况,在下倾角度较小时,这种区别不明显;但随着角度的加大,它们的区别就非常显著了。 在采用电倾角时,随着下倾角的增加,在主瓣方向覆盖距离明显缩短,天线方向图仍然保持原有形状,能够降低呼损、减小干扰。但对于机械下倾,随着下倾角的加大,天线主瓣方向信号强度迅速降低,当下倾角增大到一定数值时主瓣方向逐渐凹陷下去,同时旁瓣增益随之增大,这就造成旁瓣对其他方向上的同频基站的干扰。 目前GSM网在高话务密度区的呼损较高,干扰较大,其中一个重要原因是机械下倾角过大,天线方向图严重变形,要解决高话务区的容量不足,必须缩短站距、加大天线下倾角度,因此采用机械天线很难解决用户高密度区呼损高、干扰大的问题,建议在高话务密度区用带电倾角的天线,而把机械倾角天线安装 在农村、郊区等低话务密度地区。 3、天线倾角的设计 3.1 天线倾角覆盖的范围 定向天线覆盖的角度受天线出场设置限制,天线扇区在水平覆盖范围内信号一般集中在65度内,在垂直覆盖范围内信号一般集中在13度内。 定向天线下倾角度有2种设置方式:一种是内置角(出厂已设置好)、一种是现场调整

天线方位角俯仰角以及指向计算

创新实验课作业报告 姓名:王紫潇苗成国 学号:1121830101 1121830106 专业:飞行器环境与生命保障工程 课题意义:随着科学技术的迅猛发展,特别是航天科技成果不断向军事、商业领域的转化,航天科技得到了极大的发展,航天器机构朝着高精度、高可靠性的方向发展。因此对航天机构的可靠性、精度、寿命等要求越来越高,对航天器机构精度的要求显得愈发突出,无论是航天器自身的工作,还是航天器在轨服务都对其精度有着严格的要求。航天器中的外伸指向机构通常指的是星载天线机构,星载天线是航天器对地通信的主要设备,肩负着对地通信的主要任务,同时随着卫星导航的广泛应用,星载天线就愈发的重要起来,而其指向精度的要求就愈发的突出,指向精度不足,将会导致通信信号质量下降,卫星导航精度下降等结果。民用方面移动通信和车载导航等,军用方面舰船导航、精确打击等这些都对星载天线的指向精度有着极高的依赖性。 因此,星载天线的指向精度是非常重要的。要保证星载天线的指向精度,

课题一双轴驱动机构转角到天线波束空间指向 首先就是要确保星载天线驱动机构在地指向精度分析的正确性,只有这样才能对接下来的在轨指向精度分析和指向误差补偿进行分析。星载天线驱动机构的末端位姿误差主要来源于机构的结构参数误差和热变形误差,这些误差是驱动机构指向误差最原始的根源,由于受实际生产加工装配能力和空间环境的限制,这些引起末端指向误差的零部件结构参数误差是必须进行合理控制的,引起结构参数变 化的热影响因素是必须加以考虑的,只有这样才能使在轨天线驱动机构指向精度动态分析和误差补偿都得到较理想的结果。纵观整个星载天线驱动机构末端位姿误差的分析,提出源于结构参数误差和热变形误差引起的星载天线驱动机构末端位姿误差的研究是必要的。 发展现状:星载天线最初大多是以固定形式与卫星本体相连的,仅仅通过增大天线波束宽度和覆盖面积来提高其工作范围,对其精度要求不是很高,但是随着航天科技的不断发展和市场需求的不断变化,这就要求,星载天线要具备一定的自由度,因此促使了星载天线双轴驱动机构的发展。星载天线双轴驱动机构能够实现对卫星天线的二自由度驱动,是空间环境下驱动天线运动的专用外伸执行机构。卫星天线的二自由度运动能够满足对地通信、星间通信、卫星导航定位、以及对目标的实时观测跟踪,在满足这些需求的同时也要保证其精度的提高,随着需求的不断提高,精度已经成为衡量星载天线双轴驱动机构性能的一个重要指标,同时也是系统设计与实现的一个难点。综上所述可以看出,星载天线双轴驱动机构是驱动卫星天线系统进行准确空间定位的核心部分。 与此同时,我国对星载天线驱动机构的研究、生产制造技术进行了一定时间的学习积累,也成功的应用到了一些卫星上,具有一定的自主能力。自2000年后,我国在发射的卫星中,有很多采用了自主研发的天线驱动机构。相应的研究单位也蓬勃发展,航天科技集团、上海航天局等相关单位对星载天线驱动机构的研究已经取得了很大的成就和进展。特别是伴随着我国自主导航系统一北斗导航系统的不断发展,以及空间实验室和“嫦娥计划”的不断深入。星载天线双轴驱动机构得到了极大地发展。即便如此,我们跟国外还是有一定差距的,目前国内与国外的差距主要在双轴驱动机构精度、使用寿命、可靠性方面,因此还是需要进行深入研究,提高其精度、使用寿命、可靠性。 那么,我们小组也秉承着对航天事业的极大热忱开始对天线指向问题进行研

LTE天线电子下倾角课题研究

LTE天线电子下倾角课题研究

1研究背景 3月27日,对校园内基站进行勘察,发现现场勘察的电子下倾角与后台网管配置的 电子下倾角不一致,见下表所示: 不一致。对于这种情况,后期进行RF优化时,由于电子下倾角不匹配,无法通过电子下倾角来有效控制覆。 目前市的基站主要采用京信以及国人的天线,主要型号为:

2分析思路 针对前后台电子下倾角不一致问题,我们首先建立了一个实验基站,为电信一枢纽6楼,选择天线型号为ODV2-065R18K-G,如下图所示: 1.我们初步怀疑为后台基站没有校准,因此在后台对该小区天线进行校准,校准 之后,后台电子下倾角显示为0度,但是此时天线上显示为1.8度。前后台仍然不一致。说明校准之后仍然无效。 2.将天线的电子下倾角都归零进行验证,在后台将电子下倾角设置为0度后,此 时天线上电子下倾角显示为0度,保持一致。说明归零时,前后台可以保持一致。 3.此时在后台将电子下倾角调整到6度时,天线上显示的电子下倾角为8度;在 将后台电子下倾角调整到9度时,此时天线的电子下倾角已经为10度。 以上说明通过校准天线、通过归零后在进行调整都没有效果,前后台电子下倾角仍然不一致。

因此我们怀疑为天线的配置文件错误,之后分别联系京信以及国人的天线厂家,拿到最新的配置文件,然后进行研究验证。

3研究验证 通过同基站工程师沟通,在配置电调天线时,他们首先需要拿到每种天线型号的配置文件,然后将配置文件导入系统中。因此我们初步怀疑为配置文件的问题。 因此我们联系天线厂家,拿到最新的配置文件,然后进行导入验证。 3.1国人天线验证 国人天线的最新配置文件如下: 选择师院实验楼基站进行验证,师院实验楼基站的天线型号为SGR-TX-100122。 进行数据导入,在动态管理里面,选择需要配置的站点,点开发送配置数据,如下图所示: 导入成功后需要将天线进行校准:

卫星接收站接收天线方位角

卫星接收站接收天线方位角、仰角、极化角的计算公式 1、卫星接收天线的方位角:ξ ? sin 1tg tg A z -= (1) 2、卫星接收天线的仰角:? ξφξ2 2 1 cos cos 115127.0cos cos --=-tg EL (2) 3、极化角:ξ ? ?ξξ?ξ?αtg tg a tg a a tg P sin )cos cos (1cos cos 2sin 1 21 -?-?+--=-- (3) 其中接收点的纬度为ξ ,接收点的经度为R φ,同步卫星的经度为S φ ,相对经度为S R φφ?-=。 同时当0>?,表示卫星在接收点的西南方向上,当0=?时表示卫星在接收地点的正南方向,当0<?时表示卫星在接收点的东南方向上。 通常地球的半径为6738km ,同步卫星的高度为35786km ,当以地球半径为单位长度,同步卫星轨道的相对半径a 为: 6018 .6)6378 35786(1=+=a 公式(1)中:正南?=0z A ,正西为?=90z A ,正东为?-=90z A 。 通常接收天线方位角用下式比表示: 180sin 1 +=-ξ ? tg tg A z (4) 此时方位角以正北方向为基准。 广州从化市广播电视台所在的地理位置为:东经113.58度,北纬23.56度。 如果没有指南针,可以通过自己的影子判断自己影子先找出东西方向,然后再确定南北方向,上午影子向西,下午影子向东。 卫星仰角和极化如图1和图2所示。

从化市广播电视台接收天线方位参数如表一所示。表一从化接收卫星节目天线方位参数表

中星6B卫星(东经11.5度)节目接收技术参数

天线的分类与选择

第二讲天线的分类与选择 移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。 2.3 机械天线 所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。

天线下倾角设置参考表之令狐文艳创作

天线下倾角设置参考表 令狐文艳 一、天线类型选择在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。 1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。(1)为减少干扰,应选用水平半功率角接近于60度的天线。这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。如下图所示。 (2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。(3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。

综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。例如水平半功率角为65度的15dBi双极化天线。 2、密集城区基站天线密集城区基站天线的选择与一般城区基站类似。但由于密集城区基站站距往往只有400米到600米,在使用水平半功率角为65度的15dBi双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。所以密集城区基站选用电子式倾角的水平半功率角为60度左右的中等增益双极化天线较为合适。 3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。(1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。例如水平半功率角为90度的天线。(2)对于GSM网络而言,为提高覆盖质量,在平原地区使用水平半功率角较大的天线效果较好,但同时会产生切换区域增大的问题;而在山区和丘陵地带使用水平半功率角较小的天线

天线下倾角设置参考表

天线下倾角设置参考表 一、天线类型选择 在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。1、城区基站天线城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。 (1)为减少干扰,应选用水平半功率角接近于60度的天线。这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。如下图所示。 (2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。 (3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。 综上所述,城区基站宜选用水平半功率角为60 度左右的中等增益的 双极化天线。例如水平半功率角为65度的15dBi双极化天线。 2、密集城区基站天线 密集城区基站天线的选择与一般城区基站类似。但由于密集城区基站站距往往只有400米到600 米,在使用水平半功率角为65度的15dBi 双

极化天线,且天线有效挂高35 米的情况下,天线下倾角可能设置在14.0 度到11.5 度之间。此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变的问题,产生的干扰相对较小。所以密集城区基站选用电子式倾角的水平半功率角为60 度左右的中等增益双极化天线较为合适。 3、农村地区基站天线在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基站天线时应考虑以下几方面。 (1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积,宜选用水平半功率角较大的天线。例如水平半功率角为90 度的天线。 (2)对于GSM网络而言,为提高覆盖质量,在平原地区使用水平半功率角较大的天线效果较好,但同时会产生切换区域增大的问题;而在山区和丘陵地带使用水平半功率角较小的天线易于控制覆盖方向和范围,效果较好。 ( 3)为保证覆盖半径,应选择高增益天线。 ( 4)由于极化分集依赖于移动台周围反射体和散射体的分布,对于地物分布相对较稀疏的农村地区,极化分集效果不如空间分集。因此在安装条件具备的情况下,应尽可能使用单极化天线。 (5)如果基站周围各方向上都没有明显阻挡,话务需求较小,预期覆盖范围也较小,可以选用全向天线。 综上所述,CDMA网络农村地区定向基站宜选用水平半功率角较大的高增益单极化天线,例如水平半功率角为90度的17dBi 单极化天线;GSM 网络农村地区定向基站宜选用水平半功率角适配的高增益单极化天线,例如水平半功率角为90度或65度的17dBi 单极化天线。全向基站则可以

天线方位角计算公式

天线方位角计算公式 公式中:A--方位角 α--接收点的地理纬度 β-- 接收点经度与星下点经度之差 注:通常计算结果正南为零度,正数为正南偏西;负数为正南偏东。 天线仰角计算公式 F公式中:B---仰角,其它字母表示同前; F偏馈天线都有一个偏馈角,不同厂家、不同规格的天线偏馈角有所不同,一般都在产品说明书标明。成都新星和华达天线的偏馈角都是22.3度。 F偏馈天线的实际仰角等于计算仰角值-偏馈角值 F正馈天线无偏馈角,其实际仰角即等于计算出的仰角值。 旗县方位角(度)仰角(度) F乌海市-5.78 43.91 F阿拉善左旗-7.60 44.80 F阿拉善右旗-13.80 43.83 F额济纳旗-14.07 40.66 F乌兰浩特市15.79 35.87 F突泉县15.30 36.72 F科右中旗15.35 36.93 F科右前旗15.79 35.87 F连接好卫星接收系统,确认接收天线仰角和方位角; F旋动天线俯仰调节杆(丝杠)上的螺母,确定天线的仰角。一般采用仰角仪或量角器来测量仰角的大小。注意:若天线是偏馈式,仰角应减去22.3度的偏馈角。 F将高频头的极化调整到垂直极化位置(站在天线前边看,高频头输出口应指向右并偏下约45度)。 F调整好天线仰角后,以正南为基准,根据计算出的天线方位角,将天线方位调整到大概位置。 F打开接收机和监视器,调整接收机并输入要接收卫星节目的下行频率(查表)、极

化方式、符号率等数据,然后使接收机处于寻星状态,此时监视器上显示出卫星信号强度显示条。 F缓慢转动天线方位(在方位角左右范围内)搜寻卫星信号,同时观察监视器上的接收信号强度显示条。注意:每转动一次需等待2-3秒,这不同于C波段。 F如果在调整中发现强度显示增加,要进一步放慢转动速度,通过调整方位角使信号强度达到最大,然后固定方位调节螺母; F再次缓慢调节天线的俯仰角度,使信号强度达到最大,然后固定天线俯仰调节螺母。F反复微调天线的方位角和仰角,使信号强度显示最大; F保持天线方位与仰角不变,缓慢调节高频头前后位置和旋转高频头,同时观察信号强度显示,使信号最强,然后锁定高频头。 F注意:在锁定天线和高频头时,要注意观察接收机信号强度不要发生变化,以免在锁定天线时偏离方向使信号变弱跑台。 F连接高频头到接收机的连线,并用胶条(高频头盒内有)把高频头输出F5头缠紧,以防雨水浸入 F按电源开关,再按遥控开关,先按MENU出主菜单,跳过填写密码(不设密码),在主菜单选节目设定,按OK。出数据填写框并填入有关数据。 F卫星名称:ST 1;本地高振频:11300 F本地低振频:00000;转频器编号:TS00 F卫星频率:12620 Mhz 极性:垂直; F符码率:32553Ms FEC;AUTO F Diseqc:DISHA; F信号强度:对准卫星后有黄色条显示,达45%以上。按OK后,出现寻星/稍后字样,等待数秒钟后,按OK,接着按频道数,可看CETV节目三套和CCTV-9。F在我区范围内,以包头的土右旗为中点(110E)。在土右旗以西的旗县,天线方位为正南偏东(负值);土右旗以东的旗县,天线方位为正南偏西(正值)。 F举例:呼市地区方位角1.83,仰角42.8。偏馈天线调试时以天线背面托盘的平面为参照对象,测量仰角应为69.5度。由于新星天线加工的误差,经推算出的偏馈角为 23.8度,所以测量角是71度。

基站天线的下倾角设置建议

基站天线的下倾角设置建议 一、 下倾角概述 基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。 基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。 合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA 网络而言),而且可以加强本基站覆盖区内的信号强度。通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。这两个侧重方向分别对应不同的下倾角算法。一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。 1.1.考虑干扰抑制时的下倾角 在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是上波瓣)衰减很快。因此从控制干扰的角度考虑,可认为半功率角的延长线到地面的交点(B 点)为该基站的实际覆盖边缘。在基站周围环境理想情况下,下倾角可按以下公式计算。 α=actan (H/R )+β/2 公式一 倾角θ 天线高度 同频小区 基站天线覆盖示意图 覆盖距离 服务区异频区 图1、 基站天线控制干扰时的下倾角应用图 其中α为天线的下倾角,H 为天线有效高度,β为天线的垂直半功率角。R 为该小区最远的覆盖距离,即覆盖长径R 。

1.2.考虑加强覆盖时的下倾角 在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。在基站周围环境理想情况下,下倾角可按以下公式计算。 α=actan(H/R)公式二公式二含义如下图所示。 图二、基站天线控制信号强度时的下倾角应用图 二、下倾角设置的应用分析 2.1.下倾角分类 目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。 1)机械下倾角:通过调整安装支架,改变天线物理位置,从而实现下倾角连续调节的 调节方式。 2)预置电下倾角:通过天线赋形技术,调整天线馈电网络,改变天线阵列中各振子的 相位,从而在天线物理位置不变的前提下,实现某个电下倾角的调节方式。 3)电调下倾角:通过天线关键器件移相器,连续调整天线馈电网络,连续改变天线阵 列中各振子的相位,从而在天线物理位置不变的前提下,实现天线电下倾角的连续 调节的调节方式。

卫星天线的方位、仰角、极化角

卫星天线的方位、仰角、极化角 要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。 1、方位角 从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。我国处于北半球的东方,约在东经75-1 35度,北纬18-55度之间。所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线。卫星在地球上的

投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。如亚太6号卫星的星下点是位于赤道上的东经134度的位置。我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。 卫星天线的方位角计算公式是: A=arctg{tg(ψs-ψg)/sinθ}----------(1) 公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。图1是卫星的方位角示意图。 方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。即可完成方位角的调整。 2、仰角 仰角是接收站所在地的地平面水平线于天线中心线所形成的角度,如图2所示。 仰角的计算公式是:

天线方向角及下倾角测试方法

天线方向角及下倾角测试 天线方向角测试方法: 使用仪器:指南针 型号:DQY-1型 指南针的工作环境要求: 1.在使用指南针时应距离金属物体、金属管道、导线等2米以上,以免指南针自身磁场受其他磁场干扰,无法获取准确数据。2.应在晴好天气使用,避免空气中过多的带电粒子对指南针造成影响。 3.使用时应在远离强磁场,如变压器、旋转电机、高压走廊等。4.应避免在太阳黑子活跃期内使用,由于该期间地球磁场会发生偏转及磁暴现象,指南针获取数据与平时要存在较大差距。5.在测试者使用指南针时,不要在其半径1米内使用手机通话,以免影响测试数据。 第一种测试方法 1.测量者在待测天线正后方一定距离(根据实际情况,尽量远离 天线),选择一适当位置。安装好三脚架并把指南针放置于三脚 架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水 平,调节三脚架将指南针调至水平(或测量者手持); 2.视线从指南针刻度盘边上的准针通过反光镜中间的观察孔,与 前边的校准针再与要测量的天线的支撑杆成直线;

3.此时指南针黑针所指的刻度就是该天线的方位角; 4.换另一名测试者重复上述步骤;或用另外一块表进行测量。取 得数据的平均值即 第二种测试方法 1.测量者在待测天线正前方一定距离(根据实际情况,尽量远离天线),选择一适当位置。安装好三脚架并把指南针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立起与天线面板水平,调节三脚架将指南针调至水平(或测量者手持); 2.从指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线; 3.此时指南针白针所指的刻度就是该天线的方位角; 4.换另一名测试者重复上述步骤;或用另外一块表进行测量。取得数据的平均值即 第三种测试方法 1.测量者在待测天线板面垂直方向一定距离(根据实际情况,尽量远离天线),选择一适当位置。安装好三脚架并把指南 针放置于三脚架托盘上,打开指南针盖并将指南针盖垂直立 起与天线面板侧面水平,调节三脚架将指南针调至水平(或 测量者手持); 2.指南针刻度盘边上的准针通过反光镜中间的观察孔,与前边的校准针再与要测量的天线的支撑杆成直线; 3.此时指南针黑针所指的刻度加或减90度(在面向天线正面

查询地面接收天线对在轨卫星仰角和方位角的几种简便方法

查询地面接收天线对在轨卫星的 仰角和方位角的几种简便方法 卫星通信广播是广播电视播出工作的重要组成部分,而卫星接收天线的寻星精度则是影响广播电视节目传输的信号强弱好坏的重要指标。在调整卫星地面接收天线时,我们经常要计算接收天线所在地对地球同步卫星的仰角和方位角,以利于正确调整卫星接收天线的方向。计算某一轨位卫星方位角和仰角时的公式如下: 从上面的公式可以看出,手工计算比较复杂,既费时费力又容易出错。下面介绍几种比较简单实用的方法,可以非常容易准确地获得任意经、纬度地址上接收各卫星的仰角和方位角。 1、计算器编程查询法 用有计算程序存储器的函数计算器通过输入程序来运算接收天线所在地对地球同步卫星的仰角和方位角,如用CASIO的fx-

3800p、fx-3900p、fx-180p等型号的计算器来进行编程计算。只需输入一次程序,就能把程序存储到该计算器中。每次计算时只要打开计算器,调出运算程序,输入想要接收的地球同步卫星的定点轨道的度数,就能非常及时、方便地计算出接收天线所在地对地球同步卫星的仰角和方位角。本人用的是CASIO fx-3800p计算器,应依次写入下面运算程序:MODE 、·、SHIFT 、 AC (KAC) 、MODE 、4 、 120.65 、 Kin 、 1 、 42.85 、 Kin 、 2 、 0.1513 、Kin 、 3 、 MODE 、 EXP 、Ⅰ(或Ⅱ、Ⅲ、Ⅳ)、 RUN 、115.5 、-、 Kout 、 1 = 、 SHIFT 、 MR (Min) 、 tan 、 ÷ 、Kout 、 2 、 sin 、 = 、 SHIFT 、 tan ( tan -1 ) 、SHIFT 、 RUN (ENT) 、[(…、 MR 、 cos 、 × 、 Kout 、 2 、 cos 、-、SHIFT 、 MR (Min) 、 Kout 、 3 、…)] 、 ÷ 、 MR 、 SHIFT 、cos (cos -1) 、 sin 、 = 、 SHIFT 、 tan (tan -1) 、 MODE 、·、AC 、Ⅰ(或Ⅱ、Ⅲ、Ⅳ)、接收卫星在轨度数、 RUN 、显示该星的方位角、 RUN 、显示该星的仰角。 程序中120.65和42.85是接收天线所在地的经度和纬度,可根据当地的经、纬度换算成小数后输入,其它数据不要更改。已存储程序后,当要计算某一在轨卫星的仰角和方位角时只要打开计算器,按AC 、Ⅰ(或Ⅱ、Ⅲ、Ⅳ),输入接收卫星在轨度数,按RUN后显示该星的方位角,再按RUN则显示该星的仰角。如用已输入上述程序的计算器,输入鑫诺1号110.5度星后计算出的方位

参考文档-天线下倾角理覆盖理论

一、基站天线的下倾角设置 (一)下倾角概述 基站天线作为移动通信网络的终端,承载了电磁波发射与接收的双工功能,即移动通信信号传递的载体,其应用效果的好坏直接决定了移动通信网络的优劣。基站天线的应用效果的好坏,一般受限于基站电磁环境、天线挂高、天线方位角及天线下倾角四大重要因素,只有四大因素相辅相成,方能实现基站天线的最佳应用效果,本文结合基站的各种电磁环境、天线挂高对基站天线下倾角的设置进行简单的分析介绍。 合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例,而且可以加强本基站覆盖区内的信号强度。通常天线下倾角的设定有两个侧重方向,即侧重于干扰抑制和侧重于加强覆盖。这两个侧重方向分别对应不同的下倾角算法。一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。 1.1.考虑干扰抑制时的下倾角 在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线 在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素

的影响。为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。在基站周围环境理想情况下,下倾角可按以下公式计算。 α=actan(H/R) 公式二含义如下图所示。 图二、基站天线控制信号强度时的下倾角应用图 、下倾角设置的应用分析 2.1.下倾角分类 目前天线行业内天线的下倾角实现方式有三种:机械下倾角、预置电下倾角以及电调下倾角;需要下倾角=机械下倾角+预置电下倾角+电调下倾角。机械下倾角:通过调整安装支架,改变天线物理位置,从而实现下倾角连续调节的调节方式。 预置电下倾角:通过天线赋形技术,调整天线馈电网络,改变天线阵列中各振子的相位,从而在天线物理位置不变的前提下,实现某个电下倾角的调节方式。 电调下倾角:通过天线关键器件移相器,连续调整天线馈电网络,连续改变天线阵列中各振子的相位,从而在天线物理位置不变的前提下,实现天线电下倾角的连续调节的调节方式。 2.2. 机械倾角和电下倾角的对比

移动通信天线下倾角设置

比较有用的一点东西,特别是天线下倾角设置参考表 一、天线类型选择 在移动通信网工程设计中,应该根据网络的覆盖要求、话务量分布、抗干扰要求和网络服务质量等实际情况来合理的选择基站天线。由于天线类型的选择与地形、地物,以及话务量分布紧密相关,可以将天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。 1、城区基站天线 城区基站密度较高,单站预期覆盖范围较小,选择基站天线时应考虑以下几方面。 (1)为减少干扰,应选用水平半功率角接近于60度的天线。这样的天线所构成的辐射方向图接近于理想的三叶草型蜂窝结构,与现网适配性较好,有助于控制越区切换。如下图所示。 (2)城区基站一般不要求大范围覆盖,而更注重覆盖的深度。由于中等增益天线的有效垂直波束相比于高增益天线较宽,覆盖半径内有效的深度覆盖范围较大,可以改善室内覆盖效果,所以选用中等增益天线较好。 (3)由于城区基站天线安装空间往往有限,所以选用双极化天线比较切合实际。 综上所述,城区基站宜选用水平半功率角为60度左右的中等增益的双极化天线。例如水平半功率角为65度的15dBi双极化天线。 2、密集城区基站天线

密集城区基站天线的选择与一般城区基站类似。但由于密集城区基 站站距往往只有400米到600米,在使用水平半功率角为65度的 15dBi双极化天线,且天线有效挂高35米的情况下,天线下倾角可能设置在14.0度到11.5度之间。此时如果单纯采用机械下倾的方式,倾角过大将引起水平波束变宽,干扰增大,同时上副瓣也会引 入较大干扰;而采用电子式倾角天线,则可以较好的解决波形畸变 的问题,产生的干扰相对较小。所以密集城区基站选用电子式倾角 的水平半功率角为60度左右的中等增益双极化天线较为合适。 3、农村地区基站天线 在农村地区,鉴于话务量较小,预期覆盖面积较大的特点,选择基 站天线时应考虑以下几方面。 (1)对于CDMA网络而言,为提高定向基站两扇区天线服务交叠区 间的通信质量(交叠区内有宏观分集的效果),增大交叠区面积, 宜选用水平半功率角较大的天线。例如水平半功率角为90度的天线。(2)对于GSM网络而言,为提高覆盖质量,在平原地区使用水平半功率角较大的天线效果较好,但同时会产生切换区域增大的问题; 而在山区和丘陵地带使用水平半功率角较小的天线易于控制覆盖方 向和范围,效果较好。 (3)为保证覆盖半径,应选择高增益天线。 (4)由于极化分集依赖于移动台周围反射体和散射体的分布,对于地物分布相对较稀疏的农村地区,极化分集效果不如空间分集。因 此在安装条件具备的情况下,应尽可能使用单极化天线。

相关主题