搜档网
当前位置:搜档网 › ESD(静电放电)及ESD保护电路的设计

ESD(静电放电)及ESD保护电路的设计

ESD(静电放电)及ESD保护电路的设计
ESD(静电放电)及ESD保护电路的设计

什么是ESD(静电放电)及ESD保护电路的设计

学习资料2008-12-09 08:27:57 阅读592 评论1 字号:大中小订阅

来源:电子系统设计

静电放电(E SD,electrostatic discharge )是在电子装配中电路板与元件损害的一个熟悉而低估的根源。它影响每一个制造商,无任其大小。虽然许多人认为他们是在E SD安全的环境中生产产品,但事实上,E SD有关的损害继续给世界的电子制造工业带来每年数十亿美元的代价。

E SD究竟是什么?静电放电(E SD)定义为,给或者从原先已经有静电(固定的)的电荷(电子不足或过剩)放电(电子流)。电荷在两种条件下是稳定的:

当它“陷入”导电性的但是电气绝缘的物体上,如,有塑料柄的金属的螺丝起子。

当它居留在绝缘表面(如塑料),不能在上面流动时。

可是,如果带有足够高电荷的电气绝缘的导体(螺丝起子)靠近有相反电势的集成电路(IC)时,电荷“跨接”,引起静电放电(E SD)。

E SD以极高的强度很迅速地发生,通常将产生足够的热量熔化半导体芯片的内部电路,在电子显微镜下外表象向外吹出的小子弹孔,引起即时的和不可逆转的损坏。

更加严重的是,这种危害只有十分之一的情况坏到引起在最后测试的整个元件失效。其它90%的情况,E SD 损坏只引起部分的降级- 意味着损坏的元件可毫无察觉地通过最后测试,而只在发货到顾客之后出现过早的现场失效。其结果是最损声誉的,对一个制造商纠正任何制造缺陷最付代价的地方。

可是,控制E SD的主要困难是,它是不可见的,但又能达到损坏电子元件的地步。产生可以听见“嘀哒”一声的放电需要累积大约2000伏的相当较大的电荷,而3000伏可以感觉小的电击,5000伏可以看见火花。

例如,诸如互补金属氧化物半导体(CMOS, complementary metal oxide semiconductor)或电气可编程只读内存(E PROM, electricall programmable read-only memory)这些常见元件,可分别被只有250伏和100伏的E SD电势差所破坏,而越来越多的敏感的现代元件,包括奔腾处理器,只要5伏就可毁掉。

该问题被每天的引起损害的活动复合在一起。例如,从乙烯基的工厂地板走过,在地板表面和鞋子之间产生摩擦。其结果是纯电荷的物体,累积达到3~2000伏的电荷,取决于局部空气的相当湿度。

甚至工人在台上的自然移动所形成的摩擦都可产生400~6000伏。如果在拆开或包装泡沫盒或泡泡袋中的PCB期间,工人已经处理绝缘体,那么在工人身体表面累积的净电荷可达到大约26000伏。

因此,作为主要的E SD危害来源,所有进入静电保护区域(E P A, electrostatic protected area)的工作人员必须接地,以防止任何电荷累积,并且所有表面应该接地,以维持所有东西都在相同的电势,防止E SD发生。

用来防止E SD的主要产品是碗带(wri s tband),有卷毛灯芯绒和耗散性表面或垫料- 两者都必须正确接地。另外的辅助物诸如耗散性鞋类或踵带和合适的衣服,都是设计用来防止人员在静电保护区域(EP A)移动时累积和保持净电荷。

在装配期间和之后,P CB也应该防止来自内部和外表运输中的E SD。有许多电路板包装产品可用于这方面,包括屏蔽袋、装运箱和可移动推车。虽然以上设备的正确使用将防止90%的E SD有关的问题,但是为了达到最后10%,需要另一种保护:离子化。

中和那些可产生静电电荷的装配设备和表面的最有效方法是使用离子发生器(ionizer) - 一种设备吹出离子化空气流在工作区域,来中和累积在绝缘材料上的任何电荷。

一个常见的谬论是认为因为在工作站带上了碗带,该区域的绝缘体,如聚苯乙烯杯或纸板盒,所带的电荷将安全地消散。按定义,绝缘体不会导电,除了通过离子化不可能放电。

如果一个带电荷的绝缘体保留在EP A,它将辐射一个静电场,引发净电荷到任何附近的物体上,因此增加对产品的E SD损坏的危险性。虽然许多制造商企图从其E P A禁止绝缘材料,但这个方法是很难实施的。绝缘材料是日常生活中太多的一部分- 从操作员坐落舒适的泡沫垫,到塑料盖中的一些东西。

由于离子发生器的使用,制造商可以接受一些绝缘材料在其EP A中出现的事实。因为离子发生系统连续地中和可能发生在绝缘体上面的任何电荷累积,所以对于任何的E SD计划,它们都是合理的投资。

标准电子装配中的离子发生设备有两种基本的形式:

桌面型(单个风扇)

过顶型设备(在单个过顶的单元内,有一系列的风扇)

也有室内离子发生器,但现在主要用于清洁房的环境。

选择决定于需要保护区域的大小。桌面型离子发生器将覆盖单一等工作表面,而过顶式离子发生器将覆盖两或三个。另一个优点是离子发生器也可防止灰尘静电附着于产品,可能使外观降级。

可是,如果没有对E SD设备有效性的正常测试和监测,那么没有一个保护计划是完善的。一流的E SD控制和离子化专家报告了使用失效的(因此是无用的)E SD设备而不知其失效的制造商的例子。

为了防止这种情况,除了标准的E SD设备,E SD供应商还提供各种恒定监测器,如果一项表现超出规定即自动报警。监测器可用作一个独立单元或在网络中连接在一起。也有自动数据采集的网络软件,实时显示有关操作员和工作站的系统表现。

监测器可通过消除许多日常任务来简化E SD计划,如保证碗带每天适当测量,离子发生器的平衡与正确维护,工作台接地点没有损坏。

结论

防止E SD的第一步是正确评价如果忽视,怎样小的细节可能造成不可修复的损坏。一个有效的计划要求不仅使用有效的E SD保护设备,而且严密的运作程序来保证所有工厂地面人员的行为是E SD安全的。

虽然许多制造商使用自动碗带测试仪,但常常可以看到操作员因为碗带太松而或者通过测试或者失效。许多操作员企图通过用另一只手简单抓着测试仪靠近其手腕来通过测试。

E SD保护电路的设计

静电放电(E SD)会给电子产品带来致命的危害,它不仅降低了产品的可靠性,增加了维修成本,而且不符合欧洲共同体规定的工业标准E N61000-4-2,产品就不能够在欧洲销售。所以电子设备制造商通常会在电路设计的初期就考虑E SD保护。本文将讨论E SD保护电路的几种方法

ESD 保护电路的设计

硬件知识2009-09-22 23:23:11 阅读60 评论0 字号:大中小订阅

E SD 静电放电给你的电子产品带来致命的危害不仅降低了产品的可靠性增加了

维修成本而且不符合欧洲共同体规定的工业标准E N61000-4-2 就会影响产品在欧洲的销

售所以电子设备制造商通常会在电路设计的初期就考虑E SD 保护电路本文将讨论E SD

保护电路的几种方法

1 E SD的产生及危害

当两个物体碰撞或分离时就会产生静电放电E SD 即静态电荷从一个物体移动到另一

个物体两个具有不同电势的物体之间产生静态电荷的移动类似于一次很小的闪电过程放

电量的大小和放电持续时间取决于物体的类型和周围的环境等多种因素当E SD 具有足够高的能量时将造成半导体器件的损坏静电放电E SD 可能随时发生例如插拔电缆或人

体接触器件的I/O 端口或者是一个带电的物体接触半导体器件半导体器件触地以及静

电场和电磁干扰产生足够高的电压引起静电放电E SD

E SD 基本上可以分为三种类型一是各种机器引起的E SD 二是家具移动或设备移动引

起的E SD 三是人体接触或设备移动引起的E SD 所有这三种E SD 对于半导体器件的生产和电子产品的生产都非常重要电子产品的使用过程最容易受到第三种E SD 的损坏便携式电子产品尤其容易受到人体接触E SD 的损坏

E SD 一般情况下会损坏与之相连的接口器件另一种情况是遭受E SD 冲击后的器件可能

不会立即损坏而是性能下降导致产品过早出现故障

当集成电路IC 经受E SD 时放电回路的电阻通常都很小无法限制放电电流例如

将带静电的电缆插到电路接口上时放电回路的电阻几乎为零造成可高达几十安培的瞬间

放电尖峰电流流入相应的IC管脚瞬间大电流会严重损伤IC 局部发热的热量甚至会融

化硅片管芯E SD 对IC 的损伤一般还包括内部金属连接被烧断钝化层被破坏晶体管单

元被烧坏

E SD 还会引起IC 的死锁LATCHUP 这种效应和CMOS 器件内部的类似可控硅的结构单

元被激活有关高电压可激活这些结构形成大电流通道一般是从VCC 到地串行接口器

件的锁死电流可高达1 安培锁死电流会一直保持直到器件被断电不过到那时IC 通

常早已因过热而烧毁了

静电放电(ESD)基础知识问答23要点

静电放电(ESD)基础知识问答23要点 1、问:为什么有些ESD地线有阻抗而有些没有呢? 答:ESD地线的目的是将一导电面连接到与电源地等电位的地方,“硬地”是用不具有附加电阻的地线直接连接到地的;电源地与公共点接点之间的电阻基本为0Ω。“软地”是具有内部串联电阻的地线,典型值为1M,这样设计的目的是限制当操作者暴露在110V和最大250V的环境中时可能产生的伤害电流。ESD联合会ANEOS/ESD S6.1—1991建议用“硬地”方式使ESD台面或者地板垫子接地。 2、问:我常穿一只防静电鞋,但常被告之两脚都要穿,为什么? 答:防静电鞋仅在穿戴正确并且要与导电地板或消耗地连在一起时才起作用。行走是摩擦生电的一个极好的例子。若你正确使用防静电鞋,且与ESD地板紧密连接,那么你身上的电荷泄入到地。因此,你与地之间构成的网络在电压上是相同的,但你一抬起穿有防静电鞋的脚,你就会再次充电,要么从你的衣服感应,要么因为摩擦和抬脚而产生摩擦电。若你穿有两只防静电鞋,你就会进一步大大减小比几伏电压高得多的净电荷的机会(典型值为2000—5000V),因为你处于接地状态时间延长了,所以建议在靠近运动物体时,务必穿一双防静电鞋。 3、问:需要在机器与地间连接1M电阻吗? 答:不需要。参照生产厂商在机器或设备方面接地的要求可知,1M电阻是用于保护人体的,参考以下的问题。旁注:将所有靠近ESD敏感工作站的孤立导体接地都是有好处的。可使意外的电场或电荷积累减至最小。 4、问:1M电阻在半导体装配过程中的作用是什么? 答:假设1:我们正谈论ESD控制问题;假设2:人体与半导体及带有半导体的器件接触,在防静电腕、防静电鞋、拉链、地线等地方均可发现1M串联电阻,其作用是限制可通过人体的电流量,

ESD防护办法

1.目的

1.1明确ESD敏感电子元件静电防护的重要性及各相关部门对产品静电防护的职责权限. 1.2规范EOS/ESD相关设施之操作、维护、控制及测试方法与点检频率,以保护静电敏感元件,从而保证 产品出货品质,满足客户需求. 2.适用范围 适用于ESD敏感电子元件相关制造,测试,存储及相关设施操作,控制与维护之领域。 3.定义 3.1 静电释放(ELECTROSTATIC,DISCHARGE)即静电电荷在不同电势的物品或表面之间转移的过程 3.1 静电损伤(ELECTROSTATIC,OVERSTRESS)即器件接受静电释放时,其特性产生变化,通常性能变差, 但未完全失效。 4.职责权限 4.1人力资源 4.1.1电工 ①设备干/支接地装置架设与安装. ②静电防护干/支接地装置架设与安装 ③接地装置干线检测与维护. 4.2生产部 ①新人上岗ESD静电防护培训与考核. ②静电手环日常点检/记录. ③工作区域之EOS/ESD设施的日常维护. ④车间静电区域的设施检测、标识与维护. 4.3品保部 4.3.1 IQC ①进料检验区静电防护需求提出. ②对ESD敏感电子元件进料检验. ③新人上岗ESD静电防护培训与考核. ④IQC静电进料检验区域的设施检测、标识与维护. 4.3.2 IPQC ①开线前相关设备,烙铁及特殊制程(静电防护)静电防护点检. ②现场稽核,确保所有静电防护设施之EOS/ESD状态均在规范之中. ③新人上岗ESD静电防护培训与考核. ④车间静电区域所有设施检测与异常提报. 4.3.3 FQC ①出货检验区静电防护需求提出. ②对ESD敏感电子产品出货检验. ③FQC静电检验区域的设施检测、标识与维护. 4.4 PMC 4.4.1仓库 ①静电防护需求提出.

设计PCB时抗静电放电(ESD)的方法(精)

设计PCB时抗静电放电(ESD)的方法 来自人体、环境甚至电子设备内部的静电对于精密的半导体芯片会造成各种损伤,例如穿透元器件内部薄的绝缘层;损毁MOSFET和CMOS元器件的栅极;CMOS器件中的触发器锁死;短路反偏的PN结;短路正向偏置的PN结;熔化有源器件内部的焊接线或铝线。为了消除静电释放(ESD)对电子设备的干扰和破坏,需要采取多种技术手段进行防范。 在PCB板的设计当中,可以通过分层、恰当的布局布线和安装实现PCB的抗ESD设计。在设计过程中,通过预测可以将绝大多数设计修改仅限于增减元器件。通过调整PCB布局布线,能够很好地防范ESD。以下是一些常见的防范措施。 *尽可能使用多层PCB,相对于双面PCB而言,地平面和电源平面,以及排列紧密的信号线-地线间距能够减小共模阻抗和感性耦合,使之达到双面PCB的1/10到1/100。尽量地将每一个信号层都紧靠一个电源层或地线层。对于顶层和底层表面都有元器件、具有很短连接线以及许多填充地的高密度PCB,可以考虑使用内层线。 *对于双面PCB来说,要采用紧密交织的电源和地栅格。电源线紧靠地线,在垂直和水平线或填充区之间,要尽可能多地连接。一面的栅格尺寸小于等于 60mm,如果可能,栅格尺寸应小于13mm。 *确保每一个电路尽可能紧凑。 *尽可能将所有连接器都放在一边。 *如果可能,将电源线从卡的中央引入,并远离容易直接遭受ESD影响的区域。*在引向机箱外的连接器(容易直接被ESD击中)下方的所有PCB层上,要放置宽的机箱地或者多边形填充地,并每隔大约13mm的距离用过孔将它们连接在一起。 *在卡的边缘上放置安装孔,安装孔周围用无阻焊剂的顶层和底层焊盘连接到机箱地上。 *PCB装配时,不要在顶层或者底层的焊盘上涂覆任何焊料。使用具有内嵌垫圈的螺钉来实现PCB与金属机箱/屏蔽层或接地面上支架的紧密接触。 *在每一层的机箱地和电路地之间,要设置相同的“隔离区”;如果可能,保持间隔距离为0.64mm。 *在卡的顶层和底层靠近安装孔的位置,每隔100mm沿机箱地线将机箱地和电路地用1.27mm宽的线连接在一起。与这些连接点的相邻处,在机箱地和电路地之间放置用于安装的焊盘或安装孔。这些地线连接可以用刀片划开,以保持开路,或用磁珠/高频电容的跳接。 *如果电路板不会放入金属机箱或者屏蔽装置中,在电路板的顶层和底层机箱地线上不能涂阻焊剂,这样它们可以作为ESD电弧的放电极。

ESD(静电防护)测试试题

ESD 测试题 选择题 1. ESD控制的目的含有达到更好品质和客户更满意。(V ) 2. 静电由接触或磨擦而产生。(V ) 3. ESD 意思是储存静电瞬间放电。( V ) 4. 非现场人员若不具ESD资格,碰触电子零件亦无所谓。(X ) 5. 隔离(绝缘)所有东西是建立一个防静电工作区的一个步骤。( V ) 6. 6( X )手带静电环即可处理对静电敏感之材料。 7. 防静电鞋须两脚都穿著,且只须在有接地之地板上工作才穿著。( V ) 8. 防静电包装必须有封闭式的静电遮蔽容器。( V ) 9. 防ESD 包装材料或容器可以无限期使用。( X ) 10. 通过ESD 资格考试一生有效。( X ) 11. 每天必须做工作桌之自我检查和接地测试。( V ) 1 2 .假如我在防静电工作区穿上防静电鞋后,当我坐下来后就必须戴上静电环。( V ) 13. 当发现缺失或不足时,ESD 标准规范必须修正。( V ) 14. 防静电工作桌或工作区内每个处理ESD 敏感零组件的工作站必须有标示。( V ) 15. 全部防静电工作桌必须有接地静电环插座且其阻抗低于2Q O(V ) 16. 距离工作桌1 公尺内之所有物品其静电电压不需低于100V。( X ) 17. 内装有ESD 敏感零组件之包装是需有标示。( V ) 18. 只有单独置放的零件怕静电。若已装在PCB 上就不怕静电破坏。( X ) 19. 粉红/蓝/黑色的塑料材料表示不易于静电产生。( X ) 20. 每周必须检查静电环一次。( X ) 21. 拿取基板成品、半成品时,手不可触及焊锡面,金手指,测试点及配线等。( V ) 22. 作业中掉落地板上的电子ESDS类零件可以继续使用。(X ) 23. 检验静电敏感器件时必须佩带有线静电环,无线静电环不能使用。( V ) 24. 冬天皮肤干燥,可以在佩带静电环的手腕处擦润肤霜。( X ) 25. 作业人员进入车间须做防护措施,但客户可以不用。( X ) 26. 日常工作产生的静电强度与周围空气之相对湿度成正比,相对湿度愈高,产生的静电的强度愈 高。( X ) 27. 如果高绝缘材料的静电不能被消除,可以通过用离子风机来消除静电或采用防静电喷雾方式对其 进行隔离。(V ) 28. 建立静电安全工作区的步骤之一是把每件东西都绝缘. () 29. 设备外壳接地与静电线接地端为同一接地端. () 30. ESD 防护措施的各种接地不但可以有效防止带电,也可以防止静电的产生. () 31. 防静电包装袋和中转箱可以永远重复使用. (X) 32. 防静电标准要求当缺陷被发现时应及时釆取补救措施. (V) 33. 任何一个可导通并有按扣的导线都可用来做ESD 防护区的接地线. (X) 34. 温湿度对静电的控制有至关重要的作用。它若控制不好,易产生高静电,导致ESD事件率高。(V) 35. 移动电话发出的电磁波会对产品产生干扰,并产生感应电流使产品失效或机器误动作。(V) 36.3. 好的防静电环境,接地系统及良好的防静电地板是最最重要的。(V) 37.4. ESD 是一种静电放电现象,它具有偶然性,瞬时性,不可见性。所以对ESD 的控制需要提高治理手 段,坚持“先破坏,后治理” 。( X ) 38. 防静电控制的目的是为了好的品质和满足顾客的要求。(V ) 39. 在个别情况下可以让没有静电防护的人用手直接触摸元件。(X ) 40. 静电电荷是在接触和磨擦中产生的。(V)

静电放电(ESD)

静电放电(ESD) 1. 静电放电模型 为了定量地研究静电放电问题,必须建立ESD模型。人体静电是引起静电危害如火炸药和电火工品发生意外爆炸或静电损坏的最主要和最经常的因素,因此国内外对防静电放电控制要求都是以防人体静电为主,并建立了人体模型(Human Body Model - HBM),HMB是ESD模型中建立最早和最主要的模型之一。除人体模型外,还有很多其它静电放电模型。 人体模型(HBM) 家具ESD模型 机器模型(MM) 人体金属ESD模型 带电器件CDM模型 其它静电放电模型 2. 静电放电模拟器(ESD Simulator)或静电放电发生器(ESD Generator) 静电放电发生器的基本要求 静电放电发生器的选用 静电放电发生器的研制过程 EST802静电放电发生器 我人体模型(HBM) 人体静电是引起火炸药和电火工品发生意外爆炸的最主要和最经常的因素,因此国内外对电火工品的防静电危害要求都是以防人体静电为主,并建立了人体模型(Human Body Model - HBM),HMB是ESD模型中建立最早和最主要的模型之一。

人体能贮存一定的电荷,所以人体明显地存在电容。人体也有电阻,这电阻依赖于人体肌肉的弹性、水份、接触电阻等因素。大部分研究人员认为电容器串一电阻是较为合理的电气模型,见图3-1。过去有许多研究试图确定典型人体的这些参数的适当取值。通常把电容器串联一电阻作为人体模型。早在1962年,美国国家矿务局[ ]测得22人次人体电容范围为95~398PF,平均电容值为240,100次试验测得手与手之间的平均电阻为4000Ω。这些数据为建立了人体模型起了一个好的开端,做过一些修改之后,用在电子工业中建立早期的模拟电路。Kirk等[ ]人测得人体电容值的范围为132-190PF。人体电阻值为87-190Ω。为了求得一致,美国海军[ ]1980年提出了一个电容值为100PF,电阻为1.5kΩ的所谓“标准人体模型”。这一标准得到广泛采用,但在后来也遇到一些问题。 国电压最高电压(120kV)的静电放电模拟器研制成功 2001-06-30 家具ESD模型 在人们的生活和生产过程中,除人体ESD模型外,家具ESD模型也是最为常见的ESD模型。最早研究家具模型的是IBM公司的Calcayecchio[[i]]。Maas[[ii]]等人还把家具模型与人体/手指模型和手/金属模型进行了比较。家具模型是代表与地绝缘的金属椅子、手推车、工具箱等家具ESD的放电模型。早期的主要研究是测量典型家具的电容和放电电流。其电容大约在几十至135PF 左右。家具放电的主要特点是低的阻抗(15-75Ω),串联电感大约在0.2-0.4μH, 因此这导致欠阻尼振荡。对于2000V的放电,其电流波形上升时间大约在1-8nS之间,半周期(第一个峰值电流与第一个反相峰值电流之间)在10-18nS。放电能产生非常大的电流。 图3-20给出了当家具电容C=80pF, 放电电阻R=50Ω,电感 L=0.3μH,放电电压 V0=2kV时数值计算的家具模型ESD电流波形。从图3-20可见,家具模型ESD波形为欠阻尼振荡波形,持续时间约为50nS。

5种ESD防护方法

5种ESD防护方法 静电放电(ESD)理论研究的已经相当成熟,为了模拟分析静电事件,前人设计了很多静电放电模型。常见的静电模型有:人体模型(HBM),带电器件模型,场感应模型,场增强模型,机器模型和电容耦合模型等。芯片级一般用HBM做测试,而电子产品则用IEC 6 1000-4-2的放电模型做测试。为对 ESD 的测试进行统一规范,在工业标准方面,欧共体的 IEC 61000-4-2 已建立起严格的瞬变冲击抑制标准;电子产品必须符合这一标准之后方能销往欧共体的各个成员国。 因此,大多数生产厂家都把 IEC 61000-4-2看作是 ESD 测试的事实标准。我国的国家标准(GB/T 17626.2-1998)等同于I EC 6 1000-4-2。大多是实验室用的静电发生器就是按 IEC 6 1000-4-2的标准,分为接触放电和空气放电。静电发生器的模型如图 1。放电头按接触放电和空气放电分尖头和圆头两种。

IEC 61000-4-2的 静电放电的波形如图2,可以看到静电放电主要电流是一个上升沿在1nS左右的一个上升沿,要消除这个上升沿要求ESD保护器件响应时间要小于这个时间。静电放电的能量主要集中在几十MHz到500MHz,很多时候我们能从频谱上考虑,如滤波器滤除相应频带的能量来实现静电防护。 IEC 61000-4-2规定了几个试验等级,目前手机CTA测试执行得是3级,即接触放电6KV,空气放电8KV。很多手机厂家内部执行更高的静电防护等级。

当集成电路( IC )经受静电放电( ESD)时,放电回路的电阻通常都很小,无法限制放电电流。例如将带静电的电缆插到电路接口上时,放电回路的电阻几乎为零,造成高达数十安培的瞬间放电尖峰电流,流入相应的 IC 管脚。瞬间大电流会严重损伤 IC ,局部发热的热量甚至会融化硅片管芯。ESD 对 IC的损伤还包括内部金属连接被烧断,钝化层受到破坏,晶体管单元被烧坏。 ESD 还会引起 IC 的死锁( LATCHUP)。这种效应和 CMOS 器件内部的类似可控硅的结构单元被激活有关。高电压可激活这些结构,形成大电流信道,一般是从 VCC 到地。串行接口器件的死锁电流可高达 1A 。死锁电流会一直保持,直到器件被断电。不过到那时, IC 通常早已因过热而烧毁了。 电路级ESD防护方法 1、并联放电器件 常用的放电器件有TVS,齐纳二极管,压敏电阻,气体放电管等。如图

各种静电防护措施,ESD的含义及三种型式

各种静电防护措施,ESD的含义及三种型式 仪表元器件按其种类不同,受静电破坏的程度也不一样,最低的100V的静电压也会对其造成破坏。近年来随着仪表元件发展趋于集成化,因此要求相应的静电电压也在不断减弱。人体平常所感应的静电电压在2-4KV以上,通常是由于人体的轻微动作或与绝缘物的磨擦而引起的。也就是说,倘若我们日常生活中所带的静电电位与IC接触,那么几乎所有的IC都将被破坏,这种危险存在于任何没有采取静电防护措施的工作环境中。静电对IC的破坏不仅体现在仪表元器件的制造工序当中,而且在IC的组装、远输等过程中都会对IC产生破坏。 要解决以上问题,可以采取以下各种静电防护措施: 1、操作现场静电防护。对静电敏感器件应在防静电的工作区域内操作; 2、人体静电防护。操作人员穿戴防静电工作服、手套、工鞋、工帽、手腕带; 3、储存运输过程中静电防护。静电敏感器件的储存和运输不能在有电荷的状态下进行。要实现上述功能,基本做法是设法减少带电物的电压,达到设计要求的安全值以内。即要求下式中的电荷(Q)与电阻(R)要小,表电容量(C)要大。V=I.R Q=C.V 式中V:电压,Q:电荷量I:电流C:静电容量R:电阻当然电阻值也不是越低越好,特别是在大面积场所的防静电区域内必须考虑漏电等安全措施之后再进行材料的选取。 静电的防护 一、接地 接地就是直接将静电过一条线的连接泄放到大地,这是防静电措施中最直接最有效的,对于导体通常用接地的方法,如人工带防静电手腕带及工作台面接地等。接地通过以下方法实施: ①人体通过手腕带接地。 ②人体通过防静电鞋(或鞋带)和防静电地板接地。 ③工作台面接地。

静电放电(ESD)防护

静电放电(ESD)防护简述 2015.9.30 一、静电的产生 静电放电是一种客观的自然现象,产生的方式有:摩擦起电、离子溅射(单一极性)、接触充电、感应或极化,及其他如:剥离,破裂,点解,压电,热电等。 人体自身的动作或其他物体的接触,分离,摩擦或感应等因素,可以产生几千伏甚至上万伏的静电。 静电在多个领域造成严重危害,摩擦起电和人体静电是电子工业中的两大危害。 1、摩擦起电 哪里有移动,哪里就有静电。人的走动,物料周转,甚至是空气、水流动,都会产生摩擦静电。 当液体、固体和气体颗粒接触又分离,起电量受“接触紧密度”,“分离速度”,“摩擦运 2、接触充电 带电物体通过接触将电荷传导给未带电物体。带电绝缘体仅能从较小面积释放电荷,而带电导体能释放大量电荷给另一导体。 二、静电放电模型 因ESD产生的原因及其对集成电路放电的方式不同,经过统计,ESD放电模型分四类:人体放电模式、机器放电模式、组件充电模式、电场感应模式。 1、人体放电模式(Human-Body Model,HBM) 人体放电模式(HBM)的ESD是指因人体在地上走动摩擦或其它因素在人体上已累积了静电,当此人去触碰到IC时,人体上的静电便会经由IC的脚(pin)而进入IC内,再经由IC放电到地去。此放电的过程会在短到几百毫秒(ns)的时间内产生数安培的瞬间放电电流。此电流会把IC内的组件给烧毁,对于一般商用IC的2-KV ESD放电电压而言,其瞬间放电电流的尖峰值大约是1.33A。 有关于HBM的ESD已有工业测试的标准,表是国际电子工业标准(EIA/JEDEC STANDARD)

2、机器放电模式(Machine Model,MM) 机器放电模式(MM)的ESD是指机器(例如机械手臂)本身累积了静电,当此机器去触碰到IC时,该静电便经由IC的pin放电。因为机器是金属,其等效电阻为0欧姆,其等效电容为200pF。由于机器放电模式的等效电阻为0,故其放电的过程更短,在几毫微秒到几十毫微秒之内会有数安培的瞬间放电电流产生。 3、组件充电模式(Charged-Device Model,CDM) 此放电模式是指IC先因摩擦或其它因素而在IC内部累积了静电,但在静电累积的过程中IC并未损伤。此带有静电的IC在处理过程中,当其pin去碰触到接地面时,IC内部的静电便会经由pin自IC内部流出来,而造成了放电的现象。此种模式的放电时间更短,仅约 CDM模式ESD (1)IC自IC管中滑出后,带电的IC脚接触到地面而形成放电现象; (2)IC自IC管中滑出后,IC脚朝上,但经由接地的金属工具而放电。 IC内部累积的静电会因IC组件本身对地的等效电容而变,IC摆放角度与位置以及IC所用包装型式都会造成不同的等效电容。此电容值会导致不同的静电电量累积于IC内部。 在三种静电放电模式中,CDM的损害最大,前期工厂主要对人体进行静电防护(HBM),现在应该转移到对来料、转运、出货等的包装方式上来,首要关注重点在CDM上,其次对测试环节使用的设备、烙铁的管理控制(MM)。 高静电敏感器件失效原因中,ESD/EOS排首位,占59%的比例。而是ESD还是EOS,可以进行区分,但需要进行一系列极端实验,成本高,一般不采用。ESD问题集中体现为晶体管损伤,EOS问题集中体现在电路过载。 ESD损害的特点:隐蔽性(不可视性)、潜在性和累积性、随机性、复杂性。对静电累积进行排查,需要借助ESD相关设备,进行数据提取用于分析,并确认防护重点。

esd静电防护方法

esd静电防护方法esd静电防护技术 1.一般esd静电防护的基本思路 (1)从元器件设计方面,把静电保护设计到LED器件内,例如大功率LED,设计者在承载GaN基LED芯片倒装的硅片上,设计静电保护二极管,这时硅片不但作为GaN的承载基体,还起到ESD保护作用,使采用这种芯片封装的器件ESDS达到几千伏。它的优点是直接提高器件抗ESD能力,简化封装生产和器件安装等过程的静电防护措施;缺点是增加成本,增大体积,芯片生产工艺复杂并且需要专业生产设各,它适用于高价值的LED 器件。 (2)从生产工艺方面,有两种静电防护途径;①消除产生静电的材料与过程。通过材料的选用,使静电产生的途径不存在了或者减少了,从源头消除了静电放电的产生与积累,是静电防护的有效的基本方法之一。②泄放或中和防止静电放电。因为产生静电的所有途径是不可能完全消除的,所以我们需要安全地泄放或中和那些要发生的静电,防止静电放电的发生。 2,esd静电防护接地技术 接地就是直接将静电通过一条导线的连接泄放到大地,这是防静电措施中|最直接、最有效的方法。多数静电防护系统的效果,都依赖于接地地线的质量,静电接地技术是静电泄放工艺中的主要环节,系统接地的质量将直接影响电荷的释放能力。地线必须是能够接受或提供大量电荷的,理想的地线应该是一个优良的导体,即电流流过地线时不产生电位降,地线上各点电位相同。在工作区的静电地线应为静电专用地线,不得与其他地线共用。防静电接地是厂房基建工程中重要的指标之一。 3.esd静电防护操作系统 在进行静电敏感器件的操作时,工作台上应铺设具有静电导电和静电耗散功能的材料制成的防静电台垫。使所有与器件接触的端子、工具、仪器仪表、人体达到一致的电位,并通过接地使静电能迅速泄放。 4.人体防静电系统 人体防静电系统主要由防静电手腕带、防静电工作服、鞋袜等组成,必要时还需要辅以防静电工作帽、手套、脚套等物品。这种整体的防静电系统兼各静电泄放、中和和屏蔽的作用。防静电手腕带由静电导电材料制成,通过与皮肤直接接触,把人体静电直接导走,所以手腕带使用时必须与皮肤接触良好,使皮肤上的瞬时静电电压、于100V.防静电工作椅以静电导电织物为面料,它们在与人的接触中不产生静电,并能将人体本身所带静电很快泄放,导人大地,起到静电防护作用。 5.生产过程的esd静电防护 LED从芯片到封装应用的生产过程较复杂,就防静电而言,是一个综合治理的过程,应渗透到生产的各个环节,并根据各生产环节的工艺要求,提出不同的对策,以达到对器件的有效静电防护。对固定单个设备(如固晶机、键合台、测试设各、波峰焊设各等)的工艺要求: (1)设各应良好接地; (2)有必要的设各周围要铺设防静电地垫; (3)操作者穿戴防静电衣、帽、腕带等; (4)必要时,在静电防护关键部位设置离子风机。

静电放电模式电路及静电等级 及比较

LED静电击穿原理 以PN结结构为主的LED,在制造、筛选、测试、包装、储运及安装使用等环节,难免不受静电感应影响而产生感应电荷。若得不到及时释放,LED的两个电极上形成的较高电压将直接加上led芯片的PN结两端。 当电压超过LED的最大承受值后,静电电荷将以极短的瞬间(纳秒级别)在LED芯片的两个电极之间进行放电,功率焦耳的热量将使得LED芯片内部的导电层、PN发光层的局部形成高温,高温将会把这些层熔融成小孔,从而造成漏电以及短路的现象。 ESD:Electrostatic Discharge,即是静电放电,每个从事硬件设计和生产的工程师都必须掌握ESD的相关知识。为了定量表征ESD 特性,一般将ESD 转化成模型表达方式,ESD 的模型有很多种,下面介绍最常用的三种。 1.HBM:Human Body Model,人体模型: 该模型表征人体带电接触器件放电,Rb 为等效人体电阻,Cb 为等效人体电容。等效电路如下图。图中同时给出了器件HBM 模型的ESD 等级。 ESD人体模型等效电路图及其ESD等级 2.MM:Machine Model,机器模型: 机器模型的等效电路与人体模型相似,但等效电容(Cb)是200pF,等效电阻为0,机器模型与人体模型的差异较大,实际上机器的储电电容变化较大,但为了描述的统一,取200pF。由于机器模型放电时没有电阻,且储电电容大 于人体模式,同等电压对器件的损害,机器模式远大于人体模型。

ESD机器模型等效电路图及其ESD等级 3.CDM:Charged Device Model,充电器件模型: 半导体器件主要采用三种封装型式(金属、陶瓷、塑料)。它们在装配、传递、试验、测试、运输及存贮过程中,由于管壳与其它绝缘材料(如包装用的塑料袋、传递用的塑料容器等)相互磨擦,就会使管壳带电。器件本身作为电容器的一个极板而存贮电荷。CDM 模型就是基于已带电的器件通过管脚与地接触时,发生对地放电引起器件失效而建立的,器件带电模型如下:

静电放电(ESD)最常用的三种模型及其防护设计

静电放电(ESD)最常用的三种模型及其防 护设计 ESD:Electrostatic Discharge,即是静电放电,每个从事硬件设计和生产的工程师都必须掌握ESD 的相关知识。为了定量表征 ESD 特性,一般将 ESD 转化成模型表达方式,ESD 的模型有很多种,下面介绍最常用的三种。 1.HBM:Human Body Model,人体模型: 该模型表征人体带电接触器件放电,Rb 为等效人体电阻,Cb 为等效人体电容。等效电路如下图。图中同时给出了器件 HBM 模型的 ESD 等级。 ESD人体模型等效电路图及其ESD等级 2.MM:Machine Model,机器模型: 机器模型的等效电路与人体模型相似,但等效电容(Cb)是200pF,等效电阻为 0,机器模型与人体模型的差异较大,实际上机器的储电电容变化较大,但为了描述的统一,取200pF。由于机器模型放电时没有电阻,且储电电容大于人体模式,同等电压对器件的损害,机器模式远大于人体模型。

ESD机器模型等效电路图及其ESD等级 3.CDM:Charged Device Model,充电器件模型: 半导体器件主要采用三种封装型式(金属、陶瓷、塑料)。它们在装配、传递、试验、测试、运输及存贮过程中,由于管壳与其它绝缘材料(如包装用的塑料袋、传递用的塑料容器等)相互磨擦,就会使管壳带电。器件本身作为电容器的一个极板而存贮电荷。CDM 模型就是基于已带电的器件通过管脚与地接触时,发生对地放电引起器件失效而建立的,器件带电模型如下: ESD充电器件模型等效电路图及其ESD等级

器件的 ESD 等级一般按以上三种模型测试,大部分 ESD 敏感器件手册上都有器件的ESD数据,一般给出的是 HBM 和 MM。 通过器件的 ESD 数据可以了解器件的 ESD 特性,但要注意,器件的每个管脚的 ESD 特性差异较大,某些管脚的 ESD 电压会特别低,一般来说,高速端口,高阻输入端口,模拟端口 ESD电压会比较低。 ESD 防护是一项系统工程,需要各个环节实施全面的控制。下图是一个 ESD 防护的流程图: ESD 防护设计流程图 ESD 防护设计可分为单板防护设计、系统防护设计、加工环境设计和应用环境防护设计,单板防护设计可以提高单板 ESD 水平,降低系统设计难度和系统组装的静电防护要求。当系统设计还不能满足要求时,需要进行应用环境设计防护设计。ESD 敏感器件在装联和整机组装时,环境的 ESD 直接加载到器件,所以加工环境的 ESD 防护是至关重要的。 一般整机、单板、接口的接触放电应达到±2000V(HBM)以上的防护要求。器件的 ESD 防护设计是在器件不能满足 ESD 环境要求的情况下,通过衰减加到器件上的 ESD 能量达到保护器件的目的。ESD 是电荷放电,具有电压高,持续时间短的特点,根据这些特点,ESD 能量衰减可通过电压限制、电流限制、高通滤波、带通滤波等方式实现,所以防护电路的形式多种多样,这里就不一一列举。

美国国家标准学会(ANSI)静电放电(ESD)协会标准ANSIESD

美國國家標準學會(ANSI)/靜電放電(ESD)協會標準ANSI/ESD S20.20-2007 提醒 靜電放電協會(ESDA)之標準和出版物是為了公共利益,即消除製造商與買家之間的誤解,為產品的交流與改進提供方便,以及協助客戶選擇和獲得他所特別需要的產品。這些標準和出版物的存在,無論在那個方面,都不應妨礙本協會的任何會員或非會員從事生產和銷售並不符合這些標準和出版物的產品。同樣,這些標準是由靜電放電協會所出版的事實,並不能妨礙非會員,無論是在國內還是國外,自願地使用這些檔。遵循美國國家標準局的專利政策,靜電放電協會採納被推薦的標準和出版物。靜電放電協會標準之解釋。就可能與特定的產品或製造商相關聯的標準的解釋,是涉及到具體公司的關係重大的事情,不可能由任何人替代靜電放電協會來做。靜電放電協會主席可以就標準中的技術語言或條款,作出僅限於說明性或澄清性的評論,但不能涉及特定的產品和製造商。沒有任何人被授權,以靜電放電協會的名義來評論靜電放電協會之標準。 免責聲明 靜電放電協會之標準和出版物的內容,以“照這樣不作修改”的形式獲得批准,靜電放電協會對相關內容,既不作專門陳述或保證,也不作表述或暗示。靜電放電協會放棄所有的抗議和保證,包括但並不局限於,商業化保證,特定目的和使用的合理性,標題和其他非侵權行為。 免除擔保:靜電放電協會之標準和出版物,在它們被批准的時候,被認為是技術上可靠的。它們不是用來替代所討論之產品的商家或用戶的自己的判斷,而且,靜電放電協會不會,因這些標準和出版物,而對任何具體的製造商的產品的功能,承擔任何擔保。因此,靜電放電協會明確地拒絕,因使用,應用,或依賴於這些標準和出版物中所包含資訊,所導致的損害的任何責任。 靜電放電協會之責任限制:靜電放電協會,及它的會員,工作人員,雇員或其他代理人員,都不對直接或間接地使用或誤用靜電放電標準或出版物所導致的損壞負責,即使標準中提到了應用的可能性。這是適用於所有的各種損壞的綜合性責任限制,包括但並不局限於,資料,收入或利潤的損失,財產的損失或損壞,以及第三方的索賠。 出版者: Electrostatic Discharge Association (靜電放電協會) 7900 Turin Road, Bldg. 3 Rome, NY 13440 版權屬於靜電放電協會,保留所有權力 未事先獲得出版者的書面許可,本出版物的任何部分都不得以任何形式複製,在電子的可恢復系統中或其他形式。 印刷地:美國 ISBN:1-58537-121-1 美國國家標準學會(ANSI)/靜電放電(ESD)協會標準 ANSI/ESD S20.20-2007 (本序言不是標準S20.20-2007的一部分) 序言 本標準覆蓋了,設計,建立,實施和維護一個靜電放電(ESD)控制方案所必要的要求,該控制方案適用領域包括:製造,處理,組裝,安裝,包裝,標籤,服務,測試,檢驗或其他在處理電氣的或電子的零件,裝置和設備等,對靜電放電損害的敏感度超過或等於人體模型的100V的情況。根據軍方和商用兩方面機構的歷史經驗,本檔包括靜電放電控制方案要求,並為處理靜電放電敏感物體所建立的控制方案提供指導。參考文獻包括靜電放電協會,美國軍方和美國國家標準局所批准的有關材料性質和測試方法的標準。本文件的基礎是建立在靜電放電控制的基本原則上: A. 環境中的所有導體,包括人員,應該與一個已知接地或人造接地(如在船或飛機上)結合在一起,或電氣聯接和相連。如此的連結在所有物體和人員之間建立了一個等電位平衡。只要系統中所有的物體都處在同一個電位上,靜電保護就可維持在高出地電位“零伏特”電壓的電位水平上。 B. 環境中的必要的非導體,不能通過與地連接,失去它們的靜電荷。空氣電離化為這些必不可少的非導體提供了電荷中和的方式(電路板材料和一些器件的封裝就是必不可少的非導體的例子)。為保證配合靜電放電敏感物體的合理的措施的實施,要求對工作場合中必要的非導體上的靜電荷所產生的靜電放電危害,做出評估。

ESD防护方法

ESD防护技术 摘要:分静电基础知识、ESD防护技术两部分,第一部分主要介绍静电特点、静电衰减与之积累规律、人体静电的起电方式、静电损伤的失效模式;第二部分主要介绍静电防护的必要性、静电防护的目的与途径、静电防护的过程控制、静电防护系统的构成。 随着电子产品的轻、薄、短、小化,以及电子元器件的不断小型化、超大规模集成电路的广泛应用,特别是数字技术的发展和应用,SMT组装技术在电子产品制造业中扮演着日益重要的角色,而静电已成为电子工业中造成器件失效、产成品合格率低及其早期失效的主要原因,严重影响产品直通率及质量稳定性与可靠性,给制造商的生产成本、声誉造成不良影响,因此静电防护已越来越受到重视。 1 静电起电及其流散与积累规律 1.1静电起电 一般物体是中性,若任一物体带有过剩的电荷则成为带电体,物体间的电荷转移过程称为起电过程。失去电子带正电,得到电子带负电,由于电子的得与失使物体失去电平衡,就产生了静电。静电产生得基本过程可归纳为四个阶段:接触→电荷转移→偶电层的形成→电荷分离。 物体的起电方式主要有: ⑴物体间的摩擦,产生的热可使电子转移,产生静电; ⑵物体间的接触与分离;

⑶电磁感应。 对于后两种起电方式比较容易预防与控制,在实际生产中最难以控制、防不胜防的是第一种起电方式——摩擦起电,主要是由于人体的动作及设备的运动而产生。如元器件、PCB成品板间的相互碰撞和接触摩擦而形成很高的表面电位,操作者与大地绝缘时,人体静电位可高达1.5kV~35kV。 1.2 静电起电序列 两个不同物体相互接触时,各自带上极性相反、数量相同的电荷,一个失去电子成为空穴带电(+),而另一个得到电子成为电子带电(-)。常见不同物体接触起电的序列为:(+)空气→人手→玻璃→云母→头发→尼龙→羊毛→铝→纸→棉花→钢铁→木→硬橡皮→铜→银→金→聚乙烯→聚氯乙稀(-),位于较前的物体一般带正电,而位于较后着则带负电,即电子从位于前面的物体转移到后面的物体中。两种相摩擦的物体在起电序列中的位置相距越远,摩擦带电后产生的电位就越大,但物体呈现电性在很大程度上受到物体所含杂质成分、表面氧化和吸附情况、温度压力、外界电场等因素的影响。 1.3 静电衰减与积累规律 静电荷通过中和与泄漏而自行消失的现象称为电荷的消散或衰减。物体以某种方式起电后,电荷一般按指数规律衰减,工程材料的静电衰减时间τ是评价材料防静电性能好坏的重要指标。静电的衰减速度与材料电阻率有密切关系,材料电阻率越大,如高绝缘介质的橡胶、塑料等,带电以后衰减速度极慢;而电阻率较低的材料如防静电

ESD静电放电保护元件

ESD ESD ElectroStatic Discharge Protection Devices ElectroStatic Discharge Protection Devices 静电放电保护元件 静电放电保护元件 1.结构 专用于静电放电保护的过压保护器件,存在分立式和阵列式两种,内部主要是有TVS的阵列构成。 2.特点 专用于ESD防护的限压型过压保护器 反应速度小于0.5ns; 导通击穿电压低; 体积小,集成度高,可以同时保护多条数据线路; 一般电压规格有2.8V、3.3V、5V、12V、15V、24V、36V; 电容值低,可达0..4pF,是理想的数据线保护器材; 漏电流低,一般在几个μA甚至更低; 封装多样化有SOT-323 SOT-23 SOT-143 SOT-353 SOT-363 SOT23-6L SOT23-6L SOIC-08 SOIC-16 SOD-923 SOD-723 SOD-523 SOD-323 SOD-123。 ESD U-I特性曲线

3.技术参数 P PPM(Peak Pulse Power 额定脉冲峰值功率):可施加的不引起ESD器件失效的脉冲峰值功率最大值。 V RWM(Reverse Stand-off V oltage截止电压):ESD元件无明显动作的最大电压 V BR(Breakdown V oltage击穿电压):在规定的脉冲直流电流I BR或接近发生雪崩的电流条件下,ESD浅见两端的电压 I BR(Breakdown Current 击穿电流):测试V BR大小的脉冲直流电流。 V C(Maximum Clamping V oltage 钳位电压):施加规定波形的脉冲峰值电流I PP时,ESD器件两端测得的峰值电压 I R(Reverse Leakage 漏电流):在截止电压V RWM下,流过ESD器件I/O口的电流。 C J(Typical Capacitance典型电容值):ESD端口间的极间电容值。 4.命名方式 SET23A05L02 S:表示电容为标准型,电容值大于30pF(L:电容值大于5pF,小于30pF) (U:电容值小于5pF)E:表示功率,用A,B,C,D…依次表示小于100W,200W,300W,400W…; T23:表示封装为SOT-23; A:表示为单向保护(C表示双向); 05:表示截止电压为5V; L02:表示对地保护线路数。 5.封装类型 T32 SOT-323 T23 SOT-23 T14 SOT-143 T35 SOT-353 T36 SOT-363 T25 SOT23-5L T26 SOT23-6L S08 SOIC-08 S14 SOIC-14 S16 SOIC-16 D92 SOD-923 D72 SOD-723 D52 SOD-523 D32 SOD-323 D12 SOD-123 6.应用 专用于静电放电保护的限压型过压保护器件,可以用在各种电子产品,集成电路,对低能量的浪涌也有一定的保护作用。

静电放电ESD及防护基础知识

静电放电(ESD)及防护基础知识 术语及定义1. 静电:物体表面过剩或不足的静止的电荷2. 静电场:静电在其周围形成的电场3.静电放电:两个具有不同静电电位的物体,由于直接接触或静电场感应引起两物体间的静电电荷的转移。静电电场的能量达到一定程度后,击穿其间介质而进行放电的现象就是静电放电。4.静电敏感度:元器件所能承受的静电放电电压 5.静电敏感器件:对静电放电敏感的器件6.接地:电气连接到能供给或接受大量电荷的物体,如大地,船等. 7中和:利用异性电荷使静电消失8防静电工作区:配备各种防静电设备和器材,能限制静电电位,具有明确的区域界限和专门标记的适于从事静电防护操作的工作场地二、静电的产生: 1.摩擦:在日常生活中,任何两个不同材质的物体接触后再分离,即可产生静电,而产生静电的最普通方法,就是摩擦生电。材料的绝缘性越好,越容易是使用摩擦生电。另外,任何两种不同物质的物体接触后再分离,也能产生静电;。2. 感应:针对导电材料而言,因电子能在它的表面自由流动,如将其置于一电场中,由于同性相斥,异性相吸,正负离子就会转移。3. 传导:针对导电材料而言,因电子能在它的表面自由流动,如与带电物体接触,将发生电荷转移。三、静电对电子工业的影响集成电路元器件的线路缩小,耐压降低,线路面积减小,使得器件耐静电冲击能力的减弱,静电电场(Static Electric Field)和静电电流(ESDcurrent)成为这些高密度元器件的致命杀手。同时大量的塑料制品等高绝缘材料的普遍应用,导致产生静电的机会大增。日常生活中如走动,空气流动,搬运等都能产生静电。人们一般认为只有CMOS类的晶片才对静电敏感,实际上,集成度高的元器件电路都很敏感。A.静电对电子元件的影响A)静电吸附灰尘,改变线路间的阻抗,影响产品的功能与寿命。B)因电场或电流破坏元件的绝缘或导体,使元件不能工作(完全破坏)。C)因瞬间的电场或电流产生的热,元件受伤,仍能工作,寿命受损。B、静电损伤的特点: 1.隐蔽性人体不能直接感知静电,除非发生静电放电,但发生静电放电,人体也不一定能有电击的感觉。这是因为人体感知的静电放电电压为2-3KV。 2.潜伏性有些电子元器件受到静电损伤后性能没有明显的下降,但多次累加放电会给器件造成内伤而形成隐患,而且增加了器件对静电的敏感性。已产生的问题并无任何方法可治愈。 3.随机性电子元件什么情况下会遭受到静电破坏呢?可以这么说,从一个元件生产后一直到它损坏以前所有的过程都受到静电的威胁,而这些静电的产生也具有随机性。由于静电的产生和放电都是瞬间发生的,及难预测和防护。 4.复杂性静电放电损伤分板工作,因电子产品的精细,微小的结构特点而费时、费事、费钱,要求较复杂的技术往往需要使用扫描电镜等精密仪器,即使如此有些静电损伤现象也难以与其他原因造成的损伤加以区别,使人误把静电损伤失效当作其它失效,这是对静电放电损害未充分认识之前,常常归咎于早期失效或情况不明的失效,从而不自觉的掩盖了失效的真正原因。5.严重性ESD问题表面上看来只影响了制成品的用家,但实际上亦影响了各层次的制造商,如:保用费、维修及公司的声誉等等。四、ESD三种型式1. 人体型式即指当人体活动时身体和衣服之间的摩擦产生摩擦电荷。当人们手持ESD敏感的装置而不先拽放电荷到地,摩擦电荷将会移向ESD敏感的装置而造成损坏。2.微电子器件带电型式既指这些ESD敏感的装置,尤其对朔料件,当在自动化生产过程中,会产生摩擦电荷,而这些摩擦电荷通过低电阻的线路非常迅速地泻放到高度导电的牢固接地表面,因此造成损坏;或者通过感应使ESD敏感的装置的金属部分带电而造成损坏。3.场感类型式即有强电场围绕,这可能来之于塑性材料或人的衣服,会发生电子转化跨过氧化层。若电位差超过氧化层的介电常数,侧会产生电弧以破坏氧化层,其结果为短路。4.其它还有:机器模式、场增强模型、人体金属模型、电容耦合模型、悬浮器件模型。五、静电防护1. 接地接地就是直接将静电过一条线的连接泄放到大地,这是防静电措施中最直接最有效的,对于导体通常用接地的方法,如人工带防静电手腕带及工作台面接地等。接地通过以下方法实

静电放电ESD最常用的三种模型及其防护设计精修订

静电放电E S D最常用的三种模型及其防护设计 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

静电放电(E S D)最常用的三种模型及其防护设计ESD:Electrostatic Discharge,即是静电放电,每个从事硬件设计和生产的工程师都必须掌握ESD的相关知识。为了定量表征 ESD 特性,一般将 ESD 转化成模型表达方式,ESD 的模型有很多种,下面介绍最常用的三种。 1.HBM:Human Body Model,人体模型: 该模型表征人体带电接触器件放电,Rb 为等效人体电阻,Cb 为等效人体电容。等效电路如下图。图中同时给出了器件 HBM 模型的 ESD 等级。 ESD人体模型等效电路图及其ESD等级 2.MM:Machine Model,机器模型: 机器模型的等效电路与人体模型相似,但等效电容(Cb)是200pF,等效电阻为0,机器模型与人体模型的差异较大,实际上机器的储电电容变化较大,但为了描述的统一,取 200pF。由于机器模型放电时没有电阻,且储电电容大于人体模式,同等电压对器件的损害,机器模式远大于人体模型。 ESD机器模型等效电路图及其ESD等级 3.CDM:Charged Device Model,充电器件模型: 半导体器件主要采用三种封装型式(金属、陶瓷、塑料)。它们在装配、传递、试验、测试、运输及存贮过程中,由于管壳与其它绝缘材料(如包装用的塑料袋、传递用的塑料容器等)相互磨擦,就会使管壳带电。器件本身作为电容器的一个极

板而存贮电荷。CDM 模型就是基于已带电的器件通过管脚与地接触时,发生对地放电引起器件失效而建立的,器件带电模型如下: ESD充电器件模型等效电路图及其ESD等级 器件的 ESD 等级一般按以上三种模型测试,大部分 ESD 敏感器件手册上都有器件的 ESD数据,一般给出的是 HBM 和 MM。 通过器件的 ESD 数据可以了解器件的 ESD 特性,但要注意,器件的每个管脚的 ESD 特性差异较大,某些管脚的 ESD 电压会特别低,一般来说,高速端口,高阻输入端口,模拟端口 ESD电压会比较低。 ESD 防护是一项系统工程,需要各个环节实施全面的控制。下图是一个 ESD 防护的流程图: ESD 防护设计流程图 ESD 防护设计可分为单板防护设计、系统防护设计、加工环境设计和应用环境防护设计,单板防护设计可以提高单板 ESD 水平,降低系统设计难度和系统组装的静电防护要求。当系统设计还不能满足要求时,需要进行应用环境设计防护设计。ESD 敏感器件在装联和整机组装时,环境的 ESD 直接加载到器件,所以加工环境的 ESD 防护是至关重要的。 一般整机、单板、接口的接触放电应达到±2000V(HBM)以上的防护要求。器件的 ESD 防护设计是在器件不能满足 ESD 环境要求的情况下,通过衰减加到器件上的 ESD 能量达到保护器件的目的。ESD 是电荷放电,具有电压高,持续时间短的

相关主题