搜档网
当前位置:搜档网 › 微藻柴油的简介及其面临的主要问题

微藻柴油的简介及其面临的主要问题

微藻柴油的简介及其面临的主要问题
微藻柴油的简介及其面临的主要问题

任课教师:张正义

微藻柴油的简介及其面临的主要问题

目前制约生物柴油发展的难题,主要是原料昂贵、来源不稳定。由于世界各国采用的多为油料植物、粮食作物等原料,成本高、生长周期长并受环境限制,因此生物柴油的价格远高于传统柴油。选取合适的、低成本植物油脂资源来发展和生产生物柴油成为各国的研究热点。而利用藻类生物质生产液体燃料对缓解人类面临的粮食、能源、环境三大危机,有着巨大的潜力。

藻类是最低等的、自养的放氧植物,也是低等植物中种类繁多、分布极其广泛的一个类群,具有生物量大、生长周期短、易培养及脂类含量较高等特点,是制备生物质能源的良好材料。此外,藻类在增值过程中大量吸收温室气体二氧化碳,在实现清洁能源生产的同时,减排二氧化碳。

微藻生物柴油能够解决目前使用植物原料发展生物柴油面临的耕地不足、气候变化对产量影响大和引起农作物价格上涨等突出问题。通过转基因技术培育“工程微藻”,繁衍能力高,生长周期短,比陆生植物产油高出几十倍,并且能用海水作为其天然培养基进行工业化生产。

面对植物原料生产生物柴油的诸多问题,利用微藻产油具有不与农业争地的明显优势,而且可用海水作为天然培养基进行大量繁殖。跟植物一样,微藻也是利用光照产油,但却比植物作物的效率高很多。大多数微藻的产油量远远超过了最好的油料作物。不像其他油料作物,微藻生长极为迅速,而且含有极其丰富的油脂。藻类光合作用转化效率可达10%以上,含油量达30%。微藻的生物柴油产量是最好的油料作物的8~24倍。

微藻不是一个分类学的名词,而是指那些在显微镜下才能辨别其形态的微小的藻类群体。微藻通常是指含有叶绿素a并能进行光合作用的微生物的总称,其中还包括蓝细菌。目前发现的藻类有三万余种,其中微小类群占70%,广泛分布于各种水体。目前应用生物技术进行大量培养或生产的微藻分属于4个藻门:蓝藻门、绿藻门、金藻门和红藻门。

当前,国内外有许多科学家在探索发现新的藻种,并研制“工程微藻”,希望能实现规模化养殖,降低成本,为获取油脂资源提供一条可靠的途径。微藻繁衍能力高,生长周期短,比陆生植物产油高出几十倍,并且能用海水作为其天然培养基进行工业化生产。

由于人们对微藻认识的不断加深,渐渐意识到微藻如果进行产业化的生产,那么微藻高密度大规模的培养是十分重要的,但是目前人们所能利用的微藻资源十分有限,微藻的培养容易受到污染,收获比较困难,生产成本很高,这些都限制了微藻大规模工业化的生产。

微藻生物柴油是唯一能满足全球需求的可再生的生物柴油,具有诸多优点,完全有可能取代来自石油液体燃料。但目前生产微藻生物柴油主要存在的成本问题必需大幅改善,才能与石化汽油抗衡。

利用高等植物和微藻生产生物燃料,其能量都来自于太阳光。地球上单位面积、单位时间内接受到的太阳光能是在限定范围内的,要生产巨大量的生物燃料,依赖于巨大的植物或微藻生产占地面积,从巨大的面积上把生物量收集起来才能进行工业化加工。生产、收集和运输生物量所耗费的能量与生物质可产出的能量之间的关系,是决定生物能源产业发展的关键问题。微藻在单位面积上的高能量密度产出是相对于高等植物产油的关键优势。但是,以目前的技术水平,微藻培养也存在单位面积生产能耗大、投入成本高的问题,微藻生物柴油要真正成为一种替代能源,降低微藻的生产能耗和成本至关重要。

首先是选育快速生长和高脂质含量的微藻,优化培养条件和工艺,在光生物反应器工程中充分利用生物炼油厂的理念和发展,采用大规模生产来降低生产成本。此外,生产低成本的微藻生物柴油的主要途径是通过遗传和代谢工程改善藻类生物,大幅提高其生长速

任课教师:张正义

度和脂质产量。然而,生物体内脂质积累过程和调节机制非常复杂,导致脂质积累过程中某一关键蛋白的过量表达受到其他关键路径的限制并不能有效提高脂质产量。因此,针对某一特定路径的基因工程改造对脂质积累的作用是非常有限的。完整描述脂肪酸合成和脂质积累,进一步研究脂质代谢各路径的调控机制具有重大指导意义。基于脂质合成和代谢路径与调解机制相结合的基因工程改造将是以后工程微藻研究的主攻方向。

目前规模化生产微藻可行的方法是使用跑道池和管状光生物反应器,即可分为两类:开放式(敞开式)和封闭式。开放池培养成本相对较低,但藻类生长所达到的细胞密度较低,某些情况下易于被当地其他微藻侵染,水蒸发量大。密闭培养可达到较高的藻细胞密度,不易被杂藻侵染,水蒸发量小,但反应器造价和运转成本较高,因而需要发展出集二者优点而回避其缺点的新型培养方式。

藻脂质的提取方法主要有氯仿-甲醇法、酸水解法、索氏提取法。氯仿-甲醇法提取油脂有剧毒性和难回收性,且对高水份样品的测定更为有效;酸水解法水解时易造成大量水分损失,使酸浓度升高;测定的样品若无充分磨细,则结合性脂肪不能完全游离,致使结果偏低,同时用有机溶剂提取时也往往易乳化;索氏提取法是经典方法,对大多数样品结果比较可靠,但费时间,溶剂量大,且需专门的索氏抽提器。不论哪种方法,都存在能耗大或溶剂损失代价高的问题,因此发展低能耗的、经济的提油技术也是面临的问题之一。

另外,微藻培养液中细胞只占很小一部分,绝大部分是水,需要发展出低能耗的收集细胞并循环使用培养液的技术。

生物柴油的制备

由菜籽油制备生物柴油的实验方案 化强0601 石磊丁佐纯 目录 一.文献综述 1.生物柴油简介 2.目前制备生物柴油的方法 3.本实验所采用的制备方法及各实验参数的选择及其理论依据 二.实验目的 三.实验原理 1.生物柴油的制备原理 2.碘值的测定原理 3.酸价的测定原理 四.实验用品 1.实验仪器 2.实验药品 五.实验步骤 1.生物柴油的制备 2.粗产物的处理 3.碘值的测定 4.酸价的测定 六.实验结束 七.本实验所参考的文献一览 ★★注:若实验中能够提供超声装置用来替代搅拌装置,一则可以大大缩短反应时间(从原来的1.5—2小时缩短为10分钟左右),又节约了能源同时提高了转化率。

一、文献综述 1、生物柴油简介 1.1目前燃料情况 能源和环境问题是全球性问题,日益紧缺的石油资源和不断恶化的地球环境使得各国政府都在积极寻求适合的替代能源。 我国在醇类代用燃料方面已经开展了大量的研究工作,但用粮食生产醇类代用燃料转化能耗高,配制汽油代用燃料不能直接在现有汽车中使用也是一个不容回避的现实问题。而大量研究资料表明,生物柴油在燃烧性能方面丝毫不逊于石化柴油,而且可以直接用于柴油机,被认为是石化柴油的替代品。 1.2什么是生物柴油 生物柴油即脂肪酸甲酯,由可再生的油脂原料经过合成而得到,是一种可以替代普通柴油使用的清洁的可再生能源。 1.3生物柴油的优点 1.3.1 能量高,具有持续的可再生性能。 1.3.2具有优良的环保特性: ①生物柴油中不含硫,其大量生产和使用将减少酸雨形成的环境灾害;生物柴油不含 苯及其他具有致癌性的芳香化合物。 ②其中氧含量高,燃烧时一氧化碳的排放量显著减少; ③生物柴油的可降解性明显高于矿物柴油; ④生物柴油燃烧所排放的CO2,远低于植物生长过程中所吸收的CO2 ,因此使用 生物柴油,会大大降低CO2的排放和温室气体积累。 1.3.3具有良好的替代性能:①生物柴油的性质与柴油十分接近,可被现有的柴油机和柴 油配送系统直接利用。②对发动机,油路无腐蚀、喷咀无结焦、燃烧室无积炭。具有较好的润滑性能,使喷油泵、发动机缸体和连杆磨损率降低。 1.3.4由于闪点高,不属危险品,储存、运输、使用较为安全。 总之,发展生物柴油具有调整农业结构、增加社会有效供给、改善生态环境、缓解能源危机、增加就业机会等多方面重要意义。 1.4 由菜籽油制生物柴油的有利之处 尽管许多木本油料都可以加工为生物柴油,但规模有限,其他油料作物扩大面积的潜力有限,而油菜具有适应范围广,化学组成与柴油相近等特点,是我国发展生物柴油最理想重要的原料来源。种油菜不与主要粮食争地,且增肥地力,较同期冬小麦早熟半月,有利于后荐作物增产。所以,油菜原料的增长空间是非常大的。据统计,在不影响粮食生产的情况下,我国有2670万hm2以上的耕地可用于发展能源油菜生产,年生产4000万t 生物柴油,相当于建造1.5个永不枯竭的绿色大庆,具有十分重要的战略意义。 2、目前制备生物柴油的方法 生物柴油的制备方法有物理法和化学法。物理法包括直接使用法、混合法和微乳液法;化学法包括高温热裂解法和酯交换法。 2.1 直接使用法 即直接使用植物油作燃料.由于植物油黏度高、含有酸性组分,在贮存和燃烧过程中发生氧化和聚合以至于发动机内沉积多、喷油嘴结焦、活塞环卡以及排放性能不理想等问题,后来便被石油柴油所取代。

微藻制油技术

微藻制油技术 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

微藻制油 在全球变暖、能源危机的大背景下,世界各国都在积极寻找新的可替代能源。 提起全球变暖,大多数的企业为如何减少二氧化碳排放,为封存二氧化碳而投入了大量研发资金和人力;提起生物柴油的原料,人们会想到玉米和大豆,从它们“体内”提炼出的乙醇和生物柴油,能有效降低碳排放,减少环境污染。但与此同时,由于这两种作物的培育周期较长、占地面积较大,会产生“与粮争地”问题,从而导致“解决了能源危机,却出现粮食危机”的尴尬结果; 通过科学家的不断研究,一种新的技术进入了人们的视野:培养微藻吸收二氧化碳,并进行光合作用,最终形成生物柴油、类胡萝卜素等衍生品,将二氧化碳变废为宝,这就是“微藻制油”技术。 光合作用 光合作用(Photosynthesis)是绿色植物和藻类利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。

微藻 微藻是指一些微观的单细胞群体,是最低等的、自养的释氧植物,微藻个体较小,除个别种类之外,一般只有十几个微米大小。它是低等植物中种类繁多、分布及其广泛的一个类群。无论是在海洋、淡水湖泊等水域,或在潮湿的土壤、树干等处,几乎在有光和潮湿的任何地方微藻都能生存。微藻很像一个太阳光光能驱动的细胞工厂,可以旺盛地消耗高浓度的CO2和NO2,源源不断地将CO2转化为潜在的生物燃料、食物、饲料以及高价值的生物活性物质。 微藻制油 微藻制油的原理其实就是利用光合作用,将二氧化碳转化为微藻自身的生物质从而固定了碳元素,再通过诱导反应使微藻自身的碳物质转化为油脂,然后利用物理或化学方法把微藻细胞内的油脂转化到细胞外,进行提炼加工从而生产出生物柴油。 据专家介绍,微藻的产油效率相当高,在一年的生长期内,一公顷玉米能产172升生物质燃油,一公顷大豆能产446升,一公顷油菜籽能产1190升,一公顷棕榈树能产5950升,而一公顷的微藻能产生物质燃油95000升。 微藻的个体小,木素含量很低,易被粉碎和干燥,用微藻来生产液体燃料所需的处理和加工条件相对较低,生产成本低。而且微藻热解所得生物质燃油热值高,平均高达33MJ/kg,是木材或农作物秸秆的1.6倍。 微藻在生长过程中还可利用废弃二氧化碳,从而与二氧化碳的处理和减排相结合,国外已经有利用发电厂排放的废弃二氧化碳生

微藻

微藻制备生物柴油的研究 一、微藻概述 藻类,尤其是海洋单细胞藻类,即微藻,是地球上最早的生物物种,它们中的某些物种已经在地球上生存了35亿年之久。它们能十分有效地利用太阳能将H2O、CO2和无机盐类转化为有机资源,是地球有机资源的最初级生产力,有了它们才有了大气中的氧气,才有了海洋和陆地的其他生物,也才有了人类。随着科技水平的不断提高,人口的不可逆性增长、人类生活水平的不可逆性提高、陆地资源和可耕种面积的不可逆性减少,全球性食品资源短缺压力日益增加。开发和利用海洋微藻是最长远的解决人类食品资源和能源的重要途径。因为藻类不仅富含蛋白质、脂肪和碳水化合物这三大类人类所必需的要素,而且还含有可燃性油类、各种氨基酸、多种维生素、抗生素、高不饱和脂肪酸以及其他多种生物活性物质,是人类向海洋索取食品、药品、燃料、生化试剂、精细化工产品以及其他重要材料的一把金钥匙。 微藻是一类单细胞生物,与陆地微生物相比,微藻具有如下特点: (1)微藻具有叶绿素等光合器官,是非常有效的生物系统,能有效地利用太阳能通过光合作用将H2O、CO2和无机盐转化为有机化合物,因其固定和利用CO2可以减少温室效应。 (2) 微藻一般是以简单的分裂式繁殖,细胞周期较短,易于进行大规模培养,由于微藻通常无复杂的生殖器官,使整体生物量容易采收和利用。 (3)可以用海水、咸水或半咸水培养微藻,因此是淡水短缺、土地贫瘠地区获得有效生物资源的重要途径。 (4) 微藻富含蛋白质、脂肪和碳水化合物,某些种类还富含油料、微量元素和矿物质,是人类未来重要的食品及油料的来源。 (5)微藻,尤其是海洋微藻,因其独特的生存环境使其能合成许多结构和生理功能独特的生物活性物质。特别是经过一定的诱导手段微藻可以高浓度地合成这些具有商业化生产价值的化合物,是人类未来医药品、保健品和化工原料的重要资源。 1、小球藻简介 小球藻(Chlorella)是小球藻属绿藻门,绿藻纲,绿球藻目,卵孢藻科,小球藻属,包括大约10 个种. 小球藻细胞组成中的蛋白质含量为7.3%~88%,碳水化合物为5.7%~38%,脂类为 4.5~86%。小球藻细胞中脂类含量的增加主要是由于脂肪酸积累的结果。在氮饥饿条件下,蛋白核小球藻在生长时可形成高达86%的脂类,而在正常的小球藻细胞中,脂类含量为25%。在正常和氮饥饿条件下生长的小球藻在脂肪酸组成上没有明显的差异。此外,小球藻的异养培养技术,特别是高细胞浓度培养技术的研究得到了较深入的发展,这对于我们制备生物柴油需要高生物量的微藻来说,也是具有重要价值的。 2、微藻油脂 美国国家可更新实验室(NREL)通过现代生物技术建成“工程微藻”,即硅藻类的一种“工程小球藻”,其利用“工程微藻”生产生物柴油,为生物柴油生产开辟了一条新的技术途径。在实验室条件下可使“工程微藻”中脂质含量增加到60%以上,户外生产也可增加到40%以上,而一般自然状态下微藻的脂质含量为5%-20%。“工程微藻”中脂质含量的提高主要由于乙酰辅酶A 羧化酶(ACC)基因在微藻细胞中的高效表达,在控制脂质积累水平方面起到了重要作用。目前,正在研究选择合适的分子载体,使ACC 基因在细菌、酵母和植物中充分表达,还进一步将修饰的ACC 基因引入微藻中以获得更高效表达。在国内,清华大学吴庆余,缪晓玲等也报道利用微藻快速热解的方法制备生物柴油。 利用微藻或“工程微藻”生产生物柴油的优越性在于:微藻生产能力高、用海水作为天然培养基可节约农业资源;比陆生植物单产油脂高出几十倍;生产的生物柴油不含硫,燃烧

微藻制油技术

微藻制油 在全球变暖、能源危机的大背景下,世界各国都在积极寻找新的可替代能源。 提起全球变暖,大多数的企业为如何减少二氧化碳排放,为封存二氧化碳而投入了大量研发资金和人力;提起生物柴油的原料,人们会想到玉米和大豆,从它们“体内”提炼出的乙醇和生物柴油,能有效降低碳排放,减少环境污染。但与此同时,由于这两种作物的培育周期较长、占地面积较大,会产生“与粮争地”问题,从而导致“解决了能源危机,却出现粮食危机”的尴尬结果; 通过科学家的不断研究,一种新的技术进入了人们的视野:培养微藻吸收二氧化碳,并进行光合作用,最终形成生物柴油、类胡萝卜素等衍生品,将二氧化碳变废为宝,这就是“微藻制油”技术。光合作用 光合作用(Photosynthesis)是绿色植物和藻类利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为有机物,并释放出氧气(细菌释放氢气)的生化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。

微藻 微藻是指一些微观的单细胞群体,是最低等的、自养的释氧植物,微藻个体较小,除个别种类之外,一般只有十几个微米大小。它是低等植物中种类繁多、分布及其广泛的一个类群。无论是在海洋、淡水湖泊等水域,或在潮湿的土壤、树干等处,几乎在有光和潮湿的任何地方微藻都能生存。微藻很像一个太阳光光能驱动的细胞工厂,可以 旺盛地消耗高浓度的CO 2和NO 2 ,源源不断地将CO 2 转化为潜在的 生物燃料、食物、饲料以及高价值的生物活性物质。 微藻制油 微藻制油的原理其实就是利用光合作用,将二氧化碳转化为微藻自身的生物质从而固定了碳元素,再通过诱导反应使微藻自身的碳物质转化为油脂,然后利用物理或化学方法把微藻细胞内的油脂转化到细胞外,进行提炼加工从而生产出生物柴油。 据专家介绍,微藻的产油效率相当高,在一年的生长期内,一公顷玉米能产172升生物质燃油,一公顷大豆能产446升,一公顷油菜籽能产1190升,一公顷棕榈树能产5950升,而一公顷的微藻能产生物质燃油95000升。 微藻的个体小,木素含量很低,易被粉碎和干燥,用微藻来生产液体燃料所需的处理和加工条件相对较低,生产成本低。而且微藻热解所得生物质燃油热值高,平均高达33MJ/kg,是木材或农作物秸秆的1.6倍。 微藻在生长过程中还可利用废弃二氧化碳,从而与二氧化碳的处理和减排相结合,国外已经有利用发电厂排放的废弃二氧化碳生产微藻的尝试,占地1平方公里的养藻场一年可以处理5万吨二氧化碳。

微藻制油

微藻制油 一、目前的能源现状 1. 石油、煤炭等目前大量使用的传统化石能源接近枯竭,而且这些 传统能源造成大量的环境污染如 2.新能源太阳能、风能、地热能、生物质能等应用极具有局限性不能大规模的应用,不足以满足人们的需要。 3.生物能源不仅具有资源再生、技术可靠的特点,而且还具有对环境无害、经济可行、利国利农的发展优势。 总而言之,未来将是生物能源的天下。生物能源将会是人类不二的选择,未来生源的前景将不可估量。 二、微藻概述 1.海洋单细胞藻类,即微藻,是地球上最早的生物物种,它们中的某些物种已经在地球上生存了35亿年之久。它们能十分有效地利用太阳能将H2O、CO2和无机盐类转化为有机资源,是地球有机资源的最初级

生产力,有了它们才有了大气中的氧气,才有了海洋和陆地的其他生物,也才有了人类。 2.微藻的特点 (1)微藻具有叶绿素等光合器官,是非常有效的生物系统,能有效地利用太阳能通过光合作用将H2O、CO2和无机盐转化为有机化合物,因其固定和利用CO2可以减少温室效应。 (2) 微藻一般是以简单的分裂式繁殖,细胞周期较短,易于进行大规模培养,由于微藻通常无复杂的生殖器官,使整体生物量容易采收和利用。 (3)可以用海水、咸水或半咸水培养微藻,因此是淡水短缺、土地贫瘠地区获得有效生物资源的重要途径。 (4) 微藻富含蛋白质、脂肪和碳水化合物,某些种类还富含油料、微量元素和矿物质,是人类未来重要的食品及油料的来源。 (5)微藻,尤其是海洋微藻,因其独特的生存环境使其能合成许多结构和生理功能独特的生物活性物质。特别是经过一定的诱导手段微藻可以高浓度地合成这些具有商业化生产价值的化合物,是人类未来医药品、保健品和化工原料的重要资源。 3.微藻的种类 微藻的国内外研究发展概况,重点探讨了4种主要的可利用微藻螺旋藻、小球藻、杜氏藻和红球藻

利用微藻制备生物能源的研究进展

第33卷第5期 唐山师范学院学报 2011年9月 Vol. 33 No. 5 Journal of Tangshan Teachers College Sep. 2011 ────────── 收稿日期:2011-04-24 作者简介:郝国礼(1988-),男,河北张家口人,唐山师范学院生命科学系学生,研究方向为植物细胞工程。 利用微藻制备生物能源的研究进展 郝国礼,刘 佳,陈 超,李兴杰 (唐山师范学院 生命科学系,河北 唐山 063000) 摘 要:结合目前能源微藻在藻种选育、影响微藻产油因素以及生产工艺方面的研究现状和微藻综合利用发展中存在的问题,综述了近年来各国在微藻能源开发方面的重要科研工作,以及微藻能源与低碳的关系,并对微藻能源开发的相关研究方向和进展进行了评述。 关键词:能源微藻;低碳;工艺流程;综合利用 中图分类号: Q 77; TK6 文献标识码:A 文章编号:1009-9115(2011)05-0040-04 Review on the Progress of Producing Bio-Energy from Microalgae HAO Guo-li, LIU Jia, CHEN Chao, LI Xing-jie (Department of Life Science, Tangshan Teachers College, Tangshan 063000, China) Abstract: This review provides a brief overview on the screening and cultivation of the Microalgae, the factors influencing oil-producing of Microalgae, the research on the current production condition, and the problems existing in the comprehensive utilization of microalgae. Here, we review the global research progress of microalgae energy in recent years, and the relationship between microalgae energy and low carbon. Key words: energy microalgae; low-carbon; process technique; comprehensive utilization 世界经济的现代化,得益于化石燃料的开发与应用。然而,由于人们的过度开采,化石燃料终将会枯竭。化石燃料的利用,也造成环境的严重污染,因此,清洁、可再生能源的开发成为了各国研究的重点。目前专家学者研究的主要范围包括风能、水能、太阳能、生物能源等。生物能源是可再生能源的一种,它具有潜在大规模替代汽油和柴油的可能性,因此一直是国内外研究的热点。到目前为止,生物能源的发展已经经历了三代[1]。第一代生物能源是以玉米为主要原料生产乙醇。第二代生物能源以秸秆、枯草等非粮作物中的纤维素为主要原料,生产乙醇、纤维素乙醇和生物柴油等。第三代以产油微生物为主,其中又以海水微藻的研究最多。某些微藻因含油量高、易于培养、单位面积产量大等优点,而被视为新一代甚至是唯一能实现完全替代石化柴油的生物柴油原料[2]。René Wijffels 和 Maria Barbosa 预测,藻类可能在未来的10~15年中成为燃料给料的一个重要来源[3]。 微藻生物质与能源植物相比,具有光合作用效率高、生长周期短、生物质产量高的优势。在同样条件下,微藻细胞 生长加倍时间通常在24h 内, 对数生长期内细胞物质加倍时间可短至3.5h ,生物质生产能力远远高于陆地能源植物。就单位面积的产油量计算,微藻产油可达陆地油料作物产油量的30倍。微藻还可以利用盐碱地、沙漠、海域来养殖,存在不与粮争地及不与人争粮的巨大优势。获得大量的微藻生物质是微藻生物能源发展的首要前提,而优良的微藻种质是提高微藻生物质产量、降低原料成本的关键。产油量较高的部分藻类含油量占干重的比例分别是小球藻(Chlorella sp., 28%-32%)、葡萄藻(Botryococcus ,25%-75%)、三角褐指藻(Phaeodactylum tricornutum ,20%-30%)、杜氏盐藻(Dunaliella primolecta ,23%)等[4]。 1 微藻与低碳 从可持续发展的角度来看,利用微藻实现CO 2的减排符合自然界环保、经济、彻底的循环模式。因此藻类制备生物燃料成为了一种CO 2减排及利用的新方式。 陈明明等人利用诱变育种技术对用来固定CO 2的微藻进行育种,获得耐受高CO 2浓度、可高效固定CO 2的斜生

利用微藻生产生物柴油的研究进展

收稿日期:2009-11-02;修回日期:2010-05-07 基金项目:国家杰出青年科学基金项目(20625308);西北师范大学青年教师基金项目(NWNU -LK QN -09-20)作者简介:孔维宝(1981),男,讲师,在读博士,主要从事微藻生物柴油和酶催化方面的研究工作。 通讯作者:夏春谷,研究员,博士生导师(E 2mail )cgxia@lzb . ac .cn 。 生物柴油 利用微藻生产生物柴油的研究进展 孔维宝 1,2,3 ,华绍烽1,宋 昊1,夏春谷 1 (11中国科学院兰州化学物理研究所,羰基合成与选择氧化国家重点实验室,兰州730000;21中国科学院研究生院,北京100049;31西北师范大学生命科学学院,兰州730070) 摘要:在世界能源危机的影响下,生物质能源由于可再生、低污染等优势,被认为是在未来一个较短时期内最有潜力缓解能源危机的石油替代品。而微藻由于具有生物量大、光合效率高、生长周期短、油脂含量高和环境友好等优点,有望破解后石油时代的能源危机。重点阐述了产油微藻的种类,提高微藻油脂含量的策略,微藻细胞的采收技术,微藻油脂的提取和转酯化反应等内容;分析了微藻生物柴油产业发展中亟待解决的一些问题。关键词:微藻;能源;生物燃料;生物柴油;油脂 中图分类号:T Q645;TK6 文献标志码:A 文章编号:1003-7969(2010)08-0051-06 Progress on b iod i esel producti on using m icroa lgae K ONG W eibao 1,2,3,HUA Shaofeng 1,S ONG Hao 1,X IA Chungu 1 (11State Key Laborat ory of Oxo Synthesis and Selective Oxidati on,Lanzhou I nstitute of Che m ical Physics, Chinese Acade my of Sciences,Lanzhou 730000,China;21Graduate University of Chinese Acade my of Sciences,Beijing 100049,China;31College of L ife Sciences, North west Nor mal University,Lanzhou 730070,China ) Abstract:B i omass energy was considered as the most potential petr oleum substitute in a shorter peri od of ti m e,f or its rene wable ability and l ower polluti on .M icr oalgae could s olve the energy crisis in the post -petr oleu m era because of its large bi omass,high phot osynthetic efficiency,short gr owth cycle,high li p id content,and envir on mental friendliness .The current situati on of bi odiesel p r oducti on fr om m icr oalgae was revie wed .The s pecies of li p id -p r oducing m icr oalgae,strategies t o i m p r ove the li p id content of m i 2cr oalgae,techniques f or cell harvesting,li p id extracti on and transesterificati on of m icr oalgae were dis 2cussed .The p r oble m s in m icr oalgae bi odiesel industry were analyzed .Key words:m icr oalgae;energy;bi ofuel;bi odiesel;li p id 在能源危机对各行业影响日益加剧的今天,社会各界对可再生能源的关注度不断提高。对于生物质能源的原料,人们的目光在一段时期内集中在传 统的油料经济作物(大豆、油菜)、粮食(玉米)、农林废弃物(木质素、纤维素和半纤维素)、动植物油脂等领域。其中,生物柴油作为化石能源的替代燃料, 已成为国际上发展最快、应用最广的环保可再生能源。但是,生物燃料“与粮争地、与人争粮”的情况及较高的原料成本限制了它的进一步推广。藻类作为一种重要的可再生资源,具有分布广、生物量大、光合效率高、环境适应能力强、生长周期短、油脂含量高和环境友好等突出特点 [1] 。藻类尤其是微型 藻类将会成为提供新能源和新资源的“明星”,微藻的能源化利用有望成为“后石油时代”破解能源危机的一把金钥匙。在最近两年,不管是国内外有关利用微藻生产生物燃料的基础研究,还是应用开发报道都呈现大幅增长的态势 [2] 。 本文结合国内外在微藻生物燃料研发方面的新近报道,综述微藻开发生物燃料的显著优势,能源微

利用微藻制取生物柴油的方法

利用微藻制取生物柴油的研究进展 朱晗生物技术07Q2 20073004104 摘要:随着人口增长的加速,自然资源日益短缺,而且面临着枯竭的危险。传统能源枯竭的焦虑,引起了人们对可再生的生物资源浓厚的兴趣。本文主要讨论了微藻,生物柴油以及利用微藻发酵制取生物柴油的研究进展。 关键词: 微藻; 生物柴油; 发酵 0 前言 生物柴油(Biodiesel)即脂肪酸甲酯, 是指以油料作物、野生油料植物和工程微藻等水生植物油脂以及动物油脂、餐饮垃圾油等为原料油通过酯交换工艺制成的可代替石化柴油的再生性柴油燃料,是一种可生物降解、无毒的可再生能源。生物柴油是生物质能的一种,作为一种清洁的低碳燃料,其含硫和含氮量均较低,同时灰分含量也很小,所以燃烧后SO2 、NO 和灰尘排放量比化石燃料要小得多,是可再生能源中理想的清洁燃料之一[1]。但是由于较高的原材料成本,生物柴油的价格高于传统柴油,因此选取合适的、低成本的植物油脂资源来积极发展和生产生物柴油是发展的总趋势。利用微藻制取生物柴油,不仅能够降低成本,另外,有些微藻会引起水华,赤潮等爆发,消耗水中大量的溶解氧,并会上升至水面而形成一层绿色的黏质物,使水体严重恶臭,水体中生物大量死亡,因此,如果利用此类微藻资源,还减轻环境负荷。自1988 年以来,许多欧洲国家就已经开始将生物柴油作为传统柴油的替代品加以利用,并取得了较好的效果。本文就利用微藻发酵生物柴油的制取进行综述,并讨论了存在的问题及其应用前景。 1 生物柴油

生物柴油是典型“绿色能源”,它以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、工程微藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料,是优质的石油柴油代用品。大力发展生物柴油对经济可持续发展,推进能源替代,减轻环境压力,控制城市大气污染具有重要的战略意义。 目前生物柴油的制取方法主要有以下几种:利用油脂原料合成生物柴油的方法;用动物油制取的生物柴油及制取方法;生物柴油和生物燃料油的添加剂;废动植物油脂生产的轻柴油乳化剂及其应用;低成本无污染的生物质液化工艺及装置;低能耗生物质热裂解的工艺及装置;利用微藻快速热解制备生物柴油的方法;用废塑料、废油、废植物油脚提取汽、柴油用的解聚釜,生物质气化制备燃料气的方法及气化反应装置;以植物油脚中提取石油制品的工艺方法;用等离子体热解气化生物质制取合成气的方法,用淀粉酶解培养异养藻制备生物柴油的方法;用生物质生产液体燃料的方法;用植物油下脚料生产燃油的工艺方法,由生物质水解残渣制备生物油的方法,植物油脚提取汽油柴油的生产方法;废油再生燃料油的装置和方法;脱除催化裂化柴油中胶质的方法;废橡胶(废塑料、废机油)提炼燃料油的环保型新工艺,脱除柴油中氧化总不溶物及胶质的化学精制方法;阻止柴油、汽油变色和胶凝的助剂;废润滑油的絮凝分离处理方法。 生物柴油优点很多,如具有良好的环境属性;具有较好的低温发动机启动性能;具有较好的润滑性能;具有较好的安全性能;具有良好的燃料性能;具有可再生性能。 综观国际上的发达国家如美国、德国、日本,到次发达的南非、巴西、韩国,到发展中的印度、泰国等,均在发展石油替代产业的国际政策制度、技术完善、装置建设和车辆制造等方面提供了良好的借鉴,为中国走特色石油替代之路铺平了道路。特别是巴西经验,更具实际意义[2]。

藻类与新能源的关系

藻类与新能源的关系 摘要: 随着经济的迅速发展,全球性化石资源日益枯竭,液体燃油的供应形势日趋严峻,能源短缺问题已经成为制约世界各国经济发展的重要因素之一[1]资源有限性带来的能源危机以及造成的环境污染问题都在促使人们努力寻找石油的替代燃料,这也大大促进了世界各国加快柴油替代燃料的开发步伐。在世界能源危机的影响下,生物质能源由于可再生、低污染等优势,被认为是在未来一个较短时期内最有潜力缓解能源危机的石油替代品。近年来,生物柴油受到了人们的广泛关注,尤其是进入20 世纪90 年代,开发生物柴油替代石化柴油已成为新能源开发的重要途径之一,成为重要的柴油替代品[2]生物柴油的研究得到了广泛的重视,同期生物柴油的研究论文增长了10 倍,SCI 检索论文从2003 年的120 多篇增加到2009 年的1200多篇。已有很多文章对生物柴油的市场、政策、生产及技术做过详细的介绍和综述,Ma 等近几年,生物柴油的研究得到了广泛的重视,同期生物柴油的研究论文增长了10 倍,SCI 检索论文从2003 年的120 多篇增加到2009 年的1200多篇。已有很多文章对生物柴油的市场、政策、生产及技术做过详细的介绍和综述[3]而微藻由于具有生物量大、光合效率高、生长周期短、油脂含量高和环境友好等优点,有望破解后石油时代的能源危机。重点阐述了产油微藻的种类,提高微藻油脂含量的策略,微藻细胞的采收技术,微藻油脂的提取和 转酯化反应等内容;分析了微藻生物柴油产业发展中亟待解决的一些问题。目前,藻类生物柴油是一个研究热点,具有广阔的开发利用前景。 关键词:微藻 ,生物柴油,新能源。 1利用微开发生物质能源的优势藻 就全球来说,藻类是一种数量巨大的可再生资源。地球上的生物每年通过光合作用可固定8 ×1010 t碳,生产14. 6 ×1010 t生物质,其中一半以上可归功于藻类的光合作用。利用微藻发生物质能源的优势可总结如下[4] 1 环境适应能力强,生长要求简单,营养需求低,可直接转化利用CO2、无机盐和有机废水等 2 微藻光合效率高,倍增时间短,单位面积的产率高出高等植物数十倍。 3 培养微藻不占用耕地,可利用海滩、盐碱地和荒漠等土地进行大规模培养,可利用海水盐碱水、荒漠地区地下水和有机废水进行培养。 4 微藻含有很高的油脂,特别是一些微藻在异养或营养限制条件下脂肪含量可 高达20% ~70%,按藻细胞含30%油脂(干重)计算, 1 hm2 土地的年油脂产量是玉米的341倍,大豆的132倍,油菜籽的49倍。影响藻类油脂合成的因素很多,通过改变藻类的培养条件和采用分子生物学技术均可进一步增加藻类的油脂含量。在适当的培养条件下,减少藻类培养基质中的氮元素,可以增加某些藻类的油脂含量,如眼点拟微球藻(Nannochloropsis oculata)和小球藻(Chlorella vulgaris) [5]微藻 没有根、茎、叶的分化,不产生无用生物量,加工工艺相对简单,易于粉碎和干燥,预处理成本相对较低。 6 微藻热解比农林废弃物简单,而且所得生物质燃油热值高,是木材或农作物秸秆的1. 6倍。 7 微藻燃料清洁,环境友好,燃烧时不排放有毒有害气体。 8 微藻能高效固定CO2 ,有助于减缓温室气体排放。

微藻生物柴油的国内外研究现状与展望

0引言 进入21世纪,能源危机已成为人类社会发展的巨大挑战。化石燃料作为一种不可再生的物质能源,总储量有限,随着人们不断的开采和使用最终会导致其枯竭。同时,燃烧化石燃料,产生了日益严重的环境问题,如:大气污染、温室效应以及海平面上升等。化石燃料还引起了各种社会问题,包括石油战争、石油政治和石油经济[1]等。因此,利用可再生清洁能源来替代日益枯竭的化石能源将是整个人类社会发展的必经之路。在各种能源中,生物质清洁能源具有广阔的应用前景。生物质能就是指利用绿色植物将太阳能转化为化学能而储存在生物质体内的能量。生物柴油是典型“绿色能源”,它是以大豆和油菜籽等油料作物、油棕和黄连木等油料林木果实、微藻等油料水生植物以及动物油脂、废餐饮油等为原料制成的液体燃料。生物柴油具有良好的润滑性、燃料性、安全性和低温发动机启动性能,是一种可再生的优质的石油柴油代用品。大力发展生物柴油对经济 微藻生物柴油的国内外研究现状与展望OntheProgressandProspectofDomesticandForeignResearchonMicroalgaeBiodiesel 王小莉1王建涛2,3,4袁小强2,3,4胡明2,3,4肖聪伟4,5王磊4,5付桂明2,3,4Wang Xiaoli Wang Jiantao Yuan Xiaoqiang Hu Ming Xiao Congwei Wang Lei Fu Guiming (1.南昌市科技局南昌市科学器材公司,江西南昌330003;2.南昌大学食品科学与技术国家重点实验室,江西南昌330047;3.南昌大学中德食品工程中心,江西南昌330047;4.南昌大学生命科学与食品工程学院,江西南昌330031;5.江西省产品质量监督检测院,江西南昌330046) (1.Nanchang Scientific Equipments Inc.,Nanchang Science and Technology Bureau,Jiangxi Nanchang330003; 2.State Key Laboratory of Food Science and Technology,Nanchang University,Jiangxi Nanchang330047; 3. Sino-German Food Engineering Center,Nanchang University,Jiangxi Nanchang330047; 4.Life Science and Food Engineering College,Nanchang University,Jiangxi Nanchang330031; 5.Product Quality Supervision and Testing Institute of Jiangxi Province,Jiangxi Nanchang330046) 摘要:微藻具有含油量高、易于培养、单位面积产量大等优点,被视为新一代的、甚至是唯一能实现完全替代石化柴油的生物柴油原料。本文综述了微藻及国内外生物柴油的一些最新研究进展,并展望了微藻基因工程改造对微藻生物柴油发展的重要意义。 关键词:微藻;生物柴油;研究 中图分类号:TE667文献标识码:A文章编号:1671-4792(2012)12-0139-03 Abstract:Microalgae is regarded as the new generation or even the only biodiesel raw material to entirely substitute petrochemical diesel because of its advantages,which contain high oleaginousness,easy to culture and high yield per unit etc.This article summarizes some latest domestic and foreign research progress on microalgae and biodiesel,then look forward to the great significance of microal1gal genetic engineering to the development of microalgae biodiesel. Keywords:Microalgae;Biodiesel;Research 微藻生物柴油的国内外研究现状与展望 139

植物油脂制备生物柴油及综合开发

收稿日期: 2010-08-26基金项目: 国家重点基础研究发展计划(973计划)前期研究专项课题(2010CB134409)作者简介: 郝宗娣(1988-),女,河北南宫人,海南大学材料与化工学院2010级硕士研究生.通信作者:刘平怀(1967-),男,湖南永兴人,海南大学教授、药学研究员,研究方向:海洋生化工程. E -m a i:l t w lph @https://www.sodocs.net/doc/0a5736074.html, 第1卷第3期 热带生物学报Vo.l 1No .3 2010年9月JOURNAL OF TRO PI CAL ORGAN IS M S Sep 2010 文章编号:1674-7054(2010)03-0282-06 植物油脂制备生物柴油及综合开发 郝宗娣,刘洋洋,杨 勋,续晓光,刘平怀 (海南大学材料与化工学院,海南优势资源化工材料应用技术教育部重点实验室,海南海口570228) 摘 要:综述了植物油脂制备生物柴油的进展及其综合开发利用,发现了植物油脂在利用过程中出现的问 题,并针对问题提出了合理利用自然资源的建议。 关键词:植物油脂;生物柴油;资源;综合利用 中图分类号:Q 949.93;TQ 644.2 文献标志码:A 植物油脂是从植物种子、果肉、果核或其他部分提取所得油脂的统称。植物油脂在人们日常生活和 生产中占有举足轻重的地位。植物油脂是重要的膳食来源及工业原料,在食品、化妆品、印刷[1]、油漆、润 滑油[2]、制革、橡胶、纺织、医药保健、肥皂、新能源等方面有着极为广泛的用途。按外观状态来区分,可将植物油脂分为油和脂,习惯上将常温下呈液体的称为油,呈固体或半固体的称为脂。植物油脂含有丰富的维生素E 、矿物质、饱和及不饱和脂肪酸及中性脂肪(甘油三酯),其中以甘油三酯的含量最高。不同种类的植物油其所含的各组分的含量是不同的,如:椰子油中中短链脂肪酸含量较高,大豆油中维生素E 及必需脂肪酸的含量较高[3]。 近年来,新能源因具有洁净、环保、可再生等优点而成为研究热点,植物油脂作为新能源的一个重要来源亦颇受关注。植物油脂来源广泛,具有多重用途,本文综述了植物油脂制备生物柴油及其综合利用的情况,发现了植物油脂在利用过程中出现的问题,并针对问题提出了一些合理利用自然资源的建议。1 生物柴油的来源及制备 表1 油脂植物产油量比较[6]作物名称产油量/(L h m -2)玉米172大豆446油菜1190麻风树1892椰子2689油棕5950微藻136900 注:微藻产油量以高产油微藻产油量为微藻干质量的70%计。 生物柴油是指从可再生的生物资源中获得的可替代柴油的燃料。 其化学本质是脂肪酸甲酯,它的发展对于缓解能源危机、促进农副产 品的开发利用及对生态环境的保护具有深远意义。目前,生物柴油的 来源有三大类:动植物油脂、细菌及真菌油脂、废弃油脂。最广泛的来 源是动植物油脂,其中以植物油脂更为普及[4-5]。玉米(corn)、大豆 (soybean)、油菜(cano l a )、麻风树(jatropha)、椰子(coconut)、油棕 (pa l m )、微藻(m icroalgae )等产油量高(表1),是植物油脂的良好 来源。 使用最为广泛的生物柴油制备方法是酯交换法(图1),即在催化 剂(包括酶)的存在下,利用甲醇与天然油脂发生酯交换反应,使甘油 三酯转化为3个脂肪酸甲酯,从而降低油料粘度,改善油料的流动性 能,达到作为机动燃料的使用要求。

微藻生产生物能源具有潜在的应用前景等

龙源期刊网 https://www.sodocs.net/doc/0a5736074.html, 微藻生产生物能源具有潜在的应用前景等 作者: 来源:《农业工程技术·新能源产业》2010年第02期 微藻生产生物能源具有潜在的应用前景 中国利用微藻生产生物能源具有潜在的应用前景。目前,在山东省的实验室获得了初步成果,培育出的富油微藻,最高含油比已经达到68%,可在此基础上制取生物柴油。有专家认为,海洋微藻的能源化利用,有望成为“后石油时代”破解能源危机的一把钥匙。 据了解,山东有十几个课题组在从事微藻研究,已发现、筛选、培育几十个富油藻种。并开始运用基因工程技术来改造藻种。还有一些技术力量正在进行微藻生物柴油制备技术的研究。 据了解,中国的有机碳组成中。海洋藻类占了1/3,藻类是一种数量巨大的可再生资 源。也是生产生物质能源的潜在资源,其中微型藻类的含油量非常高,可以用于制取生物柴油。微藻能够有效地利用太阳能,通过光合作用固定二氧化碳,将无机物转化为氢、高不饱和烷烃、油脂等能源物质;而且微藻生物能源可以再生,燃烧后不排放有毒有害物质,对大气二氧化碳没有净增加。此外,微藻的产油效率相当高.在一年的生长期内,每公顷玉米能产172 升生物质燃油。大豆能产446升,油菜籽能产1190升,棕榈树能产5950升,而每公顷的微藻能产生物质燃油95000升。 (文章来源:中国节能减排网) 酿酒厂利用废水生产氢气 近日,美国加州Oakville的一间酿酒厂以细菌及少量电力。加入其酒厂排出的废水中制造出氢气。 宾夕法尼亚州大学环境工程学教授BruceE.Logan指出,这是首个以细菌电解系统从废水 生产氢气的可再生技术示范。该系统由Logan教授及其研究伙伴共同研发。 那柏酿酒公司(NappawineCompany)提供设施及废水供研究。该公司为家族生产,葡萄园占地635英亩,以有机管理技术种植葡萄,并无使用化学品。

微藻制备生物柴油的研究

微藻制备生物柴油的研究 一、小球藻简介 小球藻(Chlorella)是小球藻属绿藻门,绿藻纲,绿球藻目,卵孢藻科,小球藻属,包括大约10 个种. 小球藻细胞组成中的蛋白质含量为7.3%~88%,碳水化合物为 5.7%~38%,脂类为4.5~86%。小球藻细胞中脂类含量的增加主要是由于脂肪酸积累的结果。在氮饥饿条件下,蛋白核小球藻在生长时可形成高达86%的脂类,而在正常的小球藻细胞中,脂类含量为25%。在正常和氮饥饿条件下生长的小球藻在脂肪酸组成上没有明显的差异。此外,小球藻的异养培养技术,特别是高细胞浓度培养技术的研究得到了较深入的发展,这对制备生物柴油需要高生物量的微藻来说,也是具有重要价值的。 小球藻中脂质含量的提高主要由于乙酰辅酶A 羧化酶(ACC)基因在微藻细胞中的高效表达,在控制脂质积累水平方面起到了重要作用。选择合适的分子载体,使ACC 基因在细菌、酵母和植物中充分表达,还进一步将修饰的ACC 基因引入小球藻中以获得更高效表达。 二、脂肪酶的提取、制备及油脂制备生物柴油 2.1小球藻培养 小球藻置于26℃(±1)光照培养箱通气培养, 光照强度3500lux~4500lux。培养基成分:Glucose 10g/L,KNO32.0g/L,KH2PO41.25g/L,MgSO41.25g/L,FeSO420mg/L,初始pH8。自养小球藻培养在标准培养基中,通过光合作用进行自养生长,从而获得绿色的自养小球藻。通过改变标准培养基中的营养成分,即将甘氨酸成分降至0.1g/L,另加入10g/L葡萄糖,原来绿色的小球藻细胞便通过吸收葡萄糖进行异养生长,从而获得黄色的异养小球藻。待异养藻细胞生长到对数期后期时,离心收集藻细胞。 2.2粗酶的提取和精制 用匀浆法浆细胞破碎,获得最大蛋白含量及最高总酶活的粗酶液,对细胞破碎得到的粗酶液进行硫酸铵沉淀,当硫酸铵浓度为43%时,除去杂蛋白,再将硫酸铵浓度提高到85%沉淀酶液,将沉淀溶于蒸馏水,采用透析或葡聚糖凝胶G—25脱盐。对经硫酸铵沉淀和脱盐处理后的粗蛋白进行蛋白质含量和酶活性的测定,再将粗酶液采用强酸性阳离子交换介质进行离子交换吸附,以得到精制的脂肪酶。 2.4酶活性的测定 采用分光光度法测定脂肪酶的活性,并对反应温度,pH,底物浓度,反应时间等条件进行优化,以得出最佳反应条件。 2.5生物柴油的制备 2.1.1原料 成本过高一直是生物柴油发展的瓶颈问题,所以应该在降低原料成本上作出更大的 努力,展开以各种生物质为原料的生产途径的研究,以期最大限度降低原料成本,增加生 物柴油大规模产业化的可行性。 (1)以植物油脂为原料制取生物柴油 利用油菜籽、大豆、花生以及各种油料作物所提取的油脂为原料。其中以油菜籽制取 的生物柴油中不饱和脂肪酸甲酯含量较多 2、微生物发酵法制取生物柴油 某些微生物如酵母、霉菌和藻类等在适合的条件下能将碳水化合物转化为油脂贮存在 体内,称为微生物油脂。 3、利用餐饮废油制取生物柴油 以植物油为原料生产生物柴油成本偏高,而将餐饮业废油脂进行回收生产生物柴油则 是一个相对较好的方案

相关主题