搜档网
当前位置:搜档网 › 高中物理复习提纲

高中物理复习提纲

高中物理复习提纲
高中物理复习提纲

高中物理知识点

第一章、力

一、力F:物体对物体的作用。

1、单位:牛(N)

2、力的三要素:大小、方向、作用点。

3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平

衡力。作用力与反作用力是同性质的力,有同时性。

二、力的分类:

1、按性质分:重力G、弹力N、摩擦

力f

按效果分:压力、支持力、动力、

阻力、向心力、回复力。

按研究对象分:外力、内力。

2、重力G:由于受地球吸引而产生,

竖直向下。G=mg

重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。

弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k3Δx

摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。

滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程

度,只与材料有关,与重力、压力无关。)

相同条件下,滚动摩擦<滑动摩擦。

静摩擦力:用二力平衡来计算。

用一水平力推一静止的物体并使它匀速直线运动,推力F与摩

擦力f的关系如图所示。

力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边

形,合力F的大小和方向可用这两个邻边之间的对角线表示。

|F1-F2|≤F合≤F1+F2

F合2=F12+F22+ 2F1F2cosQ

平动平衡:共点力使物体保持匀速直线运动状态或静止状态。

解题方法:先受力分析,然后根

据题意建立坐标系,将不在坐标

系上的力分解。如受力在三个以

内,可用力的合成。

利用平衡力来解题。

F x合力=0

F y合力=0

注:已知一个合力的大小与方

向,当一个分力的方向确定,另

一个分力与这个分力垂直时

是最小值。

转动平衡:物体保持静止或匀速转动状态。

解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。

利用力矩来解题:M 合力矩=FL 合力矩=0 或 M 正力矩= M 负力矩

第二章、直线运动

一、运动:

1、参考系:可以任意选取,但尽量方便解题。

2、质点:研究物体比周围空间小得多时,任何物体都可以作为质点。只有质量,没有形状与大小。

3、位移s :矢量,方向起点指向终点。表示位置的改变。

路程:标量,质点初位置与末位置的轨迹的长度,表示质点实际运动的长度。 4、时刻:某一瞬间,用时间轴上的一个点表示。如4s,第4s 。

时间:起始时刻与终止时刻的间隔,在时间轴上用线段表示。如4s 内,第4s 内。

5、速度v :矢量,表示运动的快慢。v=s/t 。1m/s = 3.6 km/h 。大小为s-t 图中的正切tg θ。 平均速度:变速运动中位移与对应时间之比。

瞬时速度:质点某一瞬间的速度,矢量。大小为速率,标量。

6、加速度a :矢量,表示速度变化快慢与方向。 a = Δv/t 。大小为v-t 图中的正切tg θ。 a 、v 同向时,不管a 怎么变化,v 一定变大; a 、v 反向时,不管a 怎么变化,v 一定变小。

7、匀速:v 为定值,a=0 。

匀变速:a 为定值。设v 0方向为正方向,a 为负表示减速,a 为正表示加速。

5、 公式:

匀速:

匀变速: 当v 0=0 时 当v 0=0、a=g 时(自由落体) v t =v 0+at v t = at v t = gt

s=v 0t+1/2 at 2 s = 1/2 at 2 h = 1/2 gt 2 v t 2-v 02=2as v t 2 =2as v t 2 =2gh

s n – s n-1 = at 2 h n – h n-1 = gt 2

t s

20_2t t v v v v +==2

2

202t

s v v v +=2_2

t t v v v ==222t s v v =2_2

t

t v v v ==22

2t

s v v =

a

s t 2=()()()

1:23:12:1:::321----=n n t t t t n m

F a ∑∑=

连接体注意:v s/2 >v t/2

二、比例公式:设v 0=0的匀加速直线运动。

1、1、

2、3……n 秒末瞬时速度之比(v t= at ):v t :v 2:v 3:……v n =1:2 :3 : ……n 2、1、2、3……n 秒内位移之比(s = 1/2 at 2):s t :s 2:s 3:……s n =12:22 :3 2: ……n 2

3、第1、2、3……n 秒内位移之比(Δs n = s n -s n-1=2n-1)

Δs t :Δs 2:Δs 3:……Δs n =1:3:5 : ……(2n-1)

4、连续相等位移时的时间之比:

第三章、牛顿运动定律

一、牛一定律:一切物体总保持匀速直线运动状态或静止状态,一直到有外力迫使它改变这种状态为止。

牛一定律说明:力不是维持运动,而是改变运动状态,产生加速度。 任何物体在任何情况下,都有惯性,惯性只与物体的质量有关。质量越大,物体的惯性越大。 二、牛二定律:物体的加速度跟合外力成正比,与物体的质量成反比。

a = F 合/m 或 F 合=ma (合外力方向与加速度方向一致)

解题方法:先确定受力物体,受力分析,然后根据物体的运动方向建立坐标系,将不在坐标系上的力分解。利用平衡力来解题。

F x 合力= ma x F y 合力= ma y 如受力在三个以内,可用力的合成:F 合力= ma

三、牛三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在一条直线上。由于这两个力不作用在一个物体上,所以它们不是平衡力。等大、反向、共线、异体。 四、牛顿定律的适用范围:宏观、低速运动的物体。 五、力学单位制中基本单位:质量m :千克(kg ),长度L :米(m ),时间t :秒(s )

k T a

=2

3

第四章、曲线运动、万有引力

一、曲线运动条件:F 、v 不同线。此时,v 的方向为曲线的切线方向。

小船渡河时:图A 表示以最少时间渡河,图B 表示以最少位移渡河。

平抛运动的分解:分解为水平方向的匀速直线运动与竖直方向的自由落体运动。 x = v 0t v x =v 0 a x =0 tg θ= v y /v x =gt /v 0 y=1/2 gt 2 v y = gt a y =g v 2=v x 2+v y 2 Δv=gt

三、万有引力: 1、开普勒三定律:

A 、所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上,

B 、对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积, 船水v v s v s t -==

2

r Mm G F

=2r GM g =r GM v =3

r GM =ωGM r T 324π=()G T r M 23

22π=k

mE P 2=m

P E k 22

= C 、所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。

2、万有引力定律:

英国物理学家卡文迪许用扭秤测出引力常量:G=6.67310-11N 2m 2/kg 2

。表示两个单位质量的

物体,质心相距1m 时,相互间的万有引力大小为6.67310-11

N 。式中r 表示两个物体质心之间距离。

3、重力是万有引力的一个分力,在赤道最小,两极最大。通常情况下, G ≈F 引。

4、宇宙速度:

A 、第一宇宙速度(环绕速度):7.9km/s 。是发射的最小速度,环绕的最大速度。

B 、第二宇宙速度(脱离速度):11.2km/s

C 、第三宇宙速度(逃逸速度):16.7km/s

5、地球同步卫星与地球做同步的匀速转动,周期T=24h ,位于地球赤道的正上方,高度为定值。

6、解题思路:万有引力、重力为向心力。式中,M 是被绕物体的质量,m 是绕行物体本身的质量。

请思考下列等式中的求解方法:

(从式中,r 越大,v 越小,T 越大。)

第五章、动量与动量守恒

二、动量定理:物体所受的合外力的冲量等于物体的动量的变化。

I 合=ΔP 或 F 合t = mv t —mv 0 (冲量方向与物体动量变化量方向一致) 公式一般用于冲击、碰撞中的单个物体,解题时要先确定正方向。

三、动量守恒定律:一个系统不受外力或受外力矢量和为零,这个系统的总动量保持不变。

P 总 = P 总’ 或 m 1v 1+m 2v 2 = m 1v 1'+m 2v 2'

公式一般用于冲击、碰撞、爆炸中的多个物体组成的系统,解题时要先确定正方向。 系统在某方向上外力矢量和为零时,某方向上动量守恒。 四、完全弹性碰撞:在弹性力作用下,动量守恒,动能守恒。 非弹性碰撞:在非弹性力作用下,动量守恒,动能不守恒。

完全非弹性碰撞:在完全非弹性力作用下,碰撞后物体结合在一起运动,动量守恒,动 能不守恒。系统机械能损失最大。 五、动量与动能的关系:

gh v t 2=gr

v

=

第六章、机械能

一、功与功率:

2、汽车启动:

二、功和能的常用计算公式:

外力F 对物体做正功,外界给物体能量,物体的能量增加, 外力F 对物体做负功,物体给外界能量,物体的能量减少,

重力G 对外界做正功,物体给外界能量,物体的势能减少, 重力G 对外界做负功,外界给物体能量,物体的势量增加,

三、能量的转化通过做功来实现。

A 、动能定理:合外力对物体所做的功等于物体动能的变化。

W 合 = E kt — E k0 F 合s = 1/2 mv t 2 — 1/2 mv 02 应用于受外力运动的单个物体。 B 、机械能守恒定律:只有重力(或弹力)做功时,物体的动能与势能发生相互转化,但机械能的总量保持不变。应用于只受重力(弹力)运动的单个物体。计算时不要考虑中间过程。 E k1 + E p1 = E k2 + E p2 1/2 mv 12+ mgh 1= 1/2 mv 22+ mgh 2

熟记公式:初速度为0的只有重力做功式的下落,末速度大小为 线拉物体做圆周运动刚好通过最高点的线速度大小为

2

12

1k k k k k +?=f T 1=k m T π

2=g L T π2

= 杆拉物体做圆周运动刚好通过最高点的线速度大小为 v=0

第七章、机械振动与机械波

一、胡克定律:在弹性限度内,弹簧的伸长与所受的外力成正比。 1、公式:F= k 2ΔX = k 2(L —L 0)

2、劲度系数k 是弹簧的一个特性,与外界无关。

3、两根弹簧并连:k=k 1+k 2 ,两根弹簧串连: 二、机械振动:

1、简谐运动:物体受F= —kx 的回复力作用时所作的运动。回复力是合力,大小与位移x 成正比,方向与位移x 相反。

例如:弹簧振子、单摆、皮球在水面上、小球在凹槽里的来回往复的运动。 2、物体作简谐运动时,

在平衡位置处:速度v 、动能E k 最大,位移x 、回复力F 、加速度a 、势能E p 最小。 在最大位移处:速度v 、动能E k 最小,位移x 、回复力F 、加速度a 、势能E p 最大。 3、全振动:振动物体的位移矢量、速度矢量均回到原来的大小和方向。

①振幅A :振动物体离开平衡位置的最大位移。振幅≠路程≠位移。是标量,表示振动能量的大小。单位:米(m )。

②周期T :振动物体完成一次全振动所需的时间。单位:秒(s )。 ③频率f :振动物体在单位时间内完成全振动的次数。单位:赫兹(Hz )。

④固有周期、固有频率:振动系统本身的性质决定的周期与频率,与外界无关。 弹簧振子的固有周期: 单摆的固有周期:

4、简谐运动的x —t 图像是正弦或余弦曲线。曲线不是振子的运动轨迹。它表示振子的位移与时间的变化关系。每一时刻的振子的机械能都相等。在图中可直观读出:振幅A 、周期T ,各时刻对应的振子的位移。

5、简谐运动的图像分析:(0时刻为起点)

由平衡位置向正方向运动 由正最大位移向平衡位置运动 由平衡位置向负方向运动 由负最大位移向平衡位置运动

6、阻尼振动:因受摩擦和其它阻力,振幅逐渐减小的振动。但不影响自身的周期和频率,仍有等时性。将机械能转化成内能。

7、受迫振动:在周期性驱动力下的振动。 ①振动稳定后,振动的频率等于驱动力的频率,与物体固有频率无关。 即:f 受迫=f 驱动 。 ②共振:当驱动力的频率接近物体的固有频率时,受迫振动的振幅最大。声音的共振称为共鸣。 条件:f 驱动=f 固有 。

8、简谐运动的应用:单摆。

g L T 等效

π2=g L T θπcos 2?=2

2

24t L

n g π=L g

L T 22≈=π周期

波长时间能量位移波速=

=T t s v λ=

=①简谐运动的条件:摆角θ<5°。

②图中重力G 的G x 分力是回复力,拉力F 与G

分力的合力是向心力。 ③周期公式:

④秒摆:周期是2秒的单摆。摆长约为1米。 ⑤双线摆周期公式: 锥摆周期公式: ⑥用单摆测重力加速度的公式:

三、机械波:

1、波的形成条件:波源、介质。

2、机械振动在介质中的传播形成机械波;各质点只在自己平衡位置附近振动,并不随波迁移;以波的形式向前传播的只是能量、波形或振动形式。沿波的传播方向,各质点的振动依次落后。

3、横波:质点的振动方向与波的传播方向垂直的波。波峰、波谷都是质点位移最大的位置。 纵波:质点的振动方向与波的传播方向平行的波。密部、疏部都是质点位移最大的位置。

4、简谐波:简谐振动在介质中的传播。波形是一条正弦或余弦曲线。注意传播方向。 5

6、波长λ:任意相邻的两个同步振动的点的平衡位置之间的距离。

横波中的任意相邻的两个波峰(波谷)以及纵波中的任意相邻的两个密部(疏部)之间 的距离都等于一个波长。波长不是波曲线的长度。

公式:能量向前移动的速度:

同一个波中:波长λ、周期T 、频率f 、波速v 、振幅A 都相等。F 由波源决定,v 由介质决定。

7、波由一种物质进入另一种物质时,波的频率f 不变,波长λ、波速v 要改变。 8、波的衍射:波绕过障碍物继续传播的现象。

条件:缝、孔或障碍物的尺寸与波的波长相近或比波长小。

衍射时,波的性质(波长λ、频率f 、波速v )不变,振幅A 减小。

9、波的干涉:频率相同的两列波叠加,使某些区域振动加强,某些区域振动减弱,而且加强区与减弱区相互隔开。

条件:两列波的频率相同。

振动加强区:波峰遇波峰、波谷遇波谷。路程差是半波长的偶数倍。图中的实线遇实线、虚线遇虚线:A=A 1+A 2。

振动减弱区:波峰遇波谷。路程差是半波长的奇数倍。图中的实线遇虚线:A=|A 1—A 2|。 干射时,波的性质(波长λ、频率f 、波速v )不变,振幅A 要增大或减小。

10、多普勒效应:由于波源与观察者之间有相对运动,使观察者感到波的频率发生变化的现象。当波源与观察者相对靠近时,观察者接收到的频率增加,音调变高;当波源与观察者相对远离时,观察者接收到的频率减少,音调变低。

衍射、干涉、多普勒效应都是波的特征,一切波都会发生衍射、干涉、多普勒效应。 11、人耳的听觉范围:20Hz —20000Hz 。

超声波:频率高于20000Hz 的声波。 次声波:频率低于20Hz 的声波。

第八章、分子热运动、热和功

一、分子动理论:物体是由大量分子组成的,分子永不停息地作无规则的运动,分子间存在相互作用的引力和斥力。

-10

2、1mol 的任何物质中都含有相同的粒子数:阿伏加德罗常数N A =6.02X10/mol

标准条件下,1mol 的任何气体的体积为22.4L 3、温度越高,分子运动越剧烈。

扩散:不同的物质相互接触时,彼此进入对方的现象。

布朗运动:液体中悬浮微粒所作的无规则运动。由于各个方向液体分子对微粒不平衡作用而引起。布朗运动不是液体分子的运动,也不是微粒分子的运动,而是液体分子无规则运动的反映。图中的轨迹不是微粒实际运动的轨迹。温度越高,微粒质量越小,布朗运动越明显。

4、气体的三个状态参量:体积V ,压强p ,温度T (绝对温度T= t+273.15)。 三者关系:pV/T = 常量 气体分子运动特点:除碰撞外都在做匀速直线运动,任一时刻分子向各个方向运动的机会相等(分子速率分布呈“中间多,两头少”的规律)。

气体压强由大量气体频繁地碰撞器壁而产生。决定气体压强的两个因素:分子平均动能,分子的密集程度。

的数量级为10-

10

二、内能:物体内所有分子动能与分子势能的总和。

1、温度越高,分子平均动能越大,单个分子动能不一定大。

2、物体体积变化时,分子间距变化,分子势能变化。

分子力做正功,分子势能减少;分子力做负功,分子势能增大。

理想气体的内能只取决于气体的温度、物质的量,与气体的体积无关。

3、改变内能的两种方式:做功、热传递。(二者等效)

三、能量守恒定律:

1、内容:能量既不会凭空产生,也不会凭空消失。它只能从一种形式转化为别的形式,或从一个物体转移到别的物体。在转化或转移过程中,总量不变。

功是能转化的量度。

2、热力学第一定律:物体内能的增量ΔU等于外界对物体所做的功W加上物体从外界吸收的热量Q。ΔU=W+Q

ΔU:内能增加为“+”,减少为“—”;

W:外界对系统做功(如压缩气体)为“+”,系统对外界做功(如气体膨胀)为“—”;Q:系统吸收热量为“+”,系统放出热量为“—”。

第一类永动机违反能量守恒律。

3、热力学第二定律:

A、克劳修斯表述:热量不可能自动地从低温物体传向高温物体。

B、开尔文表述:不可能从单一热源吸收热量并把它全部用来做功而不引起其它变化。或第二类永动机不可能制成。

第二类永动机不违反能量守恒定律,但违反热力学第二定律。

能源:提供可利用能量的物质。

热力学第一定律指出热力学过程中的能量的守恒性;热力学第二定律热力学过程中的能量转移、转化的方向性。

4、热力学第三定律:绝对零度不能达到。

第九章、电场

一、电荷:

1、自然界中有且只有两种电荷:丝绸摩擦过的玻璃棒带正电,毛皮摩擦过的橡胶棒带负电。

电荷间的相互作用:同种电荷相互排斥,异种电荷相互吸引。

2、电荷守恒定律:电荷既不会创造,也不会消灭,只能从一个物体转移到另一个物体,或从物体的一个部分转移到另一个部分。

“起电”的三种方法:摩擦起电,接触起电,感应起电。实质都是电子的转移引起:失去电子带正电,得到电子带等量负电。

3、电荷量Q:电荷的多少

元电荷:带最小电荷量的电荷。自然界中所有带电体带的电荷量都是元电荷的整数倍。密立根油滴实验测出:e=1.6310—19C。

点电荷:与所研究的空间相比,不计大小与形状的带电体。

库仑定律:真空中两个点电荷之间相互作用的静电力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比。

公式:k = 93109 N2m2/C2

二、电场:

1、电荷间的作用通过电场产生。电场是一种客观存在的一种物质。电场的基本性质是对放入其中的电荷有力的作用。

2、电场强度E:放入电场中的电荷所受电场力与它的电荷量q的比。E=F/q

单位:N/C或V/m

3、电场线:形象描述场强大小与方向的线,实际上不存在。疏密表示场强大小,切线方向表示场强方向。一率从“+Q”指向“—Q”。正试探电荷在电场中受电场力顺电场线,负电荷在电场中受电场力逆电场线。

电场线的轨迹不一定是带电粒子在电场中运动的轨迹。只有电场线为直线,带电粒子初速度为零时,两条轨迹才重合。任意两根电场线都不相交。

4、静电平衡时的导体净电荷只分布在外表面上,内部合场强处处为零。导体是一个等势体。

三、电势与电势能:

1、电势差U:将电荷q从电场中的一点A移至B点时,电场力对电荷所做的功W AB与电荷q的比。U= W AB /q 。电势差是一个标量。公式中的三个物理量计算时要注意“+,—”符号。U= W AB /q只取决于电场两点位置,与W、q等无关。单位:V 电势φ:将电荷q从电场中的一点A移至无穷远时,电场力对电荷所做的功W与电荷q 的比。通常取大地与无穷远处为零电势点。单位:V

电势差的大小与零电势点的选取无关,只与电场中的两点位置有关;电势的大小与零电势点的选取有关。U AB=φA—φB

2、沿着电场线的方向,电势越来越低。电场线方向为电势降低最快的方向。顺电场线方向算电势差为“+”,逆电场线方向算电势差为“—”。

电场力做正功,电势能减少;电场力做负功,电势能增加。

3、电子伏(eV)是电功、电势能的单位。1 eV = 1.6310—19J。

4、在同一等势面上移动电荷,电场力不做功。等势面一定电场线垂直。电场线的方向由高等势面指向低等势面。等势面越密,场强越大。

2

r

Qq

k

F=

dm qU m qE m F a 2===1222

02224221dU L U mdv qL U at y ===12202002dU L U mdv qL U v at

v v tg y ====φφtg L y 2

= 例:作出上面几个图中的等势面。

四、电容C :

1、电容C :任何两个彼此绝缘的又相隔很近的物体组成电容。

2、计算方法:电容器所带电荷量Q 与电容器两极板电压的比。 电容表示电容器容纳电荷的本领,与Q 、U 等无关。 额定电压:电容器长期工作时所能承受的最大电压。

击穿电压:击穿电容器的电介质使电容器损坏的电压。 U 额定

例:一个两个极板分别带±1.6310—

10C 的电容,电容量为5pF ,两极板电压U 是 ,将两极板用导线连接后,带电量是 ,两极板电压U 是 ,电容量是 ,拿走导线后带电量是 ,两极板电压U 是 ,电容量是 。 例:电容量改变后各个物理量的更变。

五、带电粒子在电场中的运动:1、带电粒子在U (U 1)的加速: W=ΔE k 1/2 mv 2 = qU

式中,U 是两极电压,电场

不一定是匀强电场。

2、带电粒子在U 2中的偏转:类似

平抛

U

Q

U Q C ??==kd S

C πε4=m qU v 2=

0v L t =

第十章、恒 定 电 流

一、电荷定向移动形成电流。

1、形成电流的条件:要有自由电荷,导体两端存在电压。即:自由电荷在电场力的作用下定向移动。

2、电流方向:正电荷定向移动的方向,负电荷定向移动的反方向。

3、电流(I ):单位时间内流过导体横截面积的电荷量。

I=q/t q 表示电荷量,t 表示通电时间

I=nqvS n :单位体积内的自由电荷数 q :自由电荷的电荷量

v :电荷定向移动的速率(非常小,数量级10—

5m/s ) S :导体横截面积 国际单位:安培(A ) 1AmA 1mA=103μA 4、电流I 是标量,不是矢量。 二、欧姆定律:

1、部分电路欧姆定律:导体中的电流与这段导体的两端的电压成正比,与这段导体的电阻成反比。 公式:I=U/R

适用条件:

2闭合电路中的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比。I=E/( 路端电压减小。

当电路开路时,根据。 3、电阻(R )公式: 。R 与

ρ:导体的电阻率,ρ ρ的国际单位:Ω2m

l

四、电功与热功,电功率与热功率:

I U

I U R

??==

电功W :电场力对自由电荷所做的功,俗称电流做功。国际单位:焦耳(J ) 电功率P :电流在单位时间内所做的功。国际单位:瓦特(W )

用电器正常工作时的电功率为额定功率,此时的电压为额定电压,电流为额定电流。 非纯电阻电路 I g 。 电压表 R <<R 4、欧姆表:直接测量电阻值的电表。

原理图:如图。注意:黑笔接内电源的正极。

使用注意点:每次测量前先使红、黑表笔相碰,调节调零电阻R P ,使指针指在零刻度。

第十一章、磁场

一、磁场:

1、基本性质:对放入其中的磁极、电流有力的作用。

磁极间、电流间的作用通过磁场产生,磁场是客观存在的一种特殊形态的物质。

1、定义:磁场对电流的作用力。

2、计算公式:F=ILBsinθ=I⊥LB式中:θ是I与B的夹角。

电流与磁场平行时,电流在磁场中不受安培力;电流与磁场垂直时,电流在磁场中受安培力最大:F=ILB0≤F≤ILB

3、安培力的方向:左手定则——左手掌放入磁场中,磁感线穿过掌心,四指指向电流方向,大拇指指向为通电导线所受安培力的方向。

三、磁感应强度B:

qB m v r =

qB

m

T π2=2

2d qB

m qU m

qB

m v

r =

=

=1、定义:放入磁场中的电流元与磁场垂直时,所受安培力F跟电流元IL的比值。

2、公式: 磁感应强度B是磁场的一种特性,与F、I、L等无关。

注:匀强磁场中,B与I垂直时,L为导线的长度; 非匀强磁场中,B与I垂直时,L为短导线长度。 3、国际单位:特斯拉(T)。

4、磁感应强度B是矢量,方向即磁场方向。 磁感线方向为B方向,疏密表示B的强弱。

3、大小:F=qv ⊥B

4、洛伦兹力始终与电荷运动方向垂直,只改变电荷的运动方向,不对电荷做功。

5、电荷垂直进入磁场时,运动轨迹是一个圆。

轨道半径只与粒子的m 、v 、q 有关。 轨道周期只与粒子的m 、q 有关,而与粒子的r 、v 等无关。

质谱仪:

IL F B =

U qd

B m 82

2=m

U U U q v n n

)

(221+???++=交变

T

qB m

T ==π

2s V ?t N

E ??Φ

=t ??Φ

不同的谱线半径可知粒子的质量:

六、加速器:

1、直线加速器:

2、回旋加速器:

七、安培分子电流假说:磁体内部有环形分子电流,分子电流取向大致相同时,形成磁体。

一、磁通量():

1、定义:磁感应强度B 等因素无关。

2、公式:Φ=BS (S

34

二、电磁感应:

1、定义:只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生。其实质就是其它形式的能转化成电能。

2、电磁感应时一定有感应电动势,电路闭合时才有感应电流。产生感应电动势的那部分电路相当于电源的内电路,感应电流从低电势端流向高电势端(相当于“—”流向“+”);外部电路感应电流从高电势端流向低电势端(相当于“+”流向“—”)。

3、电磁感应定律:电路中的感应电动势的大小, 跟穿过这一电路的磁通量的变化率成正比。 公式: 式中,E 是Δt 时间内的平均感应电动势,ΔΦ是磁通量的变化量, 是磁通量的变化率,N 是线圈的匝数。主要应用于求Δt 时间内的平均感应电动势。

t

I L

E ??=

注:实际应用时,L 、v 、S 量的减少;并不仅仅是阻止。

右手定则:伸开右手掌,让磁感线穿过掌心,拇指指向为导体运动方向,四指所指为感应电流的方向或感应电动势内电路的方向。主要适用于切割磁感线而产生的感应电流、感应电动势方向的判定。右手定则是愣次定律的特殊应用。 三、自感:

1、定义:由于导体本身的电流发生变化而产生的电磁感应现象。

2、自感电动势:自感现象中产生的感应电动势。

公式:

式中L 是自感系数:由线圈本身的性质决定。相同条件下,线圈的横截面积越大,线圈越长,加入铁芯,自感系数将增加。

L 国际单位:亨利(亨)H 1H=103mH 1mH=103μH

3、日光灯原理:

启动器(启辉器):利用氖管的辉光放电,自动把电路接通、断开,内部的电容防火花(没有电容也能工作)。日光灯接通发光时,起动器不起作用。

镇流器:在日光灯点燃时,利用自感现象,产生瞬时高压,使灯管通电日光灯正常发光时,利用自感现象起降压、限流作用。

第十三章、交变电流

一、交变电流的产生: 1、原理:电磁感应 2、中性面:线圈平面与磁感线垂直的平面。发电机的线圈与中性面重合时,磁通量Φ最大,感应电流与感应电动势最小,感应电流的方向从此时发生改变。

线圈平面平行与磁感线时,磁通量Φ最小,感应电流与感应电动势最大。

m

m I

I

I707

.0

2

=

=

m

m U

U

U707

.0

2

=

=

2

1

2

1

n

n

U

U

=

1

2

2

1

n

n

I

I

=

2

2

1

1

t

t?

=

?

穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的:取中性面为计时平面:e=E m sinωt φ=Φm cosωt

i=I m sinωt

u=U m sinωt

3、正弦(余弦)交变电最大值(峰值)A m与有效值A的关系:

、求交流电的热量功率时,只能用有效值。

5、周期(T):线圈匀速转动一周,交变电流完成一次周期性变化所需时间。单位:秒(s)

频率(f):交变电流在1秒内周期性变化的次数。单位:赫兹(Hz)T=1/f

圆频率(ω):ω=2πf=2π/T

我国交变电的频率:50 Hz,周期0.02s(1s方向变100次)。

二、电感L:通直流,阻交流;通低频,阻高频。

电容C:通交流,阻直流;通高频,阻低频。

三、变压器:

1、原理:原、副线圈中的互感现象,原、副线圈中的磁通量的

变化率相等。

P1=P2

2、变压器只变换交流,不变换直流,更不变频。

原、副线圈中交流电的频率一样:f1=f2

高压线圈匝数多、电流小,导线较细;低压线圈匝数少、电流大,导线较粗。

3、如左图:U1:U2:U3=n1:n2:n3n1 I1=n2 I2+ n3 I3

fL

fC

π

2

2

1

=

=

P1=P2+P3

四、电能输送的中途损失:

ΔU=Ir线= r线=U电源—U用户ΔU∝

ΔP=I2 r线= r线=P电源—P用户ΔP∝

五、三相交变电:

1、原理:三个互成120度的同种线圈同时转动产生三相交变电动势。

U1=U m sinωt u2=U m sin(ωt-2/3π)u3=U m sin(ωt-4/3π)2、相电压:端线(火线、相线)与中性线之间的电压。

线电压:两根不同的端线之间的电压。

电源Y形连接:U线

= U相

电源Δ形连接:U线= U相

3、例:下列四个图中,单相电压是220V,则三个相同电阻中,每个电阻两端电压是:

第十四章、电磁场与电磁波

一、电磁振荡的产生:

1、振荡电流:大小与方向都作周期性变化的电流。

振荡电路(LC回路):产生振荡电流的电路,LC回路中产生正弦交变电。

电容C中容纳电荷最多时,电路中电流最小,磁场能全部转化为电场能,此时充电完毕;电容C中容纳电荷最少时,电路中电流最大,电场能全部转化为磁场能,此时放电完毕。(放电时,电流方向从电容“+”流向“—”;充电时,电流方向从电容“—”流向“+”。)充放电时,电路中的电流与电容内的电荷量成互余关系。i=I m sinωt,q=Q m cosωt 磁场与电场都发生周期性变化,二者也成互余关系。

2、阻尼振荡:振荡电流的振幅逐渐减小。只改变振幅,不改变周期和频率。

无阻尼振荡:振荡电流的振幅永远不变。

3、周期(T):电磁振荡完成一次周期性变化所需时间。

频率(f):一秒钟内完成的周期性变化的次数。

LC回路的周期与频率由回路本身的特性来决定,与外界因素无关:

机械振动将能量沿弹性介质传播电磁振荡将能量由场向外传播

U

1

U

P

2

)

(

U

P2

1

U

3

LC

Tπ2

=

LC

f

π2

1

=kd

S

C

?

?

=

π

ε

4

重点高中物理33知识点总结

重点高中物理33知识点总结

————————————————————————————————作者:————————————————————————————————日期: 2

高中物理3-3复习指南 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V 0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A 、物体质量m 、摩尔质量M 、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023mol - 1) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ== =(对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10m) ○ 1球体模型.30)2 (34d N M N V V A A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 ○ 2立方体模型.3 0=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ== = 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。 发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接..说明了液体分子在永不停息地做无规则运动.

高中物理会考试题

高中会考物理试卷 本试卷分为两部分。第一部分选择题,包括两道大题,18个小题(共54分);第二部分非选择题,包括两道大题,8个小题(共46分)。 第一部分选择题(共54分) 一、本题共15小题,在每小题给出的四个选项中,只有一个选项 ......是符合题意的。(每小题3分,共45分)。 1. 下列物理量中属于矢量的是 A. 速度 B. 质量 C. 动能 D. 时间 2. 发现万有引力定律的物理学家是 A. 安培 B. 法拉第 C. 牛顿 D. 欧姆 3. 图1是某辆汽车的速度表,汽车启动后经过20s,速度表的指针指在如图所示的位置,由表可知 A. 此时汽车的瞬时速度是90km/h B. 此时汽车的瞬时速度是90m/s C. 启动后20s内汽车的平均速度是90km/h D. 启动后20s内汽车的平均速度是90m/s 4. 一个质点沿直线运动,其速度图象如图2所示,则质点 A. 在0~10s内做匀速直线运动 B. 在0~10s内做匀加速直线运动 C. 在10s~40s内做匀加速直线运动 D. 在10s~40s内保持静止 5. 人站在电梯中随电梯一起运动,下列过程中,人处于“超重”状态的是 A. 电梯加速上升 B. 电梯加速下降 C. 电梯匀速上升 D. 电梯匀速下降 6. 一石块从楼顶自由落下,不计空气阻力,取g=10m/s2,石块在下落过程中,第1.0s末速度的大小为 A. 5.0m/s B. 10m/s C. 15m/s D. 20m/s 7. 如图3所示,一个物块在与水平方向成α角的恒力F作用下,沿水平面向右运动一段距离x,在此过程中,恒力F对物块所做的功为

A. B. C. D. 8. “嫦娥一号”探月卫星的质量为m ,当它的速度为v 时,它的动能为 A. mv B. C. D. 9. 飞机着地后还要在跑道上滑行一段距离,机舱内的乘客透过窗户看到树木向后运动,乘客选择的参考系是 A. 停在机场的飞机 B. 候机大楼 C. 乘客乘坐的飞机 D. 飞机跑道 10. 下列过程中机械能守恒的是 A. 跳伞运动员匀速下降的过程 B. 小石块做平抛运动的过程 C. 子弹射穿木块的过程 D. 木箱在粗糙斜面上滑动的过程 11. 真空中有两个静止的点电荷,若保持它们之间的距离不变,而把它们的电荷量都变为原来的2倍,则两电荷间的库仑力将变为原来的 A. 2倍 B. 4倍 C. 8倍 D. 16倍 12. 如图4所示,匀强磁场的磁感应强度为B ,通电直导线与磁场方向垂直,导线长度为L ,导线中电流为I ,该导线所受安培力的大小F 是 A. B. C. D. 13. 下表为某电热水壶铭牌上的一部分内容,根据表中的信息,可计算出电热水壶在额定电压下以额定功率工作 14. ①(供选学物理1-1的考生做) 下列家用电器中主要利用了电流热效应的是 A. 电视机 B. 洗衣机 C. 电话机 D. 电饭煲 ②(供选学物理3-1的考生做) 在图5所示的电路中,已知电源的电动势E=1.5V ,内电阻r=1.0Ω,电阻R=2.0Ω,闭合开关S 后,电路中的电流I 等于 A. 4.5A B. 3.0A C. 1.5A D. 0.5A 15. ①(供选学物理1-1的考生做) 面积是S 的矩形导线框,放在磁感应强度为B 的匀强磁场中,当线框平面与磁场方向垂直时,穿过导线框所围面积的磁通量为 A. B. C. BS D. 0 ②(供选学物理3- 1的考生做) 如图6所示,在电场强度为E 的匀强电场中,一个电荷量为q 的正点电荷,沿电场线方向从A 点运动到B 点,A 、 B 两点间的距离为d ,在此过程中电场力对电荷做的功等于 A. B. C. D. αsin Fx α cos Fx αsin Fx αcos Fx mv 212mv 2mv 2 1 B IL F =I BL F =BIL F =L BI F =B S S B q Ed d qE qEd E qd

高二物理会考基本知识点

高二物理会考------基本知识点2013-12--29 第一章力学 一、力:力士物体间的相互作用; 1、力的国际单位是牛顿,用N表示; 2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点; 3、力的示意图:用一个带箭头的线段表示力的方向; 4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;(1)重力:由于地球对物体的吸引而使物体受到的力; (A)重力不是万有引力而是万有引力的一个分力; (B)重力的方向总是竖直向下的(垂直于水平面向下) (C)测量重力的仪器是弹簧秤; (D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心; (2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力; (A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力; (B)弹力包括:支持力、压力、推力、拉力等等; (C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向; (D)在弹性限度内弹力跟形变量成正比;F=Kx (3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力; (A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力; (B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反; (C)滑动摩擦力的大小F滑=μF N压力的大小不一定等于物体的重力; (D)静摩擦力的大小等于使物体发生相对运动趋势的外力; (4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力; (A)合力与分力的作用效果相同; (B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力; (C)合力大于或等于二分力之差,小于或等于二分力之和; (D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法); 二、、既有大小又有方向的物理量叫矢量,(如:力、位移、速度、加速度、动量、冲量)标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量) 三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;(1)在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;

--会考-高中物理会考模拟试题及答案

高中物理会考模拟试题及答案 、单解选择题(本题为所有考生必做?有16小题,每题2分,共32分?不选、多选、错选均不给分) 1.关于布朗运动,下列说法正确的是 A.布朗运动是液体分子的无规则运动 E.布朗运动是悬浮微粒分子的无规则运动 C.悬浮颗粒越大,布朗运动越明显 D.液体温度越高,布朗运动越不明显 2 .下列有关热力学第二定律的说法不正确的是 A .不可能使热量由低温物体传递到高温物体,而不引起其他变化 B .不能可从单一热源吸收热量并把它全部用来做功,而不引起其他变化 C. 第二类永动机是不可能制成的 D .热传导的可以由低温物体向高温物体方向进行 3 .如图所示,以下说法正确的是 A .这是直流电 B .这是交流电,电压的有效值为200V C. 这是交流电,电压的有效值为 10^ 2 V D .这是交流电,周期为 2s 4. A、B两物体的动量之比为2:1,动能的大小之比为 1:3,则它们的质量之比为() A . 12:1 B . 4:3 C. 12:5 D. 4:3 5. 关于运动和力的关系,下列说法正确的是() A.当物体所受合外力不变时,运动状态一定不变 E.当物体所受合外力为零时,速度大小一定不变 C.当物体运动轨迹为直线时,所受合外力一定为零 D.当物体速度为零时,所受合外力一定为零 6 .关于摩擦力,以下说法中正确的是() A.运动的物体只可能受到滑动摩擦力 E.静止的物体有可能受到滑动摩擦力 C.滑动摩擦力的方向总是与运动方向相反 D.滑动摩擦力的方向不可能与运动方向一致 7 .下列关于电容器的说法,正确的是

A .电容器带电量越多,电容越大 B .电容器两板电势差越小,电容越大

2017高中物理会考知识点归纳

高中物理学业水平考试要点解读 第一章 运动的描述 第二章 匀变速直线运动的描述 要点解读 一、质点 1.定义:用来代替物体而具有质量的点。 2.实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。 二、描述质点运动的物理量 1.时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。与时间对应的物理量为过程量,与时刻对应的物理量为状态量。 2.位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。路程是标量,它是物体实际运动轨迹的长度。只有当物体作单方向直线运动时,物体位移的大小才与路程相等。 3.速度:用来描述物体位置变化快慢的物理量,是矢量。 (1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。 (2)瞬时速度:运动物体在某时刻或位置的速度。瞬时速度的大小叫做速率。 (3)速度的测量(实验) ①原理:t x v ??=。当所取的时间间隔越短,物体的平均速度v 越接近某点的瞬时速度v 。然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。 ②仪器:电磁式打点计时器(使用4∽6V 低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V 交流电,纸带受到的阻力较小)。若使用50Hz 的交流电,打点的时间间隔为0.02s 。还可以利用光电门或闪光照相来测量。 4.加速度 (1)意义:用来描述物体速度变化快慢的物理量,是矢量。 (2)定义:t v a ??=,其方向与Δv 的方向相同或与物体受到的合力方向相同。 (3)当a 与v 0同向时,物体做加速直线运动;当a 与v 0反向时,物体做减速直线运动。加速度与速度没有必然的联系。 三、匀变速直线运动的规律 1.匀变速直线运动 (1)定义:在任意相等的时间内速度的变化量相等的直线运动。 (2)特点:轨迹是直线,加速度a 恒定。当a 与v 0方向相同时,物体做匀加速直线运动;反之,物体做匀减速直线运动。 2.匀变速直线运动的规律

高中物理模型的归类与分析

本科毕业论文(设计)题目:高中物理模型的归类与分析 作者单位:物理学与信息技术学院 专业:物理学 作者姓名:任艳华 指导教师:郭芳霞 提交日期:二一六年四月

高中物理模型的归类与总结 任艳华 摘要:物理模型是高中物理知识的重要载体,其中绝大多数内容都是以物理模型为基础和载体向学生传递知识的。物理模型不仅是学生获得物理知识的一种基本方法,更是一种培养学生应用能力和创新能力的重要工具。本文主要讲述物理模型的概念及分类方法,并结合整个高中物理中的重点和难点知识对物理模型进行分类与总结,最后指出运用物理模型教学的意义。 关键词:物理模型;高中物理教学;教学意义 物理学是一门重要的自然科学,它研究的对象是自然界最普遍、最基本的运动形态及物质结构相互作用和运动规律的学科。自然界的各种各种事物之间存在着千丝万缕的关系,并且复杂多变。因此,为了探讨物理事物的本质,根据所研究的具体问题或问题的特点,用科学抽象的思维方法对问题进行抽象的描述,抓住事物主要的、本质的特征,忽略其次要的、非本质的因素,将所研究对象进行简化、高度抽象而建立起来的一种新的物理形象----即物理模型。 1.高中物理模型的概述 1.1物理模型的含义 “模型”一词来自于“Modulus”,意为样本、尺度、标准。钱学森先生曾给模型下过这样的定义:模型就是通过对问题现象的分解、分析,利用已知原理,吸取主要因素,省略次要因素,而创造出的一幅图画。[1] 根据物理模型的特点,美国学者David Hestenes(1995)认为,物理模型是对物理系统和某一物理过程的抽象化表征,它可以表征系统的结构及其某一方面的特征或运动规律等。[2]据此我们可以得出物理模型是对客观原型的一种“概念化”的抽象描述,这种描述包括了对客观实物的结构、某一方面的特征等。 1.2建立物理模型的意义 经过抽象思维构思出来的物理模型,可以简化物理学所分析、研究的复杂问题,且模型中得出的结果与客观实际又不会有明显的偏差。 运用物理模型可以帮助人们解决实际生活中的问题。在实际处理时只需要将实际事物抽象成理想模型,然后将模型的研究结果直接运用于实际。面对比较复杂的问题时,首先研究它的物理理想模型,再结合客观实际将其研究结果进行修正,从而使之与实际对象的本质相一致。[3]例如:由理想气体状态方程nRT pV 得出的结果与实际气体不相符合,这是因为在推导理想气体状态方程时,将分子力完全忽略了,而实际气体中气体分子的大小和分子间的相互作用力是不容忽视的。因此,从代表理想气体体积的V中减去分子体积b,对测定的压强值P加上

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理会考必记必背公式知识点

高中会考丨物理必记公式知识点 必修1: 1.平均速度的定义式:总 总t x v = (填空:打点计时器) 只适用于匀变速直线运动的平均速度公式:2 0t v v v += 2.匀变速直线运动: (第一个计算题必考) 速度公式:at v v t +=0 位移公式:2 02 1at t v x + = 推论公式(无时间):ax v v t 22 02=- 匀变速直线运动的中间时刻速度公式:2 02 t t t v v v v += = 打点计时器求加速度公式: =-=-=?= 2 2 32122T x x T x x T x a (填空:打点计时器) 打点计时器求某点速度公式:t x v v t 22== 3.初速度为零的匀变速直线运动比例规律 第一秒末,第二秒末,第三秒末的速度比: v 1:v 2:......:v n = 1:2:3:......n 前一秒,前二秒,前三秒的位移比:S 1:S 2:......:S n = 1:4:9:......n 2 第一秒,第二秒,第三秒的位移比:S I :S II :......:S N = 1:3:5:......(2n-1) 4.自由落体运动公式:(多选题常用) 速度公式:gt v = 位移公式:2 2 1gt h = 位移和速度的公式:gh v 22= (会考不常用) 5.胡克定律: F = kx (F 是弹簧弹力,k 是劲度系数,x 是形变量)(单选题必考) 6.滑动摩擦力计算公式:N F f μ=(计算压轴题必考) 7.两个共点力合力范围:|F 1-F 2| ≤ F 合≤ F 1+F 2(单选题必考)

8.牛顿第二定律:ma F =合(第一个计算题必考) 9、力学中的三个基本物理量:长度、质量、时间 三个基本单位:米(m )、千克(kg )、秒(s ) 必修2 1.平抛运动:(填空题常考) (1)水平方向分运动:???==t v x v v x 00 (2)竖直方向分运动:??? ??=?==g h t gt h gt v y 2212 (3)合运动: ?? ?? ?+=+=2 222y x s v v v y x x y v v = θtan 夹角是合速度与水平方向的 θ x y = ?tan 夹角是合位移与水平方向的? (4)平抛运动是匀变速曲线运动(加速度恒定不变,速度的大小改变,方向也改变) 2.匀速圆周运动:(单选题必考) (1)线速度和周期的关系:T r v π2= (2)角速度和周期的关系:T π ω2= (3)线速度和角速度的关系:r v ω= (4)圆运动的向心力:ma r T m mr r v m F ====222 24πω (5)周期和转速的关系:T n 1 = (6)匀速圆周运动是非匀变速曲线运动(速度的大小不变,速度方向改变;加速度的大小不变,方向改变) (7)匀速圆周运动中变化的物理量:向心力、线速度、向心加速度(因为它们的方向变化) 3.万有引力定律及应用(计算题文科选作) (1)万有引力:2 r Mm G F = (2)黄金代换公式推导:2 2gR GM mg R Mm G =?= (3)人造卫星的决定式:

中学物理课型分类

在物理教学中,教师必须熟悉物理教学中的一些基本课型,才能很好地组织教学活动,顺利地完成教学任务。根据物理学科的特点和物理教学的特点,我们把物理教学中的课的类型主要划分为三种,即实验课,概念、规律课和习题课。 (一)实验课 物理实验教学的方式主要有四种,即演示实验,学生实验,随堂实验和课外实验。 1. 演示实验所谓演示实验是指教师在讲授知识的过程中为配合教学内容而演示给学生看的实验。因此主要是使学生获得感性认识,培养观察能力和思维能力,引起学习兴趣,同时也能对培养学生的实验操作能力起一定的示范作用。为了确保演示实验成功,并取得良好的实验效果,课堂演示实验要首先做好准备,力求演示的现象清楚,并配合必要的说明和讲解。 2. 学生实验学生实验是物理实验教学的一种重要形式,是培养学生实验能力,掌握实验技能,使学生受到物理学研究的实验方法的初步训练的主要措施。进行学生实验教学要做到以下几点: 第一、努力创造条件,开出物理教学大纲中规定的所有实验。 第二、关于实验能力的培养要具体落实,要明确要求,严格训练,逐步做到由学生自己设计实验方案,进行实验操作并完成实验报告。 第三、实验中要及时给学生以具体指导,巡回检查,及时发现并帮助学生解决操作中的问题,纠正实验上的错误。 3. 随堂实验这种实验是物理实验教学的补充形式,可作为实验作业布置给学生,也可作为建议,由有兴趣的学生自愿进行。 (二)概念、规律课 物理基础知识中最重要最基本的内容是物理概念和物理规律。教好物理概念和物理规律,并使学生的认识能力在形成概念、掌握规律的过程中得到充分发展,是物理教学的重要任务。 物理概念和物理规律的教学,一般要经过以下四个环节: 1. 引入物理概念和规律这一环节的核心是创设物理环境,提供感性认识。概念和规律的基础是感性认识,只有对具体的物理现象及其特性进行概括,才能形成物理概念;对物理现象运动变化规律及概念之间的本质联系进行研究归纳,

高中物理33知识点总结

高中物理3-3 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V 0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积m ol V 、物体质量m 、摩尔质量mol M 、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023 mol -1 ) mol mol V M V m ==ρ (1)分子质量:A mol mol 0N V N M N m m A ρ=== (2)分子体积:A mol A mol 0N M N V N V V ρ== =(对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10 m) ○ 1球体模型.3mol mol 0)2 (34d N M N V V A A πρ=== 直径3 06πV d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S ----单分子油膜的面积,V----滴到水中的纯油酸的体积 ○ 2立方体模型.3 0=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A A N V N M N V N M m nN N mol A mol mol A mol m v v ρρ==== = 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。 发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接.. 说明了液体分子

2020年高中会考物理模拟试题

2013年高中会考物理模拟试题 第一部分 选择题(共54分) 一、本题共15小题,在每小题给出的四个选项中,只有一个选项......是符合题意的。(每小题3分,共45分) 1.下列物理量中属于矢量的是 A .功 B .重力势能 C .线速度 D .周期 2.在物理学史上,用科学推理的方法论证了重物体和轻物体下落一样快,推翻了古希腊学者亚里士多德的观点(质量大的小球下落快)的科学家是 A .伽利略 B .库仑 C .法拉第 D .爱因斯坦 3.有两个共点力,一个力的大小是3N ,另一个力的大小是7N ,它们合力的大小可能是 A . 0 B . 1N C . 10N D .21N 4.对吊在天花板上的电灯,下面哪一对力是作用力与反作用力 A .灯对电线的拉力与灯受到的重力 B .灯对电线的拉力与电线对灯的拉力 C .灯受到的重力与电线对灯的拉力 D .灯受到的重力与电线对天花板的拉力 5.一石块只在重力作用下从楼顶由静止开始下落,取g =10m/s 2,石块下落过程中 A .第1s 末的速度为1m/s B .第1s 末的速度为10m/s C .第1s 内下落的高度为1m D .第1s 内下落的高度为10m 6.如图1所示,天花板上悬挂着一劲度系数为k 的轻弹簧,弹簧下端拴,一个质量为m 的小球。小球处于静止状态时(弹簧的形变在弹性限度内),轻 弹簧的伸长等于 A .mg B .kmg C . k mg D .mg k 7.在如图2所示四个图象中,表示物体做匀加速直线运动的图象是 图1

图4 图3 下列关于这些物理量的关系式中,正确的是 A .v r ω= B .2v T π= C .2r T πω= D .v r ω= 9.真空中有两个静止的点电荷,它们之间的静电力大小为F ,如果保持两个点电荷所带的电量不变,而将它们之间的距离变为原来的2倍,则它们之间静电力的大小等于 A . 4F B .2 F C . 2F D .4F 10.如图3所示,物体沿斜面向下匀速滑行,不计空气阻力,关于物体的受力情况,正确的是 A .受重力、支持力、摩擦力 B .受重力、支持力、下滑力 C .受重力、支持力 D .受重力、支持力、摩擦力、下滑力 11.如图4所示,一个物块在与水平方向成α角的拉力F 作用下,沿水平面向右运动一段距离x 。 在此过程中,拉力F 对物块所做的功为 A .Fx sin α B .α sin Fx C .Fx cos α D .αcos Fx 12.在图5所示的四幅图中,正确标明了通电导线所受安培力F 方向的是 13.下表为某国产家用电器说明书中“主要技术数据”的一部分内容。根据表中的 信息,可计算出在额定电压下正常工作时通过该电器的电流为 A .15.5 B . 4.95A C .2.28A D .1.02A 请考生注意:在下面14、15两题中,每题有①、②两道小题。其中第①小题供选学物理1-1的考生做;第②小题供选学物理3-1的考生做。每位考生在每题的①、②小题中只做一道小题。 14.①(供选学物理1-1的考生做) 如图6所示,在垂直于纸面的范围足够大的匀强磁场中,有一个矩形线圈abcd ,线圈平面与磁场垂直,O 1O 2和O 3O 4都是线圈的对称轴,若使线圈中产生感应电流,下列方 A B I

高中物理斜面问题分类剖析

高中物理斜面问题分类 一、静力学 1.如图所示,质量为m 的木块A 放在斜面体B 上,若A 和B 沿水平方向以相同的速 度v 0一起向左做匀速直线运动,则A 和B 之间的相互作用力大小为( ) A. mg B. mgsin θ C. mgcos θ D. 0 答案:A 2.质量为m 的球置于倾角为θ的光滑面上,被与斜面垂直的光滑挡板挡着,如图所 示.当挡板从图示位置缓缓做逆时针转动至水平位置的过程中,挡板对球的弹力N 1和斜 面对球的弹力N 2的变化情况是( ) A. N 1增大 B. N 1先减小后增大 C. N 2增大 D. N 2减少 答案:AD 3.如图所示,在倾角为300的粗糙斜面上有一重为G 的物体,若用与斜面底边平行的 恒力2 G F =推它,恰好能使它做匀速直线运动。物体与斜面之间的动摩擦因数为( ) A . 22 B .33 C .36 D .66 答案:C 4.如图所示,在一块长木板上放一铁块,当把长木板从水平位置绕A 端缓慢抬起时,铁块所受的摩擦力( ) A .随倾角θ的增大而减小 B .开始滑一动前,随倾角θ的增大而增大,滑动后,随倾角θ的增大而减小 C .开始滑动前,随倾角θ的增大而减小,滑动后,随倾角θ的增大而增大 D .开始滑动前保持不变,滑动后,随倾角θ的增大而减小 答案:B 5.如图所示,斜面体P 放在水平面上,物体Q 放在斜面上.Q 受一水平作用力F ,Q 和P 都静止.这时P 对Q 的静摩擦力和水平面对P 的静摩擦力分别为1f 、2f .现使力F 变大,系统仍静止,则( ) A. 1f 、2f 都变大 B. 1f 变大,2f 不一定变大 C. 2f 变大,1f 不一定变大 D. 1f 、2f 都不一定变大 答案:C 6.如图所示,物体B 叠放在物体A 上,A 、B 的质量均为m ,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C 匀速下滑,则( ) A. A 、B 间没有静摩擦力 B. A 受到B 的静摩擦力方向沿斜面向上

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

高中物理会考模拟试题 新课标 人教版

高中物理会考模拟试题 说明:本卷计算中g取10m/s2. 一、单项选择题(共16小题,每题2分,共32分.不选、多选、错选均不给分) 1.关于布朗运动,下列说法正确的是()A.布朗运动是液体分子的无规则运动 B.布朗运动是悬浮微粒分子的无规则运动 C.悬浮颗粒越大,布朗运动越明显 D.液体温度越高,布朗运动越不明显 2.下列有关热力学第二定律的说法不正确的是()A.不可能使热量由低温物体传递到高温物体,而不引起其他变化 B.不能可从单一热源吸收热量并把它全部用来做功,而不引起其他变化 C.第二类永动机是不可能制成的 D.热传导的可以由低温物体向高温物体方向进行 3.A、B两物体的动量之比为2:1,动能的大小之比为1:3,则它们的质量()A.2:1 B.1:3 C.2:3 D.4:3 4.关于运动和力的关系,下列说法正确的是() A.当物体所受合外力不变时,运动状态一定不变 B.当物体所受合外力为零时,速度大小一定不变 C.当物体运动轨迹为直线时,所受合外力一定为零 D.当物体速度为零时,所受合外力一定为零 5.关于摩擦力,以下说法中正确的是() A.运动的物体只可能受到滑动摩擦力 B.静止的物体有可能受到滑动摩擦力 C.滑动摩擦力的方向总是与运动方向相反 D.滑动摩擦力的方向不可能与运动方向一致 6.下列关于电容器的说法,正确的是()A.电容器带电量越多,电容越大 B.电容器两板电势差越小,电容越大 C.电容器的电容与带电量成正比,与电势差成反比 D.随着电容器电量的增加,电容器两极板间的电势差也增大 7.沿x正方向传播的横波的波速为v=20米/秒,在t=0时刻的波动图如图所示,则下列说法正确

高中文科会考物理知识点

高中文科会考物理知识 点 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高二学业考物理知识点 第一节机械运动 1.参考系 同一个运动,由于选择的参考系不同,就有不同的观察结果及描述。 2.质点:用来代替物体的只有质量没有形状和大小的点, (1)质点是一理想化模型; (2)把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时; 一般来说路径远大于物体大小的移动如研究地球绕太阳运动,火车从北京到上海可看着质点 而转动问题,肢体运动问题不可看着质点。 3.位移和路程:位移从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 注意,路程和位移的计算。 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程. 位移为零、路程不一定为零。 4.速度和速率 (1)速度:描述物体运动快慢的物理量.是矢量. ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v,即v=s/t, (2)速率:速率只有大小,没有方向,是标量. 5.加速度 (1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率. (2)定义:在匀变速直线运动中,速度的变化Δv跟发生这个变化所用时间Δt的比 值,叫做匀变速直线运动的加速度,用a表示. (3)方向:与速度变化Δv的方向一致.但不一定与v的方向一致. [注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物体加速度就大. 6.匀速直线运动(1)定义:在任意相等的时间内位移相等的直线运动叫做匀速直线运动. (2)特点:a=0,v=恒量. (3)位移公式:S=vt. 7.匀变速直线运动(1)定义:在任意相等的时间内速度的变化相等的直线运动叫匀变速直线运动. (2)特点:a=恒量(3)公式:速度公式:V=V0+at 位移公式: s=v 0t+ 2 1 at2 速度位移公式:v t 2-v 2=2as 平均速度V= 2 0t v v 以上各式均为矢量式,应用时应规定正方向,然后把矢量化为代数量求解,通常选初速度方向为正方向,凡是跟正方向一致的取“+”值,跟正方向相反的取“-”值.

高中物理必考知识点总结(精华版)

高中物理必考知识点总结 高中物理磁场知识点:安培力 磁场对电流的作用力叫安培力 1. 安培力大小 2. 安培力的大小等于电流I 、导线长度L、磁感应强度 B 以及I 和 B间的夹角的正弦sin θ的乘积, 即 F=BIlsin θ。 注意:公式只适用于匀强磁场。 安培力的方向 3. 安培力的方向可利用左手定则判断。 左手定则:伸开左手,使大拇指跟其余四指垂直,并且都跟手 掌在一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸 开的四指指向电流方向,那么拇指方向就是通电导线在磁场中的受力 方向。安培力方向一定垂直于B、I 所确定的平面,即 F 一定和B、I 垂直,但B、I 不一定垂直。 新高三暑期计划:物理要着重梳理解题方法 掌握基本概念,梳理解题方法 高三物理复习是在学完所有高中物理知识后进行的, 高一,结合xx 年的高考以及物理学习的特点来看,我们的暑期复习要把握好高 中物理整体知识结构和知识间的内在联系,确定知识的重点、难点, 理解典型的例题和习题,梳理并掌握解题中常用的解题方法,才能达到良好的复习效果。具体来讲主要从以下几个方面来着手: 紧扣教材内容

理清知识结构 高一、高二的学习我们是分章节学习的,同学们的头脑中堆积 了许多知识,但没有形成完整的知识体系,这种相互孤立的知识是难以理解和迁移的。因此在暑我们可以对照教材目录按照力学、热学、 电磁学、光学、原子物理等知识板块将知识梗概用框图的形式在笔记 本上出来,理解知识间的联系,做到“拎起来一条线,放下来一大片”。 对照考纲要求 掌握考点知识 高考的所有知识点虽然都在考试说明即考纲中一一列出,但平 时的学习都是在老师的引导下进行的,同学们自己并没有仔细研究考纲,在暑期我们可以找高三毕业的学生借来考纲,对照教材找到考纲上要求掌握的相应的物理概念、物理规律进行理解,考纲中的Ⅰ级和Ⅱ级要求是不同的,要按照考纲中的说明掌握。如果有实在暂时不能理解的要在笔记本上进行记录,以便在开学后的老师复习讲解中提高 自己的注意力。 精选参考书目 理解典型例题 教材上的概念、规律是否理解关键要看相对应的该部分典型问 题能否独立解决,因而同学们可以精选一本讲解详细的参考书目,自己思考并尝试解答参考书上的典型例题( 不是直接去看解题过程) ,然后再与参考书上的解题过程进行对比,从中加深对概念和规律的理解,并提高对概念和规律的迁移应用能力。在解题中千万要注意不仅要能

高中物理会考复习资料

高中物理会考复习资料 1)匀变速直线运动 1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t 7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s^2 末速度(Vt):m/s 时间(t):秒(s) 位移(S):米(m)路程:米速度单位换算:1m/s=3.6Km/h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8 m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 ) 3.有用推论Vt^2 –Vo^2=-2gS 4.上升最大高度Hm=Vo^2/2g (抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动万有引力 1)平抛运动 1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt 3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2 5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2 合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo 7.合位移S=(Sx^2+ Sy^2)1/2 , 位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo 注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。 2)匀速圆周运动

高中物理磁场经典习题(题型分类)含答案

磁场补充练习题 题组一 1.如图所示,在xOy 平面内,y ≥ 0的区域有垂直于xOy 平面向里的匀强磁场,磁感应强度为B,一质量为m 、带电量大小为q的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 2.如图所示,a bcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E,一粒子源不断地从a 处的小孔沿a b方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B(图中未画出),粒子仍恰好从e 孔射出。(带电粒子的重力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E 与磁感应强度B 的比值为多大? 题组二 3.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,极板不带电。现有质量为m ,电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v水平射入,如图所示。为了使粒子不能飞出磁场,求粒子的速度应满足的条件。 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0.20 T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0.125 m 的匀强磁场B2。某时刻一质量m = 2.0×10-8 kg 、电量q = + 4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(-0.25 m ,0)的P 点以速度v = 2.0×103 m/s 沿y 轴正方向运动。试求: (1)微粒在y 轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y 轴时速度方向与y 轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B 2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U ;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,v 0 E e b c d a

相关主题