搜档网
当前位置:搜档网 › (H2N(C2H4)2NH2)[V4O10]ic951237c

(H2N(C2H4)2NH2)[V4O10]ic951237c

(H2N(C2H4)2NH2)[V4O10]ic951237c
(H2N(C2H4)2NH2)[V4O10]ic951237c

Hydrothermal Syntheses and Structural Characterization of Layered Vanadium Oxides Incorporating Organic Cations:r-, -(H3N(CH2)2NH3)[V4O10]and

r-, -(H2N(C2H4)2NH2)[V4O10]

Yiping Zhang,?,?Robert C.Haushalter,*,?and Abraham Clearfield*,?

NEC Research Institute,4Independence Way,Princeton,New Jersey08540,and Department of

Chemistry,Texas A&M University,College Station,Texas77843

Recei V ed September26,1995X

Four new layered mixed-valence vanadium oxides,which contain interlamellar organic cations,R-(H3N(CH2)2-

NH3)[V4O10](1a), -(H3N(CH2)2NH3)[V4O10](1b),R-(H2N(C2H4)2NH2)[V4O10](2a),and -(H2N(C2H4)2NH2)-

[V4O10](2b),have been prepared under hydrothermal conditions and their single-crystal structures determined:

1a,triclinic,space group P1h,a)6.602(2)?,b)7.638(2)?,c)5.984(2)?,R)109.55(3)°, )104.749-

(2)°,γ)82.31(3)°,Z)1;1b,triclinic,P1h,a)6.387(1)?,b)7.456(2)?,c)6.244(2)?,R)99.89(2)°,

)102.91(2)°,γ)78.74(2)°,Z)1;2a,triclinic,P1h,a)6.3958(5)?,b)8.182(1)?,c)6.3715(7)?,R

)105.913(9)°, )104.030(8)°,γ)94.495(8)°,Z)1;2b,monoclinic,space group P21/n,a)9.360(2)?,b

)6.425(3)?,c)10.391(2)?, )105.83(1)°,Z)2.All four of the compounds contain mixed-valence

V5+/V4+vanadium oxide layers constructed from V5+O4tetrahedra and pairs of edge-sharing V4+O5square

pyramids with protonated organic amines occupying the interlayer space.

Introduction

The contemporary interest in vanadium oxide bronzes reflects not only their interesting electronic and magnetic properties1 but also their complex structural chemistry,associated with the ability of vanadium to adopt a variety of coordination geometries in various oxidation states.In addition to the conventional alkali-metal bronzes A x V2O5,2a class of organic-based vanadium bronzes are also known.While most of the alkali-metal bronzes have been prepared at high temperatures,the organic-based vanadium bronzes are prepared at room temperature or slightly higher via intercalation reactions with vanadium pentoxide xerogels,V2O5?n H2O.The V2O5?n H2O host possesses a porous layered structure and is capable of intercalating a variety of neutral and charged guest species such as alkali-metal ions,3 alkylamines,4alcohols,5pyridine,6benzidine,7etc.The insertion of amines or metal complexes into V2O5hosts has also been reported.8The resulting intercalation compounds usually retain the lamellar structure with the guest species and water molecules occupying the interlayer regions.Partial reduction of V5+to V4+of the oxide layers has been observed to accompany the intercalation reactions with organic amines.In the cases of aniline9and thiophene,10the reduction of the vanadium oxide host,and the simultaneous oxidative polymerization of the guest molecules in the interlayer regions,have been observed.These intercalation compounds with reduced vanadium sites constitute an interesting class of organic-inorganic composite materials that can be viewed as molecular or polymer vanadium bronzes by analogy to alkali-metal bronzes.2However,the structural information about these intercalation compounds is very limited due to their amorphous or semicrystalline nature and lack of high-quality single crystals.

Hydrothermal techniques,in combination with organic tem-plates,have been recently demonstrated to be well suited for the synthesis and crystal growth of reduced oxomolybdenum and oxovanadium phosphates and vanadium phosphonates.A series of novel organically templated molybdenum and vana-dium phosphates and vanadium phosphonates with molecular, two-dimensional layered,and three-dimensional open-frame-work structures have been prepared under hydrothermal condi-tions.11In contrast,hydrothermal synthesis of vanadium oxides using organic templates remains relatively unexplored.12While there are many examples of alkali-metal vanadium oxide bronzes with three-dimensional or two-dimensional structures in which the alkali metals occupy the channels or the interlayer regions, analogous organically templated vanadium oxides with3-D open

*To whom all correspondence should be addressed.

?Texas A&M University.

?NEC Research Institute.

X Abstract published in Ad V ance ACS Abstracts,August1,1996.

(1)Murphy,D.W.;Christian,P.A.Science1979,205,651.

(2)Hagenmuller,P.In Non-Stoichiometric Compounds,Tungsten Bronzes,

Vanadium Bronzes and Related compounds;Bevan,D.J.,Hagen-muller,P.,Eds.;Pergamon Press:Oxford,U.K.,1973;Vol.1. (3)Lemordant,D.;Bouhaouss,A.;Aldebert,P.;Baffier,N.Mater.Res.

Bull.1986,21,273.

(4)Paul-Boucour,V.;Aldebert,P.Mater.Res.Bull.1983,18,1247.

(5)Aldebert,P.;Baffier,N.;Legendre,J.-J.;Livage,J.Re V.Chim.Miner.

1982,19,485.Aldebert,P.;Baffier,N.;Gharbi,N.;Livage,J.Mater.

Res.Bull.1981,16,949.Lemordant,D.;Bouhaouss,A.;Aldebert, P.;Baffier,N.J.Chim.Phys.Phys.-Chim.Biol.1986,83,105. (6)Ruiz-Hitzky,E.;Casal,B.J.Chem.Soc.,Faraday Trans.11986,82,

1597.

(7)Hasbah,H.;Tinet,D.;Crespin,M.M.;Erre,R.;Setton,R.;Van

Damme,H.J.Chem.Soc.,https://www.sodocs.net/doc/0513018785.html,mun.1985,935.

(8)Kanatzidis,M.;Marks,T.J.Inorg.Chem.1987,26,783and references

therein.

(9)Kanatzidis,M.;Wu,C.-G.J.Am.Chem.Soc.1989,111,4139.

(10)Kanatzidis,M.;Wu,C.-G.;Marcy,H.O.;DeGroot,D.C.;Kannewurf,

C.R.Chem.Mater.1990,2,222.

(11)Haushalter,R.C.;Mundi,L.A.Chem.Mater.1992,4,31.Soghomo-

nian,V.;Chen,Q.;Haushalter,R.C.;Zubieta,J.;O’Connor,C.J.

Science1993,259,1596.Soghomonian,V.;Chen,Q.;Haushalter,R.

C.;Zubieta,J.Angew.Chem.,Int.Ed.Engl.1993,32,610.Soghomo-

nian,V.;Chen,Q.;Haushalter,R.C.;Zubieta,J.Chem.Mater.1993, 5,1690.Soghomonian,V.;Chen,Q.;Haushalter,R.C.;Zubieta,J., Chem.Mater.1993,5,1595.Soghomonian,V.;Haushalter,R.C.;

Chen,Q.;Zubieta,J.Inorg.Chem.1994,33,1700.Zhang,Y.;

Clearfield,A.;Haushalter,R.C.J.Solid State Chem.1995,117,157.

Zhang,Y.;Clearfield,A.;Haushalter,R.C.Chem.Mater.1995,7, 1221.

(12)Huan,G.-H.;Johnson,J.W.;Jacobson,A.J.;Merola,J.S.J.Solid

State Chem.1991,91,385.Duan,C.-Y.;Tian,Y.-P.;Lu,Z.-L.;You, X.-Z.;Huang,X.-Y.Inorg.Chem.1995,34,1.

4950Inorg.Chem.1996,35,4950-4956

S0020-1669(95)01237-7CCC:$12.00?1996American Chemical Society

frameworks have not been observed so far.Inspired by our successful investigation into the hydrothermal synthesis of new reduced vanadium phosphates,we sought to explore the hydrothermal synthesis of new reduced vanadium oxides using organic templates.Along these lines,two novel layered vanadium oxides,(H3N(CH2)3NH3)[V4O10]13and(HN(C2H4)3-NH)[V6O14]?H2O,14have been isolated and structurally char-acterized by X-ray crystallography.While both compounds contain a layered structure with the organic cations occupying the interlayer regions,the oxide layers in the two structures differ substantially in their composition,connectivity,degree of reduction,and thus electronic and magnetic properties,which reflects the difference in the nature of the two organic cations. In addition,we have discovered a large class of layered vanadium oxide materials with metal coordination complexes (e.g.M(L)2:(M)Ni,Cu,Zn;L)ethylenediamine,1,3-diaminopropane)between the VO layers.15In an effort to further investigate the influence of organic templates on the structures of layered vanadium oxides,we have obtained R-(H3-NCH2CH2NH3)[V4O10](1a), -(H3NCH2CH2NH3)[V4O10](1b),

R-(H2N(C2H4)2NH2)[V4O10](2a),and -(H2N(C2H4)2NH2)-[V4O10](2b).The syntheses and single-crystal structures of these compounds are reported here.All of these compounds contain mixed-valence V5+/V4+oxide layers with organic cations occupying the interlayer space.

Experimental Section

Materials and Methods.Chemicals used were of reagent grade quality and were obtained from commercial sources and used without further purification.The powder X-ray diffraction patterns were obtained on a Scintag XDS2000diffractometer with Cu K R radiation (λ)1.5418?).Thermogravimetric analyses(TGA)were carried out with a Perkin-Elmer TGA7thermal analysis system at a heating rate of10°C/min under an N2atmosphere.The EDS analyses were performed on a Hitachi S-2700SEM.The hydrothermal reactions were carried out in Parr acid digestion bombs with23mL poly(tetrafluo-roethylene)liners.

Synthesis of r-and -(H3NCH2CH2NH3)[V4O10].A mixture of V2O5(0.173g),ethylenediamine(0.10mL),and H2O(10mL)with a mole ratio of1.0:1.57:585was sealed in a digestion bomb which was heated at170°C for121h.Black rod-shaped crystals(0.1g)were isolated after filtering,washing with water,and air-drying.Powder X-ray diffraction studies indicated that these crystals are a mixture of 1a and1b,even though they were quite similar in appearance.After examination of several crystals for single-crystal X-ray diffraction studies,the crystals were found to have two sets of distinctive unit cells which corresponded to1a and1b.The optimum conditions for preparation of a single phase of R-or -form have not been found.

Synthesis of r-and -(H2N(C2H4)2NH2)[V4O10].A hydrothermal reaction of0.216g of NaVO3,0.346g of H2O3PCH3,0.232g of piperazine,and10mL of H2O in a mole ratio of1.0:3.0:2.3:266at 170°C for47h yielded0.14g of thin black plates after filtering, washing with water,and air-drying.The presence of H2O3PCH3in the starting materials serves to increase the acidity of the solution.The pH of the solution before the reaction and at completion was around 7.Other acids such as HCl also serve in this capacity.The EDS analysis of these crystals showed the presence of only V.Powder X-ray diffraction studies indicated that these thin plates are a mixture of2a and2b.This was further confirmed by single-crystal X-ray diffraction studies on several single crystals selected,which were found to have two distinctive unit cells corresponding to2a and2b.

X-ray Crystallographic Study.In each of the four studies,a suitable crystal was mounted on a glass fiber.All measurements were made at room temperature on a Rigaku AFC7R diffractometer with graphite-monochromated Mo K R radiation and an18kW rotating anode generator.Cell constants and an orientation matrix for data collection were obtained from a least-squares refinement using the setting angles of24-25carefully centered reflections in the range20°<2θ<30°. Data were collected in the range5°<2θ<60°using theω-2θscan technique.In all cases only a unique portion of the reflections were collected.The intensities of three representative reflections which were measured after every150reflections remained constant throughout data collection.Empirical absorption corrections based onψ-scan measure-ments were applied.In the case of2b,an empirical absorption correction using the program DIFABS16was applied.The data were corrected for Lorentz and polarization effects,and the structures were solved by direct methods.The non-hydrogen atoms were refined aniso-tropically.All the hydrogen atoms were located from difference Fourier maps and included in the refinement with fixed positional and thermal parameters.Neutral atom scattering factors were taken from Cromer and Waber.17Anomalous dispersion effects were included,and the values for?f′and?f′′were those of Cromer.18All structures were refined on the basis of independent reflections with I g3σ(I)by full-matrix least squares using the teXsan program package.19Experimental crystallographic data for1a,1b,2a,and2b are listed in Table1. Results

Positional and thermal parameters of the atoms in the structures of1a are given in Table2,and selected bond distances and angles in Table3.Figure1shows the layered nature of the structure of1a,consisting of vanadium oxide layers with ethylenediammonium dications occupying the interlamellar space between the layers,and a view perpendicular to one of the vanadium oxide layers.Each oxide layer is constructed from equal numbers of VO4tetrahedra and VO5square pyramids. While the VO4tetrahedra are isolated from each other,the VO5 square pyramids exist in pairs sharing a common edge.Within a pair of square pyramids,the two apical oxygen atoms are oriented toward opposite sides of the plane of the layer.Each pair of the pyramids is linked to six VO4tetrahedra via corner sharing,forming a two-dimensional layer with a composition of V4O102-.Figure2shows the coordination environment of the V atoms in the asymmetric unit and the numbering scheme used in Table3.The V(1)O5group is a distorted square pyramid

(13)Zhang,Y.;O’Connor,C.J.;Clearfield,A.;Haushalter,R.C.Chem.

Mater.1996,8,595.

(14)Zhang,Y.;Clearfield,A.;Haushalter,R.C.J.Chem.Soc.,Chem.

Commun.1996,1055.

(15)Zhang,Y.;DeBord,J.R.D.;O’Connor,C.J.;Haushalter,R.C.;

Zubieta,J.;Clearfield,A.Angew.Chem.,Int.Ed.Engl.1996,35,989.(16)Walker,N.;Stuart,D.Acta Crystallogr.1983,A39,158.

(17)Cromer,D.;Waber,J.T.International Tables for X-ray Crystal-

lography;Kynoch Press:Bimingham,U.K.,1974;Vol.IV,Table

2.2A.

(18)Cromer,D.T.Reference16,Table2.3.1.

(19)teXsan:Texray Structural Analysis Package;Molecular Structure

Corp.,The Woodlands,TX,1992(revised).

Table1.Crystallographic Data for Oxides1a,1b,2a,and2b

1a1b2a2b empirical

formula

V2O5NCH5V2O5NCH5V2O5NC2H6V2O5NC2H6

fw212.94212.94225.96225.96

a(?) 6.602(2) 6.387(1) 6.3958(5)9.360(2)

b(?)7.638(2)7.456(2)8.182(1) 6.425(3)

c(?) 5.984(2) 6.244(2) 6.3715(7)10.391(2)

R(deg)109.55(3)99.89(2)105.913(9)90

(deg)104.749(2)102.91(2)104.030(8)105.83(1)

γ(deg)82.31(3)78.74(2)94.495(8)90

V(?3)274.6(2)281.7(1)307.29(7)601.2(3)

Z2224

space group P1h(No.2)P1h(No.2)P1h(No.2)P21/n(No.14) D c(g/cm3) 2.575 2.510 2.442 2.496

T(°C)20(120(120(120(1

λ(Mo K R)(?)0.71070.71070.71070.7107

μ(cm-1)33.4632.6229.9830.65

R a0.0300.0220.0330.033

R w a0.0350.0260.0400.036

a R)∑||F o|-|F c||/∑|F o|and R w)(∑w(|F o|-|F c|)2/∑wF o2)1/2.

Layered Vanadium Oxides Inorganic Chemistry,Vol.35,No.17,19964951

with the shortest bond distance of 1.607(3)?formed with the terminal oxygen O(3),while the base of the square pyramid has four V -O bond distances in the range of 1.924(2)-1.996-(2)?.The V(2)O 4group has a tetrahedral configuration with V -O bond distances in the range of 1.626(3)-1.824(2)?,and fairly regular bond angles in the range of 107.9(1)-110.1(1)°.While the square-pyramidal vanadium has an oxidation state of +4,the tetrahedral vanadium is indicative of an oxidation state of +5.This assignment of oxidation states is consistent with the overall charge balance of the compound and is confirmed by the valence sum calculation,20which gave a value of 4.1for V(1)and 4.7for V(2).There are three types of oxygen atoms in terms of bonding:O(3)and O(5)are terminal

oxygens,O(1)and O(2)are two-coordinate,and O(4)is three-coordinate.An interesting feature of the structure of 1a is that the ethylenediammonium dications in the interlayer space lie parallel with respect to the mean plane of vanadium oxide layers.The parallel packing of the amine molecules in the interlayer space is also reported for the superconducting host 2H-TaS 2intercalated with C n H 2n +1NH 2(n <4),although the structural details are not known.21The ethylenediammonium cations in 1a form several strong hydrogen bonds with the adjacent vanadium oxide layers.The N atoms of the templates are hydrogen-bonded to the O atoms of the VO layers,as indicated by the contacts with oxygen atoms O(2)and O(3)from the upper

(20)Brown,I.D.;Altermatt,D.Acta Crystallogr.1985,B41,244.

(21)Gamble,F.R.;Osiecki,J.M.;Cais,M.;Pisharody,R.;DiSalvo,F.

J.;Geballe,T.H.Science 1971,174,

493.

Figure 1.(left)View of the structure of 1a down the c axis showing the layers of vanadium oxide and the ethylenediammonium dications in the interlamellar space.(right)View perpendicular to the oxide layer in the structure of 1a .Table 2.Positional Parameters and B (eq)Values (?2)for Oxides 1a ,1b ,2a ,and 2b atom x y z B (eq)a atom x y z B (eq)a Compound 1a V(1)0.68007(8)0.37874(8)0.60083(10)0.895(10)O(4)0.3778(3)0.4529(3)0.5962(4) 1.19(4)V(2) 1.23102(9)0.42999(8)0.80443(10)0.919(10)O(5) 1.3031(4)0.2373(4)0.8694(5) 1.95(5)O(1)0.9712(4)0.4335(4)0.6784(4) 1.86(5)N(1)0.2887(5)-0.0049(4)0.1181(6) 2.02(6)O(2)0.7184(4)0.3819(3)0.9318(4) 1.33(4)C(1)0.0653(6)

0.0397(5)

0.1265(7)

1.89(7)

O(3)0.6690(4)0.1650(4)0.4319(5) 1.92(5)

Compound 1b V(1)0.71619(6)0.56232(5)-0.15465(6)0.790(7)O(4)0.6998(3)

0.7714(2)-0.0226(3) 1.76(4)V(2)0.84493(6)0.38780(5)-0.66948(6)0.795(7)O(5)0.8237(3)0.3933(2)0.0175(3) 1.08(3)O(1)0.8842(3)0.1741(2)-0.6354(3) 1.86(4)N(1)0.7110(4)0.0611(3)0.7491(4) 1.95(5)O(2)0.8677(3)0.5387(2)-0.3760(3) 1.15(3)C(1)0.5048(5)0.0845(3)0.5851(4) 1.79(5)

O(3)0.4631(3)0.5232(3)-0.2821(3) 1.43(3)

Compound 2a V(1)0.8050(1)0.39740(10)0.8032(1)0.79(1)O(4)0.7833(5)0.4113(4)0.5020(5) 1.29(6)V(2)0.2577(1)0.43868(10)0.6453(1)0.83(1)O(5)0.7635(6)0.1930(5)0.7704(6) 1.95(8)O(1)0.5286(5)0.4758(5)0.7786(6) 1.69(7)N(1)0.4884(8)0.0984(6)0.2174(7) 1.89(9)O(2) 1.1186(5)0.4754(4)0.8710(5) 1.09(6)C(1)0.6955(9)0.0392(8)0.1873(9) 2.1(1)O(3)0.1954(6)0.2429(5)0.4768(6) 1.96(7)C(2)0.6478(9)-0.1229(7)-0.008(1) 2.1(1)Compound 2b V(1)0.35340(6)0.61669(8)0.44859(5)0.783(9)O(4)0.3667(3)0.9131(4)0.4599(2) 1.31(4)V(2)0.59045(6)0.90167(8)0.64969(5)0.887(9)O(5)0.4852(3)0.9930(4)0.7373(3) 1.66(5)O(1)0.5437(3)0.6342(4)0.5856(2) 1.19(4)N(1) 1.0211(5)0.2034(6)0.4557(5) 3.09(9)O(2)0.2592(3)0.6431(4)0.2607(3) 1.31(4)C(1) 1.1112(5)0.1303(7)0.5865(5) 2.35(8)O(3)

0.2250(3)

0.5502(4)

0.5185(3)

1.59(5)C(2)

0.9658(6)

0.0384(8)

0.3600(4)

2.86(9)

a

B eq )8/3π2(U 11(aa *)2+U 22(bb *)2+U 33(cc *)2+2U 12aa *bb *cos γ+2U 13aa *cc *cos +2U 23bb *cc *cos R ).

4952Inorganic Chemistry,Vol.35,No.17,1996Zhang et al.

oxide layer and O(5)from the lower oxide layer,with N---O distances in the range of 2.759(4)-2.890(4)?.

The positional and thermal parameters of the atoms in the structure of 1b are given in Table 2,and selected bond distances and angles in Table 4.As shown in Figure 3,oxide 1b has a layered structure similar to that found in 1a .The oxide layer is constructed from VO 4tetrahedra and VO 5square pyramids in a similar manner.The coordination environment around the two independent V atoms in the asymmetric unit and the numbering scheme used in Table 4is shown in Figure 4.The V(1)O 4tetrahedron has bond distances in the range of 1.630

(2)-1.824(2)?and bond angles in the range of 105.64(8)-111.27(8)°.The V(2)O 5square pyramid has bond distances in the range of 1.608(2)-1.970(2)?.The major difference between the structures of 1a and 1b lies in the packing of the ethylenediammonium cations in the interlayer regions.In the structure of 1b ,each ethylenediammonium cation is centered at an inversion center at (1/2,0,1/2)and stretches along the [101]direction.In the structure of 1a ,however,each ethylenediam-monium cation is centered at an inversion center at (0,0,0)and is oriented in a direction nearly parallel to the a axis.This results in the expansion of the a axis and the shrinkage of the c axis in the structure of 1a compared to those in the structure of 1b .In addition,while the ethylenediammonium cations in the structure of 1a are oriented almost parallel with respect to the oxide layers,those in the structure of 1b are oriented with a small tilt angle with respect to the oxide layers.As a result,oxide 1b has a larger interlayer distance of 7.246?,compared to 7.187?for 1a .

The interlayer distance is increased to 7.773?when the interlayer ethylenediammonium cations are replaced by proto-nated piperazine cations as in the case of 2a .However,the structure of the vanadium oxide layers of V 4O 102-is retained as shown in Figure 5.Figure 6shows the coordination environment around the two V atoms in the asymmetric unit

Table 3.Selected Bond Distances (?)and Angles (deg)in the Structure of 1a V(1)-O(1) 1.928(3)V(1)-O(2) 1.924(2)V(1)-O(3) 1.607(3)V(1)-O(4) 1.996(2)V(1)-O(4A) 1.961(3)V(2)-O(1) 1.689(2)V(2)-O(2A) 1.735(2)V(2)-O(4C) 1.824(2)V(2)-O(5) 1.626(3)N(1)-C(1) 1.479(5)C(1)-C(1A) 1.505(7)O(1)-V(1)-O(2)87.6(1)O(1)-V(1)-O(3)105.3(1)O(1)-V(1)-O(4)152.5(1)O(1)-V(1)-O(4A)87.7(1)O(2)-V(1)-O(3)107.4(1)O(2)-V(1)-O(4)88.5(1)O(2)-V(1)-O(4A)141.0(1)O(3)-V(1)-O(4)101.8(1)O(3)-V(1)-O(4A)111.2(1)O(4)-V(1)-O(4A)78.4(1)O(1)-V(2)-O(2A)109.0(1)O(1)-V(2)-O(4C)110.1(1)O(1)-V(2)-O(5)109.6(1)O(2A)-V(2)-O(4C)107.9(1)O(2A)-V(2)-O(5)109.7(1)O(4C)-V(2)-O(5)

110.6(1)

N(1)-C(1)-C(1)

108.2(4)

Figure 2.ORTEP drawing of the asymmetric unit in the structure of 1a showing the coordination environment around the V atoms.The atoms labeled with A and C are symmetry-related

atoms.

Figure 3.(left)View of the structure of 1b down the c axis showing the layers of vanadium oxide and the ethylenediammonium dications in the interlamellar space.(right)View perpendicular to the oxide layer in the structure of 1b .

Table 4.Selected Bond Distances (?)and Angles (deg)in the Structure of 1b V(1)-O(2) 1.824(2)V(1)-O(3) 1.691(2)V(1)-O(4) 1.630(2)V(1)-O(5) 1.736(2)V(2)-O(1) 1.607(2)V(2)-O(2) 1.970(2)V(2)-O(2A) 1.964(2)V(2)-O(3A) 1.923(2)V(2)-O(5A) 1.936(2)N(1)-C(1) 1.478(4)C(1)-C(1A) 1.504(5)O(2)-V(1)-O(3)105.64(8)O(2)-V(1)-O(4)110.36(8)O(2)-V(1)-O(5)111.27(8)O(3)-V(1)-O(4)108.93(9)O(3)-V(1)-O(5)106.78(9)O(4)-V(1)-O(5)113.47(9)O(1)-V(2)-O(2)108.51(9)O(1)-V(2)-O(2A)107.37(9)O(1)-V(2)-O(3A)108.23(9)O(1)-V(2)-O(5A)106.64(8)O(2)-V(2)-O(2A)77.54(7)O(2)-V(2)-O(3A)87.60(7)O(2)-V(2)-O(5A)144.38(7)O(2A)-V(2)-O(3A)144.18(8)O(2A)-V(2)-O(5A)86.83(7)O(3A)-V(2)-O(5A)

86.80(7)

N(1)-C(1)-C(1A)

109.8(3)

Layered Vanadium Oxides

Inorganic Chemistry,Vol.35,No.17,19964953

and the numbering scheme used in Table 5in which selected bond distances and angles are listed.The V(2)O 4tetrahedron is quite regular,with bond distances in the range of 1.621(4)-1.837(3)?and bond angles in the range of 105.7(2)-112.6-(2)°.The V(1)O 5group has a distorted-square-pyramidal configuration with bond distances in the range of 1.620(4)-1.968(3)?.These configurations are typical for V 5+and V 4+.Valence sum calculations confirmed the oxidation state of the V atoms,which gave a value of 4.06for V(1)and 4.75for V(2).The piperazine cations are centered at an inversion center at (1/2,0,0)with a chair conformation.The N atoms are involved in hydrogen bonds with the terminal oxygens O(3)and O(5)from the adjacent oxide layers above and below with N---O distances in the range of 2.801(6)-2.901(6)?.

The structure of 2b is shown in Figure 7,positional and thermal parameters are listed in Table 2,and selected bond distances and angles are given in Table 6.It has monoclinic symmetry,and the oxide layers run parallel to the (101)plane with an interlayer distance of 7.838?.The oxide layers are constructed from pairs of edge-sharing V 4+O 5square pyramids connected together by V 5+O 4tetrahedra via corner sharing.However,the pairs of the edge-sharing square pyramids are not uniformly oriented within the layer as they are in the structures of 1a ,1b ,and 2a .The rows of edge-sharing VO 5square pyramids along the b axis have two different orientations and only repeat every other row along the [010]direction.Figure 8shows the coordination environment around the V atoms.The V(1)O 5distorted square pyramid has bond distances in the range of 1.622(3)-1.959(2)?.The V(2)O 4tetrahedron has bond distances in the range of 1.623(3)-1.852(3)?and bond angles in the range of 102.6(1)-117.8(1)°.As seen from these bond angles,the distortion of the tetrahedron in this case is more profound as compared to those in the structures of 1a ,1b ,and 2a .Close examination of the oxide layer reveals that each V(2)-O 4tetrahedron has an additional weak V---O interaction with O(4)at a distance of 2.454?from another tetrahedron as shown by the arrows in Figure 7.This interaction constitutes about 18%of a V -O single bond and results in the expansion of the O(1)-V(2)-O(4)bond angle (117.8°)and the shrinkage of the O(2)-V(2)-O(4)bond angle (102.6°).However,there is no such weak V---O interaction in any of the structures of 1a ,1b ,and 2a ,where more regular VO 4tetrahedral bond angles are observed.The protonated piperazine cations which are centered at inversion centers at (1/2,1/2,0)and (0,0,1/2)have different orientations with respect to the oxide layers.The N atoms are involved in hydrogen bonds with the terminal oxygen atoms of O(3)and O(5)from the adjacent oxide layers above and below with N---O distances in the range of 2.867(5)-2.941(5)?.

Thermogravimetric analysis (TGA)of these oxides (since it was not possible to separate phase 1a from 1b or phase 2a from 2b ,the solid samples used in TGA were actually a mixture of 1a and 1b ,or a mixture of 2a and 2b )showed,in both cases,no weight loss until ca.300°C,where a major weight loss begins to occur.This remarkable thermal stability of these oxides can be attributed to the strong hydrogen bond interactions of these organic molecules with the oxide layers.In the case of the mixture of 1a and 1b ,the major weight loss in the temperature range of 310-380°C was about 16%,and the sample continued to lose gradually 10%of its weight up to 610°C.The first weight loss corresponds to the release of ethylenediamine with a calculated value of 14.1%.The TGA curve of the mixture of 2a and 2b shows the first major weight loss of 22%in the temperature range of 300-350°C followed by a second loss of 4%at 400°C and then no weight loss up to 800°C,the highest temperature measured.The first weight loss corresponds to the release of piperazine with a calculated value of 19.0%.The nature of the second weight loss is not clear.However,it is likely that when the organic component is released,it leaves the protons behind attached to the oxygen atoms of the oxide layers,which are then released as water molecules at high

temperatures.

Figure 4.ORTEP drawing of the asymmetric unit in the structure of 1b showing the coordination environment around the vanadium atoms.The atoms labeled with A and C are symmetry-related

atoms.

Figure 5.(top)View of the structure of 2a down the a axis showing the layers of vanadium oxide and the protonated piperazine dications in the interlayer regions.The hydrogen atoms are omitted for clarity.(bottom)View perpendicular to the oxide layer in the structure of 2a .

4954Inorganic Chemistry,Vol.35,No.17,1996Zhang et al.

Discussion

Very recently Riou and co-workers 22have isolated three amine intercalated vanadates from hydrothermal reactions of mixtures of V 2O 5-SiO 2-HF -amine -H 2O,two of which correspond to compounds 1b and 2a described here.The oxide layers in the four structures discussed here are compositionally and structurally related to that of V 2O 5,which has a pseudo-layered structure.23A schematic representation of the layer of V 2O 5is shown in Figure 9.All the vanadium atoms in the structure of V 2O 5are in the +5oxidation state and have square-pyramidal configurations.These square pyramids share two edges with each other to form double chains along the crystallographic c direction,and these double chains of square pyramids are linked via corner sharing along the a direction perpendicular to the chains to form a two-dimensional layer.If one additional V -O bond is formed for each VO 4tetrahedron (as indicated by the arrows in Figure 7)in the oxide layers of [V 4O 10]2-,then all the vanadium atoms would have a square-pyramidal configuration,and all of these square pyramids share

two edges to form double chains similar to those in the structure of V 2O 5.The structural correlations of [V 4O 10]2-with V 2O 5have been discussed in more detail by Fe ′rey.22It should be pointed out that it is not necessary to use V 2O 5as a starting material for the preparation of 1a and 1b which bear structural features similar to those of the parent compound V 2O 5.They can also be prepared using other vanadium sources such as CsVO 3,KVO 3,etc.The V 4+O 5square-pyramidal and V 5+O 4tetrahedral coordination configurations have often been observed

(22)Riou,D.;Fe ′rey,G.J.Solid State Chem .1995,120,137.Riou,D.;

Fe ′rey,G.Inorg.Chem .1995,34,6520.

(23)Enjalbert,R.;Galy,J.Acta Crystallogr .1986,C42,

1467.

Figure 6.ORTEP drawing of the asymmetric unit in the structure of 2a showing the coordination environment around the V atoms.The atoms labeled with A and C are symmetry-related atoms.Table 5.Selected Bond Distances (?)and Angles (deg)in the Structure of 2a V(1)-O(1) 1.913(3)V(1)-O(2) 1.961(3)V(1)-O(2A) 1.968(3)V(1)-O(4) 1.926(3)V(1)-O(5) 1.620(4)V(2)-O(1) 1.697(3)V(2)-O(2C) 1.837(3)V(2)-O(3) 1.621(4)V(2)-O(4A) 1.737(3)N(1)-C(1) 1.482(7)N(1)-C(2A) 1.482(7)C(1)-C(2) 1.498(8)O(1)-V(1)-O(2)143.2(2)O(1)-V(1)-O(2A)87.1(1)O(1)-V(1)-O(4)87.6(1)O(1)-V(1)-O(5)107.3(2)O(2)-V(1)-O(2A)78.0(1)O(2)-V(1)-O(4)86.6(1)O(2)-V(1)-O(5)109.3(2)O(2A)-V(1)-O(4)146.1(1)O(2A)-V(1)-O(5)109.2(2)O(4)-V(1)-O(5)104.3(2)O(1)-V(2)-O(2C)106.0(1)O(1)-V(2)-O(3)108.4(2)O(1)-V(2)-O(4A)105.7(2)O(2C)-V(2)-O(3)112.6(2)O(2C)-V(2)-O(4A)111.6(2)O(3)-V(2)-O(4A)112.1(2)C(1)-N(1)-C(2A)112.1(4)N(1)-C(1)-C(2)

109.8(4)

N(1A)-C(2)-C(1)

111.0(4)

Figure 7.(top)View of the structure of 2b down the b axis showing the layers of vanadium oxide and the protonated piperazine dications in the interlayer regions.(bottom)View perpendicular to the oxide layer in the structure of 2b .

Table 6.Selected Bond Distances (?)and Angles (deg)in the Structure of 2b V(1)-O(1) 1.956(2)V(1)-O(1A) 1.959(2)V(1)-O(2) 1.918(3)V(1)-O(3) 1.622(3)V(1)-O(4) 1.910(3)V(2)-O(1) 1.852(3)V(2)-O(2A) 1.707(3)V(2)-O(4A) 1.768(2)V(2)-O(5) 1.623(3)N(1)-C(1) 1.467(6)N(1)-C(2) 1.449(6)C(1)-C(2A) 1.491(6)O(1)-V(1)-O(1A)77.5(1)O(1)-V(1)-O(2)144.1(1)O(1)-V(1)-O(3)109.1(1)O(1)-V(1)-O(4)82.4(1)O(1A)-V(1)-O(2)90.0(1)O(1A)-V(1)-O(3)109.0(1)O(1A)-V(1)-O(4)143.6(1)O(2)-V(1)-O(3)106.7(1)O(2)-V(1)-O(4)88.8(1)O(3)-V(1)-O(4)106.2(1)O(1)-V(2)-O(2)99.8(1)O(1)-V(2)-O(4A)117.8(1)O(1)-V(2)-O(5)114.7(1)O(2A)-V(2)-O(4A)102.6(1)O(2A)-V(2)-O(5)105.9(1)O(4A)-V(2)-O(5)113.4(1)C(1)-N(1)-C(2)114.1(4)N(1)-C(1)-C(2A)

111.3(3)

N(1)-C(2)-C(1A)

113.2(4)

Layered Vanadium Oxides Inorganic Chemistry,Vol.35,No.17,19964955

in the structures of relatively alkali-metal-rich vanadium oxide bronzes such as Cs 2V 5O 13,24A 2V 3O 8(A )K,Rb,Cs NH 4),25CsV 2O 5,26and A 2V 4O 9(A )Rb,Cs).27The oxide layers in the structures of 1a,1b,2a,and 2b are similar to those in the structure of CsV 2O 5,26where the Cs +cations lie between the vanadium oxide layers.However,the terminal oxygen atoms of the VO 4tetrahedra in the structure of CsV 2O 5are oriented in a different way toward the opposite sides of the oxide layers.

In the intercalation reactions of V 2O 5?n H 2O xerogel with alkylamines C n H 2n +1NH 2(n )1-18),4it was found that the intercalates usually contain 0.3-0.4mol of alkylamines/mol of V 2O 5.The alkyl chains of the amines in the interlayer regions were found to be oriented parallel,then tilted,and finally perpendicular to the host layers as the alkyl chain length increased.The intercalation mechanism probably involves a host-guest charge transfer.Partial reduction of V 5+to V 4+of the host layers has been also found in the intercalation reactions with ammonia,6pyridine,6benzidine,7and cobaltocenium cations Co(C 5H 5)2+.28It is interesting to note that an upper limit of 0.5mol of alkylamine can be intercalated per mole of V 2O 5,as deduced from steric considerations.This turned out to be the case in the structures of oxides 1a,1b,2a,and 2b and the previously characterized sample of (H 3N(CH 2)3NH 3)[V 4O 10].13,22The oxide (H 3N(CH 2)3NH 3)[V 4O 10]has a layered structure similar to those of 1a and 1b .The interlayer regions are occupied by protonated diaminopropane cations.The oxide layers are constructed from VO 4and VO 5in a similar fashion.This compound undergoes an antiferromagnetic ordering at 25K resulting from the antiferromagnetic d 1-d 1coupling between the two edge-sharing V 4+O 5square pyramids.In the structure of (HN(C 2H 4)3NH)[V 6O 14]?H 2O,14however,the oxide layers are constructed from infinite zigzag chains of edge-sharing V 4+O 5square pyramids running parallel to the b axis,with their terminal vanadyl groups oriented in pairs toward opposite sides of the layers.These infinite chains are connected together by V 5+O 4tetrahedra along the direction of the c axis,giving a layer composition of [(V 5+)2(V 4+)4O 14]2-.In spite of the fact that this compound contains two thirds of the vanadium atoms in the 4+oxidation state,an EPR signal was not observed.Preliminary magnetization measurements showed that it was essentially diamagnetic.Magnetic properties similar to those of (H 3N(CH 2)3NH 3)[V 4O 10]would be expected for 1a ,1b ,2a ,2b ,considering their structural similarities.Unfortunately,we have not been able to prepare the oxides (H 3N(CH 2)2-NH 3)[V 4O 10]and (H 2N(C 2H 4)2NH 2)[V 4O 10]in a single phase of R -or -form,preventing us from performing a comparison study on the magnetic properties of these compounds.Acknowledgment.The work at Texas A&M University was supported by the National Science Foundation under Grant No.DMR-9107715,for which grateful acknowledgment is made.

Supporting Information Available:Tables of crystallographic data,including additional experimental procedures,atomic coordinates for the hydrogen atoms,bond distances and angles involving the hydrogen atoms,and anisotropic thermal parameters for the non-hydrogen atoms (Tables S1-S5)(5pages).Ordering information is given on any current masthead page.IC951237C

(24)Waltersson,K.;Forslund,B.Acta Crystallogr.1977,B33,784.(25)Liu,G.;Greedan,J. E.J.Solid State Chem .1995,114,499.

Andrukaitis,E.;Jacobs,P.W.M.;Lorimer,J.W.Can.J.Chem .1990,31,101.

(26)Waltersson,K.;Forslund,B.Acta Crystallogr.1977,B33,789.(27)Liu,G.;Greedan,J.E.J.Solid State Chem .1995,115,174.

(28)Aldebert,P.;Paul-Boncour,V.Mater.Res.Bull .1983,18,

1263.

Figure 8.ORTEP drawing of the asymmetric unit in the structure of 2b showing the coordination environment around the vanadium atoms.The hydrogen atoms are omitted for clarity.The atoms labeled with A and C are symmetry-related

atoms.

Figure 9.Polyhedral representation of the V 2O 5layer in the crystal structure of V 2O 5.

4956Inorganic Chemistry,Vol.35,No.17,1996Zhang et al.

聚乙烯生产工艺讲课讲稿

聚乙烯生产工艺

聚乙烯结构:CH2=CH2+CH2=CH2+……-CH2-CH2-CH2-CH2…. 简称PE,是乙烯经聚合制得的一种热塑性树脂。聚乙烯是结构简单的高分子,也是应用最广泛的高分子材料。它是由重复的?CH2?单元连接而成的。聚乙烯是通过乙烯(CH2=CH2)的加成聚合而成的。 聚乙烯(PE)是通用合成树脂中产量最大的品种,主要包括低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)及一些具有特殊性能的产品。用途十分广泛,主要用来制造薄膜、容器、管道、单丝、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料。也适用于各种浆点、粉点、撒粉、涂布机及喷胶机产品;广泛用于服装、服装面料复合、制鞋、包装、书籍、无线装订、儿童玩具、家电等行业。合剂的首选材料。 聚合实施方法:淤浆法、溶液法、气相法 产品密度大小:高密度、中密度、低密度、线性低密度 产品分子量:低分子量、普通分子量、超高分子量 生产方法:高压法、低压法、中压法 高压法用来生产低密度聚乙烯,这种方法开发得早,用此法生产的聚乙烯至今约占聚乙烯总产量的2/3,但随着生产技术和催化剂的发展,其增长速度已大大落后于低压法。低压法就其实施方法来说,有淤浆法、溶液法和气相法。 淤浆法主要用于生产高密度聚乙烯,而溶液法和气相法不仅可以生产高密度聚乙烯,还可通过加共聚单体,生产中、低密度聚乙烯,也称为线型低密度聚乙烯。近年来,各种低压法工艺发展很快。本设计中采用高压淤浆法合成低密度聚乙烯。

聚乙烯有优异的化学稳定性,室温下耐盐酸、氢氟酸、磷酸、甲酸、胺类、氢氧化钠、氢氧化钾等各种化学物质,硝酸和硫酸对聚乙烯有较强的破坏作用。聚乙烯容易光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解,碳黑对聚乙烯有优异的光屏蔽作用。受辐射后可发生交联、断链、形成不饱和基团等反映。 聚乙烯的生产工艺 1主要原料 乙烯是最简单的烯烃,常压下是略带芳香气味的无色可燃性气体。 乙烯几乎不溶于水,化学性质活泼。与空气混合能产生爆炸性混合物。是石油化工的基本原料。 乙烯来源于液化天然气、液化石油气、轻柴油、重油或原油等经裂解产生的裂解气中分出;也可由焦炉煤气分出;还可由乙醇脱水制得。 2高压聚合生产工艺 乙烯高压聚合是以微量氧或有机过氧化物为引发剂,将乙烯压缩至 147.1~245.2MPa高压下,在150~290℃的条件下,乙烯经自由基聚合反应转变成为聚乙烯的聚合方法。也是工业上采用自由基型气相本体聚合的最典型方法,海事工业上生产聚乙烯的第一种方法,至今仍然是生产低密度聚乙烯的主要生产方法 3聚合原理 乙烯在高压下按自由基聚合反应机理进行聚合。由于反应温度高,容易发生向大分子链转移反应,产物为带有较多长支链和短支链的线型大分子。经测试,大分子链中平均1000个碳原子的支链上带有20~30个支里链。同时由于支

聚乙烯生产工艺

聚乙烯生产工艺文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

聚乙烯结构:CH2=CH2+CH2=CH2+……-CH2-CH2-CH2-CH2…. 简称PE,是乙烯经聚合制得的一种热塑性树脂。聚乙烯是结构简单的高分子,也是应用最广泛的高分子材料。它是由重复的CH2单元连接而成的。聚乙烯是通过乙烯(CH2=CH2)的加成聚合而成的。 聚乙烯(PE)是通用合成树脂中产量最大的品种,主要包括低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)、高密度聚乙烯(HDPE)及一些具有特殊性能的产品。用途十分广泛,主要用来制造薄膜、容器、管道、单丝、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料。也适用于各种浆点、粉点、撒粉、涂布机及喷胶机产品;广泛用于服装、服装面料复合、制鞋、包装、书籍、无线装订、儿童玩具、家电等行业。合剂的首选材料。 聚合实施方法:淤浆法、溶液法、气相法 产品密度大小:高密度、中密度、低密度、线性低密度 产品分子量:低分子量、普通分子量、超高分子量 生产方法:高压法、低压法、中压法 高压法用来生产低密度聚乙烯,这种方法开发得早,用此法生产的聚乙烯至今约占聚乙烯总产量的2/3,但随着生产技术和催化剂的发展,其增长速度已大大落后于低压法。低压法就其实施方法来说,有淤浆法、溶液法和气相法。 淤浆法主要用于生产高密度聚乙烯,而溶液法和气相法不仅可以生产高密度聚乙烯,还可通过加共聚单体,生产中、低密度聚乙烯,也称为线型低密度聚乙烯。近年来,各种低压法工艺发展很快。本设计中采用高压淤浆法合成低密度聚乙烯。 聚乙烯有优异的化学稳定性,室温下耐盐酸、氢氟酸、磷酸、甲酸、胺类、氢氧化钠、氢氧化钾等各种化学物质,硝酸和硫酸对聚乙烯有较强的破坏作用。聚乙烯容易光

聚四氟乙烯大全

聚四氟乙烯是四氟乙烯的聚合物。英文缩写为PTFE。聚四氟乙烯的基本结构为. - CF2 - CF2 - CF2 - CF2 - CF2 - CF2 - CF2 - CF2 - CF2 - CF2 -. 聚四氟乙烯广泛应用于各种需要抗酸碱和有机溶剂的,它本身对人没有毒性,但是在生产过程中使用的原料之一全氟辛酸铵(PFOA)被认为可能具有致癌作用。 聚四氟乙烯相对分子质量较大,低的为数十万,高的达一千万以上,一般为数百万(聚合度在104数量级,而聚乙烯仅在103)。一般结晶度为90~95%,熔融温度为327~342℃。聚四氟乙烯分子中CF2单元按锯齿形状排列,由于氟原子半径较氢稍大,所以相邻的CF2单元不能完全按反式交叉取向,而是形成一个螺旋状的扭曲链,氟原子几乎覆盖了整个高分子链的表面。这种分子结构解释了聚四氟乙烯的各种性能。温度低于19℃时,形成13/6螺旋;在19℃发生相变,分子稍微解开,形成15/7螺旋。 虽然在全氟碳化合物中碳-碳键和碳-氟键的断裂需要分别吸收能量346.94和484.88kJ/mol,但聚四氟乙烯解聚生成1mol四氟乙烯仅需能量171.38kJ。所以在高温裂解时,聚四氟乙烯主要解聚为四氟乙烯。聚四氟乙烯在260、370和420℃时的失重速率(%)每小时分别为1×10-4、4×10-3和9×10-2。可见,聚四氟乙烯可在260℃长期使用。由于高温裂解时还产生剧毒的副产物氟光气和全氟异丁烯等,所以要特别注意安全防护并防止聚四氟乙烯接触明火。 力学性能它的摩擦系数极小,仅为聚乙烯的1/5,这是全氟碳表面的重要特征。又由于氟-碳链分子间作用力极低,所以聚四氟乙烯具有不粘性。 聚四氟乙烯在-196~260℃的较广温度范围内均保持优良的力学性能,全氟碳高分子的特点之一是在低温不变脆。 耐化学腐蚀和耐候性除熔融的碱金属外,聚四氟乙烯几乎不受任何化学试剂腐蚀。例如在浓硫酸、硝酸、盐酸,甚至在王水中煮沸,其重量及性能均无变化,也几乎不溶于所有的溶剂,只在300℃以上稍溶于全烷烃(约0.1g/100g)。聚四氟乙烯不吸潮,不燃,对氧、紫外线均极稳定,所以具有优异的耐候性。 电性能聚四氟乙烯在较宽频率范围内的介电常数和介电损耗都很低,而且击穿电压、体积电阻率和耐电弧性都较高。 耐辐射性能聚四氟乙烯的耐辐射性能较差(104拉德),受高能辐射后引起降解,高分子的电性能和力学性能均明显下降。 聚合聚四氟乙烯由四氟乙烯经自由基聚合而生成。工业上的聚合反应是在大量水存在下搅拌进行的,用以分散反应热,并便于控制温度。聚合一般在40~80℃,3~26千克力/厘米2压力下进行,可用无机的过硫酸盐、有机过氧化物为引发剂,也可以用氧化还原引发体系。每摩尔四氟乙烯聚合时放热171.38kJ。分散聚合须添加全氟型的表面活性剂,例如全氟辛酸或其盐类。

聚四氟乙烯各个领域应用

聚四氟乙烯各个领域应用 四氟乙烯制品是由聚四氟乙烯树脂,用模具冷压后烧结而成,具有优良的耐腐蚀性,良好的自润滑性和不粘连性。故制品几乎耐所有化学介质,且具有耐磨、耐压、摩擦系数低等特性。 它广泛应用于石油、化工冶金机械、交通医药食品、电力等诸多领域中。 聚四氟乙烯可采用压缩或挤出加工成型;也可制成水分散液,用于涂层、浸渍或制成纤维。  聚四氟乙烯在原子能、国防、航天、电子、电气、化工、机械、仪器、仪表、建筑、纺织、金属表面处理、制药、医疗、纺织、食品、冶金冶炼等工业中广泛用作耐高低温、耐腐蚀材料,绝缘材料,防粘涂层等,使之成为不可取代的产品。  聚四氟乙烯具有杰出的优良综合性能,耐高温,耐腐蚀、不粘、自润滑、优良的介电性能、很低的摩擦系数。用作工程塑料,可制成聚四氟乙烯管、棒、带、板、薄膜等,一般应用于性能要求较高的耐腐蚀的管道、容器、泵、阀以及制雷达、高频通讯器材、无线电器材等。在PTFE中加入任何可以承受PTFE烧结温度的填充剂,机械性能可获得大大的改善,同时保持PTFE其它优良性能。填充的品种有玻璃纤维、金属、金属化氧化物、石墨、二硫化钼、碳纤纤、聚酰亚胺、EKONOL…等,耐磨耗、极限PV值可提高1000倍。 聚四氟乙烯管材选用悬浮聚合聚四氟乙烯树脂经柱塞挤压加工制成。在已知塑料中聚四氟乙烯具有最好的耐化学腐蚀性能及介电性能

。聚四氟乙烯编织盘根是一种良好的动密封材料,是由膨体聚四氯乙烯带条编织而成,具有低摩擦系数、耐磨、耐化学腐蚀、密封性良好、不水解、不变硬等优良性能。用于各种介质中工作的衬垫密封件和润滑材料,以及在各种频率下使用的电绝缘件、电容器介质、导线绝缘、电器仪表绝缘等。聚四氟乙烯 薄膜适用于作电容器介质、 特种电缆的绝缘层、导线绝缘、电器仪表绝缘及密封衬垫,还可做不粘带、密封带、脱模、密封圈等。 此外,生活中用的不粘锅的内衬也使用聚四氟乙烯制作的,就是利用了聚四氟乙烯耐高温,不粘的特点。

聚乙烯塑料生产工艺

前言 塑料工业是一门新兴的工业。从十九世纪中叶以后,以樟脑和硝酸纤维素混合制得的可塑性物质为塑料工业的诞生开辟了道路。二十世纪以来,人们用化学合成的方法,制成了一系列具有天然树脂性能的合成树脂。从此,塑料工业便开始迅速发展起来,塑料成为国民经济各个领域中不可缺少的材料。当前,塑料工业已是世界上发展最迅速的工业领域之一。1950 年全世界塑料产量为150万吨,1960年发展到690万吨,1970年达到3000万吨,1979年达到6344万吨。据国外预测,到1985年,全世界塑料的总产量可达1亿吨,到2000年世界塑料产量将超过3.5亿吨。在可以预见的未来,全世界可生产的塑料不仅在体积上将超过钢铁,而且在重量上也将于钢铁相当。未来的世界将是一个“塑料的世界”。聚乙烯具有优良的耐低温性,耐化学药品的侵蚀性,突出的电源绝缘性,同时并能耐高压、耐辐射性。由于聚乙烯仅由碳、氢二种元素所组成,没有极性元素的存在,所以它还有着良好的抗水性。聚乙烯按其生产方法的不同,有高压法聚乙烯、中压法聚乙烯和低压法聚乙烯三种之分。三种方法各有优缺点,在工业上是并存的。聚乙烯的性能随制造方法的不同,于分子结构有关;可分为低密度与高密度。通常,由高压法制得的聚乙烯叫做“低密度密度”,而由中压法或低压法制得的聚乙烯叫做“高密度聚乙烯”。除此之外,还有低分子量聚乙烯,超高分子量聚乙烯,交联聚乙烯,氯化聚乙烯,氯磺化聚乙烯,乙烯-丙烯酸乙酯共聚物等多种聚乙烯及其共聚物。随着各种改性技术和复合技术的发展,聚乙烯正在向一些新的应用领域渗透。 第一章 聚乙烯性能 1.1聚乙烯物理性质 聚乙烯在薄膜状态下可以被认为是透明的,但是在块状存在的时候由于其内部存在大量的晶体,会发生强烈的光散射而不透明。聚乙烯结晶的程度受到其枝链的个数 的影响,枝链越多,越难以结晶。聚乙烯的晶体融化温度也受到枝链个数的影响,分布于从90摄氏度到130摄氏度的范围,枝链越多融化温度越低。聚乙烯单晶通常可以通过把高密度聚乙烯在130摄氏度以上的环境中溶于二甲苯中制备。聚乙烯为白色蜡状半透明材料,柔而韧,比水轻,无毒,具有优越的介电性能。易燃烧且离火后继续燃烧。透水率低,对有机蒸汽透过率则较大。聚乙烯的透明度随结晶度增加而下降在一定结晶度下,透明度随分子量增大而提高。高密度聚乙烯熔点范围为132-135oC,低密度聚乙烯熔点较低(112oC)且范围宽。常温下不溶于任何已知溶剂中,70oC以上可少量溶解于甲苯、乙酸戊酯、三氯乙烯等溶剂中。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-70~-100℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),常温下不溶于一般溶剂,吸水性小,但由于其为线性分子可缓慢溶于某些有机溶剂,且不发生溶胀,电绝缘性能优良;但聚乙烯对于环境应力(化学与机械作用)是很敏感的,耐热老化性差。聚乙烯的性质因品种而异,主要取决于分子结构和密度。1.2聚乙烯化学性质聚乙烯有优异的化学稳定性,室温下耐盐酸、氢氟酸、磷酸、甲酸、胺类、氢氧化钠、氢氧化钾等各种化学物质,硝酸和硫酸对聚乙烯有较强的破坏作用。聚乙烯容易光氧化、热氧化、臭氧分解,在紫外线作用下容易发生降解,碳黑对聚乙烯有优异的 7 第三章 聚乙烯加工与应用 3.1加工与应用 可用吹塑、挤出、注射成型等方法加工,广泛应用于制造薄膜、中空制品、纤维和日用 杂品等。在实际生产中,为了提高聚乙烯对紫外线和氧化作用的稳定性,改善加工及使用性

PTFE聚四氟乙烯

百科名片 简介 PTFE 中文名称为聚四氟乙烯,英文名:Poly tetra fluoro ethylene ptfe PTFE分子结构图 PTFE生产方法 特氟龙基本类型:·特氟龙PTFE: ·特氟龙FEP: ·特氟龙PFA: ·特氟龙ETFE: 经过特氟龙涂装后,具有以下特性: 1、不粘性, 2、耐热性, 3、滑动性, 4、抗湿性, 5、耐磨损性, 6、耐腐蚀性, 化学性质绝缘性, 耐高低温性, 自润滑性, 表面不粘性, 不燃性, 物理性质:

PTFE(聚四氟乙烯)的应用:1、聚四氟乙烯(PTFE) 在建筑上应用 1、聚四氟乙烯(PTFE)在防腐蚀性能的应用 3、聚四氟乙烯(PTFE)在电子电气方面的应用 4、聚四氟乙烯(PTFE)在医疗医药方面的应用 5、聚四氟乙烯(PTFE)的防粘性能的应用 制品常见缺点 ⑴ PTFE只能采用模压、挤出工艺制作简单的制品,成型较困难,复杂制品必须由后期机床加工,这就限制了产品的生产效率,加工过程中,材料浪费过大。 ⑵聚四氟乙烯具有“冷流性”。即材料制品在长时间连续载荷作用下发生的塑性变形(蠕变),这给它的应用带来一定的限制。如当PTFE用作密封垫时,为密封严密而把螺栓拧得很紧,以致超过特定的压缩应力时,会使垫圈产生“冷流”(蠕变)而被压扁。这些缺点可通过加入适当的填料及改进零件结构等方法来克服。 ⑶聚四氟乙烯的熔体粘度很高,在高温下也不流动。它在熔点(327℃)以上,熔体粘度达到1 010 Pa.s,即使加热到分解温度也不流动,这就使它不能采用一般热塑性塑料的成型方法,而要采用类似粉末冶金那样的烧结方法成型。 ⑷PTFE具有突出的不粘性,限制了其工业上的应用。它是极好的防粘材料,这种性能又使它与其他物件的表面粘合极为困难。 ⑸PTFE的导热系数低,导热性能较差,这不仅妨碍它用作轴承材料,而且使得制造厚壁制品时不能淬火。 ⑹PTF E的线膨胀系数为钢的10~20倍,比多数塑料大,其线膨胀系数随着温度的变化而发生很不规律的变化。在应用PTFE时,如果对这方面性能注意不够,很容易造成损失。 ⑺在400℃以上加热时,聚四氟乙烯的裂解速度逐渐加快,分解产物主要是四氟乙烯、全氟丙烯和八氟环丁烷。在475℃ 以上,分解产物有极少量剧毒的全氟异丁烯。注意加热温度不能超过400℃,且实验室要有良好的通风系统,利于排除毒性气体。 生产方法 聚四氟乙烯由四氟乙烯经自由基聚合而生成。工业上的聚合反应是在大量水存在下搅拌进行的,用以分散反应热,并便于控制温度。聚合一般在40~80℃,3~26千克力/厘米2压力下进行,可用无机的过硫酸盐、有机过氧化物为引发剂,也可以用氧化还原引发体系。每摩尔四氟乙烯聚合时放热171.38kJ。分散聚合须添加全氟型的表面活性剂,例如全氟辛酸或其盐类。 基本类型 ·特氟龙PTFE:

聚四氟乙烯(PTFE)的性能与作用

聚四氟乙烯(PTFE)的性能与作用 聚四氟乙烯(英文缩写为Teflon或[PTFE,F4]),被美誉为/俗称―塑料王‖,中文商品名―铁氟龙‖、―特氟隆‖(teflon)、―特氟龙‖、―特富隆‖、―泰氟龙‖等。它是由四氟乙烯经聚合而成的高分子化合物,具有优良的化学稳定性、耐腐蚀性(是当今世界上耐腐蚀性能最佳材料之一,除熔融金属钠和液氟外,能耐其它一切化学药品,在王水中煮沸也不起变化,广泛应用于各种需要抗酸碱和有机溶剂的)、密封性、高润滑不粘性、电绝缘性和良好的抗老化耐力、耐温优异(能在+250℃至-180℃的温度下长期工作)。聚四氟乙烯它本身对人没有毒性,但是在生产过程中使用的原料之一全氟辛酸铵(PFOA)被认为可能具有致癌作用。 温度-20~250℃(-4~+482°F),允许骤冷骤热,或冷热交替操作。 压力-0.1~6.4Mpa(全负压至64kgf/cm2)(Full vacuum to 64kgf/cm2) 它的产生解决了我国化工、石油、制药等领域的许多问题。聚四氟乙烯密封件、垫圈、垫片. 聚四氟乙烯密封件、垫片、密封垫圈是选用悬浮聚合聚四氟乙烯树脂模塑加工制成。聚四氟乙烯与其他塑料相比具有耐化学腐蚀与的特点,它已被广泛地应用作为密封材料和填充材料。 用作工程塑料,可制成聚四氟乙烯管、棒、带、板、薄膜等。一般应用于性能要求较高的耐腐蚀的管道、容器、泵、阀以及制雷达、高频通讯器材、无线电器材等。分散液可用作各种材料的绝缘浸渍液和金属、玻璃、陶器表面的防腐图层等。各种聚四氟圈、聚四氟垫片、聚四氟盘根等广泛用于各类防腐管道法兰密封。此外,也可以用于抽丝,聚四氟乙烯纤维——氟纶(国外商品名为特氟纶)。 目前,各类聚四氟乙烯制品已在化工、机械、电子、电器、军工、航天、环保和桥梁等国民经济领域中起到了举足轻重的作用。 聚四氟乙烯(PTFE)使用条件行业化工、石化、炼油、氯碱、制酸、磷肥、制药、农药、化纤、染化、焦化、煤气、有机合成、有色冶炼、钢铁、原子能及高纯产品生产(如离子膜电解),粘稠物料输送与操作, 卫生要求高度严格的食品、饮料等加工生产部门。使用优点耐高温——使用工作温度达250℃。 耐低温——具有良好的机械韧性;即使温度下降到-196℃,也可保持5%的伸长率。 耐腐蚀——对大多数化学药品和溶剂,表现出惰性、能耐强酸强碱、水和各种有机溶剂。 耐气候——有塑料中最佳的老化寿命。 高润滑——是固体材料中摩擦系数最低者。 不粘附——是固体材料中最小的表面张力,不粘附任何物质。 无毒害——具有生理惰性,作为人工血管和脏器长期植入体内无不良反应。

聚四氟乙烯在医疗方面的应用科技文献综述

聚四氟乙烯在医疗方面的应用Teflon used in health care 姓名: 班级: 学号:

聚四氟乙烯在医疗方面的应用 摘要:近代医疗方面广泛使用各种各样的聚合物制品。这些制品不仅用于人体,与人体内组织相接触,也用于医疗领域的各种设备。近年来聚合物大大排挤和替代了金属及其他材料在医疗领域的应用。 关键词:膨体聚四氟乙烯补片;植入材料;鼻整形;生物材料,医用材料,医用高分子 Teflon used in health care Abstract Widely used in modern medical treatment of various polymer articles. These products not only for the body, in contact with the human body tissue, but also for a variety of devices in the medical field. In recent years, polymer greatly marginalized and alternative metal and other materials used in the medical field. Key words Expanded polytetrafluoroethylene mesh;Implant material;Rhinoplasty;Biological materials,Medical materials,Medical polymer 前言 膨体聚四氟乙烯(EPTFE)具有独特的结构和性能,生物相容性良好,非常适合作脏器修补材料和整形外科材料。而且随着医学的进步,各种高难度手术的普及和人们生活水平的提高,对其需求量越来越大,但目前所用EPTFE产品多依赖进口,且价格昂贵,给病人带来很大的经济负担。因此研制出与进口产品性能相当EPTFE材料不仅具有重要的理论意义,而且会产生明显的经济效益。采用多向拉伸高温烧结法制备膨体聚四氟乙烯膜,并根据拉伸成孔原理,在国内,首次成功地研制出一台可用于中试生产的多向拉伸试验仪,

聚四氟乙烯的性能、加工及应用

聚四氟乙烯的性能、成型加工以及应用 摘要:聚四氟乙烯是氟的重要化合物, 它是目前化工行业最新型的工程塑料之一。本文介绍了聚四氟乙烯的基本结构性能、成型加工和应用。 关键词:聚四氟乙烯、性能、成型加工及应用 一、概述 聚四氟乙烯是工程塑料的一个重要品种。自1938年美国科学家R.S.Plunkett在研究氟里昂致冷剂时,合成了具有“塑料王”之称的聚四氟乙烯(PTFE)以来,聚四氟乙烯的研制、生产、加工和应用得到了很大发展。聚四氟乙烯产量虽然不算太大,但应用面非常广泛。它具有优异的高低温性能和化学稳定性,极好的电绝缘性、非粘附性、耐候性、不燃性和良好的润滑性。由于其独特的性能,目前己被广泛应用于航空航天、石油化工、机械、电子、建筑、轻纺等工业部门,并日益深入到人们的日常生活中,成为现代科学技术军工和民用中解决许多关键技术和提高生产技术水平不可或缺的材料。 二、聚四氟乙烯的结构、组成及物理化学特性 1、聚四氟乙烯的分子结构特点 聚四氟乙烯分子结构式为:

是完全对称而且无支链的线型高分子,分子不具有极性。从聚四氟乙烯的分子结构可以看出PTFE分子所具有的特点。 PTFE的分子是碳氟两种元素以共价键相结合。在PTFE中,氟原子取代了聚乙烯中的氢原子,由于氟原子半径(0.064nm)明显大于氢原子半径(0,028nm),使得聚四氟乙烯中未成键原子间的范德华力大于聚乙烯,有较大的排斥力,这就引起碳一碳链由聚乙烯的平面的、充分伸展的曲折构象渐渐扭转到PTFE的螺旋构象(如图1-1)。该螺旋构象正好包围在PTFE易受化学侵袭的碳链骨架外形成了一个紧密的完全“氟代”的保护层,这使聚合物的主链不受外界任何试剂的侵袭,使PTFE具有其它材料无法比拟的耐溶剂性、化学稳定性以及低的内聚能密度;同时,碳-氟键极牢固,其键能达460.2kJ/mol,远比碳-氢键(410kJ/mol)和碳-碳键(372kJ/mol)高的多,由于分子的化学键能越高,其分子越稳定,这使PTFE具有较好的热稳定性和化学惰性;另外氟原子的电负性极大,加之四氟乙烯单体具有完美的对称性而使PTFE分子间的吸引力和表面能较低,从而使PTFE具有极低的表面摩擦系数和低温时较好的延展性,但这也导致PTFE的耐蠕变能力较差,容易出现冷流现象;PTFE 的无分支对称主链结构也使得它具有高度的结晶性,使PTFE的加工比较困难。

高密度聚乙烯生产工艺开发进展

高密度聚乙烯生产工艺开发进展 概述世界聚乙烯工业生产和消费现状,了解高密度聚乙烯(HDPE)生产工艺的最新进展,提出本地该行业发展建议。 标签:聚乙烯;生产工艺;现状 高密度聚乙烯(HDPE)是一种不透明白色腊状材料,密度比水小,柔软而且有韧性,被广泛应用于制备诸如片材挤塑、薄膜挤出、管材或型材挤塑,吹塑、注塑和滚塑等。 在聚乙烯生产工艺技术领域,一直是多种工艺并存,各展其长。目前并存的液相法工艺有Nova公司的中压法工艺、Dow化学公司的低压冷却法工艺和DSM 公司的低压绝热工艺。应用最为广泛的浆液法工艺是科诺科菲利浦斯、索尔维公司的环管工艺和赫斯特、日产化学、三井化学的搅拌釜工艺。气相法工艺主要有Univation公司的Unipol工艺、BP公司的Innovene工艺和Basell公司的Spherilene 工艺。近年来,气相法由于流程较短、投资较低等特点发展较快,目前的生产能力约占世界聚乙烯总生产能力的34%,新建的LLDPE装置近70%采用气相法技术。近年来,在各工艺技术并存的同时,新技术不断涌现。其中冷凝及超冷凝技术、不造粒技术、共聚技术、双峰技术、超临界烯烃聚合技术以及反应器新配置等新技术的开发,极大地促进了世界聚乙烯工业的发展。 1 冷凝及超冷凝技术 冷凝及超冷凝技术是UCC、Exxon化学和BP公司开发的,是指在一般的气相法PE流化床反应器工艺的基础上,使反应的聚合热由循环气体的温升和冷凝液体的蒸发潜热共同带出反应器,从而提高反应器的时空产率和循环气撤热的一种技术。冷凝操作可以根据生产需要随时在线进行切换,使装置可以在投资不需要增加太大的情况下大幅度提高装置的生产能力,装置操作的弹性大,使得该技术具有无可比拟的优越性。通过采用该技术不仅将单线最大生产能力从22.5wt/y 提高到45wt/y年以上,而且进一步降低了单位产品的投资和操作费用,操作稳定性也得到了进一步提高。国外已有大量采用冷凝和超冷凝技术对气相法PE装置扩能的实绩,最高扩能达到原有能力的2.5倍以上。我国扬子石化公司、天津石化公司、广州石化公司以及吉林石化公司、中原石化有限责任公司、新疆独山子石化公司等的聚乙烯装置采用该技术也取得扩能成功。 2 不造粒技术 随着催化剂技术的进步,现在已出现了直接由聚合釜中制得无需进一步造粒的球形PE树脂的技术。直接生产不需造粒树脂,不但能省去大量耗能的挤出造粒等步骤,而且从反应器中得到的低结晶产品不发生形态变化,这样有利于缩短加工周期、节省加工能量。Montell公司的Spherilene工艺采用负载于MgCl2上的钛系催化剂,由反应器直接生产出密度为0.890-0.970g/cm3的PE球形颗粒,

聚乙烯的特点及其生产工艺教学教材

聚乙烯的特点及其生 产工艺

聚乙烯的特点及其生产工艺 (2009-06-21 07:06:57) 标签:hdpe燕山石化公司线型聚乙烯分子量分布美国杂谈分类:塑料研究 英文名称:Polyethylene 比重:0.94-0.96克/立方厘米成型收缩率:1.5-3.6% 成型温度:140-220℃ 干燥条件: 物料性能耐腐蚀性,电绝缘性(尤其高频绝缘性)优良,可以氯化,辐照改性,可用玻璃纤维增强.低压聚乙烯的熔点,刚性,硬度和强度较高,吸水性小,有良好的电性能和耐辐射性;高压聚乙烯的柔软性,伸长率,冲击强度和渗透性较好;超高分子量聚乙烯冲击强度高,耐疲劳,耐磨. 低压聚乙烯适于制作耐腐蚀零件和绝缘零件;高压聚乙烯适于制作薄膜等;超高分子量聚乙烯适于制作减震,耐磨及传动零件. 成型性能 1.结晶料,吸湿小,不须充分干燥,流动性极好流动性对压力敏感,成型时宜用高压注射,料温均匀,填充速度快,保压充分.不宜用直接浇口,以防收缩不均,内应力增大.注意选择浇口位置,防止产生缩孔和变形. 2.收缩范围和收缩值大,方向性明显,易变形翘曲.冷却速度宜慢,模具设冷料穴,并有冷却系统. 3.加热时间不宜过长,否则会发生分解,灼伤. 4.软质塑件有较浅的侧凹槽时,可强行脱模. 5.可能发生融体破裂,不宜与有机溶剂接触,以防开裂. B.聚乙烯是乙烯最重要的下游产品 聚乙烯(PE)占世界聚烯烃消费量的70%,占总的热塑性通用塑料消费量的44%,消费了世界乙烯产量的52%。聚乙烯基本分为三大类,即高压低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)和线型低密度聚乙烯(LLDPE)。

聚四氟乙烯的制备和应用

聚四氟乙烯的制备和应用 1. 聚四氟乙烯的简述 随着社会文明的进步和科学技术的发展,材料化学也在日新月异地发展,许多新型的无机材料越来越多地被使用在日常生活中。聚四氟乙烯(PTFE)作为一种新型的无机非金属材料,在人们的生活和生产实践中起着举足轻重的作用。 四氟乙烯(TFE)的发现首先是被用于冰箱的制冷剂。1938年4月6日,杜邦公司(Do Pont)的研究员Plunkett和他的助手首次从装有TFE的钢瓶中得到了粉末状的聚四氟乙烯(PTFE),引起杜邦公司的重视,并探索其聚合条件及材料的性能和应用前景。在第二次世界大战中,PTFE以其优异的性能被列为军需品,同时其专利也被保护起来。直到1946年JAC才报导了杜邦公司在聚四氟乙烯的研究工作,同时美国专利局批准了多项专利。 聚四氟乙烯的性能特点主要有耐高低温性、耐化学腐蚀和耐候性、摩擦系数低、优异的电气绝缘性、自润滑性和非粘附性等众多优良品质,因此聚四氟乙烯被用于防腐材料、无油润滑材料、电子设备的高级介质材料、医学材料、防粘材料等。虽然PTFE材料具有其它材料无法替代的优异性能,但是本身也存在着一定的缺点,例如:难熔融加工性、难焊接性和冷流性。随着材料应用技术的不断发展,这些缺点正在逐渐被克服,从而使它在石油化工、电子、医学、光学等多种领域的应用前景更加广阔。 2. 聚四氟乙烯的制备 聚四氟乙烯由四氟乙烯经自由基聚合而生成。工业上的聚合反应是在大量水存在下搅拌进行的,用以分散反应热,并便于控制温度。聚合一般在40~80℃,0.3~2.6MPa压力下进行,可用无机的过硫酸盐、有机过氧化物为引发剂,也可以用氧化还原引发体系。每摩尔四氟乙烯聚合时放热171.38kJ。分散聚合须添加全氟型的表面活性剂,例如全氟辛酸或其盐类。聚四氟乙烯的聚合方法包括本体聚合、溶液聚合、悬浮聚合和乳液聚合( 亦称分散聚合) 等,工业生产中主要采用悬浮聚合和乳液聚合。 2.1. 悬浮聚合 悬浮聚合PTFE的加工方法基本步骤包括预成型、烧结和冷却三部分。预成型是将粉末状PTFE树脂压成具有一定形状的预成品;烧结是将预成品加热至树脂熔点使树脂粒子密集为均相结构;冷却是在一定的冷却速度下降温以获取一定形状的聚四氟乙烯材料。 (1)PTFE挤压成型工艺。挤压成型是将聚四氟乙烯树脂加入挤压机的料腔中加压,挤入口模使它形成密实的管材、棒材等制品,然后经烧结、冷却制成具有一定规格的产品,挤压成型的特点在于可连续成型,是模压成型工艺的连续化。 (2)PTFE等压成型。等压成型又称为液压成型,用于制造体积较大的PTFE 的套筒、贮槽、半球壳体、大圆板、塔柱、圆管和用于切削大张薄板的大毛坯、方坯等,也可制造整体的内衬PTFE复合结构的三通弯头、导流管等形状复杂的制品。PTFE等压成型具有设备简单、投产快、模具结构简单操作方便、制品受压均匀、质量好、节约树脂等特点。 (3)PTFE模压成型。模压成型是PTFE最常用的方法,一些形状简单的制品如板、棒、套管、薄膜毛坯、垫板等都可用模压成型。模压成型方法基本上包括混料、预成型、烧结、冷却四步组成。即在室温下使聚四氟乙烯成型成密实的

年产20万吨聚乙烯的生产工艺设计_毕业设计说明书

2013 届毕业设计说明书 年产20万吨聚乙烯的生产工艺设计

目录 摘要 (1) 1 绪论 (2) 1.1 PE的概述 (2) 1.1.1 产品性质与特点 (2) 1.1.2 聚乙烯的主要用途 (3) 1.2 设计规模及原料规格 (3) 1.2.1 设计规模 (3) 1.2.2 主要原料规格 (3) 1.3 国内外的现状及发展前景 (4) 1.3.1 国外的现状 (4) 1.3.2 国内的现状 (4) 1.3.3 发展前景 (5) 1.4 课题的目的及意义 (5) 1.4.1 目的 (5) 1.4.2 意义 (6) 2 PE的生产工艺 (6) 2.1 PE生产工艺的概述 (6) 2.2 工艺选择 (7) 2.3 乙烯精制系统 (8) 2.3.1 乙烯精制 (8) 2.3.2 深冷法分离 (8) 2.4 催化剂选择 (9) 2.4.1 催化剂种类 (9) 2.4.2 催化剂制备 (10) 2.4.3 催化剂性能分析 (10) 3 物料衡算 (10) 3.1 基础数据 (10) 3.1.1 乙烯规格 (10) 3.1.2 催化剂进料对产品MFR的影响 (10) 3.1.3 各种牌号的聚乙烯H2浓度 (10) 3.2 物料衡算 (11)

3.2.2 反应釜物料衡算 (12) 3.2.2.1 聚合釜进料衡算 (12) 3.2.2.2 聚合釜出料衡算 (14) 3.2.3 闪蒸罐物料衡算 (15) 3.2.3.1 闪蒸罐进料衡算 (15) 3.2.3.2 闪蒸罐出料衡算 (15) 4 能量衡算 (16) 4.1 能量衡算总述 (16) 4.2 基础数据 (17) 4.3 各设备能量衡算 (18) 4.3.1 加料段热量衡算 (18) 4.3.2 进行反应段能量衡算 (19) 5 设备选型 (19) 5.1 选型原则 (19) 5.1.1 满足工艺要求 (19) 5.1.2 设备成熟可靠 (20) 5.2 反应器选型 (20) 5.2.1 反应器容积和生产能力的确定 (20) 5.2.2 主要尺寸的计算 (20) 5.2.4 反应釜技术特性表 (20) 5.3 进出口管径 (21) 5.3.1 聚合釜进料口管径 (21) 5.3.2 聚合釜出料口管径 (21) 5.4 闪蒸罐的计算 (22) 5.5 其他设备的选型 (22) 6 车间设备布置设计 (22) 6.1 车间设备布置的原则 (23) 6.2 车间设备布置 (24) 6.2.1 设备布置的安全距离 (24) 6.2.2 车间内辅助室和生活室布置 (25) 6.3 厂房布置 (25) 6.3.1 厂房布置原则 (25) 6.3.2 厂址选择的依据及原则: (25) 6.4 综合安全防护 (26) 6.4.1 防火防爆 (26) 6.4.2 防毒 (27)

四氟乙烯简称PTFE

四氟乙烯简称PTFE,它是由单体四氟乙烯经自由基聚合得到的全氟化聚合物,其结构式为。它是1938年由美国人R.Plunkett发明。它的分子结构中,碳原子周围被4个氟原子包围,由于氟原子的共价半径(0.064nm)大于氢原子的半径(0.028nm),氟原子排列起来可以把碳链包围住,又由于氟原子互相排斥,使整个大分子链不像碳氢分子链一样呈锯齿形,而是呈螺旋结构如图1所示,类似于人类的DNA螺旋,该螺旋构象正好包围在PTFE易受化学侵袭的碳链骨架外,形成了一个紧密的完全“氟代”的保护层,使PTFE主链不受外界任何试剂的侵袭,使PTFE具有其他材料无法比拟的耐溶剂性、化学稳定性以及低的内聚能密度。该螺旋结构决定了PTFE的耐化学性能。 聚四氟乙烯是一种具有优异的耐化学性且耐高低温的碳氟化学物,即使暴露在空气中也不会变质,可在-200~250℃范围内长期使用。由于分子结构中含有氟原子吸电子团影响,PTFE 表现出高度的化学稳定性,几乎耐一切酸碱等化学物质的侵入,突出的不粘性,异常的润滑性以及优异的电绝缘性能,耐老化性和抗辐射性,极小的吸水率等特点被称为“塑料王”。广泛地应用于航空航天、石油化工、机械、电子、电器、建筑、纺织等诸多领域。正是由于这些特性,它一出现就被秘密应用在军事工业,直到20世纪50年代才应用到静态密封上来,和一般的螺旋密封件相比,它是一种很好的弹性密封材料。 尽管聚四氟乙烯材料性能稳定,但其缺点也很明显。 (1)聚四氟乙烯具有“冷流性”。即材料制品在长时间连续载荷作用下发生的塑性变形(蠕变),这给它的应用带来一定的限制。如当PTFE用作密封垫时,为密封严密而把螺栓拧得很紧,以致超过特定的压缩应力时,会使垫圈产生“冷流”(蠕变)而被压扁。这些缺点可通过加入适当的填料及改进零件结构等方法来克服。 (2)聚四氟乙烯的熔体粘度很高,在高温下也不流动。它在熔点(327℃)以上,熔体粘度达到1 010 Pa.s,即使加热到分解温度也不流动,这就使它不能采用一般热塑性塑料的成型方法,而要采用类似粉末冶金那样的烧结方法成型。 (3)PTFE具有突出的不粘性,限制了其工业上的应用。它是极好的防粘材料,这种性能又使它与其他物件的表面粘合极为困难。 (4)PTFE的导热系数低,导热性能较差,这不仅妨碍它用作轴承材料,而且使得制造厚壁制品时不能淬火。 (5)PTFE的线膨胀系数为钢的10~20倍,比多数塑料大,其线膨胀系数随着温度的变化而发生很不规律的变化。在应用PTFE时,如果对这方面性能注意不够,很容易造成损失。 (6)在400℃以上加热时,聚四氟乙烯的裂解速度逐渐加快,分解产物主要是四氟乙烯、全氟丙烯和八氟环丁烷。在475℃以上,分解产物有极少量剧毒的全氟异丁烯。注意加热温度不能超过400℃,且实验室要有良好的通风系统,利于排除毒性气体。 聚四氟乙烯(英文缩写为Teflon或[PTFE,F4]),被美誉为/俗称“塑料王”,中文商品名“铁氟龙”、“特氟隆”(teflon)、“特氟龙”、“特富隆”、“泰氟龙”等。它是由四氟乙烯经聚合而成的高分子化合物,具有优良的化学稳定性、耐腐蚀性(是当今世界上耐腐蚀性能最佳材料之一,除熔融金属钠和液氟外,能耐其它一切化学

聚氯乙烯生产工艺简介

聚氯乙烯生产工艺简介 PVC树脂是氯乙烯单体经聚合制得的一类热塑性高分子聚合物,分子式为: [ CH2—CHCl ]n,其中n表示聚合度,一般n=590~1500。 一、氯乙烯单体的制备 工业上制备氯乙烯的方法主要有:乙炔法、联合法、乙烯氧氯化法、乙烯平衡氧氯化法等。 1、乙炔法:乙炔与氯化氢反应生成氯乙烯是最早实现工业化的方法,乙炔可由电石(碳化钙)与水作用制得。此法能耗大,目前用此法生产氯乙烯制造PVC树脂主要集中在我国,占我国PVC树脂总量的一半以上。 2、联合法:由石油裂解制得的乙烯经氯化后生成二氯乙烷,然后在加压条件下将其加热裂解,脱去氯化氢后得到氯乙烯,副产品氯化氢再与乙炔反应又制得氯乙烯。 3、乙烯氧氯化法:使用乙烯、氯化氢和氧气反应得到二氯乙烷和水,二氯乙烷再经裂解,生成氯乙烯。副产的氯化氢在回收到氧氯化工段,继续反应。 4、乙烯平衡氧氯化法:是将直接氯化和氧氯化工艺相结合。乙烯与氯反应生成二氯乙烷,二氯乙烷裂解产生氯乙烯和氯化氢。氯化氢与乙烯和氧气反应又生成二氯乙烷,二氯乙烷裂解再产生氯乙烯和氯化氢。氯化氢回收后,继续参与氧氯化反应。 进入90年代以后,国外先后开发了一些生产氯乙烯单体的新工艺。例如开发出不产生水的直接氯化/氯化氢氧化工艺;使用最便宜的乙烷作原料,直接氧氯化生产氯乙烯单体的技术;二氯乙烷/纯碱工艺生产氯乙烯单体的新技术路线等。 二、氯乙烯的聚合 在工业化生产氯乙烯均聚物时,根据树脂应用领域,一般采用5种方法生产,即本体聚合、悬浮聚合、乳液聚合、微悬浮聚合和溶液聚合。 1、本体聚合:一般采用“两段本体聚合法”,第一段称为预聚合,采用高效引发剂,在62~75℃温度下,强烈搅拌,使氯乙烯聚合的转化率为8%时,输送到另一台聚合釜中,再加入含有低效引发剂的等量新单体,在约60℃温度下,慢速搅拌,继续聚合至转化率达80%时,停止反应。 本体聚合氯乙烯单体中不加任何介质,只有引发剂。因此,此法生产的PVC树脂纯度较高,质量较优,其构型规整,孔隙率高而均匀,粒度均一。但聚合时操作控制难度大,PVC树脂的分子量分布一般较宽。 2、悬浮聚合法:液态氯乙烯单体以水为分散介质,并加入适当的分散剂和不溶于水而溶于单体的引发剂,在一定温度下,借助搅拌作用,使其呈珠粒状悬浮于水相中进行聚合。聚合

聚四氟乙烯的性能及用途

聚四氟乙烯的性能及用途 (2006-12-25 19:14:03 ) 聚四氟乙烯(PTFE)以其优异的耐高低温性能和化学稳定性、很好的电绝缘性能、非粘附性、耐候性、阻燃性和良好的自润滑性,已在化工、石油、纺织、电子电气、医疗、机械等领域获得了广泛应用。 在氟塑料中聚四氟乙烯(PTFE)的消耗量最大,用途最广,是氟塑料中的一个重要品种。PTFE 具有优异的耐高低温性能和化学稳定性、很好的电绝缘性能、非粘附性、耐候性、阻燃性和良好的自润滑性,有“塑料王”之美称。该材料最早是为国防和尖端技术需要而开发的,而后逐渐推广到民用,其用途涉及航空航天和民用的许多方面,目前在其应用领域已成为不可或缺的材料。 PTFE的性能特点 PTFE是由四氟乙烯单体聚合而成的聚合物,是一种类似于PE的透明或不透明的蜡状物,其密度为2.2g/cm3,吸水率小于0.01%。它的化学结构与PE相似,只是聚乙烯中的全部氢原子都被氟原子所取代。由于C-F键键能高,性能稳定,因而其耐化学腐蚀性极佳,能够承受除了熔融的碱金属、氟化介质以及高于300℃的氢氧化钠之外的所有强酸(包括王水),以及强氧化剂、还原剂和各种有机溶剂的作用;PTFE分子中F原子对称,C-F键中两种元素以共价键结合,分子中没有游离的电子,使整个分子呈中性,因此它具有优良的介电性能,而且其电绝缘性不受环境及频率的影响。它的体积电阻大于1017健 m,介电损耗小,击穿电压高、耐电弧性好,能在250℃的电气环境下长期工作;因PTFE分子结构中没有氢键,结构对称,所以它的结晶度很高(一般结晶度为55%~75%,有时高达94%),使PTFE 耐热性能极好,其熔融温度为324℃,分解温度为415℃,最高使用温度为250℃,脆化温度为-190℃,热变形温度(0.46MPa条件下)为120℃。PTFE的力学性能良好,其拉伸强度为21~28MPa,弯曲强度为11~14MPa,伸长率为250%~300%,对钢的动静摩擦系数均为0.04,比尼龙、聚甲醛、聚酯塑料的摩擦系数都小,具体数值见表1。 纯PTFE强度低、耐磨性差以及耐蠕变性不好,通常要在PTFE聚合物中添加一些无机颗粒,如石墨、二硫化钼、三氧化二铝、玻纤、碳纤维等来提高其力学性能;也可利用与其他聚合物如聚苯酯(PHB)、聚苯硫醚(PPS)、聚醚醚酮(PEEK)、聚全氟(乙烯/丙烯)共聚物(PFEP)等共混的方法来扩展其阻尼温度范围,提高其耐蠕变性。 PTFE的用途 PTFE独特的性能使其在化工、石油、纺织、食品、造纸、医学、电子和机械等工业和海洋作业领域都有着广泛的应用。 1、防腐蚀性能的应用 由于橡胶、玻璃、金属合金等材料在耐腐蚀方面存在缺陷,难以满足条件苛刻的温度、压力

聚乙烯专利技术介绍

聚乙烯专利技术介绍 目前世界上拥有聚乙烯技术的公司很多,拥有LDPE技术的有7家,LLDPE 和全密度技术的企业有10家,HDPE技术的企业有12家。世界上主要应用的聚乙烯生产技术11种,现简单介绍如下: 1、巴塞尔公司气相法Spherilene工艺 生产线性PE可从很低密度PE(ULDPE)到LLDPE,也可生产HDPE等。在轻质惰性烃类存在下,催化剂和进料先进行本体预聚合,在缓和条件下发生本体聚合。浆液进入第一台气相反应器,采用循环气体回路冷却器散热,再进入二台气相反应器。生产产品密度从ULDPE(小于900kg/m3)到HDPE(大于960kg/m3),熔体流动速率(MFR)从0.01-100。因采用二台气相反应器,故可生产双峰级和特种聚合物。Spherilene工艺1992年推向市场以来,现已拥有生产能力180万吨/年。六套生产装置(美国1套、韩国2套、巴西2套、印度1套)己投入运转,另有二套(印度和伊朗各1套)在建设中,单线生产能力可从10万吨/年-30万吨/年。目前,中国没有这类技术的生产装置。 2、北欧化工公司北星(Bastar)工艺 北星PE工艺可生产双峰和单峰LLDPE、MDPE和HDPE。采用串联的回路、气相低压法反应器。PE密度为918-970kg/m3,熔融指数0.1-100。采用Z-N 催化剂或SSC(单活性中心)催化剂。 催化剂与丙烷稀释剂混入预聚合反应器,同时送入催化剂、乙烯、共聚单体和氢气。预聚合的浆液再进入第二台较大的浆液回路反应器,在超临界条件(75-100℃、5.5-6.5MPa)下操作。可生产双峰级产品。经闪蒸后的聚合物进一步送入流化床气相反应器,无需加入新催化剂,可得到均

相关主题