搜档网
当前位置:搜档网 › 二进制十进制数转换表

二进制十进制数转换表

二进制十进制数转换表
二进制十进制数转换表

二进制/ 十进制数转换表

十进制值二进制值十进制值二进制值

0 0000 0000 23 0001 0111

1 0000 0001 24 0001 1000

2 0000 0010 25 0001 1001

3 0000 0011 26 0001 1010

4 0000 0100 27 0001 1011

5 0000 0101 28 0001 1100

6 0000 0110 29 0001 1101

7 0000 0111 30 0001 1110

8 0000 1000 31 0001 1111

9 0000 1001 32 0010 0000

10 0000 1010 33 0010 0001

11 0000 1011 34 0010 0010

12 0000 1100 35 0010 0011

13 0000 1101 36 0010 0100

14 0000 1110 37 0010 0101

15 0000 1111 38 0010 0110

16 0001 0000 39 0010 0111

17 0001 0001 40 0010 1000

18 0001 0010 41 0010 1001

19 0001 0011 42 0010 1010

20 0001 0100 43 0010 1011

21 0001 0101 44 0010 1100

22 0001 0110 45 0010 1101

十进制小数转换为二进制小数教学提纲

十进制小数转换为二 进制小数

十进制小数转换为二进制小数 十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,此时0或1为二进制的最后一位。或者达到所要求的精度为止。 然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。 十进制小数转二进制 如:0.625=(0.101)B 0.625*2=1.25======取出整数部分1 0.25*2=0.5========取出整数部分0 0.5*2=1==========取出整数部分1 再如:0.7=(0.1 0110 0110...)B 0.7*2=1.4========取出整数部分1 0.4*2=0.8========取出整数部分0 0.8*2=1.6========取出整数部分1 0.6*2=1.2========取出整数部分1 0.2*2=0.4========取出整数部分0 0.4*2=0.8========取出整数部分0 0.8*2=1.6========取出整数部分1 0.6*2=1.2========取出整数部分1

0.2*2=0.4========取出整数部分0 转:十进制小数转化为二进制小数 一、二进制数转换成十进制数 由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。 例1105把二进制数110.11转换成十进制数。 注意2的负一次方,负二次方…… 二、十进制数转换为二进制数 十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。 1. 十进制整数转换为二进制整数 十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,

二进制数转换成十进制数是

二进制数转换成十进制 数是 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

七、基础选择题 1. 二进制数1110111.11转换成十进制数是( )。 A. 119.125 B. 119.75 C. 119.375 D. 119.3 2. 下列叙述中,正确的一条是( )。 A. 存储在任何存储器中的信息,断电后都不会丢失 B. 操作系统是只对硬盘进行管理的程序 C. 硬盘装在主机箱内,因此硬盘属于主存 D. 磁盘驱动器属于外部设备 3. 英文OS指的是( )。 A. 显示英文的屏幕 B. 窗口软件 C. 操作系统 D. 磁盘操作系统 4. 数字符号0的ASCII码十进制表示为48,数字符号9的ASCII码十进制表示为( )。 A. 56 B. 57 C. 58 D. 59

5. 目前使用的微型计算机,其主要逻辑器件是由( )构成的。 A. 电子管 B. 晶体管 C. 中、小规模集成电路集成电路 D. 大规模、超大规模集成电路 6. 微机正在工作时电源突然中断供电,此时计算机( )中的信息全部丢失,并且恢复供电后也无法恢复这些信息。 A. ROM B. RAM C. 硬盘 D. 软盘 7. 与外存储器相比,内存储器的主要特征是( )。 A. 存储大量的信息 B. 存储正在运行的程序 C. 能存储程序和数据 D. 能长期保存信息 8. 所谓“裸机”是指( )。 A. 单片机 B. 单板机 C. 不装备任何软件的计算机 D. 只装备操作系统的计算机 9. 构成计算机的电子和机械的物理实体称为( )。

各种进制转换方法

一、二进制转十进制 由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为按权相加法。 二、十进制转二进制 十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。 1. 十进制整数转换为二进制整数 十进制整数转换为二进制整数采用除2取余,逆序排列法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。 2.十进制小数转换为二进制小数 十进制小数转换成二进制小数采用乘2取整,顺序排列法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。 然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。 1.二进制与十进制的转换 (1)二进制转十进制 方法:按权展开求和 例: (1011.01)2 =(1×23+0×22+1×21+1×20+0×2-1+1×2-2)10 =(8+0+2+1+0+0.25)10 =(11.25)10 (2)十进制转二进制

十进制整数转二进制数:除以2取余,逆序输出例:(89)10=(1011001)2 2 89 2 44 1 2 22 0 2 11 0 2 5 1 2 2 1 2 1 0 0 1 十进制小数转二进制数:乘以2取整,顺序输出例: (0.625)10= (0.101)2 0.625 X 2 1.25 X 2 0.5 X 2 1.0 2.八进制与二进制的转换 例:将八进制的37.416转换成二进制数: 37 . 4 1 6 011 111 .100 001 110 即:(37.416)8 =(11111.10000111)2

二进制与十进制的换算方法

二进制与十进制的换算方法 浏览次数:168726次悬赏分:0 |解决时间:2007-5-12 17:23 |提问者:白兔豆豆 二进制与十进制的换算方法,既要二换十,也要十换二的,要简单点的方法 十六进制的最好也说一下 谢谢 最佳答案 6.1 为什么需要八进制和十六进制? 编程中,我们常用的还是10进制……必竟C/C++是高级语言。 比如: int a = 100,b = 99; 不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。 但,二进制数太长了。比如int 类型占用4个字节,32位。比如100,用int类型的二进制数表达将是: 0000 0000 0000 0000 0110 0100 面对这么长的数进行思考或操作,没有人会喜欢。因此,C,C++ 没有提供在代码直接写二进制数的方法。 用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢?

2、8、16,分别是2的1次方,3次方,4次方。这一点使得三种进制之间可以非常直接地互相转换。8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。在下面的关于进制转换的课程中,你可以发现这一点。 6.2 二、八、十六进制数转换到十进制数 6.2.1 二进制数转换为十进制数 二进制数第0位的权值是2的0次方,第1位的权值是2的1次方…… 所以,设有一个二进制数:0110 0100,转换为10进制为: 下面是竖式: 0110 0100 换算成十进制 第0位0 * 20 = 0 第1位0 * 21 = 0 第2位1 * 22 = 4 第3位0 * 23 = 0 第4位0 * 24 = 0 第5位1 * 25 = 32 第6位1 * 26 = 64 第7位0 * 27 = 0 + --------------------------- 100

十进制数转换成二进制

一、十进制与二进制之间的转换 (1)十进制转换为二进制,分为整数部分和小数部分 ①整数部分 方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。下面举例: 例:将十进制的168转换为二进制 得出结果将十进制的168转换为二进制,(10101000)2 分析:第一步,将168除以2,商84,余数为0。 第二步,将商84除以2,商42余数为0。 第三步,将商42除以2,商21余数为0。 第四步,将商21除以2,商10余数为1。 第五步,将商10除以2,商5余数为0。 第六步,将商5除以2,商2余数为1。 第七步,将商2除以2,商1余数为0。 第八步,将商1除以2,商0余数为1。 第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000 (2)小数部分 方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分 为零为止。如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。换句话说就是0舍1入。读数要从前面的整数读到后面的整数,下面举例: 例1:将0.125换算为二进制 得出结果:将0.125换算为二进制(0.001)2 分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25; 第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5; 第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0; 第四步,读数,从第一位读起,读到最后一位,即为0.001。 例2,将0.45转换为二进制(保留到小数点第四位) 大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计。 那么,我们可以得出结果将0.45转换为二进制约等于0.0111

十进制和二进制相互转化程序的设计书

十进制和二进制相互转化 程序设计书 需求分析 随着技术的不断提高,进制转换向着简单化,规模化发展,而对于只能识别二进制0和1码的计算机来说,如何翻译成人类可以认识和编译的语言,和安全加密等给信息管理有关的信息随之增加。在这种情况下单靠人工来处理这些信息不但显得大不从心,而且极容易出错。因此,需要开发二进制与十进制互换系统,该系统可以实现由计算机代替人工执行一系列复杂而繁琐的操作,使得办公人员可以轻松快捷的完成进制转换的任务。 总结系统需求分为大体分为5个模块: 首先第一个需要数据的信息输入,即输入数据的基本信息包括输入的进制选项,所输入的二进制位数,所输入的二进制数,所输入的十进制数和判断是否全1或全0五个模块。 第二个需求是判断数据进制选项信息,在信息和科技不断进步的今天,数据及时准确的更新成了任何一个系统的首要任务,本系统应时代所需设计了数制信息功能,包括对包括数据的进制,二进制数据的位数,十进制数据,进行进制转换计算。 第三个需求是所输入的二进制数据,数据的运行使用主要是解决向十进制转换 第四个需求是所输入的十进制数据,数据运行使用主要是解决向二进制转换。 第五个需求是打印退出,在对系统进行操作后,退出系统。

1.1 数据需求分析 本系统的主要数据进制转换的实现。转换包括:二进制数向十进制数转换,十进制数向二进制数转换,判断是否为全0或全1,是否继续执行等。 1.2功能需求分析 本程序功能为二进制和十进制的相互转换,二进制转十进制主要根据进制转换的根本方法,分别乘以2的次方得到十进制数;十进制转二进制主要根据“除2取余法”得到二进制数。另外,本程序简单易懂,操作简便,给出引导说明,以及还出错处理,只需按照提示输入即可用。 本系统主要实现对二进制与十进制之间互换,需要实现以下几个方面的功能: (1)二进制转十进制:选择二进制向十进制转换,选择二进制位数,输入二进制数,进行数制转换,输出结果,判断是否继续。 (2)十进制转二进制:选择十进制向二进制转换,输入十进制数,进行数制转换,输出结果,判断是否继续。 2系统总体设计 2.1系统模块划分 本系统主要是对二进制与十进制互换的管理,包括了二进制转十进制、十进

任意二进制数转换为十进制数

任意二进制转十进制数 程序代码: #include #include #include long float change(char str[],int n) { int xsd,i; for(i=0;i=0;q++,j--) { if(str[j]=='1') zs+=powf(2,q); } if(xsd!=n+1) { for(int k=xsd;k

puts("\n请输入一个任意位数二进制数:"); gets(str); int n=strlen(str); printf("二进制带小数点(若有)总长为:n=%d 位\n",n); long float sum=change(str,n); printf("转换为十进制数为:sum=%lf\n",sum); } } 程序运行结果:

二进制与格雷码转换

在精确定位控制系统中,为了提高控制精度,准确测量控制对象的位置是十分重要的。目前,检测位置的办法有两种:其一是使用位置传感器,测量到的位移量由变送器经A/D转换成数字量送至系统进行进一步处理。此方法精度高,但在多路、长距离位置监控系统中,由于其成本昂贵,安装困难,因此并不实用;其二是采用光电轴角编码器进行精确位置控制。光电轴角编码器根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。而绝对式编码器是直接输出数字量的传感器,它是利用自然二进制或循环二进制(格雷码)方式进行光电转换的,编码的设计一般是采用自然二进制码、循环二进制码、二进制补码等。特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码;抗干扰能力强,没用累积误差;电源切断后位置信息不会丢失,但分辨率是由二进制的位数决定的,根据不同的精度要求,可以选择不同的分辨率即位数。目前有10位、11位、12位、13位、14位或更高位等多种。 其中采用循环二进制编码的绝对式编码器,其输出信号是一种数字排序,不是权重码,每一位没有确定的大小,不能直接进行比较大小和算术运算,也不能直接转换成其他信号,要经过一次码变换,变成自然二进制码,在由上位机读取以实现相应的控制。而在码制变换中有不同的处理方式,本文着重介绍二进制格雷码与自然二进制码的互换。 一、格雷码(又叫循环二进制码或反射二进制码)介绍 在数字系统中只能识别0和1,各种数据要转换为二进制代码才能进行处理,格雷码是一种无权码,采用绝对编码方式,典型格雷码是一种具有反射特性和循环特性的单步自补码,它的循环、单步特性消除了随机取数时出现重大误差的可能,它的反射、自补特性使得求反非常方便。格雷码属于可靠性编码,是一种错误最小化的编码方式,因为,自然二进制码可以直接由数/模转换器转换成模拟信号,但某些情况,例如从十进制的3转换成4时二进制码的每一位都要变,使数字电路产生很大的尖峰电流脉冲。而格雷码则没有这一缺点,它是一种数字排序系统,其中的所有相邻整数在它们的数字表示中只有一个数字不同。它在任意两个相邻的数之间转换时,只有一个数位发生变化。它大大地减少了由一个状态到下一个状态时逻辑的混淆。另外由于最大数与最小数之间也仅一个数不同,故通常又叫格雷反射码或循环码。下表为几种自然二进制码与格雷码的对照表:

十进制数转换成二进制数

1.十进制数到二进制之间的转换 对于十进制数正整数转换成二进制的方法是: 算法描述: 1)十进制数作为被除数除2得到的余数0,或者1 余数放在最低位 2)十进制数除2得到的商作新的被除数,如果被除数不是0继续上述过程1);计算方法示例: #include int main() { int dectobin[24]={0}; int i; scanf("%d",&i); int j=0; for(; j<24&&i>=1;j++) { dectobin[j]=i%2;

i=i/2; } j--; for(;j>=0;j--) printf("%d",dectobin[j]); printf("\n"); return 0; } 2、使用库函数实现二十进制到二进制的转换 常写硬件代码的程序猿们,经常会遇到数字的二进制转换问题,尤其是在C 语言定点化的过程中,与二进制的接触更多。但经常会头疼没有一个好点的工具可以帮助我们把一系列十进制数变成二进制表达方式。其实,C语言标准库中就有实现这种功能的函数,下面做简单介绍。 itoa()函数:函数功能是把数据转换成字符串 函数原形:char *itoa(int value, char *string, int radix); 该函数有3个输入参数:第一个参数是要转换的数字,第二个参数是目标字符串,第三个参数是转移数字时所用的基数。 返回值:指向num这个字符串的指针 函数原型:int atoi(const char *nptr); 在上例中,转换基数为10。10:十进制;2:二进制…… 先把num转换为二进制的字符串,再把该字符串转换为整数。

二进制、八进制、十进制、十六进制之间的知识

序: 生活中其实很多地方的计数方法都多少有点不同进制的影子。 比如我们最常用的10进制,其实起源于人有10个指头。如果我们的祖先始终没有摆脱手脚不分的境况,我想我们现在一定是在使用20进制。 至于二进制……没有袜子称为0只袜子,有一只袜子称为1只袜子,但若有两袜子,则我们常说的是:1双袜子。 生活中还有:七进制,比如星期。十六进制,比如小时或“一打”,六十进制,比如分钟或角度…… 1.为什么需要八进制和十六进制? 编程中,我们常用的还是10进制……必竟C/C++是高级语言。 比如: int a = 100,b = 99; 不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。 但,二进制数太长了。比如int 类型占用4个字节,32位。比如100,用int类型的二进制数表达将是: 0000 0000 0000 0000 0110 0100 面对这么长的数进行思考或操作,没有人会喜欢。因此,C,C++ 没有提供在代码直接写二进制数的方法。 用16进制或8进制可以解决这个问题。因为,进制越大,数的表达长度也就越短。不过,为什么偏偏是16或8进制,而不其它的,诸如9或20进制呢? 2、8、16,分别是2的1次方,3次方,4次方。这一点使得三种进制之间可以非常直 接地互相转换。8进制或16进制缩短了二进制数,但保持了二进制数的表达特点。在下面的关于进制转换的课程中,你可以发现这一点。 2.二、八、十六进制数转换到十进制数

2.1二进制数转换为十进制数 二进制数第0位的权值是2的0次方,第1位的权值是2的1次方…… 所以,设有一个二进制数:0110 0100,转换为10进制为: 下面是竖式: 0110 0100 换算成十进制 第0位 0 * 20 = 0 第1位 0 * 21 = 0 第2位 1 * 22 = 4 第3位 0 * 23 = 0 第4位 0 * 24 = 0 第5位 1 * 25 = 32 第6位 1 * 26 = 64 第7位 0 * 27 = 0 + --------------------------- 100 用横式计算为: 0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100 0乘以多少都是0,所以我们也可以直接跳过值为0的位: 1 * 2 2 + 1 * 2 3 + 1 * 25 + 1 * 26 = 100 2.2八进制数转换为十进制数 八进制就是逢8进1。 八进制数采用 0~7这八数来表达一个数。

二进制与十进制相互转化

课题实验课设计与实施过程的研究报告 --《二进制与十进制相互转化》设计与实施 理化组:杨婧娟 一、课题自然情况摘要: 1、课题总名称: 《农村高中教学效能提高的研究》(哈尔滨市教育学会一般课题) 2、课题研究简介: 《农村高中教学效能提高的研究》是市教育学会一般课题,本课题主要研究 的是高中阶段如何提高教学有效性,挖掘学生的学习潜能,激发学生学习热情。 不断改进教育教学方法,运用先进的教育技术、教学设备和教学手段,优化课堂教学,充分利用上课时间,激发学生强烈的求知欲望,提高课堂效能。 3、进展情况: 本课题已经在我校各个学科进行具体的实施,已经取得了较好的效果,总结了很多有价值的经验,并应用于教学,效果较好,在实施的过程中,不断丰富研 究内涵,实现了理论与实际相结合,达到了在实践中总结经验,经验为教学服务的良好循环。 4、研究者在本课题中的角色 本人参与本课题的研究工作。在课堂教学中尝试不同的方法,培养和激发学生学习兴趣,提高效能。取得较好效果。 5、研究策略和研究方法: 根据电子技术基础课的特点和学生的基本情况,在教学过程中,将明确学生学习目的,利用先进的技术手段参与教学,从培养师生情感和利用所学知识为其他学科服务,以及为生活服务等方面培养学生的学习兴趣,提高课堂教学效能。 实现课内与课外相结合,理论与实践相结合,传统教学与现代化教学相结合的教学方法。 二、本次实验研究目标及所采用的的观察方式: (一)作用 电子技术基础课教学与其它学科教学不同,枯燥乏味是电子技术基础课的特点。本节课教师在讲授过程中,利用多媒体软件,直观的展现教学内容,是枯燥

的数学课堂变得生动有趣,学生在不知不觉中参与到教学过程中,模仿学习,完成学习任务。 本课是教学方法和教学方式两方面进行研究,结合本科教学特点而进行,在整个课题研究过程中具有重要意义。在本课教学中,着重培养学生学习本科知识并为学习其他学科和解决生活实际,提高学生学习积极性,提高学习质量。 (二)目标 根据学生的学习情况,对本课知识的掌握层次既定目标如下: 1、理解并掌握二进制转化为十进制的方法。 2、理解并掌握十进制转化为二进制的方法。 3. 通过教学,养成学生认真学习的习惯,提高学生的思维能力。 利用多媒体教学培养学生学习兴趣,提高课堂教学效能。 三、实验研究过程: 1.学情分析 本班是职高一年级学生,学生的学习积极性很高,但学生的基础参差不齐,思维反应不灵敏。 2.教材分析 本节课要研究的《二进制与十进制相互转化》是职业高中电子技术基础数字电路中的。《二进制与十进制相互转化》是数字电路基础中的重要内容,是 数制的基础。在教学中起承上启下的作用。因此,学好了本节课的内容,既是对 数制的理解,又能为后面学习提供方法。 本节重点是二进制与十进制的相互转化 本节难点是数制转化的方法 3.学习内容分析 本节课不仅是电子技术基础中的重点,还是计算机中的重点,所以学生应该理解掌握本节内容。 4 .教学方法分析 教学中“以学生为主体,以教师为主导,以问题解决为目的,以能力发展为 目标。”的指导思想,结合学生实际,以“问题导引自主探究”式教学方法,并 结合多媒体教学。 5、学习方法分析

进制转换计算+ASCII表

一、二进制转化成其他进制 1. 二进制(BINARY)——>八进制(OCTAL) 例子1:将二进制数(10010)2转化成八进制数。 (10010)2=(010 010)2=(2 2)8=(22)8 例子2:将二进制数()2转化为八进制数。 ()2=(0. 101 010)2=(0. 5 2)8=()8 诀窍:因为每三位二进制数对应一位八进制数,所以,以小数点为界,整数位则将二进制数从右向左每3位一隔开,不足3位的在左边用0填补即可;小数位则将二进制数从左向右每3位一隔开,不足3位的在右边用0填补即可。 2. 二进制(BINARY)——>十进制(DECIMAL) 例子1:将二进制数(10010)2转化成十进制数。 (10010)2=(1x24+0x23+0x22+1x21+0x20)10=(16+0+0+2+0)10=(18) 10 例子2:将二进制数()2转化为十进制数。 ()2=(0+1x2-1+0x2-2+1x2-3+0x2-4+1x2-5)10=(0+++++)10=()10 诀窍:以小数点为界,整数位从最后一位(从右向左)开始算,依次列为第0、1、2、3………n,然后将第n位的数(0或1)乘以2的n-1次方,然后相加即可得到整数位的十进制数;小数位则从左向右开始算,依次列为第1、2、3……..n,然后将第n位的数(0或1)乘以2的-n次方,然后相加即可得到小数位的十进制数(按权相加法)。

3. 二进制(BINARY)——>十六进制(HEX) 例子1:将二进制数(10010)2转化成十六进制数。 (10010)2=(0001 0010)2=(1 2)16=(12) 16 例子2:将二进制数()2转化为十六进制数。 ()2=(0. 1010 1000)2=(0. A 8)16=()16 诀窍:因为每四位二进制数对应一位十六进制数,所以,以小数点为界,整数位则将二进制数从右向左每4位一隔开,不足4位的在左边用0填补即可;小数位则将二进制数从左向右每4位一隔开,不足4位的在右边用0填补即可。 (10010)2=(22)8=(18) 10=(12)16 ()2=()8=()10=()16 二、八进制转化成其他进制 1. 八进制(OCTAL)——>二进制(BINARY) 例子1:将八进制数(751)8转换成二进制数。 (751)8=(7 5 1)8=(111 101 001)2=(1)2 例子2:将八进制数()8转换成二进制数。 ()8=(0. 1 6)8=(0. 001 110)2=()2 诀窍:八进制转换成二进制与二进制转换成八进制相反。

将ASCII码表示的十进制数转换为二进制数

一、实验内容: 实验1:将ASCII码表示的十进制数转换为二进制数 二、实验步骤: 1、从键盘输入五位的十进制数,保存在地址为3500H的存储单元 2、把这个十进制数转换为十六进制数,所得结果保存在地址为3510H的存储 单元中 3、把这个十六进制的结果的每位取出来,转换为ACSII码值,存储在地址为 3514H的存储单元中 4、把以3514H为起始地址的字符串输出到屏幕,即可得到5位十进制数转换 为二进制数的结果 三、程序代码: DATA SEGMENT ORG 34FEH BUF DB 10 DB? DB 10 DUP(?) ORG 3510H BBF DB 20 DUP(?),0DH,0AH,'$' IBF DB'Please input one number:',0DH,0AH,'$' ICF DB 0DH,0AH,'The result is:',0DH,0AH,'$' DATA ENDS STACK SEGMENT STACK 'STACK' STACK ENDS CODE SEGMENT ASSUME CS:CODE,DS:DATA,SS:STACK START:MOV AX,DATA MOV DS,AX MOV DX,OFFSET IBF MOV AH,9 INT 21H MOV DX,0 MOV AH,0AH LEA DX,BUF INT 21H MOV SI,3500H MOV DX,0 MOV CX,04H MOV BX,000AH MOV AH,00H CIRCLE:MOV AL,[SI] SUB AL,30H ADD AX,DX MUL BX MOV DX,AX

十进制与二进制之间互换

十进制与二进制之间互换 (1) 十进制转换为二进制,分为整数部分和小数部分 ① 整数部分 方法:除以2取余数法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。下面举例: 将十进制的168转换为二进制 得出结果 将十进制的168转换为二进制,(10101000)2 分析:第一步,将168除以2,商84,余数为0。 第二步,将商84除以2,商42余数为0。 第三步,将商42除以2,商21余数为0。 第四步,将商21除以2,商10余数为1。 第五步,将商10除以2,商5余数为0。 第六步,将商5除以2,商2余数为1。 第七步,将商2除以2,商1余数为0。 第八步,将商1除以2,商0余数为1。 第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000 例2、正整数的十进制转换二进制: 要点:除二取余,倒序排列 解释:将一个十进制数除以二,得到的商再除以二,依此类推直到商等于一或零时为止,倒取将除得的余数,即换算为二进制数的结果 例如把52换算成二进制数,计算结果如图: 52除以2得到的余数依次为:0、0、1、0、1、1,倒序排列,所以52对应的二进制数就是110100。 由于计算机内部表示数的字节单位都是定长的,以2的幂次展开,或者8位,或者16位,或者32位....。 于是,一个二进制数用计算机表示时,位数不足2的幂次时,高位上要补足若干个0。本文都以8位为例。那么: (52)10=(00110100)2 二、负整数转换为二进制 要点:取反加一 解释:将该负整数对应的正整数先转换成二进制,然后对其“取补”,再对取补后的结果加1即可 例如要把-52换算成二进制: 1.先取得52的二进制:00110100 2.对所得到的二进制数取反:11001011 3.将取反后的数值加一即可:11001100 即:(-52)10=(11001100)2 三、小数转换为二进制 要点:乘二取整,正序排列 解释:对被转换的小数乘以2,取其整数部分(0或1)作为二进制小数部分,取其小数部分,再乘以2,又取其整数部分作为二进制小数部分,然后取小数部分,再乘以2,直到小数部分为0或者已经去到了足够位数。每次取的整数部分,按先后次序排列,就构成了二进制小数的序列 例如把0.2转换为二进制,转换过程如图: 0.2乘以2,取整后小数部分再乘以2,运算4次后得到的整数部分依次为0、0、1、1,结果又变成了0.2, 若果0.2再乘以2后会循环刚开始的4次运算,所以0.2转换二进制后将是0011的循环,即: (0.2)10=(0.0011 0011 0011 .....)2 循环的书写方法为在循环序列的第一位和最后一位分别下加一个点以示标注

二进制数转换成十进制数是

七、基础选择题 1. 二进制数1110111.11转换成十进制数是( )。 A. 119.125 B. 119.75 C. 119.375 D. 119.3 2. 下列叙述中,正确的一条是( )。 A. 存储在任何存储器中的信息,断电后都不会丢失 B. 操作系统是只对硬盘进行管理的程序 C. 硬盘装在主机箱内,因此硬盘属于主存 D. 磁盘驱动器属于外部设备 3. 英文OS指的是( )。 A. 显示英文的屏幕 B. 窗口软件 C. 操作系统

D. 磁盘操作系统 4. 数字符号0的ASCII码十进制表示为48,数字符号9的ASCII码十进制表示为( )。 A. 56 B. 57 C. 58 D. 59 5. 目前使用的微型计算机,其主要逻辑器件是由( )构成的。 A. 电子管 B. 晶体管 C. 中、小规模集成电路集成电路 D. 大规模、超大规模集成电路 6. 微机正在工作时电源突然中断供电,此时计算机( )中的信息全部丢失,并且恢复供电后也无法恢复这些信息。 A. ROM B. RAM

D. 软盘 7. 与外存储器相比,内存储器的主要特征是( )。 A. 存储大量的信息 B. 存储正在运行的程序 C. 能存储程序和数据 D. 能长期保存信息 8. 所谓“裸机”是指( )。 A. 单片机 B. 单板机 C. 不装备任何软件的计算机 D. 只装备操作系统的计算机 9. 构成计算机的电子和机械的物理实体称为( )。 A. 计算机系统 B. 计算机硬件系统 C. 主机

10. 在表示存储器的容量时,1MB的准确含义是( )。 A. 1000KB B. 1024GM C. 1000B D. 1024KB 11. 微型计算机的结构原理是采用( )结构,它使CPU与内存和外设的连接简单化与标准化。 A. 总线 B. 星形连接 C. 网络 D. 层次连接 12. 指令构成的语言称为( )语言。 A. 汇编 B. 高级 C. 机器

数字二进制转换器

合肥学院 计算机科学与技术系 微机原理与接口技术 课程设计 2007~2008学年第二学期 课程设计科目二进制编码器 学生姓名欧阳小叶 学号 0604031039 班级 06网工(1)班 指导教师张向东 2008年12月

数字二进制码编 一、题意分析及解决方案 1.题义需求分析 本课程设计的内容是:用STAR ES598PCI单板开发机和接口芯片设计应用接口作为一个十六位二进制编码器的输入口,并用该口作为四位LED七段显示器的输出口,循环显示其编码的结果。即:利用逻辑开关板输入一个十六位的二进制数,利用LED七段数码显示控制电路板的LED七段显示器,循环显示与所输入的十六位二进制数相对应的四位十六进制数。 为了实现课题所要求的功能,本设计需要解决以下问题: (1)如何实现二进制的置数 (2)如何输入二进制数 (3)如何实现二进制数到十六进制字型码的转化 (4)如何输出数据 (5)如何循环显示结果 2.解决问题的方法及思路 设计方案:为了解决以上问题,本实验设计分硬件设计和软件设计两部分。 1.3硬件部分 PC机与PCI卡连接,通过可编程并行接口芯片8255A同开关与LED七段显示器相连。通过逻辑开关(分四次输入设置)将十六位二进制信息由8255A芯片的PC口输入,经过程序转换为对应的七段LED段选码(字型码),输出至LED数码显示器,由LED数码显示器显示出与输入的二进制信息相对应的字形码。8255A 芯片的PA口用于进行LED七段显示器的位选码的选择,PB口用于段选码的选择,PC口用于输入。因此二进制的置数设备、输入设备的选择以及输出设备都属于硬件部分,二进制的指数设备可选用逻辑开关二进制的输入设备实现四位四位的处理,输出可以处理八位,可选用芯片8255A, 输出显示使用LED显示器。 1.4软件部分 利用汇编语言编写动态移动的控制程序。软件部分将完成: ·初始化(PCI卡初始化,写8255方式命令控制字) ·读取二进制数锯(设置初值子程序,读取并存储二进制开关状态) ·字型码的转化(16位二进制数从高位到低位分4组对应4位16进制数,通过查段选码表确定每组字型码,控制位选码和段选码的输出实现字型码的转换)·写操作(输出结果并控制显示器显示循环送出段选码和位选码,通过两个循环, 第一次循环写低8位,第二次循环写高8位,分两次写一个8位数据,先写低4位,再写高4位。位选码初始化为0FEH,并用循环左移控制不同LED显示器的亮灭,每位显示1ms,循环显示。)

二进制转换成十进制

二进制数转换成十进制数 二进制的1101转化成十进制 1101(2)=1*2^0+0*2^1+1*2^2+1*2^3=1+0+4+8=13 转化成十进制要从右到左用二进制的每个数去乘以2的相应次方不过次方要从0开始 相反用十进制的13除以2 每除一下将余数就记在旁边 最后按余数从下向上排列就可得到1101 十进制转二进制: 用2辗转相除至结果为1 将余数和最后的1从下向上倒序写就是结果 例如302 302/2 = 151 余0 151/2 = 75 余1 75/2 = 37 余1 37/2 = 18 余1 18/2 = 9 余0 9/2 = 4 余1 4/2 = 2 余0 2/2 = 1 余0 故二进制为100101110 二进制转十进制 从最后一位开始算,依次列为第0、1、2...位 第n位的数(0或1)乘以2的n次方 得到的结果相加就是答案 例如:01101011.转十进制: 第0位:1乘2的0次方=1 1乘2的1次方=2 0乘2的2次方=0 1乘2的3次方=8 0乘2的4次方=0 1乘2的5次方=32 1乘2的6次方=64 0乘2的7次方=0 然后:1+2+0 +8+0+32+64+0=107. 二进制01101011=十进制107.

由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和。这种做法称为"按权相加"法。 二进制转十进制 本人有个更直接的方法,例如二进制数1000110转成十进制数可以看作这样: 数字中共有三个1 即第二位一个,第三位一个,第七位一个,然后十进制数即2的2-1次方+2的3-1次方+2的7-1次方即2+4+64=70 次方数即1的位数减一。如此计算只需要牢记2的前十次方即可在此本人为大家陈述一下:2的0次方是1 2的1次方是2 2的2次方是4 2的3次方是8 2的4次方是16 2的5次方是32 2的6次方是64 2的7次方是128 2的8次方是256 2的9次方是512 2的10次方是1024 2的11次方是2048 2的12次方是4096 2的13次方是8192 2的14次方是16384 2的15次方是32768 在这里仅为您提供前15次方,若需要更多请自己查询。 编辑本段十进制数转换为二进制数 十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并。 十进制转二进制 用2辗转相除至结果为1 将余数和最后的1从下向上倒序写就是结果例如:19.95 转2进制分为两个步骤。 1、小数点前 19/2=9余1 9/2=4 余1

二进制数和十进制数的相互转换

回答: 二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:0110 0100,转换为10进制为: 下面是竖式: 0110 0100 换算成十进制 第0位 0 * 20 = 0 第1位 0 * 21 = 0 第2位 1 * 22 = 4 第3位 0 * 23 = 0 第4位 0 * 24 = 0 第5位 1 * 25 = 32 第6位 1 * 26 = 64 第7位 0 * 27 = 0 + --------------------------- 100 用横式计算为: 0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100

0乘以多少都是0,所以我们也可以直接跳过值为0的位: 1 * 2 2 + 1 * 2 3 + 1 * 25 + 1 * 26 = 100 将一个十进制数(D)装换成r进制数,其整数部分与小数部分是不一样的,需要分别转换: 整数部分:除r取余数。即用整数部分不断地除以r,取其余数,直到商为0.余数按反向排列。 小数部分:乘r取整。即用小数部分不断地乘以r取整数,直到小数部分积大于1.整数依序排列在小数点右边。 十进制换成二进制(B),将上面规则中r换成2就好。 r还可以有八进制(O)的8 十六进制(H)的16 小数部分可能较为难理解,例如:将(100.345)D转换成二进制 100/2=50...0 50/2=25...0 25/2=12...1 12/2=6...0 6/2=3 0 3/2=1 (1) 0.345*2=0.690 0.690*2=1.380 0.380*2=0.760 0.760*2=1.520 0.520*2=1.04 则(100.345)D=(100100.01011)B

BCD码2进制转10进制表格工具+说明

BCD码(二─ 十进制码) 在一些数字系统中,如电子计算机和数字式仪器中,往往采用二进制码表示十进制数。通常,把用一组四位二进制码来表示一位十进制数的编码方法称作二─十进制码,亦称BCD 码(Binary Code Decimal)。 4位二进制码共有16种组合,可从中任取10种组合来表示0~9这10个数。根据不同的选取方法,可以编制出很多种BCD码,如8421码,5421码,2421码,5211码和余3码。表B1101列出了这几种BCD码,其中的8421 BCD码最为常用。 由于每一组4位二进制码只代表一位十进制数,因而n位十进制数就得用n组4位二进制码表示。 【例1110】把十进制数369.74编成8421 BCD码。 解: 3 6 9 7 4 ↓↓↓↓↓ 0011 0110 1001 0111 0100 ∴(369.74)10=(0011 0110 1001. 0111 0100)BCD 表B1101 常用BCD编码表

BCD码转化 认识BCD编码 BCD编码是一种数字压缩存储编码,大家都知道一个字节有8个位,而数字0到9最多只需要使用4个位,如果用一个字节来存储一个数字相对就会有一定的浪费,尤其是在传输过程中,由此人们就想出了压缩的办法,于是BCD编码就产生了。 BCD编码将一个字节的8个位拆分成高4位和低4位两个部分,也就是说一个字节能存储两个数字。所以BCD的编码过程就是将数字压缩的过程,将两个字节的数字压缩成一个字节。反之,解码就是把一个字节的数字拆分为两个数字单独存放(大部分的处理都是按字节处理的)。 示例: 编码过程,将数字69进行BCD编码(注:BCD编码低位在前,后面将不再注释)。 1. 将6,9分别转换成二进制表示:6(00000110)9(00001001),大家可以看到,最大的数字9也只要4个位,在传输过程中白白浪费了4个位; 2.将69合并为一个字节,分别取6,9二进制编码的低4位,按照低位在前的原则,将9的低四位放前面6的低四位放后面得出新的字节二进制编码是10010110; 3.完成编码过程,69的BCD编码结果为10010110。 解码过程:将69的BCD码10010110进行解码。 1.将10010110的高4位与低4位拆分开,得到两个二进制数1001和0110; 2.分别将1001和0110的前面补充4位0000得到两个8位的二进制数00001001,00000110; 3.因为编码时低位在前,所以我们将两个二进制数编排顺序为00000110 000010001; 4.将二进制数转换为十进制得出解码结果为69(正确解码)。 PB中如何对BCD码进行解码 大家知道在PB中有二进制类型的变量blob,但要无法按位操作,那么我们如何进行BCD编码的数字进行解码呢? 我想大家都会不约而同的想到ASCII码,没错,就是她。ASCII就是数字和字符在计算机中存储的的值,她在PB中给我们呈现的并不是01组成的二进制数而是十进制数值。 BCD解码需要将一个字节的高4位和低4位进行拆分,那么我们怎么来使用十进制的ASCII编码做到呢? 因为PB不提供位运算所以我们只能自己写函数来做些简单的处理了,那又如何处理呢? 方法一:我们写函数将十进制的ASCII(单字节)转化为二进制的字符串,当然,如此一来你还要写一个将二进制字符串转换为10进制数字的函数,有兴趣的朋友可以尝试一下。 方法二:在我上次写的内容中已经提到了,就是借助十六进制来完成转换。大家仔细研究不难发现十六进制表示等同于将一个字节的内容高4位和低4位分别转换为十进制,如果不信你可以自己验算一下。这样我们就只需要写一个转换函数

相关主题