搜档网
当前位置:搜档网 › report_混凝土梁斜截面抗剪实验_20161010061

report_混凝土梁斜截面抗剪实验_20161010061

report_混凝土梁斜截面抗剪实验_20161010061
report_混凝土梁斜截面抗剪实验_20161010061

钢筋混凝土梁斜截面受剪试验

试验报告

院系:班级:姓名:学

号:

指导老师:

二〇年月土木工程系农水20162班

唐渊20161010061老师01,廖欢

181210

一、实验目的要求

1、通过观察混凝土梁抗剪破坏的全过程,研究认识混凝梁斜拉的受弯性能。

2、理解和掌握钢筋混凝土梁受弯构件的实验方法和实验结果,通过实践掌握试件

的设计、实验结果整理的方法。

二、材性数据

1.混凝土:

立方抗压强度实测值f cu=19N/mm2强度等级:C25

弯曲抗压强度标准值f cmk=18.9Nmm2

弯曲抗压强度设计值f cm=13.5n/mm2

抗拉强度标准值:f tk= 1.78N/mm2

抗拉强度设计值:f t= 1.27N/mm2

弹性模量:E c=2.8x104N/mm2

2.钢筋:HRB400

实测直径:d=mm等级

屈服点(抗拉强度标准值):f yk=400N/mm2

抗拉强度设计值:f y=360N/mm2

弹性模量:E s=2x105N/mm2

三、试件实测尺寸

高度:h=200mm宽度:b=140mm

钢筋保护层厚度:C=20mm a s=29mm

四、试件配筋图

五、量测仪表布置图

六、加载装置图

七、试验荷载值的计算1.计算简图

九、试验结果

1.实验数据

2.开裂荷载计算

因为试验试件的钢筋用量很少,只考虑混凝土对抗剪强度的贡献。而混凝土抗剪破坏的体现就是混凝土开裂,所以混凝土开裂的荷载即为下面计算的承载力极限荷载。

3.承载力极限荷载计算

加载点a (mm)

ho

(mm)

bλλ取值破坏模式αcv

ft

(MPa)

Vcs

(kN)

600171140 3.5087723斜拉0.4375 1.2713.30

八、加载程序设计

1.试验准备就绪后,进行预加载。预加载为预估极限荷载的10%,观察所有仪器是否

工作正常,之后卸载至零。

2.进入正式加载阶段,采用荷载分级加载方式,每级荷载不超过预估极限荷载的20%;

每级荷载持荷时间不少于5分钟,使试件变形趋于稳定后,再仔细测读仪表读数,

待校核无误,方可进行下一级加荷。当荷载加至预估极限荷载时如果荷载仍然没有

下降,则持续施加荷载,此时的每级荷载为预估荷载的10%,每级持荷时间为5分

钟;当发现荷载出现下降,则将此时的荷载记录为实际极限荷载。

3.采用位移控制的加载方式。每级位移施加量为极限荷载对应的位移值的10%;持荷

时间为2分钟;当荷载下降至极限荷载的50%时,认为构件不适合继续承载;卸载

至零,结束试验。

级别荷载F(kN)位移计钢筋应变混凝土表面应变

位移1位移2位移3钢筋应变1钢筋应变2钢筋应变3混凝土表面

应变1混凝土表面

应变2

10.0000.0000.0000.0000.0000.0000.0000.0000.000

2 3.0000.258-0.008-0.00541.00057.25038.500 6.600 1.200

3 4.0000.515-0.015-0.01082.000114.50077.0009.900 1.800

4 6.0000.773-0.023-0.015123.000171.750115.50012.000 2.100 510.000 1.030-0.030-0.020164.000229.000154.00024.300 2.400 612.000 1.242-0.036-0.026221.400283.000220.80049.200 5.400 714.000 1.454-0.042-0.032278.800337.000287.60069.600 6.300 816.000 1.666-0.048-0.038336.200391.000354.400127.200 6.600

1122.000 2.345-0.073-0.063635.000721.000676.250185.10017.400 1225.000 2.600-0.085-0.075819.000943.000864.500201.00020.400 1327.000 2.855-0.098-0.0881003.0001165.0001052.750216.30021.000 1430.000 3.110-0.110-0.1001187.0001387.0001241.000240.60023.700 1531.200 4.370-0.180-0.1501599.0001941.0001723.000233.10018.000 1628.000 4.532-0.202-0.1721621.4001955.6001688.000150.00015.300 1715.000 4.694-0.224-0.1941643.8001970.2001653.00035.400 6.000 1812.000 4.856-0.246-0.2161666.2001984.8001618.00011.400 6.000 1911.000 5.018-0.268-0.2381688.6001999.4001583.00011.400 6.000 209.000 5.180-0.290-0.2601711.0002014.0001548.00011.400 6.000 218.000 5.000-0.290-0.2601777.0002222.0001511.00011.400 6.000

2.曲线图

P~f曲线

十、原理题

1.下列哪种荷载不属于《建筑结构荷载规范》中规定的结构荷载的范围( )

答:温度荷载

2.受弯构件斜截面承载力计算中,通过限制最小截面尺寸的条件是用来防止( )

答:斜压破坏

3.《混凝土结构设计规范》规定,预应力混凝土构件的混凝土强度等级不应低于( )

答:C30

4.受弯构件斜截面承载力计算公式的建立是依据( )破坏形态建立的

答:剪压破坏

5.为了避免斜压破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制( )

答:规定最小配箍率

6.为了避免斜拉破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制( )

答:规定最小截面尺寸限制

7.“钢筋混凝土结构”课程中讲到的试验绝大多数是用( )做出来的

答:模型试验

8.下列钢筋混凝土结构的承载力极限标志中,( )条不正确

答:主筋端部相对混凝土滑移达O.1mm

9.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于梁、板类构件,不宜大于( )

答:0.25

10.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于柱类构件,不宜大于( )

答:0.5

11.按试验的目的可将建筑结构试验分为( )

答:生产检验性试验和科学研究性试验

12.施加均布荷载的方法有( )

答:气压加载和重物加载

13.试件的最大承载能力和相应变形计算,应按照下列哪一种进行?( )

答:实际材料性能指标

15.结构试验前,应进行预加载,下列论述哪一项不当?( )

答:预应力混凝土结构的预加载值可以超过开裂荷载值

16.测定结构材料的实际物理力学性能的项目,包括那些?( )

答:强度、变形、弹性模量、泊松比、应力—应变关系

17.试件的最大承载能力和相应变形计算,应按照下列哪一种进行?( )

答:实际材料性能指标

18.当用一个加载器施加两点或两点以上荷载时常通过分配梁实现。下列哪一项对分配梁的要求提法不当?( )

答:重量尽量小

19.结构试验前,应进行预加载,下列论述哪一项不当?( )

答:预应力混凝土结构的预加载值可以超过开裂荷载值

20.我国应变片的名义阻值一般取多少?( )

答:120Ω

21.与素混凝土梁相比,钢筋混凝上梁承载能力( )

答:提高许多

22.与素混凝土梁相比,钢筋混凝土梁抵抗开裂的能力( )

答:提高不多

23.与素混凝土梁相比,适量配筋的钢混凝土梁的承载力和抵抗开裂的能力( )

答:承载力提高很多,抗裂提高不多

24.钢筋混凝土梁在正常使用情况下( )

答:通常是带裂缝工作的

25.钢筋与混凝土能共同工作的主要原因是( )

答:混凝土与钢筋有足够的粘结力,两者线膨胀系数接近

26.一钢筋混凝土矩形截面梁,混凝土强度等级为C35,ft=1.57 N/mm2 ,钢筋采用HRB400级, fy=360N/mm2,则纵向受拉钢筋的最小配筋率为( )

答:0.0025

27.截面尺寸和材料强度一定时,钢筋混凝土受弯构件正截面承载力与受拉区纵筋配筋率的关系是( )

答:当配筋率在某一范围内时,配筋率越大,正截面承载力越大

28.下列描述正确的是( )

答:斜压破坏可通过截面尺寸限制条件防止其发生

29.对荷载的标准值和设计值关系描述正确的是( )

答:荷载的设计值=标准值×荷载的分项系数

30.只要按受剪承载力公式计算并配置箍筋后,则( )

答:肯定不会发生斜压破坏

31.混凝土保护层厚度与下面哪种因素有关?( )

答:以上都有关

32.计算荷载效应时,永久荷载分项系数的取值应是( )

答:其效应对结构不利时取1.2

33.结构构件的抗力与下列哪个因素无关

答:A+B

34.一对称配筋的钢筋混凝土构件两端固定,由于混凝土收缩(未受荷载)( )

答:混凝土中产生拉应力,钢筋中产生压应力

35.无腹筋梁斜截面的破坏形态主要有斜压破坏、剪压破坏和斜拉破坏三种。这三种破坏的性质是( )

答:斜压破坏和斜拉破坏属于脆性破坏,剪压破坏属于延性破坏

36.提高梁斜截面抗剪强度最有效的措施是( )

答:加大截面高度

37.钢筋混凝土粱的受拉区边缘达到下述( )时,受拉区开始出现裂缝

答:混凝土弯曲时的极限拉应变值

38.条件相同的无腹筋梁,发生斜压、斜拉、和剪压三种破坏形态时,以下正确的是( )

答:斜压破坏的承载力 >剪压破坏的承载力 >斜拉破坏的承载力

39.计算钢筋混凝土受弯构件的最大挠度时,按荷载的( ),并考虑荷载长期作用的影响

答:以上三种组合都可以

40.箍筋配置过多,而截面尺寸又太小的梁,一般会发生( )

答:斜压破坏

41.以下不属于超过结构或构件承载能力极限状态的是( )

答:结构或构件产生过大的变形

42.《混凝土结构设计规范》规定混凝土强度等级按( )确定

答:立方体抗压强度标准值

43.对于钢筋混凝土构件,裂缝的出现和开展会使其( )

答:长期刚度B增加

44.以下关于混凝土的变形性能,说法不正确的是( )

答:混凝土的切线模量就是其初始弹性模量

答:钢筋强度的标准值

47.混凝土的水灰比越大,水泥用量越多,则徐变及收缩值如何变化( )答:越大

48.下列哪种荷载属于可变荷载( )

答:风荷载

49.荷载标准值是具有多大保证率的荷载取值( )

答:0.95

50.承载能力极限状态设计不需要考虑下列哪种组合( )

答:长期组合

第04章 受弯构件斜截面承载力

第四章 受弯构件斜截面承载力 一、填空题 1、受弯构件的破坏形式有正截面受弯破坏、 斜截面受剪破坏 。 2、受弯构件的正截面破坏发生在梁的最大弯矩值处的截面,受弯构件的斜截面破坏发生在梁的支座附近(该处剪力较大),受弯构件内配置足够的受力纵筋是为了防止梁发生正截面破坏,配置足够的腹筋是为了防止梁发生斜截面破坏。 3、梁内配置了足够的抗弯受力纵筋和足够的抗剪箍筋、弯起筋后,该梁并不意味着安全,因为还有可能发生斜截面受弯破坏;支座锚固不足;支座负纵筋的截断位置不合理;这些都需要通过绘制材料图,满足一定的构造要求来加以解决。 4、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 复合主拉应力 超过了混凝土的极限抗拉强度而开裂的。 5、斜截面破坏的主要形态有 斜压 、 剪压 、 斜拉 ,其中属于材料未充分利用的是 斜拉 、 斜压 。 6、梁的斜截面承载力随着剪跨比的增大而 降低 。 7、梁的斜截面破坏主要形态有3种,其中,以 剪压 破坏的受力特征为依据建立斜截面承载力的计算公式。 8、随着混凝土强度等级的提高,其斜截面承载力 提高 。 9、随着纵向配筋率的提高,其斜截面承载力 提高 。 10、当梁上作用的剪力满足:V ≤ 001.750.7; 1.0t t f bh f bh λ????+?? 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力满足:V ≤ 001.75[;(0.24)]1.0 t t f bh f bh λ++ 时,仍可不必计算抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的剪力满足: V ≥0[t f bh 01.75( 0.24)]1.0t f b h λ++ 时,则必须计算抗剪腹筋用量。 11、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 斜拉 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 斜压 。 12、对于T 形、工字形、倒T 形截面梁,当梁上作用着集中荷载时,需要考虑剪跨比影响的截面梁是 倒T 形截面梁 。 13、纵筋配筋率对梁的斜截面承载力有有利影响,在斜截面承载力公式中没有考虑。

钢筋混凝土梁正截面

钢筋混凝土梁正截面实验 一、实验目的 1.通过对钢筋混凝土梁的承载力、应变、挠度及裂缝等参数的测定,熟悉钢筋 混凝土受弯构件正截面破坏的一般过程及其特征,加深对书本理论知识的理解。 2.进一步学习常规的结构实验仪器的选择和使用操作方法,培养实验基本技 能。 3.掌握实验数据的整理、分析和表达方法,提高学生分析与解决问题的能力。 二、实验设备和仪器 1.试件—钢筋混凝土简支梁1根、尺寸及配筋如图所示。 混凝土设计强度等级:C25 钢筋:纵筋2φ8,Ⅰ级(实际测得钢筋屈服强度为390Mpa,极限抗拉强度为450 Mpa)箍筋:φ6@100,Ⅰ级 试件尺寸: b=100mm; h=150mm; L=1100mm; 制作和养护特点:常温制作与养护 2.实验所需仪器: 手动油压千斤顶1个,测力仪及压力传感器各1个;静态电阻应变仪一台;百分表及磁性表座各3个;刻度放大镜、钢卷尺;支座、支墩、分配梁。 三、实验方案 为研究钢筋混凝土梁的受力性能,主要测定其承载力、各级荷载下的挠度

和裂缝开展情况,另外就是测量控制区段的应变大小和变化,找出刚度随荷载变化的规律。 1. 加载装置 梁的实验荷载一般较大,多点加载常采用同步液压加载方法。构件实验荷载的布置应符合设计的规定,当不能相符时,应采用等效荷载的原则进行代换,使构件实验的内力图与设计的内力图相近似,并使两者的最大受力部位的内力值相等。 作用在试件上的实验设备重量及试件自重等应作为第一级荷载的一部分。确定试件的实际开裂荷载和破坏荷载时,应包括试件自重和作用在试件上的垫板,分配梁等加荷设备重量(本实验梁的跨度小,这些影响可忽略不计)。 2. 测试内容及测点布置 测试内容钢筋及混凝土应变、挠度和裂缝宽度等。 本次实验测试具体项目:正截面应变;纵向受力钢筋应变;梁挠度;裂缝发展情况;开裂荷载;屈服荷载;破坏荷载。 纯弯区段混凝土表面布置5个电阻应变片(自行设计测点位置),实验前完成应变片粘贴工作。另外梁内受拉主筋各布有电阻应变片1片。 挠度测点三个:跨中点,支座沉降点(2个)。 3. 实验步骤 实验为半开放式:实验前,学生应仔细阅读实验指导书,了解实验过程,在指导教师解答提问、讲明注意事项之后,由学生自己提具体实施方案,经指导教师同意后,分组(每组不多于10人)自行操作实验。教师给出实验所需的仪器设备并实时指导。 具体实验步骤如下: (1)考察实验场地及仪器设备,听实验介绍,写出实验预习报告。

第5章受弯构件的斜截面承载力习题答案讲课教案

第5章 受弯构件的斜截面承载力 5.1选择题 1.对于无腹筋梁,当31<<λ时,常发生什么破坏( B )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 2.对于无腹筋梁,当1<λ时,常发生什么破坏( A )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 3.对于无腹筋梁,当3>λ时,常发生什么破坏( C )。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 4.受弯构件斜截面承载力计算公式的建立是依据( B )破坏形态建立的。 A . 斜压破坏; B . 剪压破坏; C . 斜拉破坏; D . 弯曲破坏; 5.为了避免斜压破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制( C )。 A . 规定最小配筋率; B . 规定最大配筋率; C . 规定最小截面尺寸限制; D . 规定最小配箍率; 6.为了避免斜拉破坏,在受弯构件斜截面承载力计算中,通过规定下面哪个条件来限制( D )。 A . 规定最小配筋率; B . 规定最大配筋率; C . 规定最小截面尺寸限制; D . 规定最小配箍率; 7.R M 图必须包住M 图,才能保证梁的( A )。 A . 正截面抗弯承载力; B . 斜截面抗弯承载力; C . 斜截面抗剪承载力; 8.《混凝土结构设计规范》规定,纵向钢筋弯起点的位置与按计算充分利用该钢筋截面之间的距离,不应小于( C )。 A .0.30h

h B.0.4 h C.0.5 h D.0.6 9.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于梁、板类构件,不宜大于( A )。 A.25%; B.50%; C.75%; D.100%; 10.《混凝土结构设计规范》规定,位于同一连接区段内的受拉钢筋搭接接头面积百分率,对于柱类构件,不宜大于( B )。 A.25%; B.50%; C.75%; D.100%; 5.2判断题 1.梁侧边缘的纵向受拉钢筋是不可以弯起的。(∨) 2.梁剪弯段区段内,如果剪力的作用比较明显,将会出现弯剪斜裂缝。(×)3.截面尺寸对于无腹筋梁和有腹筋梁的影响都很大。(×) 4.在集中荷载作用下,连续梁的抗剪承载力略高于相同条件下简支梁的抗剪承载力。 (×) 5.钢筋混凝土梁中纵筋的截断位置,在钢筋的理论不需要点处截断。(×)5.3问答题 1.斜截面破坏形态有几类?分别采用什么方法加以控制? 答:(1)斜截面破坏形态有三类:斜压破坏,剪压破坏,斜拉破坏 (2)斜压破坏通过限制最小截面尺寸来控制; 剪压破坏通过抗剪承载力计算来控制; 斜拉破坏通过限制最小配箍率来控制; 2.分析斜截面的受力和受力特点? 答:(1)斜截面的受力分析: 斜截面的外部剪力基本上由混凝土剪压区承担的剪力、纵向钢筋的销栓力、骨料咬合力以及腹筋抵抗的剪力来组成。 (2)受力特点: 斜裂缝出现后,引起了截面的应力重分布。 3.简述无腹筋梁和有腹筋梁斜截面的破坏形态。

第四章-受弯构件斜截面受剪承载力计算

第4章受弯构件的斜截面承载力 教学要求: 1深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。 2熟练掌握梁的斜截面受剪承载力计算。 3理解梁内纵向钢筋弯起和截断的构造要求。 4知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。 4.1 概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜截面受弯承载力两方面。工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证的。 图4-1 箍筋和弯起钢筋 图4-2 钢筋弯起处劈裂裂缝 工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。由于弯起钢筋承受的拉力比较大,且集中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。弯起钢筋的弯起角宜取45°或60° 4.2 斜裂缝、剪跨比及斜截面受剪破坏形态 4.2.1 腹剪斜裂缝与弯剪斜裂缝 钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。 主拉应力: 2 2 4 2 τ σ σ σ+ + = tp ,

主压应力2242τσσσ+-= cp 主应力的作用方向与构件纵向轴线的夹角a 可按下式确定: στα22-=tg 图4-3 主应力轨迹线 图4-4 斜裂缝 (a)腹剪斜裂缝;(b)弯剪斜裂缝 这种由竖向裂缝发展而成的斜裂缝,称为弯剪斜裂缝,这种裂缝下宽上细,是最常见的,如图4-4(b)所示。 4.2.2 剪跨比 在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离a 称为剪跨,剪跨a 与梁截面有效高度h 0的比值,称为计算截面的剪跨比,简称剪跨比,用λ表示,λ=a/h 0。

斜截面承载力计算例题

斜截面承载力计算例题

1.一钢筋混凝土矩形截面简支梁,截面尺寸250mm ×500mm ,混凝土强度等级为C30,箍筋为热轧HPB300级钢筋,纵筋为325的HRB335级钢筋(f y =300 N/mm 2),支座处截面的剪力最大值为180kN 。 求:箍筋和弯起钢筋的数量。 解:486.1250 465 , 4650<====b h mm h h w w 属厚腹梁,混凝土强度等级为C30,故βc =1 N V N bh f c c 18000075.4155934652503.14125.025.0max 0=>=????=β截面 符合要求。 (2)验算是否需要计算配置箍筋 ), 180000(25.11636646525043.17.07.0max 0N V N bh f t =<=???= 故需要进行配箍计算。 (3)只配箍筋而不用弯起钢筋 01 07.0h s nA f bh f V sv yv t ?? += 则 mm mm s nA sv /507.021 = 若选用Φ8@180 ,实有 可以)(507.0559.0180 3 .5021>=?=s nA sv 配箍率%224.0180 2503 .5021=??== bs nA sv sv ρ 最小配箍率)(%127.0270 43 .124.024 .0min 可以sv yv t sv f f ρρ <=?==

2.钢筋混凝土矩形截面简支梁,如图5-27 ,截面尺寸250mm×500mm,混凝土强度等级为C30,箍筋为热轧HPB300级钢筋,纵筋为225和222的HRB400级钢筋。 求:只配箍筋 解:

混凝土梁正截面试验报告(全)

钢筋混凝土简支梁的正截面破坏实验报告 一、试验目的及要求 1、学习钢弦传感器,荷载传感器和百分表的使用。 2、通过试验理解适筋梁、少筋梁及超筋梁的破坏过程及破坏特征。 3、观察适筋梁纯弯段在使用阶段的裂缝宽度及裂缝间距。 4、学习如何确定开裂荷载、梁的挠度及极限荷载。 5、掌握试验数据处理的方法并绘制曲线。 二、试验仪器及设备 JMZX-215型钢弦传感器、JMZX-212型钢弦传感器、JMZX-200X综合测试仪、MS-50位移传感器,磁性表座,千斤顶。 三、试验内容及步骤 1、将钢弦传感器的底座黏贴在画好的黏贴的位置,再将钢弦传感器安装在底座上,固定好传感器,调整初始读数,并记录初始读数。 2、将百分表安放好,记录钢弦传感器和百分表的初始读数。 3、加载,并记录每级荷载下的钢弦传感器的读数,每一级荷载下观察裂缝的宽度变化。 四、试验报告 1、计算钢筋混凝土梁的开裂荷载和极限荷载。 开裂荷载计算: 极限荷载计算: 2、简述钢弦传感器的使用步骤,数显百分表的使用方法。 钢弦传感器的使用步骤:1、首先确定测试位置,并画出定位线。2、用标准杆将钢弦底座固定在定位线上。3、将标准杆拆下,并将传感器固定在底座上,并记录初始读数。4、分级加载,记录读数。 数显百分表的使用步骤:1、将数显百分表固定在磁性表座上。2、将磁性表座安放在固定支墩上,调整磁性表座到合适位置,使百分表垂直于被测构件的表面。3、记录初始读数,分级加载,记录读数。 3、实验数据记录(荷载、混凝土应变、跨中位移计读数)。 见试验数据记录表 4、根据实验数据绘制荷载荷载-挠度曲线,荷载-应变曲线,沿截面高度砼应变变化曲线。 5、观察裂缝的发展趋势,并解释原因。 在跨中纯弯段,最先出现裂缝并沿着梁高方向发展,裂缝大致与梁长方向垂直;在支座附近弯剪区域,裂缝大致与梁长方向呈45度角出现并发展延伸。 其原因是:在跨中纯弯段,因为混凝土只承受弯曲应力,混凝土承受的主应力方向与梁长方向平行,故此区域的混凝土因主应力而出现的裂缝方向与主应力方向垂直,沿梁高方向出现并发展;在支座附近弯剪区域,因为混凝土同时承受弯曲应力和剪切应力,混凝土承受的主应力方向与梁长方向呈45度,故此区域的混凝土因主应力而出现的裂缝方向与主应力方向垂直,沿梁长方向呈45度角出现并发展延伸。

斜截面抗剪承载力能力验算

斜截面抗剪承载力能力验算 1)按《公预规》5.2.10条要求,当截面符合:30200.5010d td V f bh γα-≤?可不进行斜截面抗剪承载力计算,仅需按《公预规》9.3.13条构造要求配置箍筋。 对于①-①截面: -3-32000.5100.510 1.0 1.3919009001188.45=21.7td d f bh kN V kN αγ??=?????=> ①-①截面可不进行斜截面抗剪承载力计算,箍筋按构造钢筋; 对于②-②截面~⑤-⑤截面: -3-3200.5100.510 1.0 1.39190012501650.63kN td f bh α?=?????= 按《公预规》5.2.9条规定: -3-3 0,00.51100.511030190012506634.29d cu k V f bh kN γ≤?=????= 对照剪力表值,②③④⑤计算表明,截面尺寸满足要求,但需配置抗剪钢筋并进行斜截面抗剪承载力计算。 2)弯起筋及箍筋配置 取5~5截面计算弯起钢筋及箍筋: 如图3-9所示,弯起钢筋弯起角度为45°,弯起钢筋末端与架立钢筋焊接,采用HRB335级钢筋,直径取25mm ,2490.9sb A mm = 图3-9弯起筋配置图 《公预规》9.3.13条规定,箍筋直径不小于8 mm ,采用带肋钢筋,间距不应大于梁高1/2,且不大于400mm 。采用10φ的六肢箍,则总面积为: 2678.5471sv A mm =?= 间距10cm V S =,设计抗拉强度280MPa sv f =,配筋率sv ρ为: sv sv 471 100%0.248%1900100 v A bs ρ= =?=? 满足《公预规》9.3.13条“箍筋配筋率sv ρ,HRB335不应小于0.12%”,同时《公预规》

混凝土简支梁斜截面抗剪强度

混凝土简支梁斜截面抗剪强度 1 影响混凝土抗剪强度V c 的主要参数的分析 1.1 混凝土强度的影响 试验表明,混凝土梁抗剪强度的增长与混凝土抗压强度f cu 并非直线关系, 而是按抛物线变化。图1表示前苏联学者无箍筋梁抗剪强度与混凝土强度f cu 的 关系,梁混凝土立方体强度f cu 从20kg/cm2到1000kg/cm2变化,曲线为采用f ct 为参数的V c 表达式,V c =Kf ct bh2 /a=Kf ct bh /m,m=a/h 为剪跨比;直线表示采用f c 为参数的波氏公式,V c =0.15f c bh2 /c=0.15f c bh /m。从图可明显地看出,采用f ct 为混凝土强度影响参数与试验结果比较相符合,而如果采用f cu 或f c 为参数时, 混凝土强度低时,试验值高于计算值;中等强度时,两者相接近;高强度时,试验值大大低于计算值,这是很不安全的。因此,苏联规范对波氏抗剪强度公式进 行了修改,将混凝土强度从f c 改为f ct 。CEB/FIP规范对无抗剪钢筋构件V c 计算 式实际是采用f ct 为参数。西南交大抗剪试验[2,3]表明,把混凝土抗拉强度f ct 做 为混凝土强度对V c 影响参变量是合适的。考虑到铁路桥梁多使用高强度混凝土, 而采用f ct 为参数,能更明确地反映问题的实质,并可避免单位变换时引起不同 系数的因次带来的麻烦。因此,选取f ct 为混凝土强度的影响参数。 图1 苏联无箍筋梁抗剪强度V c 与混凝土f ct 的关系 1.2 剪跨比m的影响 大量试验表明,剪跨比m是影响混凝土抗剪强度的主要参数之一。 V c 随m的增大而减小,当m>3~4,V c 基本上就不受m的影响,其变化较 小。各规范在V c 表达式中,对m影响的处理上有所不同。CEB/FIP,BS5400 和《苏联СНИПⅡ-21-75》等规范,其V c 取较低值,考虑小剪距比时,乘一个2/m(m<2)的提高系数。我国铁路、公路桥规直接取1/m,文中分析时选取1/m为参数。 1.3 预应力度的影响[2,3,5] PPC简支T梁试验结果证明,预应力大小对无箍、有箍PPC简支梁 的混凝土抗剪强度V c 有提高作用。这主要是因为预压应力推迟了斜裂缝的出现和发展,增加了梁混凝土剪压区的高度,从而提高了混凝土剪压区的抗剪能力。试验分析时,曾采用了两个与预应力度λ相关的提高系

第四章受弯构件斜截面受剪承载力计算

第4章 受弯构件的斜截面承载力 教学要求: 1深刻理解受弯构件斜截面受剪的三种破坏形态及其防止对策。 2熟练掌握梁的斜截面受剪承载力计算。 3理解梁内纵向钢筋弯起和截断的构造要求。 4知道梁内各种钢筋,包括纵向受力钢筋、纵向构造钢筋、架立筋和箍筋等的构造要求。 4.1 概述 在保证受弯构件正截面受弯承载力的同时,还要保证斜截面承载力,它包括斜截面受剪承载力和斜截面受弯承载力两方面。工程设计中,斜截面受剪承载力是由计算和构造来满足的,斜截面受弯承载力则是通过对纵向钢筋和箍筋的构造要求来保证的。 图4-1 箍筋和弯起钢筋 图4-2 钢筋弯起处劈裂裂缝 工程设计中,应优先选用箍筋,然后再考虑采用弯起钢筋。由于弯起钢筋承受的拉力比较大,且集中,有可能引起弯起处混凝土的劈裂裂缝,见图4-2。因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯下。弯起钢筋的弯起角宜取45°或60° 4.2 斜裂缝、剪跨比及斜截面受剪破坏形态 4.2.1 腹剪斜裂缝与弯剪斜裂缝 钢筋混凝土梁在剪力和弯矩共同作用的剪弯区段内,将产生斜裂缝。 主拉应力:22 42τσσ σ++=tp ,

主压应力22 42τσσ σ+-=cp 主应力的作用方向与构件纵向轴线的夹角a 可按下式确定: στ α22-=tg 图4-3 主应力轨迹线 图4-4 斜裂缝 (a)腹剪斜裂缝;(b)弯剪斜裂缝 这种由竖向裂缝发展而成的斜裂缝,称为弯剪斜裂缝,这种裂缝下宽上细,是最常见的,如图4-4(b)所示。 4.2.2 剪跨比 在图4-5所示的承受集中荷载的简支梁中,最外侧的集中力到临近支座的距离a 称为剪跨,剪跨a 与梁截面有效高度h 0的比值,称为计算截面的剪跨比,简称剪跨比,用λ表示,λ=a/h 0。

抗剪扭计算

目录 一、概述 (1) 二、主要材料 (1) (一)混凝土 (1) (二)普通钢筋 (1) (三)预应力钢材 (1) (四)锚具 (2) (五)支座 (2) 三、主桥结构描述 (2) (一)主桥箱梁构造 (2) (二)预应力体系 (2) 四、结构计算 (2) (一)主要规范标准 (2) (二)计算方法概述 (3) (三)计算条件及参数说明 (4) (四)施工阶段划分及各施工阶段应力状态 (4) (五)承载能力极限状态验算 (6) (六)箱梁抗剪扭承载力验算 (6) (七)正常使用极限状态验算 (8) 五、总结 (12)

一、概述 H匝道H03~H06号墩上部结构为(3×25)m的等截面预应力混凝土连续箱梁,单幅桥宽9m,位于半径为250m的圆曲线上。桥面横断面组成为: 0.5m(单层栏杆)+7.0m(行车道)+0.5m(单层栏杆)=8m 桥梁设计主要技术标准如下: 结构重要系数:1.1 设计计算行车速度:60Km/h; 设计荷载:城-A级;公路-Ⅰ级荷载进行验算 地震烈度:抗震设防烈度7度,地震动峰值加速度系数为0.10g。 二、主要材料 (一)混凝土 箱梁采用C50混凝土;桥面铺装为10厘米沥青混凝土+APP防水卷材+6cmC40钢筋混凝土。 (二)普通钢筋 普通钢筋采用HRB335和R235级钢筋,其技术标准应符合《GB1499-1998》及《GB13013-91》的规定。 (三)预应力钢材 箱梁纵向预应力钢束采用高强度低松驰7股捻制预应力钢绞线,公称直径为15.20毫米,公称面积139mm2,标准强度1860MPa,弹性模量为

1.95×105MPa。 (四)锚具 纵向束锚固采用OVM系列锚具,并配以相应的锚垫板及螺旋筋。千斤顶采用锚具生产厂家指定型号。预应力管道采用塑料波纹管。(五)支座 4D2号墩外偏20cm采用墩梁固接不设支座,4D1、4D5号墩采用GJZF4 450×650×93型板式橡胶支座,4D3、4D4处采用GPZ(KZ)7DX抗震型盆式橡胶支座。 三、主桥结构描述 (一)主桥箱梁构造 上部结构采用直腹板的预应力混凝土箱梁,箱梁为单箱单室断面。箱梁顶宽8米,底宽4米,悬臂长2米。箱梁梁高为1.5米,跨中顶板厚0.25米,底板厚0.20米,腹板厚0.5米。 (二)预应力体系 纵向预应力采用15-φs15.2的预应力钢束,采用两端张拉,一端锚具变形钢束回缩值0.006米,锚下张拉控制应力为0.72倍的钢绞线标准强度值。预应力管道采用塑料波纹管,孔道摩阻系数取为0.25,偏差系数取为0.0015。 四、结构计算 (一)主要规范标准

钢筋混凝土梁剪切抗剪强度设计方法的评估

Technical Note Evaluation of Shear Strength Design Methodologies for Slender Shear-Critical RC Beams Zuanfeng Pan1and Bing Li2 Abstract:This paper seeks to examine the concrete contribution to shear strength and determine the inclination of the compressive strut within the variable truss model for slender RC shear-critical beams with https://www.sodocs.net/doc/0514880958.html,ing the modi?ed compression?eld theory in place of the conven-tional statistical regression of experimental data,the expression for the concrete contribution to shear strength was derived,and the inclination of compressive struts was determined.A simpli?ed explicit expression for shear strength was then provided,with which shear strength can be calculated without extensive iterative computations.This method was then veri?ed using the available experimental data of209RC rectangular beams with stirrups and compared with the current methods from the American Concrete Institute and the Canadian Standards Association.The theoretical results are shown to be consistent with the experimentally observed behavior of shear-critical RC beams.DOI:10.1061/(ASCE) ST.1943-541X.0000634.?2013American Society of Civil Engineers. CE Database subject headings:Shear strength;Struts;Compression;Concrete beams;Design. Author keywords:Shear strength;Concrete contribution to shear;Inclination of strut;Modi?ed compression?eld theory;Evaluation. Introduction Although the?exural behavior of RC beams is generally well un-derstood,the explanation of shear mechanisms is relatively in-adequate.Over the last century,many researchers have managed to develop semiempirical theories based on extensive experimental data[ASCE-American Concrete Institute(ACI)Committee4261973; ASCE-ACI Committee4451998].Representative models include the limit equilibrium theory,the truss model,the strut and tie model, the plastic theory,and the shear friction theory.However,given the complexity of shear failure mechanisms,none of these theories can offer a complete explanation,and as such,there has been no unani-mously accepted theory.Recent years have seen renewed efforts to develop a theoretical model that is veri?ed by experimental data. Many truss analogy models such as the traditional45°truss model,constant or variable angle truss model,and modi?ed com-pression?eld theory(MCFT)(Vecchio and Collins1986)are widely used as the basis of most shear design methodologies for RC beams. The general methods in LRFD-04(AASHTO2004)and Canadian Standard-04[Canadian Standards Association(CSA)2004]are both based on https://www.sodocs.net/doc/0514880958.html,ing the method in AASHTO LRFD-04,for beams with stirrups,the two factors,b and u,need to be looked up in the data charts.On the other hand,in CSA-04,it is necessary to determine the longitudinal strain at the middepth of the member using extensive iterative computations and a rough gauge of its initial value.The proposed approach in this paper is based on MCFT, rendering it unnecessary for iterative calculations or reference to data tables.The results of the proposed approach are veri?ed using the experimental data of209RC beams with stirrups and compared with the results obtained through the methods mentioned in ACI 318R-08(ACI2008)and CSA-04(CSA2004). Shear Strength for Slender Shear-Critical RC Beams It is worthwhile to note that for beams with a small l or deep beams, the hypothesis that plane sections remain plane is not satis?ed,and parts of the shear are directly transmitted to the supports by arch action.If the sectional shear design method is used,the results may be conservative without consideration of arch action.For RC beams with stirrups,when l$2.5,the arch action could be considered small(ASCE-ACI Committee4451998).In this paper,the present approach for shear strength based on MCFT is aimed mainly at the slender beams,which means l of the beam is$2.5,because the most practical RC beams are slender,with l ranging from approximately 2.5to6(Kassian1990;Li and Tran2008,2012). Formulas for shear strength in many codes for RC beams take into account the contribution of concrete V c and the contribution of stirrups V s.The MCFT has made an attempt to simplify the transmitting mechanism of concrete using average stresses,average strains,and local variations(Collins and Mithell1991).In the theory, the cracked concrete beam must be capable of resisting the effects of the shear,or the beam will fail before the breakdown of the ag-gregate interlock mechanism,to develop the capacity of a rough and interlocked crack interface for shear transfer.Derived by Collins and Mithell(1991),the contribution of concrete to shear is V c?min 2 66 66 4 0:18 ???? f0c p bd v 0:31t 24?1 eat16T sin u s tcos u s x , 0:33a1a2bd v ???? f0c p cot u 1t ???????????? 500?1 p 3 77 77 5 e1T From Eq.(1),it can be seen that there are two unknowns needed to calculate shear strength:crack angle u and principal tensile strain?1. 1Lecturer,School of Civil Engineering,Tongji Univ.,Shanghai200092, China. 2Associate Professor and Director of Natural Hazards Research Centre (NHRC),Nanyang Technological Univ.,Singapore639798(corresponding author).E-mail:cbli@https://www.sodocs.net/doc/0514880958.html,.sg Note.This manuscript was submitted on July25,2011;approved on July 20,2012;published online on August10,2012.Discussion period open until September1,2013;separate discussions must be submitted for individual papers.This technical note is part of the Journal of Structural Engineering, Vol.139,No.4,April1,2013.?ASCE,ISSN0733-9445/2013/4-619–622/ $25.00.

斜截面承载力计算

4.3.8斜截面抗剪配筋计算步骤 1.斜截面抗剪承载力设计 先进行正截面承载力计算,初步确定截面尺寸和纵向钢筋后,再进行斜截面承载力计算。(1)作梁的剪力图。l 0=l n 。 (3)验算是否须计算配腹筋, 即KV ≤ V c ,构造配箍筋; KV>V c ,计算配箍筋。 (2)验算是否避免斜压破坏, 即验算截面尺寸。 当不满足要求时,应加大截面尺寸或提高混凝土强度等级。 1)只配箍筋,可算得 ①选定箍筋肢数n 和单肢箍截面面积A sv 1,以确定A sv =nA sv 1。(4)计算腹筋 n :一般取双肢箍,n =2; 当受压钢筋多于4根或者梁宽b 大于400mm 且受压纵筋多于3根 时,采用四肢箍, n =4; d :按表4-2选择,h ≤800mm 时,d ≥6mm ; h >800mm 时,d ≥8mm 常用直径6mm 、 8mm 、10mm 。 s 选≤s 计且s 选≤s max ; s 选要满足构造要求。 ② 确定A sv 值后,求出 s 计 = K 可得:s 计 ≤ Asv/K ③确定 s 值 ④验算最小配箍率 ,min 0.15%(0.1%)sv sv sv A bs ρρ= ≥=①先按构造要求选配一定数量的箍筋(n 、A sv1、s )2)既配箍筋,又配弯起钢筋。 ,min sv ρ② KV1 > Vcs 时,计算第一排弯起钢筋 n 、A sv1选择同前; s 的选择应满足s max 和 的要求。③验算是否需要配置第二排弯起钢筋。 ④验算直到不需要配置弯起钢筋为止。 2.斜截面抗剪承载力复核 (1)验算下限值——是否避免了斜拉破坏。 验算配箍率,检查腹筋位置是否满足构造要求。

第六章 受弯构件斜截面承载力答案

第六章 钢筋混凝土受弯构件斜截面承载力计算 一、填空题: 1、梁的斜截面承载力随着剪跨比的增大而 。 降低 2、梁的斜截面破坏形态主要 、 、 ,其中,以 破坏的受力特征为依据建立斜截面承载力的计算公式。 斜拉破坏 斜压破坏 剪压破坏 剪压破坏 3、随着混凝土强度的提高,其斜截面承载力 。 提高 4、影响梁斜截面抗剪强度的主要因素是混凝土强度、配箍率、 剪跨比 和纵筋配筋率以及截面形式。 5、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 斜拉破坏 斜压破坏 6、设置弯起筋的目的是 、 。 承担剪力 承担支座负弯矩 7、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配置的箍筋应满足 。 025.0bh f V c c β≤ min ρρ≥,max s s ≤, min d d ≥ 二、判断题: 1. 钢筋混凝土梁纵筋弯起后要求弯起点到充分利用点之间距离大于0.5h 0,其主要原因是为了保证纵筋弯起后弯起点处斜截面的受剪承载力要求。( × ) 2.剪跨比0/h a 愈大,无腹筋梁的抗剪强度低,但当3/0>h a 后,梁的极限抗剪强度变化不大。 (√ ) 3.对有腹筋梁,虽剪跨比大于1,只要超配筋,同样会斜压破坏( √ ) 4、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。( )× 5、梁内设置多排弯起筋抗剪时,应使前排弯起筋在受压区的弯起点距后排弯起筋受压区的弯起点之距满足:max s s ≤( )× 6、箍筋不仅可以提高斜截面抗剪承载力,还可以约束混凝土,提高混凝土的抗压强度和延性,对抗震设计尤其重要。( )√ 7、为了节约钢筋,跨中和支座负纵筋均可在不需要位置处截断。( )× 8、斜拉、斜压、剪压破坏均属于脆性破坏,但剪压破坏时,材料能得到充分利用,所以斜截面承载力计算公式是依据剪压破坏的受力特征建立起来的。( )√ 三、选择题: 1、梁内纵向钢筋弯起时,可以通过( C )保证斜截面的受弯承载力。 A .从支座边缘到第1排弯起钢筋上弯起点的距离,以及前一排弯起钢筋的下弯点到次一排弯起钢筋的上弯点距离s ≤s max B .使材料的抵抗弯矩图包在设计弯矩图的外面 C .弯起点的位置在钢筋充分利用点以外大于0.5h 0 D .斜截面受弯承载力和正截面受弯承载力相同,必须通过理论计算才能得到保证 2、设计受弯构件时,如果出现025.0bh f V c c β 的情况,应采取的最有效的措施是( )。A A 加大截面尺寸 B 增加受力纵筋 C 提高混凝土强度等级 D 增设弯起筋 3、受弯构件中配置一定量的箍筋,其箍筋的作用( )是不正确的。 D A 提高斜截面抗剪承载力 B 形成稳定的钢筋骨架 C 固定纵筋的位置 D 防止发生斜截面抗弯不足。

影响斜截面受剪承载力的主要因素有哪些

1. 影响斜截面受剪承载力的主要因素有哪些? 答:(1)剪跨比的影响,随着剪跨比的增加,抗剪承载力逐渐降低; (2)混凝土的抗压强度的影响,当剪跨比一定时,随着混凝土强度的提高,抗剪承载力增加; (3)纵筋配筋率的影响,随着纵筋配筋率的增加,抗剪承载力略有增加; (4)箍筋的配箍率及箍筋强度的影响,随着箍筋的配箍率及箍筋强度的增加,抗剪承载力增加; (5)斜裂缝的骨料咬合力和钢筋的销栓作用; (6)加载方式的影响; (7)截面尺寸和形状的影响; .在抗扭计算中,配筋强度比的ζ含义是什么?起什么作用?有什么限制? 答:参数ζ反映了受扭构件中抗扭纵筋和箍筋在数量上和强度上的相对关系,称为纵筋和箍筋的配筋强度比,即纵筋和箍筋的体积比和强度比的乘积,Astl 为箍筋的单肢截面面积,S 为箍筋的间距,其中AstL 为截面内对称布置的全部纵筋截面面积,则ζ=fy*AstL*s/fyv*Ast1*Ucor ;试验表明,只有当ζ值在一定范围内时,才可保证构件破坏时纵筋和箍筋的强度都得到充分利用,《规范》要求ζ值符合0.6≤ζ≤1.7的条件,当ζ>1.7时,取ζ=1.7。\ .对受扭构件的截面尺寸有何要求?纵筋配筋率有哪些要求? 答:(1).截面尺寸要求 在受扭构件设计中,为了保证结构截面尺寸及混凝土材料强度不至于过小,为了避免超筋破坏,对构件的截面尺寸规定了限制条件。《混凝土结构设计规范》在试验的基础上,对h w /b ≤6的钢筋混凝土构件,规定截面限制条件如下式 当h w /b ≤4时 (8-27) 当h w /b=6时 (8-28) 当4<h w /b <6时 按线性内插法确定。 计算时如不满足上面公式的要求,则需加大构件截面尺寸,或提高混凝土强度等级。 (2).最小配筋率 构在弯剪扭共同作用下,受扭纵筋的最小配筋率为;纵筋最小配筋率应取抗弯及抗扭纵筋最小配筋率叠加值。y t stl tl f f Vb T bh A 6.0min ,min ,==ρ

受弯构件斜截面受剪承载力计算

受弯构件斜截面受剪承载力计算 一、有腹筋梁受剪承载力计算基本公式 1. 矩形、T 形和Ⅰ形截面的一般受弯构件,斜截面受剪承载力计算公式为: 0025.17.0h s A f bh f V V sv yv t cs +=≤ (5-6) 式中 t f 一混凝土抗拉强度设计值; b 一构件的截面宽度,T 形和Ⅰ形截面取腹板宽度; 0h 一截面的有效高度; yv f 一箍筋的抗拉强度设计值; sv A 一配置在同一截面内箍筋各肢的全部截面面积,1sv sv nA A =; n 一在同一截面内箍筋的肢数; 1sv A 一单肢箍筋的截面面积; s 一箍筋的间距。 2.集中荷载作用下的独立梁(包括作用多种荷载,且其中集中荷载对支座截面或节点边缘所产生的剪力值占总剪力值的75%以上的情况),斜截面受剪承载力按下式计算: 000.175.1h s A f bh f V V sv yv t cs ++=≤λ (5-7) 式中 λ一剪跨比,可取0/h a =λ,a 为计算截面至支座截面或节点边缘的距离,计算截面取集中荷载作用点处的截面。当λ小于 1.5 时,取5.1=λ;当λ大于 3.0 时,取0.3=λ。独立梁是指不与楼板整浇的梁。 构件中箍筋的数量可以用箍筋配箍率sv ρ表示: bs A sv sv =ρ (5-8) 3.当梁内还配置弯起钢筋时,公式(5-4)中 s sb y b A f V αsin 8.0= (5-9) 式中 y f 一纵筋抗拉强度设计值; sb A 一同一弯起平面内弯起钢筋的截面面积; s α一斜截面上弯起钢筋的切线与构件纵向轴线的夹角,一般取o 45,当梁较

相关主题