搜档网
当前位置:搜档网 › 数字图像处理及matlab实现源代码【1】

数字图像处理及matlab实现源代码【1】

数字图像处理及matlab实现源代码【1】
数字图像处理及matlab实现源代码【1】

% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-*

%{

% (一)图像文件的读/写

A=imread('drum.jpg'); % 读入图像

imshow(A); % 显示图像

imwrite(A,'drum.jpg');

info=imfinfo('drum.jpg') % 查询图像文件信息

% 用colorbar函数将颜色条添加到坐标轴对象中

RGB=imread('drum.jpg');

I=rgb2gray(RGB); % 把RGB图像转换成灰度图像

h=[1 2 1;0 0 0;-1 -2 -1];

I2=filter2(h,I);

imshow(I2,[]);

colorbar('vert') % 将颜色条添加到坐标轴对象中

% wrap函数将图像作为纹理进行映射

A=imread('4.jpg');

imshow(A);

I=rgb2gray(RGB);

[x,y,z]=sphere;

warp(x,y,z,I); % 用warp函数将图像作为纹理进行映射

%}

% subimage函数实现一个图形窗口中显示多幅图像

RGB=imread('drum.jpg');

I=rgb2gray(RGB);

subplot(1,2,1);

subimage(RGB); % subimage函数实现一个图形窗口中显示多幅图像subplot(1,2,2),subimage(I);

% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-*

% (二)图像处理的基本操作

% ----------------图像代数运算------------------

%{

% imadd函数实现两幅图像的相加或给一幅图像加上一个常数

% 给图像每个像素都增加亮度

I=imread('4.jpg');

J=imadd(I,100); % 给图像增加亮度

subplot(1,2,1),imshow(I);title('原图');

subplot(1,2,2),imshow(J);title('增加亮度图');

%

% imsubtract函数实现将一幅图像从另一个图像中减去或减去一个常数I=imread('drum.jpg');

J=imsubtract(I,100); % 给图像减去亮度

subplot(1,2,1),imshow(I);

%

% immultiply实现两幅图像的相乘或者一幅图像的亮度缩放

I=imread('drum.jpg');

J=immultiply(I,2); % 进行亮度缩放

subplot(1,2,1),imshow(I);

subplot(1,2,2),imshow(J);

%

% imdivide函数实现两幅图像的除法或一幅图像的亮度缩放

I=imread('4.jpg');

J=imdivide(I,0.5); % 图像的亮度缩放

subplot(1,2,1),imshow(I);

subplot(1,2,2),imshow(J);

%}

% ----------------图像的空间域操作------------------

%{

% imresize函数实现图像的缩放

J=imread('4.jpg');

subplot(1,2,1),imshow(J);title('原图');

X1=imresize(J,0.2); % 对图像进行缩放

subplot(1,2,2),imshow(X1);title('缩放图');

%

% imrotate函数实现图像的旋转

I=imread('drum.jpg');

J=imrotate(I,50,'bilinear'); % 对图像进行旋转

subplot(1,2,1),imshow(I);

subplot(1,2,2),imshow(J);

%

% imcrop函数实现图像的剪切

I=imread('drum.jpg');

I2=imcrop(I,[1 100 130 112]); % 对图像进行剪切

subplot(1,2,1),imshow(I);

subplot(1,2,2),imshow(I2);

%}

% ----------------特定区域处理------------------

%{

% roipoly函数用于选择图像中的多边形区域

I=imread('4.jpg');

c=[200 250 278 248 199 172];

r=[21 21 75 121 121 75];

BW=roipoly(I,c,r); % roipoly函数选择图像中的多边形区域

subplot(1,2,1),imshow(I);

subplot(1,2,2),imshow(BW);

%

% roicolor函数式对RGB图像和灰度图像实现按灰度或亮度值选择区域进行处理a=imread('4.jpg');

subplot(2,2,1),imshow(a);

I=rgb2gray(a);

BW=roicolor(I,128,225); % 按灰度值选择的区域

subplot(2,2,4),imshow(BW);

%

% ploy2mask 函数转化指定的多边形区域为二值掩模

x=[63 186 54 190 63];

y=[60 60 209 204 601];

bw=poly2mask(x,y,256,256); % 转化指定的多边形区域为二值掩模imshow(bw);

hold on

plot(x,y,'r','LineWidth',2);

hold off

%

% roifilt2函数实现区域滤波

a=imread('4.jpg');

I=rgb2gray(a);

c=[200 250 278 248 199 172];

r=[21 21 75 121 121 75];

BW=roipoly(I,c,r); % roipoly函数选择图像中的多边形区域

h=fspecial('unsharp');

J=roifilt2(h,I,BW); % 区域滤波

subplot(1,2,1),imshow(I);

subplot(1,2,2),imshow(J);

%

% roifill函数实现对特定区域进行填充

a=imread('4.jpg');

I=rgb2gray(a);

c=[200 250 278 248 199 172];

r=[21 21 75 121 121 75];

J=roifill(I,c,r); % 对特定区域进行填充

subplot(1,2,1),imshow(I);

subplot(1,2,2),imshow(J);

%}

% ----------------图像变换------------------

%{

% fft2 和ifft2函数分别是计算二维的快速傅里叶变换和反变换f=zeros(100,100);

subplot(1,2,1);imshow(f);

f(20:70,40:60)=1;

subplot(1,2,2);imshow(f);

F=fft2(f); % 计算二维的快速傅里叶变换

F2=log(abs(F));% 对幅值对对数

figure;

subplot(1,2,1),imshow(F),colorbar;

subplot(1,2,2),imshow(F2),colorbar;

%

% fftsshift 函数实现了补零操作和改变图像显示象限

f=zeros(100,100);

subplot(2,2,1),imshow(f);title('f')

f(10:70,40:60)=1;

subplot(2,2,2),imshow(f);title('f取后')

F=fft2(f,256,256);

subplot(2,2,3),imshow(F);title('F')

F2=fftshift(F); % 实现补零操作

subplot(2,2,4),imshow(F2);title('F2')

figure,imshow(log(abs(F2)));title('log(|F2|)')

%

% dct2 函数采用基于快速傅里叶变换的算法,用于实现较大输入矩阵的离散余弦变换% idct2 函数实现图像的二维逆离散余弦变换

RGB=imread('drum.jpg');

I=rgb2gray(RGB);

J=dct2(I); % 对I进行离散余弦变换

imshow(log(abs(J))),title('对原图离散后取对数'),colorbar;

J(abs(J)<10)=0;

K=idct2(J); % 图像的二维逆离散余弦变换

figure,imshow(I),title('原灰度图')

figure,imshow(K,[0,255]);title('逆离散变换');

%

% dctmtx 函数用于实现较小输入矩阵的离散余弦变

figure;

RGB=imread('4.jpg');

I=rgb2gray(RGB);

subplot(3,2,1),imshow(I),title('原灰度图');

I=im2double(I);

subplot(3,2,2),imshow(I),title('取双精度后');

T=dctmtx(8); % 离散余弦变换

subplot(3,2,3),imshow(I),title('离散余弦变换后');

B=blkproc(I,[8,8],'P1*x*P2',T,T');

subplot(3,2,4),imshow(B),title('blkproc作用I后的B');

mask=[ 1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ];

B2=blkproc(B,[8,8],'P1.*x',mask);

subplot(3,2,5),imshow(B2),title('blkproc作用B后的B2');

I2=blkproc(B2,[8,8],'P1*x*P2',T',T);

subplot(3,2,6),imshow(I2),title('blkproc作用B2后的I2');

%

% edge函数用于提取图像的边缘

RGB=imread('4.jpg');

I=rgb2gray(RGB);

BW=edge(I);

imshow(I);

figure,imshow(BW);

%

% radon 函数用来计算指定方向上图像矩阵的投影RGB=imread('4.jpg');

I=rgb2gray(RGB);

BW=edge(I);

theta=0:179;

[R,XP]=radon(BW,theta); % 图像矩阵的投影

figure,imagesc(theta,XP,R);

colormap(hot);

xlabel('\theta(degrees)');

ylabel('x\prime');

title('R_{\theta}(x\prime)');

colorbar;

%}

% ----------------图像增强、分割和编码------------------

%{

% imhist 函数产生图像的直方图

A=imread('4.jpg');

B=rgb2gray(A);

subplot(2,1,1),imshow(B);

subplot(2,1,2),imhist(B);

%

% histeq 函数用于对图像的直方图均衡化

A=imread('4.jpg');

B=rgb2gray(A);

subplot(2,1,1),imshow(B);

subplot(2,1,2),imhist(B);

C=histeq(B); % 对图像B进行均衡化

figure;

subplot(2,1,1),imshow(C);

subplot(2,1,2),imhist(C);

%

% filter2 函数实现均值滤波

a=imread('4.jpg');

I=rgb2gray(a);

subplot(2,2,1),imshow(I);

K1=filter2(fspecial('average',3),I)/255; % 3*3的均值滤波K2=filter2(fspecial('average',5),I)/255; % 5*5的均值滤波K3=filter2(fspecial('average',7),I)/255; % 7*7的均值滤波subplot(2,2,2),imshow(K1);

subplot(2,2,3),imshow(K2);

subplot(2,2,4),imshow(K3);

%

% wiener2 函数实现Wiener(维纳)滤波

a=imread('4.jpg');

I=rgb2gray(a);

subplot(2,2,1),imshow(I);

K1=wiener2(I,[3,3]); % 3*3 wiener滤波

K2=wiener2(I,[5,5]); % 5*5 wiener滤波

K3=wiener2(I,[7,7]); % 7*7 wiener滤波

subplot(2,2,2),imshow(K1);

subplot(2,2,3),imshow(K2);

subplot(2,2,4),imshow(K3);

%

% medfilt2 函数实现中值滤波

a=imread('4.jpg');

I=rgb2gray(a);

subplot(2,2,1),imshow(I);

K1=medfilt2(I,[3,3]); % 3*3 中值滤波

K2=medfilt2(I,[5,5]); % 5*5 中值滤波

K3=medfilt2(I,[7,7]); % 7*7 中值滤波

subplot(2,2,2),imshow(K1);

subplot(2,2,3),imshow(K2);

subplot(2,2,4),imshow(K3);

%}

% ----------------图像模糊及复原------------------

%{

% deconvwnr 函数:使用维纳滤波器

I=imread('qier.jpg');

imshow(I);

% 对图像进行模糊处理

LEN=31;

THETA=11;

PSF1=fspecial('motion',LEN,THETA); % 运动模糊

PSF2=fspecial('gaussian',10,5); % 高斯模糊

Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像figure;

subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"'); subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');

% 对模糊图像加噪声

V=0.002;

BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;

subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1'); subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');

% 进行维纳滤波

wnr1=deconvwnr(Blurred1,PSF1); % 维纳滤波

wnr2=deconvwnr(Blurred2,PSF2); % 维纳滤波

figure;

subplot(1,2,1);imshow(wnr1);title('Restored1,True PSF'); subplot(1,2,2);imshow(wnr2);title('Restored2,True PSF');

%

% deconvreg函数:使用约束最小二乘滤波器

I=imread('qier.jpg');

imshow(I);

% 对图像进行模糊处理

LEN=31;

THETA=11;

PSF1=fspecial('motion',LEN,THETA); % 运动模糊

PSF2=fspecial('gaussian',10,5); % 高斯模糊

Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像

figure;

subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"');

subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');

% 对模糊图像加噪声

V=0.002;

BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;

subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1');

subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');

NP=V*prod(size(I));

reg1=deconvreg(BlurredNoisy1,PSF1,NP); % 约束最小二乘滤波

reg2=deconvreg(BlurredNoisy2,PSF2,NP); % 约束最小二乘滤波figure;

subplot(1,2,1);imshow(reg1);title('Restored1 with NP');

subplot(1,2,2);imshow(reg2);title('Restored2 with NP');

%

% deconvlucy函数:使用Lucy-Richardson滤波器

I=imread('qier.jpg');

imshow(I);

% 对图像进行模糊处理

LEN=31;

THETA=11;

PSF1=fspecial('motion',LEN,THETA); % 运动模糊

PSF2=fspecial('gaussian',10,5); % 高斯模糊

Blurred1=imfilter(I,PSF1,'circular','conv'); % 得到运动模糊图像Blurred2=imfilter(I,PSF2,'conv'); % 得到高斯噪声模糊图像

figure;

subplot(1,2,1);imshow(Blurred1);title('Blurred1--"motion"');

subplot(1,2,2);imshow(Blurred2);title('Blurred2--"gaussian"');

% 对模糊图像加噪声

V=0.002;

BlurredNoisy1=imnoise(Blurred1,'gaussian',0,V); % 加高斯噪声BlurredNoisy2=imnoise(Blurred2,'gaussian',0,V); % 加高斯噪声figure;

subplot(1,2,1);imshow(BlurredNoisy1);title('BlurredNoisy1');

subplot(1,2,2);imshow(BlurredNoisy2);title('BlurredNoisy2');

luc1=deconvlucy(BlurredNoisy1,PSF1,5); % 使用Lucy-Richardson滤波luc2=deconvlucy(BlurredNoisy1,PSF1,15); % 使用Lucy-Richardson滤波figure;

subplot(1,2,1);imshow(luc1);title('Restored Image,NUMIT=5'); subplot(1,2,2);imshow(luc2);title('Restored Image,NUMIT=15');

%}

% deconvblind 函数:使用盲卷积算法

a=imread('4.jpg');

I=rgb2gray(a);

figure;

imshow(I);title('Original Image');

PSF=fspecial('motion',13,45); % 运动模糊

figure;

imshow(PSF);

Blurred=imfilter(I,PSF,'circ','conv'); % 得到运动模糊图像figure;

imshow(Blurred);title('Blurred Image');

INITPSF=ones(size(PSF));

[J,P]=deconvblind(Blurred,INITPSF,30); % 使用盲卷积figure;imshow(J);

figure;imshow(P,[],'notruesize');

% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-* %{

% 对图像进行减采样

a=imread('lena.jpg');

%subplot(1,4,1);

figure;

imshow(a);title('原图');

b=rgb2gray(a);

%subplot(1,4,2);

figure;

imshow(b);title('原图的灰度图');

[wid,hei]=size(b);

%---4倍减采样----

quartimg=zeros(wid/2+1,hei/2+1);

i1=1;

j1=1;

for i=1:2:wid

for j=1:2:hei

quartimg(i1,j1)=b(i,j);

j1=j1+1;

end

i1=i1+1;

j1=1;

end

%subplot(1,4,3);

figure;

imshow(uint8(quartimg));title('4倍减采样')

% ---16倍减采样---

quanrtimg=zeros(wid/4+1,hei/4+1);

i1=1;

j1=1;

for i=1:4:wid

for j=1:4:hei

quanrtimg(i1,j1)=b(i,j);

j1=j1+1;

end

i1=i1+1;

j1=1;

end

%subplot(1,4,4);.

figure;

imshow(uint8(quanrtimg));title('16倍减采样');

%}

% 图像类型

% 将图像转换为256级灰度图像,64级灰度图像,32级灰度图像,8级灰度图像,2级灰度图像

a=imread('4.jpg');

%figure;

subplot(2,3,1);

imshow(a);title('原图');

b=rgb2gray(a); % 这是256灰度级的图像

%figure;

subplot(2,3,2);

imshow(b);title('原图的灰度图像');

[wid,hei]=size(b);

img64=zeros(wid,hei);

img32=zeros(wid,hei);

img8=zeros(wid,hei);

img2=zeros(wid,hei);

for i=1:wid

for j=j:hei

img64(i,j)=floor(b(i,j)/4); % 转化为64灰度级

end

end

%figure;

subplot(2,3,3);

imshow(uint8(img64),[0,63]);title('64级灰度图像');

for i=1:wid

for j=1:hei

img32(i,j)=floor(b(i,j)/8);% 转化为32灰度级

end

end

%figure;

subplot(2,3,4);

imshow(uint8(img32),[0,31]);title('32级灰度图像');

for i=1:wid

for j=1:hei

img8(i,j)=floor(b(i,j)/32);% 转化为8灰度级end

end

%figure;

subplot(2,3,5);

imshow(uint8(img8),[0,7]);title('8级灰度图像');

for i=1:wid

for j=1:hei

img2(i,j)=floor(b(i,j)/128);% 转化为2灰度级end

end

%figure;

subplot(2,3,6);

imshow(uint8(img2),[0,1]);title('2级灰度图像');

% *-*--*-*-*-*-*-*-*-*-*-*-*图像处理*-*-*-*-*-*-*-*-*-*-*-* %{

% ------------------ 图像的点运算------------------

I=imread('lena.jpg');

figure;

subplot(1,3,1);imshow(I);title('原图的灰度图');

J=imadjust(I,[0.3;0.6],[0.1;0.9]); % 设置灰度变换的范围subplot(1,3,2);imshow(J);title('线性扩展');

I1=double(I); % 将图像转换为double类型

I2=I1/255; % 归一化此图像

C=2; % 非线性扩展函数的参数

K=C*log(1+I2); % 对图像的对数变换

subplot(1,3,3);imshow(K);title('非线性扩展');

M=255-I;

figure;

subplot(1,3,1);imshow(M);title('灰度倒置');

N1=im2bw(I,0.4); % 将此图像二值化,阈值为0.4

N2=im2bw(I,0.7); % 将此图像二值化,阈值为0.7 subplot(1,3,2);imshow(N1);title('二值化阈值0.4');

subplot(1,3,3);imshow(N2);title('二值化阈值0.7');

%}

%{

% ------------------ 图像的代数运算------------------

% 将两幅图像进行加法运算

I=imread('lena.jpg');

I=rgb2gray(I);

J=imread('rice.png');

% 以下把两幅图转化为大小一样

for i=1:size(I)

for j=size(J):size(I)

J(i,j)=0;

end

end

I=im2double(I); % 将图像转化为double型

J=im2double(J);

% imshow(I);figure;imshow(J);

K=I+0.3*J; % 将两幅图像相加

subplot(1,3,1);imshow(I);title('人物图');

subplot(1,3,2);imshow(J);title('背景图');

subplot(1,3,3);imshow(K);title('相加后的图');

imwrite(K,'i_lena1.jpg');

%

%

% 将两幅图像做减运算,分离背景与原图

A=imread('i_lena1.jpg');

B=imread('rice.png');

% 以下把两幅图转化为大小一样

for i=1:size(A)

for j=size(B):size(A)

B(i,j)=0;

end

end

C=A-0.3*B;

a=imread('lena.jpg');

subplot(2,2,1);imshow(a);title('原图图');

subplot(2,2,2);imshow(A);title('混合图');

subplot(2,2,3);imshow(B);title('背景图');

subplot(2,2,4);imshow(C);title('分离后的图');

%

% 设置掩模,需要保留下来的区域,掩模图像的值为1,否则为0 A=imread('drum.jpg');

A=rgb2gray(A);

A=im2double(A);

sizeA=size(A);

subplot(1,2,1);imshow(A);title('原图');

B=zeros(sizeA(1),sizeA(2)); % 设置模板

B(100:400,100:500)=1;

K=A.*B; % 两幅图像相乘

subplot(1,2,2);imshow(K);title('局部图');

%}

%{

% ------------------ 图像的缩放------------------

A=imread('drum.jpg');

B1=imresize(A,1.5); % 比例放大1.5杯,默认采用的是最近邻法进行线性插值B2=imresize(A,[420 384]); % 非比例放大到420:384

C1=imresize(A,0.7); % 比例缩小0.7倍

C2=imresize(A,[150 180]); % 非比例缩小到150:180

figure;imshow(B1);title('比例放大图');

figure;imshow(B2);title('非比例放大图');

figure;imshow(C1);title('比例缩小图');

figure;imshow(C2);title('非比例缩小图');

% 检测非比例缩放得到的图片是否能还原到原图

a=size(A)

d=imresize(C2,[a(1),a(2)]);

figure;imshow(d);

%}

% ------------------ 图像的旋转------------------

I=imread('drum.jpg');

J=imrotate(I,45); % 图像进行逆时针旋转,默认采用最近邻插值法进行插值处理K=imrotate(I,90); % 默认旋转出界的部分不被截出

subplot(1,3,1);imshow(I);

subplot(1,3,2);imshow(J);

subplot(1,3,3);imshow(K);

% 检测旋转后的图像是否失真

P=imrotate(K,270);

figure;imshow(P);

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1 图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1] A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,V al1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Empty or not,Mode:lossy or lossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。 同时显示多帧图像的所有帧,可用到montage函数。

图论算法及其MATLAB程序代码

图论算法及其MATLAB 程序代码 求赋权图G =(V ,E ,F )中任意两点间的最短路的Warshall-Floyd 算法: 设A =(a ij )n ×n 为赋权图G =(V ,E ,F )的矩阵,当v i v j ∈E 时a ij =F (v i v j ),否则取a ii =0,a ij =+∞(i ≠j ),d ij 表示从v i 到v j 点的距离,r ij 表示从v i 到v j 点的最短路中一个点的编号. ①赋初值.对所有i ,j ,d ij =a ij ,r ij =j .k =1.转向② ②更新d ij ,r ij .对所有i ,j ,若d ik +d k j <d ij ,则令d ij =d ik +d k j ,r ij =k ,转向③. ③终止判断.若d ii <0,则存在一条含有顶点v i 的负回路,终止;或者k =n 终止;否则令k =k +1,转向②. 最短路线可由r ij 得到. 例1求图6-4中任意两点间的最短路. 解:用Warshall-Floyd 算法,MATLAB 程序代码如下: n=8;A=[0281Inf Inf Inf Inf 206Inf 1Inf Inf Inf 8607512Inf 1Inf 70Inf Inf 9Inf Inf 15Inf 03Inf 8 Inf Inf 1Inf 3046 Inf Inf 29Inf 403 Inf Inf Inf Inf 8630];%MATLAB 中,Inf 表示∞ D=A;%赋初值 for (i=1:n)for (j=1:n)R(i,j)=j;end ;end %赋路径初值 for (k=1:n)for (i=1:n)for (j=1:n)if (D(i,k)+D(k,j)

数字图像处理实验程序MATLAB.

实验一 内容(一) (1)彩色图像变灰度图像 A=imread('1.jpg'); B=rgb2gray(A); figure subplot(1,2,1), imshow(A) title('原图') subplot(1,2,2), imshow(B) title('原图灰度图像') (2)彩色图像变索引图像 A=imread('1.jpg'); figure subplot(1,2,1), imshow(A) title('原图') [X,map]=rgb2ind(A,128); subplot(1,2,2), imshow(X,map) title('原图索引图像') (3)彩色图像变二值图像 A=imread('1.jpg'); figure subplot(1,2,1), imshow(A) title('原图') C=im2bw(A,0.2); subplot(1,2,2), imshow(C) title('原图二值图像') (4)灰度图像变索引图像(一) A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') C=grayslice(B,39); subplot(1,2,2), imshow(C) title('灰度变索引图像')

(5)灰度图像变索引图像(二) A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') [X,map]=gray2ind(B,63); subplot(1,2,2), imshow(X,map) title('灰度变索引图像') (6)灰度图像变彩色图像 A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') C=gray2rgb(B,map); subplot(1,2,2), imshow(C) title('灰度变彩色图像') 内容(二) (1)灰度平均值 A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') B=double(B); [m,n]=size(B); sumg=0.0; for i=1:m; for j=1:n; sumg=sumg+B(i,j); end end avg=sumg/(m*n) % 均值 maxg=max(max(B)) % 区域最大灰度ming=min(min(B)) % 区域最小灰度 (2)彩色平均值

用Matlab进行数字图像处理实验1

实验报告 专业:信息与计算科学班级:07级(1)班指导老师:汪太月老师姓名:刘莲学号:0641210224 实验室:K7-407 实验名称:Matlab图像工具箱的使用时间:2010.6.13 一、实验目的及要求 (一)实验目的 1、掌握MATLAB中常用的图像处理语句; 2、掌握图像的读入,信息查询以及显示; 3、掌握采用不同的模板对图像进行滤波; 4、掌握图像显示的调用格式; (二)实验要求 1、练习MATLAB中常用的图像处理语句; 2、练习图像的读入,信息查询以及显示; 3、练习采用不同的模板对图像进行滤波; 4、练习图像显示的调用格式; 二、实验设备(环境)及要求 1、支持Intel Pentium Ⅲ及其以上CPU,内存256MB以上、硬盘1GB以上容量的微机;软件配有 Windows98/2000/XP操作系统及MATLAB软件; 2、实验过程中,务必分析实验结果,按要求写出实验报告。(建议同时网上提交电子版实验报告: yw6895@https://www.sodocs.net/doc/056365519.html,) 三、实验内容与步骤 1、练习MATLAB中常用的图像处理语句 Matlab中为用户提供了一些特殊的函数,用于从图像格式的文件中读写图像。其中:a、读取图形文件格式的图像需要用imread函数; b、写入一个图形文件格式的图像需要调用imwrite函数; c、获取图形文件格式的图像的信息需要调用imfinfo、ind2rgb函数; d、以Mat文件加载或保存矩阵数据用load、save函数; e、显示加载到Matlab中的图像用image、imagesc. 此外,Matlab工具箱中还提供了图像转化函数,可以对图像类型进行转化,以达到某些图像处理工作的要求。 下面,我们将分别对这些常用的图像处理语句在Matlab中进行练习,并观察其输出结果: (1)在Matlab中读入一个灰度图像,并利用相关函数进行图像处理,并显示结果。 Matlab程序如下: I=imread('lena.bmp'); %读入原图像文件 imshow(I) %图像文件的显示 imwrite(I,'lena1.bmp'); %将原图像重命名为lena1.bmp,并保存图像 figure,imhist(I,225) %显示原图像的直方图,225为指定的灰度级数目 X=grayslice(I,64); %将原图像I均匀量化成64个等级,然后转化成索引色图像X figure,imshow(X,pink(64)) %显示索引色图像,pink(64)产生一个64×3的调色板,色度为粉红运行结果如下: 500 1000 1500 2000 2500 3000 3500 050100150200250 (2)练习图像的读入,信息查询以及显示 Matlab程序如下: load trees image(50,80,X) %显示加载到Matlab中的图像 imwrite(X,map,'trees.tif'); %将图像以tif格式保存 inf=imfinfo('trees.tif') %图像文件信息的查询 BW=im2bw(X,map,0.4); %将索引图像转化成二值图像 figure,imshow(X,map) %显示图像 figure,imshow(BW) 运行结果如下: 50100150200250300350 100 150 200 250 300 %显示从Matlab中加载的图像文件的信息 inf = Filename: 'trees.tif' FileModDate: '18-六月-2010 19:41:48' FileSize: 75764 Format: 'tif' FormatVersion: [] Width: 350 Height: 258 BitDepth: 8 ColorType: 'indexed' FormatSignature: [73 73 42 0] ByteOrder: 'little-endian' NewSubFileType: 0 BitsPerSample: 8 Compression: 'PackBits'

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n 默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1]A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,Val1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Emptyor not,Mode:lossy orlossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。

用matlab数字图像处理四个实验

数字图像处理 实验指导书

目录 实验一MATLAB数字图像处理初步实验二图像的代数运算 实验三图像增强-空间滤波 实验四图像分割 3

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: ?亮度图像(Intensity images)

(完整版)数字图像处理MATLAB程序【完整版】

第一部分数字图像处理

实验一图像的点运算 实验1.1 直方图 一.实验目的 1.熟悉matlab图像处理工具箱及直方图函数的使用; 2.理解和掌握直方图原理和方法; 二.实验设备 1.PC机一台; 2.软件matlab。 三.程序设计 在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。 I=imread('cameraman.tif');%读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 四.实验步骤 1. 启动matlab 双击桌面matlab图标启动matlab环境; 2. 在matlab命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab自带的图像, 如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像; 3.浏览源程序并理解含义; 4.运行,观察显示结果; 5.结束运行,退出; 五.实验结果 观察图像matlab环境下的直方图分布。 (a)原始图像 (b)原始图像直方图 六.实验报告要求 1、给出实验原理过程及实现代码; 2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。

实验1.2 灰度均衡 一.实验目的 1.熟悉matlab图像处理工具箱中灰度均衡函数的使用; 2.理解和掌握灰度均衡原理和实现方法; 二.实验设备 1.PC机一台; 2.软件matlab; 三.程序设计 在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。 I=imread('cameraman.tif');%读取图像 subplot(2,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(2,2,3),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 a=histeq(I,256); %直方图均衡化,灰度级为256 subplot(2,2,2),imshow(a) %输出均衡化后图像 title('均衡化后图像') %在均衡化后图像中加标题 subplot(2,2,4),imhist(a) %输出均衡化后直方图 title('均衡化后图像直方图') %在均衡化后直方图上加标题 四.实验步骤 1. 启动matlab 双击桌面matlab图标启动matlab环境; 2. 在matlab命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab自带的图像, 如:cameraman图像;再调用相应的灰度均衡函数,设置参数;最后输出处理后的图像; 3.浏览源程序并理解含义; 4.运行,观察显示结果; 5.结束运行,退出; 五.实验结果 观察matlab环境下图像灰度均衡结果及直方图分布。 (a)原始图像 (b)均衡化后图像

matlab数字图像处理源代码

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响 到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度 的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊, 可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 l=imread('C:\Documents and 桌面\1.gif');% 读取图像

J=imnoise(l,'gaussian',0,0.005);% 加入均值为0 ,方差为 0.005 的高斯噪声subplot(2,3,1);imshow(l); title(' 原始图像'); subplot(2,3,2); imshow(J); ti tle('加入高斯噪声之后的图像’); %采用MATLAB 中的函数filter2 对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; % 模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; % 模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; % 模板尺寸为9 subplot(2,3,3);imshow(K1); ti tle(' 改进后的图像1'); subplot(2,3,4); imshow(K2); title(' 改进后的图像2'); subplot(2,3,5);imshow(K3); title(' 改进后的图像3'); subplot(2,3,6);imshow(K4); title(' 改进后的图像4');

MATLAB数字图像处理技术

MATLAB 数字图像处理技术 4 MATLAB 图像增强 4.1 原理、方法及体系结构 三个阶段:图像预处理、特征抽取阶段、识别分析阶段。 目的:改善图像的视觉效果,提高图像成分的清晰度;是图像变得有利于计算机处理。 方法:空间域增强方法、频域增强方法。 体系: 图像增强:空间域、频率域、彩色增强 空间域:像素点处理(图像灰度变换、直方图修正(中值滤波、均值滤波))、领域处理(图像平滑滤波、图像锐化滤波) 频率域:低通滤波、高通滤波、同态滤波 彩色处理:真彩色处理、伪彩色处理(灰度分层法、灰度变换法、频域伪彩色) 4.2 对比度增强 线性变换:(,)[(,)]N n g x y f x y m n M m -= -+-。其中功能是把函数的灰度值(,)f x y 从 范围[m,M]变为[n,N]。 非线性变换:分为对数变换和Gamma 变换。前者表达式为(,)log[(,)1]g x y c f x y =+, 其中c 为常数。后者表达式为r f cr =,r 为CCD 图像传感器或胶片等的入射光的强度,为 常数,灰度与光强成正比,则有1 ()r f g kr k c ==,k 为常数通常为1,1/r 取0.4~0.8。 我们可以用一个函数imadjust 函数来实现: J=imadjust(I); J=imadjust(I,[low_in;high_in],[low_out;high_out]); J=imadjust(I,[low_in;high_in],[low_out;high_out],gamma)。 其中灰度范围用归一化灰度值,范围[0,1]。整个图像的[low_in;high_in]可以用函数stretch 函数来获得。 MATLAB image toolbox5.4还提供一个手动调节的控制面板,调用函数imconstrast 。 4.3 空域变换增强 分为基于像素点和基于模板的两类方法。 像素选择:pixval 和impixel 。用法如下: Pixval(‘on/off ’);pixval ;pixval(fig,option); [C,R,P]=impixel(X,MAP)。 说明:MAP 仅仅当是索引图的时候采用此参数。C 为像素的颜色,R,P 为像素的坐标。Pixval 可以得到更多的像素信息,impixel 可以返回指定像素的颜色值。 强度描述图:improfile ,用以描述图像一条线段或多条线段的强度值。格式:

(图论)matlab模板程序

(图论)matlab模板程序

第一讲:图论模型 程序一:可达矩阵算法 %根据邻接矩阵A(有向图)求可达矩阵P(有向图) function P=dgraf(A) n=size(A,1); P=A; for i=2:n P=P+A^i; end P(P~=0)=1; %将不为0的元素变为1 P; 程序二:无向图关联矩阵和邻接矩阵互换算法F表示所给出的图的相应矩阵 W表示程序运行结束后的结果 f=0表示把邻接矩阵转换为关联矩阵 f=1表示把关联矩阵转换为邻接矩阵 %无向图的关联矩阵和邻接矩阵的相互转换 function W=incandadf(F,f) if f==0 %邻接矩阵转换为关联矩阵 m=sum(sum(F))/2; %计算图的边数 n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 W(i,k)=1; %给边的始点赋值为1 W(j,k)=1; %给边的终点赋值为1 k=k+1; end end end elseif f==1 %关联矩阵转换为邻接矩阵 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); W(a(1),a(2))=1; %存在边,则邻接矩阵的对应值为1 W(a(2),a(1))=1;

end else fprint('Please imput the right value of f'); end W; 程序三:有向图关联矩阵和邻接矩阵互换算法 %有向图的关联矩阵和邻接矩阵的转换 function W=mattransf(F,f) if f==0 %邻接矩阵转换为关联矩阵 m=sum(sum(F)); n=size(F,1); W=zeros(n,m); k=1; for i=1:n for j=i:n if F(i,j)~=0 %由i发出的边,有向边的始点 W(i,k)=1; %关联矩阵始点值为1 W(j,k)=-1; %关联矩阵终点值为-1 k=k+1; end end end elseif f==1 %关联矩阵转换为邻接矩阵 m=size(F,2); n=size(F,1); W=zeros(n,n); for i=1:m a=find(F(:,i)~=0); %有向边的两个顶点 if F(a(1),i)==1 W(a(1),a(2))=1; %有向边由a(1)指向a(2) else W(a(2),a(1))=1; %有向边由a(2)指向a(1) end end else fprint('Please imput the right value of f'); end W;

基于Matlab的数字图像处理系统设计设计

论文(设计)题目: 基于MATLAB的数字图像处理系统设计

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。矚慫润厲钐瘗睞枥庑赖。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。聞創沟燴鐺險爱氇谴净。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。残骛楼諍锩瀨濟溆塹籟。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。酽锕极額閉镇桧猪訣锥。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。彈贸摄尔霁毙攬砖卤庑。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。謀荞抟箧飆鐸怼类蒋薔。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGA/CPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。厦礴恳蹒骈時盡继價骚。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

图论算法及matlab程序的三个案例

图论实验三个案例 单源最短路径问题 Dijkstra 算法 Dijkstra 算法是解单源最短路径问题的一个贪心算法。其基本思想是,设置一个顶点集合S 并不断地作贪心选择来扩充这个集合。一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。设v 是图中的一个顶点,记()l v 为顶点 v 到源点v 1的最短距离, ,i j v v V ?∈,若 (,)i j v v E ?,记i v 到j v 的权ij w =∞。 Dijkstra 算法: ① 1{}S v =,1()0l v =;1{}v V v ??-,()l v =∞,1i =,1{}S V v =-; ② S φ=,停止,否则转③; ③ ()min{(),(,)} j l v l v d v v =, j v S ∈,v S ?∈; ④ 存在 1 i v +,使 1()min{()} i l v l v +=,v S ∈; ⑤ 1{} i S S v +=, 1{} i S S v +=-,1i i =+,转②; 实际上,Dijkstra 算法也是最优化原理的应用:如果12 1n n v v v v -是从1v 到 n v 的最短路径,则 12 1 n v v v -也必然是从1v 到 1 n v -的最优路径。 在下面的MATLAB 实现代码中,我们用到了距离矩阵,矩阵第i 行第j 行元 素表示顶点i v 到j v 的权ij w ,若i v 到j v 无边,则realmax ij w =,其中realmax 是 MATLAB 常量,表示最大的实数+308)。 function re=Dijkstra(ma)

数字图像处理 matlab代码

MATLAB实用源代码 图像读取及灰度变换 I=imread('cameraman.tif');%读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 图像旋转 I = imread('cameraman.tif'); figure,imshow(I); theta = 30; K = imrotate(I,theta); % Try varying the angle, theta. figure, imshow(K) 边缘检测 I = imread('cameraman.tif'); J1=edge(I,'sobel'); J2=edge(I,'prewitt'); J3=edge(I,'log'); subplot(1,4,1),imshow(I); subplot(1,4,2),imshow(J1); subplot(1,4,3),imshow(J2); subplot(1,4,4),imshow(J3); 1.图像反转 MATLAB 程序实现如下: I=imread('xian.bmp'); J=double(I); J=-J+(256-1); %图像反转线性变换 H=uint8(J); subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB 程序实现如下: I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像'); axis([50,250,50,200]); axis on; %显示坐标系 I1=rgb2gray(I); subplot(2,2,2),imshow(I1); title('灰度图像'); axis([50,250,50,200]);

图论与网络优化课程设计_Matlab实现

图论与网络优化课程设计 四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 摘要:网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。通过运用Matlab软件和NodeXL网络分析软件,计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 关键字:最近邻耦合网络;ER随机网络;WS小世界网络;BA无标度网络;Matlab;NodeXL。

四种基本网络(NCN、ER、WS、BA) 的构造及其性质比较 1.概述 1.网络科学的概述 网络科学(Network Science)是专门研究复杂网络系统的定性和定量规律的一门崭新的交叉科学,研究涉及到复杂网络的各种拓扑结构及其性质,与动力学特性(或功能)之间相互关系,包括时空斑图的涌现、动力学同步及其产生机制,网络上各种动力学行为和信息的传播、预测(搜索)与控制,以及工程实际所需的网络设计原理及其应用研究,其交叉研究内容十分广泛而丰富。网络科学中被广泛研究的基本网络主要有四种,即:规则网络之最近邻耦合网络(Nearest-neighbor coupled network),本文中简称NCN;ER随机网络G(N,p);WS小世界网络;BA无标度网络。本文着重研究这几种网络的构造算法程序。计算各种规模下(例如不同节点数、不同重连概率或者连边概率)各自的网络属性(包括边数、度分布、平均路径长度、聚类系数),给出图、表和图示,并进行比较和分析。 2.最近邻耦合网络的概述 如果在一个网络中,每一个节点只和它周围的邻居节点相连,那么就称该网络为最近邻耦合网络。这是一个得到大量研究的稀疏的规则网络模型。 常见的一种具有周期边界条件的最近邻耦合网络包含围成一个环的N个节点,其中每K个邻居节点相连,这里K是一个偶数。这类网络的一个重要特征个节点都与它左右各/2 就是网络的拓扑结构是由节点之间的相对位置决定的,随着节点位置的变化网络拓扑结构也可能发生切换。 NCN的Matlab实现: %function b = ncn(N,K) %此函数生成一个有N个节点,每个节点与它左右各K/2个节点都相连的最近邻耦合网络 %返回结果b为该最近邻耦合网络对应的邻接矩阵 function b = ncn(N,K) b=zeros(N); for i = 1:N for j = (i+1):(i+K/2) if j<=N b(i,j)=1; b(j,i)=1; else b(i,j-N)=1;

(整理)实验一 MATLAB数字图像处理初步.

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 6. 了解图像的算术运算在数字图像处理中的初步应用。 7.体会图像算术运算处理的过程和处理前后图像的变化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images) (1) 亮度图像 一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是[0,1] (2) 二值图像 一幅二值图像是一个取值只有0和1的逻辑数组。而一幅取值只包含0和1的uint8类数组,在MA TLAB中并不认为是二值图像。使用logical函数可以把数值数组转化为二值数组或逻辑数组。创建一个逻辑图像,其语法为: B=logical(A) 其中,B是由0和1构成的数值数组。 要测试一个数组是否为逻辑数组,可以使用函数: islogical(c) 若C是逻辑数组,则该函数返回1;否则,返回0。 (3) 索引图像 索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。 (4) RGB图像 一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相似点都是在特定空间位置的彩色图像相对应的红、绿、蓝三个分量。按照惯例,形成一幅RGB彩色图像的三个图像常称为红、绿或蓝分量图像。 令fR,fG和fB分别代表三种RGB分量图像。一幅RGB图像就利用cat(级联)操作将这些分量图像组合成彩色图像: rgb_image=cat(3,fR,fG,fB) 在操作中,图像按顺序放置。 2、数据类和图像类型间的转化 表1中列出了MATLAB和IPT为表示像素所支持的各种数据类。表中的前8项称为数值数据类,第9项称为字符类,最后一项称为逻辑数据类。 工具箱中提供了执行必要缩放的函数(见表2)。以在图像类和类型间进行转化。

Matlab数字图像处理技术 最终版

Matlab数字图像处理技术 一、数字图像处理基础 1、图形和图像的区别 图形(矢量图):以几何数学为基础,图形由点、线、圆等图元组成,图形文件仅记录点的坐标和绘图命令。 图像(点阵图):用像素来描述的图,图像文件中记录每个像素的颜色和亮度。 2、四邻域和八邻域: 4-邻域:设像素p(x,y),它有4个水平和垂直相邻的像素:(x-1,y)(x+1,y) (x,y-1)(x,y+1),这4个点组成p的4-邻域。 对角邻域:像素p(x,y)的4个对角临近像素:(x-1,y-1)(x+1,y-1) (x-1,y+1)(x+1,y+1),这4个点组成p的对角邻域。 8-邻域:像素p的4-邻域和对角邻域合起来组成p的8-邻域。 3、彩色模型 (1)RGB模型 8种颜色配比(归一化): (2)HIS模型:H(色度),S(饱和度),(I)亮度。 (3)二值模型:0—黑色,1—白色。 (4)灰度模型:白—黑有256个灰度级来显示图像,0—黑色,255—白色。 (5)几种图像的颜色数: 二值图像:2种像素值 灰度图像:256种灰度级 彩色图像:256 * 256 * 256 = 2^24种 索引彩色: 4、图像处理中常用的输入设备:数码相机、数码摄像机、扫描仪; 图像处理中常用的输出设备:显示器、打印机、绘图仪。 5、图像的存储: 空间分辨率:M * N 幅度分辨率:G = 2^K 存储一幅图像所需位数(bit):b = M * N * K。

二、图像的基本运算 1、图像点运算 F为输入点的灰度值,G为输出点的灰度值, a) b = 0时,a>1,图像对比度增大;00,灰度值上移,亮度增加;b<0,灰度值下移,亮度降低。 c) a = 1,b = 255,图像反相。 Matlab中图像线性变换: Y = imlincomb(a,x,b); %Y=a*X+b 2、图像的加法运算 C(x,y) = A(x,y) + B(x,y) 图像的叠加方法: g(x,y) = a*f(x,y)+ b*h(x,y);a+b = 1 matlab中: A = imread(‘第一幅图’); B = imread(‘第二幅图’); C = 0.5*A + 0.5*B; Imshow(c); 3、减法运算 主要检测同一场景两幅图像之间的变化 G(x,y) = T2(x,y)- T1(x,y) Matlab中: A = imread(‘第一幅图’); B = imread(‘第二幅图’); C = A - B; Imshow(c); 4、乘法运算 用二值图像与原图像做乘法,得到需要的子图像。 Z = X .* Y; 要求X和Y的大小、数组元素相同。 Matlab中: X = imread(‘被点乘的图像’); Y = zeros(M,N); Y (70:120, 120:380) = 1; X = im2double(X); Z = X.*Y;

相关主题