搜档网
当前位置:搜档网 › 主流煤气化技术及市场情况系列展示-3-“清华炉”煤气化技术

主流煤气化技术及市场情况系列展示-3-“清华炉”煤气化技术

主流煤气化技术及市场情况系列展示-3-“清华炉”煤气化技术
主流煤气化技术及市场情况系列展示-3-“清华炉”煤气化技术

主流煤气化技术及市场情况系列展示(之三)

“清华炉”煤气化技术

技术拥有单位:清华大学、北京盈德清大科技有限责任公司

“清华炉”煤气化技术是清华大学研究开发,联合北京盈德清大科技有限责任公司(接替北京达立科科技有限公司)共同开发的具有自主知识产权的煤气化工艺,并在山西阳煤丰喜肥业(集团)有限责任公司实现了工业化。“清华炉”不仅包括了自主创新的气化炉,还包括气化工艺全流程的优化、配套技术的创新,因而改善了气化炉的煤种适应性,提高了气化系统的稳定性和可靠性,降低了气化岛的能耗,综合形成了以“清华炉”为核心的经济型气流床气化技术体系。“清华炉”产学研三方合作,顺利完成了专利研究、数学模型研究、实验室冷热态研究、小试、工艺包开发和工业装置设计和开车的全过程。

从2001年开始,针对大规模气化技术用于发电和化工等领域,在仔细调研综合分析的基础上,从可靠性和运行的经济性角度出发,基于对气化反应过程控制因素深入分析及其热过程深刻理解,清华大学创新性地将燃烧领域的分级送风概念和立式旋风炉的结构引入到煤气化中,将热能工程领域的自然循环和膜式水冷壁凝渣保护原理扩展到煤气化领域,提出了分级供氧水煤浆气化技术和水煤浆水冷壁清华炉煤气化技术。与其它气化技术主要是由化工反应器发展而来的不同,清华大学的研究是从锅炉燃烧演化而来的。清华炉煤气化技术的核心思想是来源于煤粉锅炉当中的空气分级供给、自然循环原理、膜式水冷壁凝渣保护原理等,结构处理上借鉴了锅炉的水冷壁及卫燃带结构和绝热炉膛结构,因此具有鲜明的动力设备特点。

一气化技术特点

(一)分级给氧

气化炉喷嘴附近温度是由燃料量和氧气量及其混合效果决定的。正如煤粉燃烧器一样,采用分级供氧,可以抑制喷嘴出口火焰温度。像锅炉空气分级一样,沿燃料流动方向的合适位置上再补充氧气,提高温度促进气化反应,形成熔渣,以此改善喷嘴的寿命。由于氧气分级供给,气化炉主喷嘴供氧量与反应需氧化学当量脱离约束,减少了主喷嘴的氧气负荷,改善了主喷嘴的工作环境,延长了其运行周期。在此过程中,燃料的热量释放和氧气的供给时间相匹配,气化室沿流动方向的温度分布更合理,从喷嘴向下形成低—高—低温度曲线,见图一,高温区从喷嘴端部下移,喷嘴处于相对低的温度区域,并提高了出渣口区域的温度,同时提高了气化室内平均温度,使气化的效果得到改善。由于氧气分级供给,比不分级气化炉轴向温度均衡,长径比可加大,突破了国内外关于水煤浆气化室的截面出力的限制。从图一还可以看出,在同样氧

煤比的情况下,分级供氧气化室排渣口的温度比只有主喷嘴供氧时要高,因而可以放宽对煤种灰熔点的要求,煤种适应性宽,可采用的煤种的灰熔点比传统工艺约高100K,扩大了气化炉煤种的适应性。事实上,该技术可以采用水煤浆进料,也可以干煤粉进料。

分级给氧气化炉的流场更为合理。由于二次供氧在氧气入口处形成反扩散火焰,氧气进入了气化室顶部区域。传统的气化炉没有水平方向的供氧,在气化室顶部形成了缺氧区,该区域气化反应很弱,分级供氧工艺的二次供氧反扩散火焰的卷吸,使部分煤颗粒和氧进入气化室顶部区域。这一流场结构,恰到好处又充分地利用了气化室顶部区域,作为反应空间,而又不过度反应而影响气化室顶部砖的寿命。由于水平方向只有质量很小的氧气射流,在向下主气流作用下,即使水平方向氧气流速达到160m s-1也不会射到对面炉壁;水平方向射流中没有固体煤颗粒射入,只从主气流中卷吸部分煤颗粒参与燃烧和气化,不会产生过度高温威胁气化室顶部砖。以上两方面使分级供氧工艺具有固有安全性。这一点也在工业生产中得到验证:不投入二次供氧时,气化室顶部砖上附有厚厚的高低不平蜂窝状渣层,投入二次供氧以后,气化室顶部砖上附有致密均匀的渣层。

(二)水煤浆水冷壁

水煤浆水冷壁气流床煤气化技术,成功解决了水煤浆的点火、稳燃和效率问题,充分发挥出了水煤浆耐火砖和干粉水冷壁技术的全部优点,同时还有效避开了它们的不足之处。

1.膜式水冷壁采用热能工程领域成熟的垂直悬挂膜式壁结构,水冷壁可以自由向下膨胀,避免了高温下复杂的热膨胀处理问题;

2.水冷壁管的水循环按照自然循环设计,是本质安全的循环系统,即使在紧急状态下,也能够最大限度保证水冷壁的安全运行;

3.将原耐火砖结构气化的预热烧嘴和工艺烧嘴组合成为一个带点火功能的工艺烧嘴,实现了点火、投料程序一体化完成,气化炉的从冷态到满负荷的启动时间从原来的3天缩短到3个小时;

4.工艺烧嘴的水冷却结构采用整体夹套式,烧嘴冷却与水冷壁共用一套热水循环系统,系统简单;采用热水循环冷却,降低了工艺烧嘴的热应力,烧嘴使用寿命长。

(三)气化工艺流程

1、制浆工段

从界区外的运输系统送来的原料煤首先进入煤斗,煤斗中的煤由煤称重给料机控制以一定的质量流率进入棒式磨煤机。制浆用的水包括磨煤单元的冲洗水、排放、泄露、灰/黑水处理单元的滤液和工厂内其他装置的难以处理废水,不足部分可补充新鲜水。为了制得稳定的煤浆并降低煤浆粘度,在磨煤机中还需加入水煤浆添加剂。在添加剂配制池中配制的水煤浆添加剂经过添加剂配制池泵送到添加剂槽,再经过添加剂泵送到磨煤机中。水煤浆的PH值应该控制在7以上,煤、水、各种添加剂在磨煤机中研磨到所需要的粒度分布,制得重量百分比约为60%的水煤浆。从磨煤机初步制得的水煤浆通过磨煤机出口的滚筒筛流出,滚筒筛可以筛除煤浆中的大颗粒。水煤浆在重力的作用下流到磨煤机出料槽。磨煤机出料槽泵将水煤浆从磨煤机出料槽输送到煤浆槽中。为防止煤浆沉淀,在磨煤机出料槽和煤浆槽中分别设置有磨煤机出料槽搅拌器和煤浆槽搅拌器,在搅拌器的作用下水煤浆保持悬浮状态。

2、气化工段

来自煤浆槽的煤浆依靠重力自流到高压煤浆泵的入口,煤浆由煤浆泵加压后,经煤浆切断阀进入工艺烧嘴。煤浆泵所需的入口压头由煤浆槽提供。投料前,煤浆经煤浆循环阀等自动阀门循环回煤浆槽。

来自界区外的氧气由氧气总管经过流量调节阀和切断阀进入气化炉,氧气的流量测量需要进行温度和压力补偿。根据安全系统要求,在启动阶段氧气通过氧气放空消音器排放到大气中并建立氧气流量。工艺烧嘴把水煤浆和氧气一起送入气化炉中。

离开气化炉燃烧室的粗合成气与灰渣一起向下流过激冷环,经过激冷环时,激冷环内喷出的雾化水将粗合成气和灰渣激冷至1050℃(煤的变形温度以下),然后进入气化炉下部的水浴。下部水浴的灰水来自合成气洗涤塔,在气化炉下部,大部分灰渣被分离出来,大块渣靠重力作用沉入气化炉底部,悬浮在水中的灰随气化炉灰水外排至低压闪蒸罐。

进入气化炉下部水浴的灰渣在循环水流的作用下经锁斗安全阀、锁斗进口阀进入锁斗。为防止系统堵塞,在气化炉和锁斗安全阀之间装有破渣机,大块的渣由破渣机破碎。循环水流由锁斗循环泵建立。锁斗循环水是从锁斗顶部溢流的含固量相对较少的灰水,循环水流回到气化炉激冷室底部,并携带粗渣进入锁斗。大部分从气化炉来的固体都在锁斗的底部沉积。

气化炉的粗渣和渣水排至渣池的前仓,开始隔离两仓的溢流阀保持关闭,约5分钟后,溢流阀打开,较澄清的上部黑水送入渣池后仓,用渣池泵送至真空闪蒸罐。固体灰渣在淋干水分后外运。

3、合成气洗涤

从气化炉激冷室出来的粗合成气通过文丘里洗涤器进入合成气洗涤塔,合成气首先进入洗涤塔底部的水中洗掉其中的细渣。基本上不含固体颗粒的合成气沿洗涤塔向上流动,与从塔中部进入的循环灰水和塔上部加入的来自界区外的冷凝液逆流直接接触,洗涤剩余的固体颗粒,离开洗涤塔的合成气中含尘量小于1mg/Nm3。在洗涤塔顶部安装有旋流板除沫器,合成气在离开洗涤塔时除去其中夹带的水雾,干净的合成气出洗涤塔后经过可从控制室调节的阀门送出界区。在合成气洗涤塔的出口安装有在线气体分析仪,对一氧化碳、氢气、二氧化碳及甲烷进行检测。

在合成气洗涤塔底部的水分成两部分排出。一部分是底部上层固体含量较少的灰水,灰水经过激冷水泵加压后,经过激冷水过滤器进入气化炉激冷环和文丘里洗涤器。从洗涤塔底部出来的另外一部分含固量较多的黑水通过流量控制进入黑水闪蒸系统进行黑水处理以除去其中的固体颗粒,再生后的灰水经过沉淀和加热等处理后送回合成气洗涤塔。

4、灰水处理系统

从气化炉激冷室和合成气洗涤塔底部来的黑水进入低压闪蒸罐。在低压闪蒸罐中,一部分的水经减压闪蒸变成蒸汽,蒸汽送到灰水除氧器作为加热蒸汽。从低压闪蒸罐底部排出的水含有较多的固体颗粒,这部分黑水通过液位控制送到真空闪蒸罐进行闪蒸,来自渣池的黑水也送到真空闪蒸罐。经过真空闪蒸罐的闪蒸,黑水中大量溶解的气体释放出来。从真空闪蒸罐出来的蒸汽首先进入真空闪蒸冷凝器由循环水冷却,冷却后的气体进入真空闪蒸分离器。闪蒸真空泵将真空闪蒸分离器出来的气体抽引出后直接排大气,液体去灰水槽。真空闪蒸罐不控制液位,其下液直接插入沉降槽中心筒,利用沉降槽的液位作为液封,以保证其真空度。真空闪蒸分离器也不控制液位,真空闪蒸分离器下液直接插入灰水槽中,利用灰水槽的液位作为液封,以保证其真空度。

从真空闪蒸罐来的含固量较高的黑水进入沉降槽中,进入沉降槽的黑水经过絮凝沉淀后,沉降槽上部的澄清水溢流,依靠重力作用进入灰水槽。灰水槽中储存的灰水经过低压灰水泵加压后分成两部分,一部分去灰水除氧器,另外一部分去锁斗冲洗水罐。

沉降槽的作用是使黑水中的固体颗粒在重力作用下沉降分离。为了加快固体在沉降槽中的沉降分离速度,需要向沉降槽中加入絮凝剂。在沉降槽中安装了一个缓慢移动的沉降槽耙灰器,用来把沉降下来的固体送到沉降槽底部的出口。

在沉降槽底部的固体和水通过沉降槽底泵送到过滤机。黑水中的固体留在过滤机上部形成细渣滤饼,然后用卡车或者皮带送出界区,滤液进入滤液槽。滤液经滤液泵加压后送往沉降槽,也可直接送往研磨水槽作为制浆用水。

(四)技术优势

与本装置相同直径的耐火砖气化炉燃烧室容积约为12.5m3,水冷壁气化炉燃烧室的容积增加到20m3左右,燃烧室容积增加后,为系统的扩产创造了条件。在相同煤种相同负荷下,由于气化炉燃烧室的容积增加,水煤浆在炉内的停留时间比目前的耐火砖炉子长,有效气的含量相对于目前也有所提高,煤的碳转化率也得到了提高。

5、工艺烧嘴运行时间长

耐火砖气化炉烧嘴冷却采用盘管,压力也比气化炉压力低,水冷盘管极易损坏,水冷盘管损坏后,高温、高压煤气将会直接进入烧嘴冷却水系统,必须立即停车。烧嘴冷却水采用40℃左右的低温水,烧嘴内外温差大,承受的热应力也大;同时低温冷却水会产生露点腐蚀、硫腐蚀等。而水冷壁气化炉烧嘴冷却采用夹套结构,烧嘴冷却水采用汽包的锅炉水,温度250℃以上,烧嘴运行的工艺条件得到优化,耐火砖气化炉烧嘴存在的露点腐蚀、硫腐蚀和应力腐蚀等难题都得到解决。烧嘴冷却采用夹套结构,没有突出部件,不易损坏,烧嘴冷却水压力比气化炉高,即使烧嘴冷却水泄漏,也不必立即停车。水冷壁气化炉的烧嘴运行时间比耐火砖气化炉烧嘴的连续运行时间长。

6、开工费用低

单台耐火砖气化炉每次烘炉大致需要消耗热值为2300大卡的燃料气36000Nm3左右,而水冷壁炉子每次烘炉仅需要消耗同等热值燃料气约

4000Nm3。水冷壁气化炉每次烘炉比耐火砖炉节约32000Nm3燃料气。

7、运行维护费用低

水冷壁气化炉与耐火砖气化炉相比,在相同煤质相同负荷条件下,由于气化炉燃烧室容积增大,有效气含量有所提高,而且每小时可副产800~1500kg的蒸汽,每年可生产高压饱和蒸汽6400~12000吨蒸汽,可以产生经济效益76~144万元(吨蒸汽按照120元计)。耐火砖气化炉一般运行4000~5000小时需要更换一次渣口砖;8000~12000小时需要更换一次向火面砖。水冷壁气化炉彻底摆脱了耐火砖气化炉砖磨损的更换问题,每年可以减少耐火砖维护费用300万元。

8、煤种适用性广

水冷壁气化炉燃烧室的运行温度不受耐火砖的限制,可以使用高灰熔点煤,实现原料煤本地化,降低原料成本。采用水煤浆水冷壁气化炉后,可使用高灰熔点煤。单炉日投煤量以600吨计,如果高灰熔点煤比现有原料煤价格低150元/吨,则每台炉每年减少原料煤成本可达2700万元。

9、环境友好

耐火砖气化炉炉砖采用高铬砖,在运行过程中,耐火砖会被炉渣侵蚀、剥落,含铬炉渣会对环境造成影响;在气化炉换砖过程中,拆下来的含铬的炉砖也不易处理;耐火砖气化炉的烘炉过程很长,原始烘炉需20天左右,正常烘炉需3天以上,排放的废气量多。而水冷壁气化炉内部仅有30mm厚的SiC涂层,在运行时也不需再进行更换,在运行时不会脱落,对环境无害;水冷壁气化炉的耐火材料烘炉时间很短,一般一个小时即可直接投料,放空的废气量少。

水煤浆制备可以采用有机废水,在实际运行中制浆系统采用本厂环己酮装置的含苯废水、甲醇精馏残液等,大大减少污水处理成本。

五有关该技术的最新动态

2011年4月,“清华炉”研究团队与国内最大的独立工业气体供应商盈德气体集团合作,将“清华炉”煤气化工艺整体转让给盈德气体集团,盈德气体集团和清华大学共同拥有该专利技术,并由盈德气体集团出资成立了北京盈德清大科技有限责任公司,独家经营清华炉煤气化技术。同时盈德气体集团出资在清华大学成立了“清华大学-盈德气体煤气化联合研究中心”,为该技术的完善和新技术的研发搭建了更加广阔的平台。

2012年7月,北京盈德清大科技公司、东华工程科技股份公司、贵州鑫晟煤化工公司等签署合作意向书。根据合作计划,最终将把贵州鑫晟煤化工公司的“水煤浆耐火砖气化炉”改造为水煤浆水冷壁“清华炉”,完成全球新型煤气化炉的首例改造。

贵州鑫晟煤化工公司的煤气化工程原采用的气化炉为耐火砖结构,年生产甲醇30万吨,2010年12月投产。由于耐火砖气化炉的煤种适应性问题,该工程原料煤一直使用云南产的煤炭,成本很高,造成企业亏损。鑫晟公司了解到水煤浆水冷壁气化炉试烧的煤种灰熔点可达1500℃以上,能够使用当地煤实现高温连续生产,确定耐火砖气化炉改造为水煤浆水冷壁清华炉是可行的。

2012年3月,北京盈德清大公司还与黑龙江北大荒股份公司浩良河化肥分公司签署了《气化炉改造技术协议》。浩良河化肥分公司现使用气化炉为德士古水煤浆耐火砖炉,自2004年7月运行至今。为改变耐火砖炉维修、运行费用较高,气化装置年运作周期受限等不利状况,浩良河化肥分公司经过大量细致的技术调研和论证,委托盈德清大公司对其在用气化炉进行改造。

目前,清华炉研究团队着手研发包括高压浓相粉煤输送技术、干法气化工艺、劣质煤气化工艺、加氢气化工艺在内的煤气化相关新技术。

壳牌煤气化技术简介

主流煤气化技术及市场情况系列展示(之五) 壳牌煤气化技术 技术拥有单位:壳牌全球解决方案国际私有有限公司 壳牌是世界知名的国际能源公司之一。壳牌煤气化技术可以处理石油焦、无烟煤、烟煤、褐煤和生物质。气化炉的操作压力一般在,气化温度一般在1400~1700摄氏度。在此温度压力下,碳转化率一般会超过99%,冷煤气效率一般在80~83%。对于废热回收流程,合成气的大部分显热可由合成气冷却器回收用来生产高压或中压蒸汽;如配合采用低水气比催化剂的变化工艺,在变换单元消耗少量蒸汽即可保证变换深度要求,剩余大量蒸汽可送入全厂蒸汽管网,获得可观的经济效益。 目前,壳牌全球解决方案国际私有有限公司负责壳牌气化技术的技术许可,工艺设计以及技术支持。2007年壳牌成立了北京煤气化技术中心,2012年初,壳牌更是将其全球气化业务总部也从荷兰移师中国,这充分体现了壳牌对中国现代煤化工蓬勃发展的重视,同时壳牌也能更好地利用其全球气化技术能力,贴近市场,为中国客户提供更加快捷周到的技术支持。目前,在北京的壳牌煤气化技术团队可提供从研发、工程设计、培训、现场技术支持以及生产操作和管理的全方位技术支持和服务。 一、整体配套工艺 根据不同的煤质特性以及用户企业的不同生产需求和规划,壳牌开发了下面3种不同炉型: 壳牌废锅流程是当前工业应用经验最丰富的干粉气化技术。它的效率和工艺指标的先进性已经得到了验证和认可,而且在线率也在不断创造新的世界纪录,大部分客户已实现满负荷、长周期、安全、稳定运转。如果业主比较关注热效率,全厂能效和环保效益的话,采用壳牌废锅流程并配合已成功应用的低水气比变换技术应该是最合适稳妥的方案。 壳牌上行水激冷流程特别适合处理有积垢倾向的煤种;适合大型项目,此外投资低,可靠性高。对于比较关注在线率和低投资的业主,采用壳牌上行水激冷流程应该是最合适稳妥的方案。

煤气化工艺的优缺点及比较

13种煤气化工艺的优缺点及比较 我国是一个缺油、少气、煤炭资源相对而言比较丰富的国家,如何利用我国煤炭资源相对比较丰富的优势发展煤化工已成为大家关心的问题。近年来,我国掀起了煤制甲醇热、煤制油热、煤制烯烃热、煤制二甲醚热、煤制天然气热。有煤炭资源的地方都在规划以煤炭为原料的建设项目,这些项目都碰到亟待解决原料选择问题和煤气化制合成气工艺技术方案的选择问题。现就适合于大型煤化工的比较成熟的几种煤加压气化技术作评述,供大家参考。 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm 粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001年单炉配套20kt/a合成氨工业性示范装置成功运行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉,床层温度达1100℃左右,中心局部高温区达到1200-1300℃,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200℃,所以可以气化褐煤、低化学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常

四种煤气化技术及其应用

四种煤气化技术及其应用 李琼玖,钟贻烈,廖宗富,漆长席,周述志,赵月兴 (成都益盛环境工程科技公司,四川成都610012) 摘要:介绍了4种煤气化工艺技术,包括壳牌工艺、德士古水煤浆气化工艺、恩德工艺、灰熔聚流化床气化工艺,对其技术特点、工艺流程、主要设备及应用实例进行了详细阐述,并对4种工艺进行了对比。 关键词:煤气化;壳牌工艺;德士古;恩德工艺;灰熔聚工艺;煤气炉 中图分类号:TQ546文献标识码:A文章编号:1003-3467(2008)03-0004-04 Four Coal Gasification Technologi es and Their Applicati on L I Q iong-ji u,ZHONG Y i-lie,LIAO Zong-fu, QI Chang-xi,ZHOU Shu-zhi,ZHAO Yue-xing (Chengdu Y i s heng Envir on m ent Eng i n eering Techo logy C o.Ltd,Chengdu610012,China) Abst ract:Four coal gasificati o n technologies,inc l u d i n g Shell techno logy,Texaco coa l-w ater sl u rry gasif-i cati o n,Enticknap pr ocess,ash agg l o m erati o n fl u i d ized bed gasification technology are intr oduced,and the technical features,technolog ical process,m ai n equipm ent and app lication exa m p le o f the four techno l o g i e s are descri b ed in detai.l K ey w ords:coal gasification;She ll techno logy;Texaco;Enticknap process;ash agglo m erati o n tech-nology;gas stove 1壳牌粉煤气化制取甲醇合成气 1.1壳牌工艺技术的特点 壳牌煤气化过程(SCGP工艺)是在高温加压下进行的,是目前世界上最为先进的第FG代煤气化工艺之一。按进料方式,壳牌煤气化属气流床气化,煤粉、氧气及蒸汽在加压条件下并流进入气化炉内,在极为短暂的时间内完成升温、挥发分脱除、裂解、燃烧及转化等一系列物理和化学过程。一般认为,由于气化炉内温度很高,在有氧存在的条件下,碳、挥发分及部分反应产物(H2、CO等)以发生燃烧反应为主;在氧气消耗殆尽之后发生碳的各种转化反应,过程进入到气化反应阶段,最终形成以CO、H2为主要成分的煤气离开气化炉。 壳牌粉煤气化的技术特点:1干煤粉进料,加压氮气输送,连续性好,气化操作稳定。气化温度高,煤种适应性广,从无烟煤、烟煤、褐煤到石油焦均可气化,对煤的活性几乎没有要求,对煤的灰熔点范围比其它气化工艺更宽。对于高灰分、高水分、含硫量高的煤种同样适应。o气化温度约1400~1700e,碳转化率高达99%以上,产品气体相对洁净,不含重烃,甲烷含量极低,煤气中有效气体(CO+H2)高达90%以上。?氧耗低,与水煤浆气化相比,氧气消耗低,因而与之配套的空分装置投资可减少。?单炉生产能力大,目前已投入运转的单炉气化压力为3MPa,日处理煤量已达2000t。?气化炉采用水冷壁结构,无耐火砖衬里,维护量少,气化炉内无转动部件,运转周期长,无需备炉。?热效率高,煤中约83%的热能转化在合成气中,约15%的热能被回收为高压或中压蒸汽,总的热效率为98%左右。?气化炉高温排出的熔渣经激冷后成玻璃状颗粒,性质稳定,对环境几乎没有影响。气化污水中含氰化合物少,容易处理,必要时可做到零排放,对环境保护十分有利。à壳牌公司专利气化烧嘴可根据需要选择,气化压力2.5~4.0M Pa,设计保证寿命为8000h,荷兰De m ko lec电厂使用的烧嘴在近4年 收稿日期:2007-10-13 作者简介:李琼玖(1930-),男,教授级高级工程师、研究员,长期从事化工设计、建设、生产工程技术工作,主编5合成氨与碳一化学6、5醇醚燃料与化工产品链工程技术6专著,发表论文百余篇,电话:(028)86782889。

德士古煤气化工艺和炉型的选择

德士古煤气化工艺和炉型的选择 2008-02-24 09:27 以合成氨为例,使用人然气为原料的合成氨产量约占世界总产量的700}0。美国和前苏联两大人然气生产国以人然气为原料的合成氨和甲醇约占其木国总产量的90%以上,我国与世界情祝略有不同,人然气价格高,比中东高出4- 8倍,药为美国的1. 2- 1. 5倍,而其产量仅为美国的1/20,原苏联的1/ 30。因此,在利用和开采上都受到一定限制。我国煤炭资源丰富,日‘煤炭产地价格便宜,如山西、内蒙占、陕西几大煤炭产地,同等热值的煤价仅为世界煤价的2/ 3。以煤为原料民合成气生产己有150年的历史,选择适宜煤炭气化技术,不仅是有效地利用煤炭资源的重要途径,也是其工艺是否经济合理的关键环节。 1煤气化工艺的选择 以煤为原料制取合成氨原料气的技术主要有4种:德士占水煤浆气化、谢尔粉煤气化、鲁奇碎煤气化和 U G1常压气化。 U Gl常压气化技术成熟,工艺可靠,但必须使用无烟块煤,设备能力低,二废量大等缺点,不能满足大型化的要求。鲁奇气化技术虽然技术成,在我国已有大型化装置运转,但其最大缺点是气化温度低,产生的苯、酚、焦汕、废水等有害物质难以处理,污染大,原料可利用率低,粗合成气中甲烷含量高, 只适于作城市煤气,不宜作合成气。 谢尔干粉煤气化技术,虽然炭转化率高,有效气体成分高,水冷壁寿命为25年,喷嘴设计寿命为1年;但山于是干粉进料,气化压力不能太高,操作有一定难度,目前世界上工业装置只有1套生产粗煤气用于联合循环发电,另外该技术全而依赖进口,关键设备}+}内不能制造,技术支撑率较低, 用于生产合成气风险较大。 德士占水煤浆气化技术除氧耗高外,有如卜特点:①中一台炉处理煤量大,生产能力高;C气化压力高,合成气压缩功耗省,合成氨能耗低;C有效气(co+ Hz)含量高,适于作合成气;}k的适应性宽,可利用粉煤,原料利用率高;墓艺废量小,污染环境轻,废渣可做水泥原料;⑧国内已有4套装置运行,可借鉴的生产管理经验多;7科研部门已掌握了该技术,技术支撑率高,大部分设备国内能制造,设备能国产化。德士占 的最大缺点是,烧 嘴寿命短为45 d,但国内史换时间仅为4h,耐火砖每年需史换1次,史换时间为45 d,在两台气化炉生产,不考虑备用炉卜检修期内基木上能保持生产的进行。 鉴于德士占有以上特点,新建大型合成氨国产化工程气化部分采用德士占水煤浆气化技术。 2气化压力的选择 对于德士占水煤浆技术采用4. OMYa和6. 5 MYa两种工艺,气化消耗、采用6. 5 MYa气化具有 以卜优点: 1)气化压力高,煤气中有效气量略有卜降,氧气用量、原料煤消耗略有增加,增减幅度小于0. 20}0 ,影响甚微。但气化反应是体积增大的反应,压缩1. 0m3的氧气,相当于压缩3. 1 m3的煤气效果,可见提高操作压力可节省压缩功,还可缩小设备体积,使布置史为紧凑。 2) 6. 5 MPa气化时气化炉为2台,而4. OMPa气化为3台,后者设备增加17台,不仅增加了设备 投资,而I I.增加了日常维护管理的作业量。

几种常用煤气化技术的优缺点

几种煤气化技术介绍 煤气化技术发展迅猛,种类很多,目前在国内应用的主要有:传统的固定床间歇式煤气化、德士古水煤浆气化、多元料浆加压气化、四喷嘴对置式水煤浆气化、壳牌粉煤气化、GSP气化、航天炉煤气化、灰熔聚流化床煤气化、恩德炉煤气化等等,下别分别加以介绍。 一Texaco水煤浆加压气化技术 德士古水煤浆加压气化技术1983年投入商业运行后,发展迅速,目前在山东鲁南、上海三联供、安徽淮南、山西渭河等厂家共计13台设备成功运行,在合成氨和甲醇领域有成功的使用经验。 Texaco水煤浆气化过程包括煤浆制备、煤浆气化、灰水处理等工序:将煤、石灰石<助熔剂)、添加剂和NaOH称量后加入到磨煤机中,与一定量的水混合后磨成一定粒度的水煤浆;煤浆同高压给料泵与空分装置来的氧气一起进入气化炉,在1300~1400℃下送入气化炉工艺喷嘴洗涤器进入碳化塔,冷却除尘后进入CO变换工序,一部分灰水返回碳洗塔作洗涤水,经泵进入气化炉,另一部分灰水作废水处理。 其优点如下: <1)适用于加压下<中、高压)气化,成功的工业化气化压力一般在 4.0MPa 和6.5Mpa。在较高气化压力下,可以降低合成气压缩能耗。 <2)气化炉进料稳定,因为气化炉的进料由可以调速的高压煤浆泵输送,所以煤浆的流量和压力容易得到保证。便于气化炉的负荷调节,使装置具有较大的操作弹性。 <3)工艺技术成熟可靠,设备国产化率高。同等生产规模,装置投资少。 该技术的缺点是: <1)因为气化炉采用的是热壁,为延长耐火衬里的使用寿命,煤的灰熔点尽可能的低,通常要求不大于1300℃。对于灰熔点较高的煤,为了降低煤的灰熔点,必须添加一定量的助熔剂,这样就降低了煤浆的有效浓度,增加了煤耗和氧耗,降低了生产的经济效益。而且,煤种的选择面也受到了限制,不能实现原料采购本地化。 <2)烧嘴的使用寿命短,停车更换烧嘴频繁<一般45~60天更换一次),为稳定后工序生产必须设置备用炉。无形中就增加了建设投资。 <3)一般一年至一年半更换一次炉内耐火砖。 二多喷嘴对置式水煤浆加压气化技术 该技术由华东理工大学洁净煤技术研究所于遵宏教授带领的科研团队,经过20多年的研究,和兖矿集团有限公司合作,成功开发的具有完全自主知识产权、国际首创的多喷嘴对置式水煤浆气化技术,并成功地实现了产业化,拥有近20项发明专利和实用新型专利。目前在山东德州和鲁南均有工业化装置成功运行。

各种气化炉型的比较

各种气化炉型的比较 1.常压固定床间歇式无烟煤(或焦炭)气化技术 目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准 25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。 2.常压固定床无烟煤(或焦炭)富氧连续气化技术 其特点是采用富氧为气化剂、连续气化、原料可采用?准 8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。 3.鲁奇固定床煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。焦油分离、含酚污水处理复杂,不推荐用以生产合成气。 4.灰熔聚煤气化技术 中国科学院山西煤炭化学研究所技术。其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。可以气化褐煤、低化学活性的烟煤和无烟煤、石油焦,投资比较少,生产成本低。缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。 5.恩德粉煤气化技术 属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。属流化床气化炉,床层中部温度1000~1050℃。目前最大的气化炉产气量为4万m3/h半水煤气。缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。 6.GE水煤浆加压气化技术 属气流床加压气化技术,原料煤运输、制浆、泵送入炉系统比干粉煤加压气化简单,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉投煤量为2000t/d,国内已投产的气化炉能力最大为1000t/d。设计中的气化炉能力最大为1600t/d。对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300℃,灰渣粘温特性好。气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。气化系统总热效率高达94%~96%,高于Shell干粉煤气化热效率(91%~93%)和GSP干粉煤气化热效率(88%~92%)。气化炉结构简单,为耐火砖衬里,制造方便、造价低。煤气除尘简单,无需价格昂贵的高温高压飞灰过滤器,投资省。国外已建成投产6套装置15台气化炉;国内已建成投产7套装置21台气化炉,正在建设、设计的还有4套装置13台气化炉。 已建成投产的装置最终产品有合成氨、甲醇、醋酸、醋酐、氢气、CO、燃料气、联合循环发电,各装置建成投产后,一直连续稳定长周期运行。装备国产化率已达90%以上,由于国产化率高、装置投资较其他加压气化装置都低,有备用气化炉的水煤浆加压气化与不设备用气化炉的干煤粉加压气化装置建设费用的比例大致为Shell法 : GSP法 : 多喷嘴水煤浆加压气化法 : GE水煤浆法=(2.0~2.5):(1.4~1.6):1.2:1.0。缺点是气化用原料煤受气化炉耐火砖衬里的限制,适宜于气化低灰熔点的煤;碳转化率较低;比氧耗和比煤耗较高;气化炉耐火砖使用寿命较短,一般为1~2年;气化炉烧嘴使用寿命较短。 7.多元料浆加压气化技术

各种煤气化工艺的优缺点

各种煤气化工艺的优缺点 1、常压固定层间歇式无烟煤(或焦炭)气化技术 这是目前我国生产氮肥的主力军之一,其特点是采用常压固定层空气、蒸汽间歇制气,要求原料为25-75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风气放空对大气污染严重。从发展看,属于将逐步淘汰的工艺。 2、常压固定层间歇式无烟煤(或焦炭)富氧连续气化技术 这是从间歇式气化技术发展过来的,其特点是采用富氧为气化剂,原料可采用8-10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合于有无烟煤的地方,对已有常压固定层间歇式气化技术的改进。 3、鲁奇固定层煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气,不推荐用以生产合成气。 4、灰熔聚流化床粉煤气化技术 中科院山西煤炭化学研究所的技术,2001 年单炉配套20kt/a 合成氨工业性示范装置成功运 行,实现了工业化,其特点是煤种适应性宽,可以用6-8mm以下的碎煤,属流化床气化炉, 床层温度达1100C左右,中心局部高温区达到1200-1300C,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状排出。床层温度比恩德气化炉高100-200C,所以可以气化褐煤、低化 学活性的烟煤和无烟煤,以及石油焦,投资比较少,生产成本低。缺点是气化压力为常压,单炉气化能力较低,产品中CH4含量较高(1%-2%,环境污染及飞灰综合利用问题有待进 一步解决。此技术适用于中小氮肥厂利用就地或就近的煤炭资源改变原料路线。 5、恩德粉煤气化技术 恩德炉实际上属于改进后的温克勒沸腾层煤气化炉,适用于气化褐煤和长焰煤,要求

煤气化技术及其工业应用

煤气化技术及其工业应用 摘要:我国是一个以煤炭为主要能源的国家,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。本文介绍了我国的煤化工行业的发展现状以及煤气化技术的工业应用。 关键词:煤化工,煤气化技术,工业应用 我国是一个以煤炭为主要能源的国家。近几十年来,煤炭在我国的一次能源消费中始终占据主要地位,以煤为主的能源格局在相当长的时间内难以改变。中国传统的煤炭燃烧技术存在综合利用效率低,能耗高、煤炭生产效率低、成本高、环境污染严重等问题,煤炭气化技术的发展对我国的经济建设和可持续发展都有具有重要意义。 以煤气化为基础的能源及化工系统,不仅能较好的提高煤转化效率和降低污染排放,而且能生产液体燃料和氢气等能源产品,有效缓解交通能源紧张。煤气化技术正在成为世界范围内高效、清洁、经济地开发和利用煤炭的热点技术和重要发展方向。煤炭的气化和液化技术、煤气化联合循环发电技术等都已得到工业应用。 煤气化技术包括:备煤技术、气化炉技术、气化后工艺技术三部分,其核心是气化炉。按照煤在气化炉内的运动方式,气化方法可划分为三类,即固定床气化法、流化床气化法和气流床气化法,必须根据煤的性质和对气体产物的要求选用合适的煤气化方法。 1煤气化工艺概述 煤炭气化是煤洁净利用的关键技术之一,它可以有效的提高碳转化率、冷煤气效率,降低气化过程的氧耗及煤耗。煤气化工艺是以煤或煤焦为原料,氧气(空气、富氧、纯氧)、水蒸气或氢气等作气化剂(或称气化介质),在高温条件下通过化学反应将煤或煤焦中的可燃部分转化为煤气的热化学加工过程。 目前世界正在应用和开发的煤气化技术有数十种之多,气化炉也是多种多样,最有发展前途的有10余种。所有煤气化技术都有一个共同的特征,即气化炉内煤炭在高温下与气化剂反应,使固体煤炭转化为气体燃料,剩下的含灰残渣排出炉外。气化剂为水蒸气、纯氧、空气、CO2和H2。煤气化的全过程热平衡说明总的气化反应是吸热的,因此必须给气化炉供给足够的热量,才能保持煤气化过程的连续进行。 煤气化根据供热原理大致可分为3种: (1)热分解(约500-1000℃):加热使煤放出挥发分,再由挥发分得到焦油和燃气(CO、CO2、H2、CH4),必须由外部供热,残留的固态炭(粉焦和焦炭等)作它用; (2)部分燃烧气化(约900-1600℃):煤在氧气中部分燃烧产生高温,并加入气化剂(H2O、CO2等),产生可燃气(CO、CO2、H2)和灰分;

几种煤气化炉炉型的比较

气化工艺各有千秋 1.常压固定床间歇式无烟煤(或焦炭)气化技术 目前我国氮肥产业主要采用的煤气化技术之一,其特点是采用常压固定床空气、蒸汽间歇制气,要求原料为准25~75mm的块状无烟煤或焦炭,进厂原料利用率低,单耗高、操作繁杂、单炉发气量低、吹风放空气对大气污染严重,属于将逐步淘汰的工艺。 2.常压固定床无烟煤(或焦炭)富氧连续气化技术 其特点是采用富氧为气化剂、连续气化、原料可采用?准8~10mm粒度的无烟煤或焦炭,提高了进厂原料利用率,对大气无污染、设备维修工作量小、维修费用低,适合用于有无烟煤的地方,对已有常压固定层间歇式气化技术进行改进。 3.鲁奇固定床煤加压气化技术 主要用于气化褐煤、不粘结性或弱粘结性的煤,要求原料煤热稳定性高、化学活性好、灰熔点高、机械强度高、不粘结性或弱粘结性,适用于生产城市煤气和燃料气。其产生的煤气中焦油、碳氢化合物含量约1%左右,甲烷含量约10%左右。焦油分离、含酚污水处理复杂,不推荐用以生产合成气。 4.灰熔聚煤气化技术 中国科学院山西煤炭化学研究所技术。其特点是煤种适应性宽,属流化床气化炉,煤灰不发生熔融,而只是使灰渣熔聚成球状或块状灰渣排出。可以气化褐煤、低化学活性的烟煤

和无烟煤、石油焦,投资比较少,生产成本低。缺点是操作压力偏低,对环境污染及飞灰堆存和综合利用问题有待进一步解决。此技术适合于中小型氮肥厂利用就地或就近的煤炭资源改变原料路线。 5.恩德粉煤气化技术 属于改进后的温克勒沸腾床煤气化炉,适用于气化褐煤和长焰煤,要求原料煤不粘结或弱粘结性,灰分<25%~30%,灰熔点高、低温化学活性好。在国内已建和在建的装置共有13套22台气化炉,已投产的有16台。属流化床气化炉,床层中部温度1000~1050℃。目前最大的气化炉产气量为4万m3/h半水煤气。缺点是气化压力为常压,单炉气化能力低,产品气中CH4含量高达1.5%~2.0%,飞灰量大、对环境污染及飞灰堆存和综合利用问题有待解决。此技术适合于就近有褐煤的中小型氮肥厂改变原料路线。 6.GE水煤浆加压气化技术 属气流床加压气化技术,原料煤运输、制浆、泵送入炉系统比干粉煤加压气化简单,安全可靠、投资省。单炉生产能力大,目前国际上最大的气化炉投煤量为2000t/d,国内已投产的气化炉能力最大为1000t/d。设计中的气化炉能力最大为1600t/d。对原料煤适应性较广,气煤、烟煤、次烟煤、无烟煤、高硫煤及低灰熔点的劣质煤、石油焦等均能用作气化原料。但要求原料煤含灰量较低、还原性气氛下的灰熔点低于1300℃,灰渣粘温特性好。气化系统不需要外供过热蒸汽及输送气化用原料煤的N2或CO2。气化系统总热效率高达94%~96%,高于Shell干粉煤气化热效率(91%~93%)和GSP干粉煤气化热效率(88%~92%)。气化炉结构简单,为耐火砖衬里,制造方便、造价低。煤气除尘简单,无需价格昂贵的高温高压飞灰过滤器,投资省。国外已建成投产6套装置15台气化炉;国内已建成投

煤气化技术及其进展概述

煤气化技术及其进展概述 华陆工程科技股份公司副总工程师 王洪金 煤气化技术是煤化工产业的龙头,是煤基合成油、合成化学品等的关键性技术。煤气化技术的选用,不能仅仅考虑其某一方面的优势,必须注意工程化的系统分析,也就是从技术的先进性、可靠性以及适用性等方面统一协调起来综合考虑。 一、技术的先进性和可靠性问题 1.Shell干粉加压气化工艺 Shell气化技术于2000年前后进入我国市场,以其优异的气化性能指标、煤种适应性宽等优点,引起了中国工程界的极大兴趣,短短的四、五年时间里引进了十几套生产装置,用于生产合成氨和甲醇制氢等。以60万t/a甲醇为例,对其应用于煤化工领域的先进性、可靠性和适用性等进行工程化的系统分析(系统的界区,从煤的磨制干燥、气化,到合成气经变换、净化后送至甲醇界区)发现,在先进性方面,与湿法Texaco相比,Shell气化技术存在以下问题:①煤气化部分(可比的部分)投资增加30%~40%;②经常运转费用中(主要包括煤粉制备、干燥,激冷气循环,输煤和飞灰过滤的C02压缩,SynGas的压缩送出界区等),电力消耗大约增加12200kW;③气化部分回收的中压蒸汽(4MPa)供耐硫变换仍嫌不足,需变换副产蒸汽进行补充;④有效气(CO+H2)中H2/CO比不符合生产化学品的要求,SynGas合成化学品时H2/CO至少要>1.5,且耐硫变换工艺条件苛刻,会影响催化剂的寿命;⑤气化性能中,比煤耗和比氧耗分别较湿法Texaco降低8%和15%,但所节约的能耗又被电耗增加所抵消,所以盈利很少,煤价按200元/t、02按0.35元/Nm3、电价按0.344元/kW·h计,年盈利560多万元。 通过以上案例,按全系统进行工程分析可知,Shell煤气化技术具有先进性,但该性能在合成气生产化学品中不具优势。如果该技术用于IGCC发电,则不存在打折、抵偿的因素,其优势将会被充分发挥。荷兰的IGCC装置也从侧面印证了这一结果。 技术的可靠性主要以装置的年可用率(Availability)来衡量。据2004年10月华盛顿煤气化技术年会上的报道,荷兰Demkolec IGCC装置已投产七、八年的气化岛年可用率为81.8%,电力板块为89.8%(主要煤气轮机设有燃油系统作补充措施),年会上专家一致认为,无论采用哪种气流床炉型,IGCC的气化岛应该增加备用系列。 2.湿法气化工艺 我国已引进多套湿法气化装置,其气化性能指标比Shell差。在可靠性方面,通过多年的摸索并在设有备用系列的条件下,年可用率可达90%;其适用性、激冷型(CO+H2)成分和H2/C0较适宜于合成化学品,耐硫变换的工艺条件比较温和;废锅流程宜用于IGCC。在美国和西欧有多套IGCC的例子,但总热效率均低于Shell的IGCC,其主要的问题是煤种适应性狭窄,要求低灰融点低内水含量的煤;烧咀使用寿命短,因此要设置备用系列。 以上分析说明,选用煤气化技术首先应当结合资源(煤种)条件,再考虑下游产品的要求(如生产化学品、1GCC或煤电多联产等)。作为工程公司,在发展煤化工产业中的重要任务

五环炉煤气化技术

煤气化技术汇报
2009-12-3
https://www.sodocs.net/doc/0c6732882.html,
1


1 2 3 4

煤气化技术概况 工艺特点及流程介绍 与其他气化工艺比较 研究成果
2009-12-3
https://www.sodocs.net/doc/0c6732882.html,
2

1 煤气化技术概况
根据煤气化炉的结构特点和燃料在气化 炉中进行转化时的运动方式将煤气化工 艺分为三种类型:固定床(移动床)、 流化床和气流床
2009-12-3
https://www.sodocs.net/doc/0c6732882.html,
3

1 煤气化技术概况
1.1固定床(移动床) (1)碎煤加压气化技术 (2)BGL气化技术 优点: a.原料适应范围广,除黏结性较强的烟煤 外,从褐煤到无烟煤都能气化,并能气化高 水分、高灰份的劣质煤; b.合成气中含有大量的CH4,对于以煤为原料 生产城市煤气更有利; c.单元装置投资低。
2009-12-3
https://www.sodocs.net/doc/0c6732882.html,
4

1 煤气化技术概况
缺点: a. 气化及后序处理单元产生废水多,废水成 份复杂,废水处理困难,成本较高; b.煤气中含有较多的焦油、酚、氨等杂质, 后工序不易处理
2009-12-3
https://www.sodocs.net/doc/0c6732882.html,
5

1 煤气化技术概况
1.2流化床 (1)恩德炉; (2)灰熔聚气化技术; (3)KBR气化技术;
2009-12-3
https://www.sodocs.net/doc/0c6732882.html,
6

煤气化技术的现状及发展趋势分析

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。目前国内外气化技术众多,各种技术都有其特点和特定的适用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。 工业上以煤为原料生产合成气的历史已有百余年。根据发展进程分析,煤气化技术可分为三代。第一代气化技术为固定床、移动床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床和气流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。 本文综述了近年来国内外煤气化技术开发及应用的进展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。 1.国内外煤气化技术的发展现状 在世界能源储量中,煤炭约占79%,石油与天然气约占12%。煤炭利用技术的研究和开发是能源战略的重要内容之一。世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。20世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。此后世界煤化工迅速发展,直到20世纪中叶,煤一直是世界有机化学工业的主要原料。随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。直到20世纪70年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的进展。特别是20世纪90年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。 中国的煤气化工艺由老式的UGI炉块煤间歇气化迅速向世界最先进的粉煤加压气化工艺过渡,同时国内自主创新的新型煤气化技术也得到快速发展。据初步统计,采用国内外先进大型洁净煤气化技术已投产和正在建设的装置有80多套,50%以上的煤气化装置已投产运行,其中采用水煤浆气化技术的装置包括GE煤气化27套(已投产16套),四喷嘴33套(已投产13套),分级气化、多元料浆气化等多套;采用干煤粉气化技术的装置包括Shell煤气化18套(已投产11套)、GSP2套,还有正在工业化示范的LurgiBGL技术、航天粉煤加压气化(HT-L)技术、单喷嘴干粉气化技术和两段式干煤粉加压气化(TPRI)技术等。

航天炉煤气化技术运行情况

航天炉煤气化技术运行情况 航天, 煤气化, 技术, 运行 HT-L煤气化技术的生产应用 HT-L煤气化工艺是航天十一所借鉴荷兰SHELL、德国GSP、美国TEXACO煤气化工艺中先进技术,配置自己研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤气化工艺。现将该工艺在煤化工项目中的应用介绍如下: 一、工艺介绍 1、磨煤与干燥系统 磨煤与干燥系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,两套系统一开一备,单套能力35吨/小时,目的是制造出粒度小于90微米的大于80%、水含量小于2%的煤粉。没有单独的石灰石加入系统,只是利用皮带秤通过比值调节将粒状石灰石加到输煤皮带上,一块进入磨煤机研磨。 2、加压输送系统 加压输送系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,目的是将制出的合格煤粉利用压差输送至气化炉进行燃烧气化。不同是V1205下面是三条腿,三条线输送,到烧嘴处汇合从烧嘴环隙呈螺旋状喷入炉膛。 3、气化及净化 烧嘴设计同GSP,采用单烧嘴顶烧式气化,气化炉采用TEXACO激冷工艺,气化炉升压到1MPa时,煤粉及氧、蒸汽混合以一定的氧煤比进入气化炉,稳压1小时挂渣,炉膛内设置有8个温度检测点,可以作为气化温度的参考点,也可以判断挂渣的状态。设计气化温度1400-1600℃,气化压力4.0MPa。热的粗煤气和熔渣一起在气化炉下部被激冷,也由此分离,激冷过程中,激冷水蒸发,煤气被水蒸汽饱和,出气化炉为199℃ ,经文丘里洗涤器、洗涤塔洗涤后,194℃、固体含量小于0.2mg/m3的合成气送去变换。 4、渣及灰水处理系统 渣及灰水处理系统的工艺流程、运行原理、控制参数都与TEXACO工艺相同。渣经破渣机,高压变低压锁斗,排到捞渣机,进行渣水分离,水回收处理利用;灰水经高压闪蒸、真空闪蒸后到沉降池,清水作为激冷水回收利用,浆水经真空抽滤后制成滤饼。 二、技术特点 1、原料的适应性 据设计方介绍,该工艺煤种适应性广,从烟煤、无烟煤到褐煤均可气化,对于高灰份、高水分、高硫的煤种同样适用。龙宇生产用过两种煤,神木炭厂和永煤新桥,工况稳定,有效气含量基本能够达到设计要求,但由于神木炭厂的煤灰分含量低(<10%),挂渣情况不是太好,炉膛上部还可以,下部基本挂不上渣。永煤新桥煤运行时间较短,还不能完全反应其结渣性。附神木炭厂和永煤新桥

煤气化炉

固定床炉煤气化 一、常压固定床炉煤气化原理: 固体燃料用气化剂进行热加工,得到可燃性气体的过程称为固体燃料的气化,又称为造气,所得的气体统称为气化煤气,用来与燃料进行气化反应的气体称为气化剂。常压固定床煤固体燃料用气化剂进行热加工,得到可燃性气体的过程称为固体燃料的气化,又称为造气,所得的气体统称为气化煤气,用来与燃料进行气化反应的气体称为气化剂。常压固定床煤气发生炉,一般以块状无烟煤或烟煤等为原料,用蒸汽或蒸汽与空气的混合气体作气化剂,生产以一氧化碳和氢气为主要可燃成分的气化煤气。1. 煤气炉内燃料层的分区固体燃料的气化反应,按煤气炉内生产过程进行的特性分为五层,如图2-1所示:干燥层——在燃料层顶部,燃料与热的煤接触,燃料中的水分得以蒸发;干馏层——在干燥层下面,由于温度条件与干馏炉相似,燃料发生热分解,放出挥发分及其它干馏产物变成焦炭,焦炭由干馏层转入气化层进行热化学反应;气化层——煤气炉内气化过程的主要区域,燃料中的炭和气化剂在此区域发生激烈的化学反应,鉴于反应条件的不同,气化层还可以分为氧化层和还原层。(1)氧化层:碳被气化剂中的氧氧化成二氧化碳和一氧化碳,并放出大量的热量。煤气的热化学反应所需的热量靠此来维持。氧化层温度一般维持在1100~1250℃,这决定于原料煤灰熔点的高低。(2)还原层:还原层是生成主要可燃气体的区域,二氧化碳与灼热碳起作用,进行吸热化学反应,生产可燃的一氧化碳;水蒸气与灼热碳进行吸热化学反应,生成可燃的一氧化碳和氢气,同时吸收大量的热。灰渣层—气化后炉渣所形成的灰层,它能预热和均匀分布自炉底进入的气化剂,并起着保护炉条和灰盘的作用。燃料层里不同区层的高度,随燃料的种类、性质的差别和采用的气化剂、气化条件不同而异。而且,各区层之间没有明显的分界,往往是互相交错的。2. 固体燃料气化反应的基本原理固定床煤气发生炉制造燃气,首先使得空气通过燃料层,碳与氧发生放热反应以提高

煤气化技术的现状和发展趋势

煤气化技术的现状和发展趋势 1、水煤浆加压气化 1.1 德士古水煤浆加压气化工艺(TGP) 美国Texaco 公司在渣油部分氧化技术基础上开发了水煤浆气化技术,TGP 工艺采用水煤浆进料,制成质量分数为60%~65%的水煤浆,在气流床中加压气化,水煤浆和氧气在高温高压下反应生成合成气,液态排渣。气化压力在2.7~6.5MPa,提高气化压力,可降低装置投入,有利于降低能耗;气化温度在1 300~1 400℃,煤气中有效气体(CO+H2)的体积分数达到80%,冷煤气效率为70%~76%,设备成熟,大部分已能国产化。世界上德士古气化炉单炉最大投煤量为2 000t/d。德士古煤气化过程对环境污染影响较小。 根据气化后工序加工不同产品的要求,加压水煤浆气化有三种工艺流程:激冷流程、废锅流程和废锅激冷联合流程。对于合成氨生产多采用激冷流程,这样气化炉出来的粗煤气,直接用水激冷,被激冷后的粗煤气含有较多水蒸汽,可直接送入变换系统而不需再补加蒸汽,因无废锅投资较少。如产品气用作燃气透平循环联合发电工程时,则多采用废锅流程,副产高压蒸汽用于蒸汽透平发电机组。如产品气用作羟基合成气并生产甲醇时,仅需要对粗煤气进行部分变换,通常采用废锅和激冷联合流程,亦称半废锅流程,即从气化炉出来粗煤气经辐射废锅冷却到700℃左右,然后用水激冷到所需要的温度,使粗煤气显热产生的蒸汽能满足后工序部分变换的要求。 1.2 新型(多喷嘴对置式)水煤浆加压气化 新型(多喷嘴对置式)水煤浆加压气化技术是最先进煤气化技术之一,是在德士古水煤浆加压气化法的基础上发展起来的。2000 年,华东理工大学、鲁南化肥厂(水煤浆工程国家中心的依托单位)、中国天辰化学工程公司共同承担的新型(多喷嘴对置)水煤浆气化炉中试工程,经过三方共同努力,于7 月在鲁化建成投料开车成功,通过国家主管部门的鉴定及验收。2001 年2 月10 日获得专利授权。新型气化炉以操作灵活稳定,各项工艺指标优于德士古气化工艺指标引起国家科技部的高度重视和积极支持,主要指标体现为:有效气成分(CO+H2)的体积分数为~83%,比相同条件下的ChevronTexaco 生产装置高1.5~2.0 个百分点;碳转化率>98%,比ChevronTexaco 高2~3 个百分点;比煤耗、比氧耗均比ChevronTexaco 降低7%。 新型水煤浆气化炉装置具有开车方便、操作灵活、投煤负荷增减自如的特点,同时综合能耗比德士古水煤浆气化低约7%。其中第一套装置日投料750t 能力新型多喷嘴对置水煤浆加压气化炉于2004 年12 月在山东华鲁恒升化学有限公司建成投料成功,运行良好。另一套装置两台日投煤1 150t 的气化炉也在兖矿国泰化工有限公司于2005 年7 月建成投料成功,并于2005 年10 月正式投产,2006 年已达到并超过设计能力,目前运行状况良好。该技术在国内已获得有效推广,并已出口至美国。 2、干粉煤加压气化工艺 2.1 壳牌干粉煤加压气化工艺(SCGP) Shell 公司于1972 年开始在壳牌公司阿姆斯特丹研究院(KSLA)进行煤气化研究,1978 年第一套中试装置在德国汉堡郊区哈尔堡炼油厂建成并投入运行,1987 年在美国休斯顿迪尔·帕克炼油厂建成日投煤量250~400t 的示范装置,1993年在荷兰的德姆克勒(Demkolec)电厂建成投煤量2 000t/d 的大型煤气化装置,用于联合循环发电(IGCC),称作SCGP 工业生产装置。装置开工率最高达73%。该套装置的成功投运表明SCGP 气化技术是先进可行的。 Shell 气化炉为立式圆筒形气化炉,炉膛周围安装有由沸水冷却管组成的膜式水冷壁,其内壁衬有耐热涂层,气化时熔融灰渣在水冷壁内壁涂层上形成液膜,沿壁顺流而下进行分

壳牌煤气化技术(DOC2)(1)

壳牌煤气化技术 在世界所需要的基本能源中,接近30%由煤炭提供。世界所需要的电量之中,近40%是用煤炭生产的。在目前已探明储量的能源之中,煤炭是蕴藏量最丰富、分布最广泛燃料,而且煤炭的价格相对石油与天然气也是最低的。中国是属于“缺油少气”的国家,但是煤炭储量却占有世界煤资源总量的1/3。按照同等热值计算,中国已探明的石油储量还能够使用不到20年,天然气约为30年,而煤炭则至少为200年。天然气比替代能源如石油和煤炭更为洁净,但是目前只能满足不到3%的能源需求,主要还是依赖煤炭与石油,煤炭满足了中国超过70%的能源需求。 但是,煤炭燃烧排放的污染却越来越引起人们对环境保护的关注。传统用煤的方式只有直接燃烧,燃烧后的废物,包括二氧化硫、氮氧化物、二氧化碳等会直接进入大气层。 煤气化是一种最洁净的煤炭利用技术,能够避免煤直接燃烧的污染。另外,煤气化方式利用煤的能源效率高。原料煤所含的能量之中,约80%到83%以合成气形式回收,另外14%到16%以蒸汽形式回收,总之,96%以上的煤能源都能够被利用。 壳牌煤气化技术采用干燥方式,用氮气将煤粉送到气化炉,最后生成合成气,即一氧化碳和氢的混合物。合成气中含有原煤中约80%的能量,另外15%的有效能量以蒸汽的形式获得。整个气化过程只有5%的能量流失。合成气可以用来制造纯氢,生产合成氨、甲醇、含氧化合物,以及尿素及合成氢燃料等衍生物。该合成气还可用于电厂供热、蒸汽和发电的燃料,并可作为城市用气。 壳牌煤气化技术使煤炭得以充分利用。其中,硫化物被还原成纯硫磺,可以作为原料出售给化工行业;灰份则被回收为清洁炉渣,用来制造建筑材料。整个工艺的用水量极低,废水也很容易净化。壳牌煤气化技术的另一个优势在于它适用于不同种类的煤,包括劣质的次烟煤和褐煤。 日前,壳牌煤气化技术在中国已取得了重大进展: -壳牌已在XX省XX建立了一个合资厂,其中壳牌与中石化各持有50%的股份。 该合资厂日处理煤2000吨,为中石化巴陵化肥厂提供合成气作为原料。工厂建 设目前正顺利进行。 -壳牌以授权方式向中国六家大型化肥厂提供煤气化技术, 用于生产合成气。

煤气化技术简介及装置分类

煤气化技术简介及装置分类 煤气化是清洁利用煤炭资源的重要途径和手段。目前,国内自行开发和引进的煤气化技术种类众多,但总体上可以分为以下三大类: 一、固定床气化技术 以鲁奇为代表的加压块煤气化技术。鲁奇加压气化炉是由联邦德国鲁奇公司于1930年开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂最多的煤气化技术。鲁奇气化炉是制取城市坑口煤气装置中的心脏设备。它适应的煤种广﹑气化强度大﹑气化效率高﹑粗煤气无需再加压即可远距离输送。鲁奇气化技术的特点为:采用碎煤加压式填料方式,即连接在炉体上部的煤锁将原料制成常温碎煤块,然后从进煤口经过气化炉的预热层,将温度提高至300℃左右。从气化剂入口吹进的助燃气体将煤点燃,形成燃烧层。燃烧层上方是反应层,产生的粗煤气从出口排出。炉篦上方的灰渣从底部出口排到下方连接的灰锁设备中,所以气化炉与煤锁﹑灰锁构成了一体的气化装置。鲁奇炉的代表炉型即第三代MARK-IV/4型Ф3800mm加压气化炉, 炉体由内外壳组成,其间形成50mm的环形水冷夹套,是一种技术先进﹑结构更为合理的炉型。我公司为河南义马、大唐克旗等制做了多台鲁奇式气化炉。 图1 鲁奇加压块煤气化装置

二、流化床气化技术 以恩德炉、灰熔聚为代表的气化技术。恩德炉粉煤流化床气化技术是朝鲜恩德“七.七”联合企业在温克勒粉煤流化床气化炉的基础上,经长期的生产实践,逐步改进和完善的一种煤气化工艺。灰融聚流化床粉煤气化技术根据射流原理,在流化床底部设计了灰团聚分离装置,形成床内局部高温区,使灰渣团聚成球,借助重量的差异达到灰团与半焦的分离,在非结渣情况下,连续有选择地排出低碳量的灰渣。目前,中科院山西煤化所山西省粉煤气化工程研究中心开发的加压灰熔聚气化工业装置已经成功应用于晋煤集团天溪煤制油分公司1 0万吨/年煤基MTG合成油示范工程项目,该项目配备了6台灰熔聚气化炉(5开1备),气化炉操作压力0.6MPa,日处理晋城无烟煤1600吨,干煤气产量125000Nm3/h(配套30万吨/年合成甲醇)。 图2 灰熔聚气化反应装置 三、气流床气化技术 1、以壳牌、GSP、科林、航天炉、伍德、熔渣-非熔渣为代表的气流床技术 壳牌干煤粉气化工艺于1972年开始进行基础研究,1978年投煤量150 t/d的中试装置在德国汉堡建成并投人运行。1987年投煤量250~400 t/d的工业示范装置在美国休斯敦投产。在取得大量实验数据的基础上,日处理煤量为2000 t的单系列大型煤气化装置于1993年在荷兰Demkolec电厂建成,煤气化装置所产煤气用于联合循环发电,经过3年多示范运于1998年正式交付用户使用。目前,我国已经引进23套

相关主题