搜档网
当前位置:搜档网 › 航空公司B系统eterm_B系统_航班销售控制指令

航空公司B系统eterm_B系统_航班销售控制指令

航空公司B系统eterm_B系统_航班销售控制指令
航空公司B系统eterm_B系统_航班销售控制指令

航空公司B系统eterm B系统航班销

售控制指令

RC:航班号/日期(查看压票情况)

RC:航班号/日期/C (退出被压票)(若用此操作需小心,有可能造成不匹配)

OVTB 航班号/日期/IGX (退出被压票)(推荐这种办法)

MS:航班号/日期/SZX/S (查昨今明三天其他航空公司卖票情况)

TM:航班号/日期/航班目的地/H/PID号(本机)----只限当天航班(可以提取其他航空公司准确销售人数)

FLP:航班号/日期/航段(读取航班舱位销售情况)

甩飞航班可以用FLP:J/航班号/日期查看所有航段的销售情况

FLR:航班号/日期(查询航班的订座和出票情况)

RO日期/航班号(查看航班摆舱情况)

IM:S/航班号/日期/航段/Y座位数(调整座位布局)扩舱/收舱

IM:L/航班号/日期/航段/舱位数目 (调整子舱位位数)

IM:I/航班号/日期/航段/舱位S(吸收)R(还原)

IM:N/航班号/日期/航段/舱位S(做成Q状态) R(还原)

ACRT:OFFICE号(有A显示,表示正在工作)

MSG:PID号/1 电报内容自由格式(发电报)

AV:J/航班号/起始日期/终止日期(查看机型变更跟舱位开放情况)

DC:日期/航段/航班号/OFFICE号(检查重复订座)

PROCESS (打开Q提出DCQ)

FVP:A/日期/到达城市/航空公司(查看到港的VIP名单)

FVP:O/日期/到达城市/航空公司(查看离港VIP名单)

DIH:航班号/日期(查看航班变更历史记录)

AS:航班号/舱位/日期/航段/AS/CIE (使航空公司系统与代理人系统匹配)BSR PRF/航班号/日期(查每天销售情况)

RB:起始日期/终止日期/D/航段(查询几天的销售情况)

也可以使用RB 日期航段

CLW:航班号/日期(NO 所有的HL的票)

MLXZ:航班号/日期/航段(提取被取消航班旅客名单)

FTKT:航班号/日期/航段(计算当天各家航空公司客座率)

MLB/航班号/日期/航段(提取旅客名单)

如果要看出票代理的OFFICE号可以MLB/航班号/日期/航段/O/1E

如果只要看PNR的话可以MLB/PNR/航班号/日期/航段/O/1E

MLU5/航班号/日期/航段(提取航班儿童旅客名单)

MLG/PNR/航班号/日期/航段(提取航班团队名单)

MLBNG/PNR/航班号/日期/航段(提取航班非团队旅客名单)

MLNR/航班号/日期/航段(提取不是RR状态的旅客名单)

MLR/航班号/日期/航段(提取RR状态的旅客明名单)

MLZX/航班号/日期/航段(提取已经取消航班的所以旅客名单)

MLS1/航班号/日期/航段(提取GOSHOW旅客名单)

MLS2/航班号/日期/航段(提取NOSHOW旅客名单)

MLM/航班号/日期/航段(提取特殊餐食旅客名单)

MLS5/航班号/日期/航段(提取轮椅旅客名单)

ML:L99/航班号/日期/航段(提取当天出票的旅客名单)

MLT3/航班号/日期(提起假RR记录)

SS+航班号+舱位+日期+航段+NN人数(预定航班相当于AV+SD指令不过比AV方便)

TN:N/航班号/日期/中转地/F 从其他航班中转到此航班的中转旅客

TN:N/航班号/日期/中转地/T 从该航班中转到其他航班的中转旅客

BSR:PRF/航班号/日期/航段查询航班销售进度

K票

航段序号KK

@

NO票

航段序号NO

@

飞行器控制系统设计

课程设计任务书 学生姓名: 李攀 专业班级: 自动化0804 指导教师: 谭思云 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件: 飞行器控制系统的开环传递函数为: ) 2.361(4000)(+= s s K s G 控制系统性能指标为调节时间s 008.0≤,单位斜坡输入的稳态误差000443.0≤,相角裕度大于85度。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: (1) 课程设计任务书的布置,讲解 (一天) (2) 根据任务书的要求进行设计构思。(一天) (3) 熟悉MATLAB 中的相关工具(一天) (4) 系统设计与仿真分析。(四天) (5) 撰写说明书。 (两天) (6) 课程设计答辩(一天) 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

摘要 根据被控对象及给定的技术指标要求,设计自动控制系统,既要保证所设计的系统有良好的性能,满足给定技术指标的要求,还有考虑方案的可靠性和经济性。本说明书介绍了在给定的技术指标下,对飞行器控制系统的设计。为了达到给定要求,主要采用了串联之后—超前校正。 在对系统进行校正的时候,采用了基于波特图的串联之后—超前校正,对系统校正前后的性能作了分析和比较,并用MATLAB进行了绘图和仿真。对已校正系统的高频特性有要求时,采用频域法校正较其他方法更为方便。 关键词:飞行器控制系统校正 MATLAB

飞机操控系统

飞机操纵系统发展历程和典型飞机操纵系统分析 学生: 学号: 摘要 本文简要的叙述了飞机操纵系统的发展,主要阐述了几个典型飞机操纵系统的产生和具体结构。早期的简单机械系统即可达到飞行的要求,但随着飞机速度和机动性要求的不断提高,飞机操纵系统的性能也不断完善。飞机操纵系统经历了简单机械系统、控制增稳系统、电传操纵系统和光传操纵系统这几个阶段。最后飞机操作系统的每一次改变都是航空发展史上的伟大进步。 关键词:机械操纵系统、控制增稳系统、电传操纵系统、光传操纵系统 Aircraft control system development process and typical aircraft control system analysis Student: Liu He Student ID: 11031182 Abstract This article briefly describes the development of aircraft control systems, mainly on the production and the specific structure of several typical aircraft control systems. Early flight can be achieved by a simple mechanical system, but with the constant increase in air speed and maneuverability, performance aircraft control systems are constantly

飞机电子重点

1马赫配平系统的功能是 2下列关于自动油门系统叙述不正确的是 3自动油门的推力保持方式工作在?阶段 4飞机在巡航阶段时,自动油门系统工作在?方式 5飞机起飞前下列叙述不正确的是: A/P 和F/D都接通 飞机自动驾驶仪的衔接工作状态通常有两种,即() b a.偏航阻尼(YD)和自动油门(A/T) b.指令状态(CMD)和驾驶盘操纵状态(CWS) c. 自动油门(A/T)和飞行指引(F/D) d. 自动驾驶(A/P)和飞行指引(F/D) 6现代飞机使用自动飞行系统的目的: 7在大型飞机上,发动机仪表位于驾驶舱的什么位置? 8飞行仪表位于什么位置 9其他飞行系统仪表通常位于 10气压式高度表需要输入什么压力? 11空速与动压、静压和气温的关系是 12什么压力用于空速表 13垂直速度表需要输入什么压力? 14机场上,要想得到0 ft高度指示,需要如何调整气压设置 高度表必须设定在海平面大气压 15对于每个静压系统来说,为什么要有两个静压口 16航空仪表基本T型格式是由哪几部分组成的 17下列关于“全压管”的叙述哪个正确P18 18下列各参数与高度关系的说法错误的是 19飞机从空中到海平面的垂直距离,称为:绝对高度 20国际上通用的高度为标准大高度气 以下哪个数据在EHSI上没有显示p4 22EADI电子姿态指引指示器,相当于A320的主飞行显示器PFD; EHSI电子水平状态指示器,相当于A320的导航显示器ND。 21.下图中的气压式高度表的读数为:P9 23进近着陆过程中飞机的高度信息是由(雷达无线电高度表)系统提供的 24机载甚高频通讯系统不包括天线调谐组 25飞机起飞后,一般将"勤务内话开关" 拨到"OFF"位的原因是 26根据惯性测量装置在飞机上的安装方式不同,惯性导航系统可分为 27以下哪个系统不属于通信系统 28飞机的俯仰通道由(俯仰配平)控制 29标准大气条件下,高度与空气密度之间的关系是() 30 TCAS计算机发出的询问信号由(A TC )应答。 31 马赫数的确切定义是(在某一介质中物体运动的速度与该介质中的声速之比)。 32决断高度是指(在精密进近程序中规定的当不能取得继续进近要求的目视参考而必须开始复飞的以平均海平面为基准的高度。) 33飞机滚转通道由(AIP )控制。 34飞行指引的功能是(在PFD或ADIE显示指令指导驾驶人工驾驶飞机姿态) 35 EFIS-EADI显示的飞行指引指令 36飞机通信系统( )

飞行控制系统

飞行控制系统 为了使无人机飞行控制系统具有强大的数据处理能力、较低的功耗、较强的灵活性和更高的集成度,提出了一种以SmartFusion为核心的无人机飞行控制系统解决方案。为满足飞控系统实时性和稳定性的要求,系统采用了μC/OS-Ⅱ实时操作系统。与传统的无人机飞行控制系统相比,在具有很强的数据处理能力的同时拥有较小的体积和较低的功耗。多次飞行证明,各个模块设计合理,整个系统运行稳定,可以用作下一代无人机高性能应用平台。 关键词:无人机;飞行控制系统;SmartFusion芯片;μC/OS-Ⅱ 0 引言 飞行控制系统是无人机的重要组成部分,是飞行控制算法的运行平台,它的性能好坏直接关系着无人机能否安全可靠的飞行。随着航空技术的发展,无人机飞行控制系统正向着多功能、高精度、小型化、可复用的方向发展。高精度要求无人机控制系统的精度高,稳定性好,能够适应复杂的外界环境,因此控制算法比较复杂,计算速度快,精度高;小型化则对控制系统的重量和体积提出了更高的要求,要求控制系统的性能越高越好,体积越小越好。此外,无人机飞行控制系统还要具有实时、可靠、低成本和低功耗的特点。基于以上考虑,本文从实际工程应用出发,设计了一种基于SmartFusion的无人机飞行控制系统。 1 飞控系统总体设计

飞行控制系统在无人机上的功能主要有两个:一是飞行控制,即无人机在空中保持飞机姿态与航迹的稳定,以及按地面无线电遥控指令或者预先设定好的高度、航线、航向、姿态角等改变飞机姿态与航迹,保证飞机的稳定飞行,这就是通常所谓的自动驾驶;二是飞行管理,即完成飞行状态参数采集、导航计算、遥测数据传送、故障诊断处理、应急情况处理、任务设备的控制与管理等工作。 飞行控制系统主要完成3个功能任务,其层次构成为三层:最底层的任务是提高无人机运动和突风减缓的固有阻尼——三个轴方向的阻尼器功能;第2层的任务是稳定无人机的姿态角——基本驾驶仪的功能(主要进行角运动控制);第3层的任务是控制飞行高度、航迹和飞行速度,实现较高级自动驾驶功能。飞行控制系统原理框图见图1。 由上述分析易知,飞行控制系统主要由飞行控制器、传感器(或敏感元件)、舵机3部分组成。无人机飞行控制系统的基本架构如图2所示。

飞机配电系统

飞机配电系统(aircraft electrical power distribution system) 简介 飞机发电机与地面或应急电源的电能进行转换、传输、分配与控制保护的系统(见飞机电气系统)。它由馈电电缆、汇流条、配电板以及配电器件等组成。配电系统保证对飞机各部分可靠地输配电能,管理各类电气负载并保护用电设备。 20世纪40年代以来随着飞机电气系统的完善,飞机配电器件也实现了系列化。50年代中开始制订标准和规范。大型飞机的发展使配电系统的重量在飞机供电系统总重中占居主要地位。在某些飞机中有上千个断路器,电缆重量达供电系统总重的7 0%。60年代末,飞机配电向着多路传输总线控制的固态配电方向发展。70年代开始将电气系统与电子、武器和操纵等系统通过多路传输总线交联在一起并由计算机控制。 配电方式 按机载供电的性质可分为低压直流、高压直流和交流配电三种方式。直流电网常采用负线与机身搭接的单线制,交流电网常采用三相四线制。按结构配置可分为集中配电和分散配电。集中配电,不论一台或多台发电机只配置一个电源汇流条,因而操作和维护都比较简单。但汇流条一旦出现故障便会影响飞机的全部供电。分散式配电有多组可以相互隔离或联接的汇流条,局部故障不致关系全局,而且功率线长度减少,重量减轻。配电系统按控制方式分为常规式、遥控式和固态式3种。常规式配电的功率线全部引入座舱内的配电中心。遥控式配电的配电中心接近用电设备,由遥控信号通过功率控制器操纵,座舱内只引入控制线。固态式配电由一条多路传输总线传递全部控制信号。这种方式取消了众多的控制线,减轻了重量,提高了自动化程度。 用电设备的重要性及其在飞行中各个阶段的作用不尽相同,在巡航、战斗、起飞、着陆等各阶段可实行不同的负载管理方案。出现故障时,管理方式更应改变。在飞行中,需要综合考虑各种因素决定怎样切换负载,或转换为应急供电等,以确保对重要设备可靠供电。负载管理方式分为人工管理和自动管理两种。前者由空勤人员判断操作,后者由计算机按预先设计好的管理方案自动进行。负载自动管理可以使电网经常处于最佳状态。 配电器件 包括电缆、开关电器(或控制电器)、保护电器、汇流条和接插件等。 ①飞机电缆:由多股细铜丝绞制而成的线芯和绝缘护套组成。线芯截面积的选择需要兼顾机械强度和导电性。铬铜、镉铬铜等新型线芯材料正在研制中。

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

民航概论知识点总结

民航概论重要知识点 第一章总论 第一节民用航空基本概念 1.航空与航天的区别: 答: 人类在大气层中的所有活动统称为航空,在大气层之外的飞行活动称作航天。 2.航空业的三个基本组成: 答: 航空器制造业,军事航空,民航航空。 3.民用航空的定义及两大组成部分: 答:定义: 使用各类航空器从事除了军事性质以外的所有的航空活动称为民用航 组成: 航空运输,通用航空 4.航空运输与通用航空所包括的内容: 答:航空运输: 以航空器进行经营性的客货运输的航空活动 通用航空: (1)航空作业(2)其/他类通用航空 5.民用航空系统的组成部分(民航主管部门、航空公司、机场、民航院校及其单位性质)。 答: 政府部门,参与航空运输的各类企业,民航机场,参与通用航空各种活动的个人和企事业单位。 第二节世界民航发展历史 1.第一架有动力可人为操纵的飞机的发明时间和发明者: 答: 1909 年法国人莱里奥 2.世界上第一部国家间航空法,第一次确立国家空中主权原则: 《巴黎公约》(与《芝加哥公约》对比)1919 年;(《芝加哥公约》是世界国际航空法的基础) 3.世界国际航空法的基础,并规定成立国际民航组织ICAO的公约: 《国际民用航空公约》(《芝加哥公约》)1944年; 4.1947 年成立国际民用航空组织ICAO。 第三节中国民航发展历史 1.中国第一架飞机工1909 年发明,发明者: 冯如; 2.中国第一条航线: 北京一一天津,1920 年; 3.中国第一条国际航线: 广州一一河内,1936 年; 4.二战时期从昆明经喜马拉雅山往返印度的“驼峰航线”; 5.建国初期的“两航起义”; 第二章民用航空器 第一节民用航空器的分类和发展 1.航空器根据与空气的密度关系及有无动力的分类标准; 2.民用客机的分类标准(航程、机身宽度、支线和千线)及A380、C919和ARJ21等典型机型的对应分类; 答:商业飞行的航线飞机,通用航空的通用航空飞机。 根据航程:3000千米以下为短程, 3000-8000 千米是中程, 8000千米以上为远程 根据宽窄:3.75米以上有两条通道的为宽体, 3.75米以下为窄体

飞行器自动控制导论_第一章飞行控制系统概述

第一章飞行控制系统概述 1.1飞行器自动控制 1.1.1飞行控制系统的功能 随着飞行任务的不断复杂化,对飞机性能的要求越来越高,不仅要求飞行距离远(例如运输机),高度高(高空侦察机),而且还要求飞机有良好的机动性(例如战斗机)。为了减轻驾驶员在长途飞行中的疲劳,或使驾驶员集中精力战斗,希望用自动控制系统代替驾驶员控制飞行,并能改善飞机的飞行性能。这种系统就是现代飞机上安装的飞行自动控制系统。 飞行控制系统的功能归结起来有两点:1)实现飞机的自动飞行;2)改善飞机的飞行性能。 飞机的自动飞行控制系统在无人参与的情况下,自动操纵飞机按规定的姿态和航迹飞行,通常可实现对飞机的三轴姿态角和飞机三个方向的空间位置的自动控制与稳定。例如,无人驾驶飞行器(如无人机或导弹等),实现完全的飞行自动控制;对于有人驾驶的飞机(如民用客机或军用飞机),虽然有人参与驾驶,但某些飞行阶段(如巡航段),驾驶员可以不直接参与操纵,而由飞行控制系统实现对飞机飞行的自动控制,但驾驶员应完成对自动飞行指令的设置和监督自动飞行的情况,并可以随时切断自动控制而实现人工驾驶。采用自动飞行具有以下优点: 1)长距离飞行时解除驾驶员的疲劳,减轻驾驶员的工作负担; 2)在一些恶劣天气或复杂的环境下,驾驶员难于精确控制飞机的姿态和航迹,自动飞行控制系统可以精确对飞机姿态和航迹的精确控制; 3)有一些飞行操纵任务,驾驶员难于精确完成,如进场着陆,采用自动飞行控制则可以较好地完成任务。 一般来说,飞机的性能和飞行品质是由飞机本身气动特性和发动机特性决定的,但随着飞机飞行高度及飞行速度的增加,飞机的自身特性将会变坏。如飞机在高空飞行时,由于空气稀薄,飞机的阻尼特性变坏,致使飞机角运动产生严重的摆动,靠驾驶员人工操纵将会很困难。此外,设计飞机时,为了减小质量和阻力,提高有用升力,将飞机设计成静不稳定的。对于这种静不稳定的飞机,驾驶员是难于操纵的。在飞机上采用增稳系统或阻尼系统可以很好地解决这些问题。

飞机系统重点

1飞机机翼外载荷的类型,什么是卸荷作用 机翼外载荷分为空气动力P气动、结构质量力P质量、部件质量力P部件。 卸荷作用:在机翼上安装部件、设备等,其重力向下与升力方向相反,相当于飞行中减小了 机翼根部的内力值。(卸载作用) 2、飞机机翼的型式,以及各自结构特点 1?梁式机翼,梁强、蒙皮薄、桁条少而弱;2?单块式机翼,多而强的桁条与较厚蒙皮组成壁 板,再与纵墙和肋相连而成;3?多腹板式(多墙式)机翼,机翼无梁、翼肋少,布置5个以 上纵墙,蒙皮厚;4.夹层和整体结构。夹层结构,上、下壁板有两层很薄的内、外板,中间夹很轻的蜂窝、泡沫或波形板粘合;整体结构,整块铝镁合金板材加工成蒙皮、桁条、缘条的合并体与纵墙连接。 3、飞机机身的型式,结构组成,受力特点

5、无助力机械传动式飞行主操纵系统的组成及类型 类型:硬式传动;软式传动;混合式传动 硬式传动机构组成:刚性构件:如传动杆、摇臂、导向滑轮等。可以承受拉力或者压力。可以利用差动摇臂实现副翼差动,即驾驶盘左右转动时,副翼上、下偏转的角度不同。 软式传动机构组成:钢索、滑轮、扇形轮、导向孔、摇臂、松紧螺套或钢索张力调节器等。混合式传动机构组成:既有硬式、又有软式传动构件,利用二者的优点,避免缺点。一般在操纵信号的输入和舵面作动段采用硬式传动,中间段采用采用软式传动。 6、飞机液压系统的基本组成及主要附件 组成:供压系统、传动系统、操纵控制系统、工作信号 主要附件:油箱、油泵、油滤、蓄压器、动作筒、液压马达、液压控制活门 7、液压系统传动装置的类型(?)动作筒、液压助力器、液压马达 9、飞机前轮偏转带来的问题及解决手段 保证机轮滑行转弯的稳定,必须有适当的稳定距;控制前轮偏转必须有转弯系统;为了使飞 机里低吼前轮回到中立位置,必须有中立结构;防止滑跑时前轮产生摆振须有减摆装置;有 的小型飞机经旋转筒带动支柱内筒使前轮偏转,防止支柱内、外筒相对转动而加剧密封装置 磨损,内筒端头必须安装旋转接头 10、起落架收放锁定装置的作用,型式以及组成作用:用于将起落架可靠地固定在要求的位置 I. 挂钩式收上锁:上锁动作筒、锁钩、锁簧、锁销; 2.撑杆式放下锁:开锁动作筒、可折撑 杆、可折锁杆;3.液锁式收上锁 II、飞机操纵系统的操纵面 13、飞机滑跑减速力的来源,飞机刹车系统的基本型式

飞行器控制系统设计

学号: 课程设计 题目飞行器控制系统设计 学院自动化学院 专业自动化 班级自动化1002班 姓名 指导教师肖纯 2012 年12 月19 日

课程设计任务书 学生姓名: 专业班级:自动化1003班 指导教师: 肖 纯 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件:飞行器控制系统的开环传递函数为: ) 2.361(4500)(+= s s K s G 要求设计控制系统性能指标为调节时间ts 008.0≤秒,单位斜坡输入的稳态误差000443.0≤,相角裕度大于75度。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统 的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

随着经济的发展,自动控制技术在国民经济中发挥着越来越重要的作用。自动控制就是在没有人的参与下,系统的控制器自动的按照人预订的要求控制设备或过程,使之具有一定的状态和性能。在实际中常常要求在达到制定性能指标的同时能更加节约成本、能具有更加优良的效果。本次飞行器设计中,采用频域校正的方法使系统达到指定的性能指标,同时采用matlab仿真软件更加直观的进行仿真分析和验证。 在此设计中主要采用超前校正的方法来对系统进行性能的改进,通过分析、设计、仿真、写实验报告书的过程,进一步加深了对自动控制原理基本知识的理解和认识,同时通过仿真系统的奈奎斯特图、bode图、单位阶跃响应曲线,进一步理解了系统的性能指标的含义,同时也加深了对matlab仿真的掌握,培养了认识问题、分析问题、解决问题的能力。

飞机各个系统的组成及原理

一、外部机身机翼结构系统 二、液压系统 三、起落架系统 四、飞机飞行操纵系统 五、座舱环境控制系统 六、飞机燃油系统 七、飞机防火系统 一、外部机身机翼结构系统 1、外部机身机翼结构系统组成:机身机翼尾翼 2、它们各自的特点和工作原理 1)机身 机身主要用来装载人员、货物、燃油、武器和机载设备,并通过它将机翼、尾翼、起落架等部件连成一个整体。在轻型飞机和歼击机、强击机上,还常将发动机装在机身内。 2)机翼 机翼是飞机上用来产生升力的主要部件,一般分为左右两个面。 机翼通常有平直翼、后掠翼、三角翼等。机翼前后缘都保持基本平直的称平直翼,机翼前缘和后缘都向后掠称后掠翼,机翼平面形状成三角形的称三角翼,前一种适用于低速飞机,后两种适用于高速飞机。近来先进飞机还采用了边条机翼、前掠机翼等平面形状。

左右机翼后缘各设一个副翼,飞行员利用副翼进行滚转操纵。 即飞行员向左压杆时,左机翼上的副翼向上偏转,左机翼升力下降;右机翼上的副翼下偏,右机翼升力增加,在两个机翼升力差作用下飞机向左滚转。为了降低起飞离地速度和着陆接地速度,缩短起飞和着陆滑跑距离,左右机翼后缘还装有襟翼。襟翼平时处于收上位置,起飞着陆时放下。 3)尾翼 尾翼分垂直尾翼和水平尾翼两部分。 1.垂直尾翼 垂直尾翼垂直安装在机身尾部,主要功能为保持飞机的方向平衡和操纵。 通常垂直尾翼后缘设有方向舵。飞行员利用方向舵进行方向操纵。当飞行员右蹬舵时,方向舵右偏,相对气流吹在垂尾上,使垂尾产生一个向左的侧力,此侧力相对于飞机重心产生一个使飞机机头右偏的力矩,从而使机头右偏。同样,蹬左舵时,方向舵左偏,机头左偏。某些高速飞机,没有独立的方向舵,整个垂尾跟着脚蹬操纵而偏转,称为全动垂尾。 2.水平尾翼 水平尾翼水平安装在机身尾部,主要功能为保持俯仰平衡和俯仰操纵。低速飞机水平尾翼前段为水平安定面,是不可操纵的,其后缘设有升降舵,飞行员利用升降舵进行俯仰操纵。即飞行员拉杆时,升降舵上偏,相对气流吹向水平尾翼时,水平尾翼产生

8飞机系统

液压系统: 1、知识点1:液压传动系统在现代民用航空器上的应用 在现代民用航空器上,液压系统通常用于收放起落架、增升装置、扰流板和操作机轮刹车、前轮转弯、发动机反推装置以及操纵各主操纵舵面偏转。 试题1:现代民用运输机的副翼通常是由什么动力驱动的? A电动机驱动 B人力驱动 C液压驱动 答案:C 讲解:现代民用运输机通常采用液压助力式主操纵系统,各主操纵舵面(包括副翼、升降舵和方向舵)是由飞机液压系统的液压助力器(也称为动力控制组件)驱动的。 试题2:现代民用运输机的襟翼通常是由什么动力驱动的? A液压驱动 B人力驱动 C 电动机驱动 答案:A 试题3:现代民用运输机的扰流板通常是由什么动力驱动的? A人力驱动 B 液压驱动 C 电动机驱动 答案:B 试题4:现代民用运输机的前轮转弯通常是由什么动力驱动的? A人力驱动 B电动机驱动 C 液压驱动 答案:C 试题5:现代民用运输机的发动机反推装置通常是由什么动力驱动的? A 电动机驱动

B液压驱动 C 人力驱动 答案:B 2、知识点2:飞机液压传动功率 现代飞机液压系统传动部分的载荷不断增大,同时液压传动的速度也要求加快,因此,液压系统的传动功率日益增大。飞机液压系统的传动功率大小决定于系统的工作压力和流量。液压系统工作压力决定于负载高低,传动速度取决于流量大小。 试题1:现代飞机液压系统的传动功率大小取决于 A液压油箱的油量 B液压系统的工作压力和流量 C液压油泵的转速 答案:B 讲解:飞机液压系统的传动功率大小决定于系统的工作压力和流量,工作压力越高、流量越大,传动功率就越大。 试题2:飞机液压传动的速度取决于 A液压油的流量 B液压油箱的油量 C液压油泵的转速 答案:A 试题3:飞机液压系统的工作压力越高、流量越大, A液压传动速度就越低。 B液压传动功率就越大。 C液压油泵的转速就越高。 答案:B 试题4:飞机液压系统的工作压力取决于 A液压油的流量 B 油泵转速 C传动负载

《飞机电气系统》av基础题库

《飞机电气系统》题库 1、飞机灯光照明系统可分为(B) A、机内照明和机外照明 B、机内照明、机外照明和应急照明 C、普通照明和航行标志照明 D、客舱照明和驾驶舱照明 2、飞机在夜间或复杂气象条件下飞行和准备时使用(C) A、机外照明和应急照明 B、机内照明和应急照明 C、机外和机内照明 D、驾驶舱和客舱照明 3、飞机在夜航或复杂气象条件下飞行,驾驶舱必须照明,它包括(C) A、机内照明,机外照明 B、机内照明,机外照明和应急照明 C、一般照明和局部照明 D、一般照明,局部照明和应急照明 4、飞机的机外照明,对不同灯有不同的要求但它们共同主要求是 (C) A、足够的发光强度和高的发光效率 B、足够的发光强度、可靠的作用范围 C、足够的发光强度、可靠的作用范围,适当的颜色 D、足够的发光强度、可靠的作用范围,交直流电压均可使用

5、飞机灯光照明系统包括(A) A、机内照明、机外照明和应急照明 B、普通照明和航行标志照明及显示器亮度 C、客舱照明和驾驶舱照明及显示器亮度 D、客舱照明和驾驶舱照明和货舱照明 6、飞机在夜间或复杂气象条件下飞行或准备时,使用(B) A、机内照明和应急照明 B、机内照明和机外照明 C、机外照明和应急照明 D、驾驶舱照明和客舱照明 7、飞机在夜航或复杂气象条件下飞行,驾驶舱必需照明,驾驶舱照明包括(C) A、机内照明和应急照明 B、机内照明、机外照明和应急照明 C、一般照明和局部照明 D、一般照明和应急照明 8、飞机的机外照明,对不同灯有不同的要求,但对它们的共同要求是(D) A、足够的发光强度和高的发光效率及闪亮警示 B、足够的发光强度和可靠的作用范围及闪亮警示 C、可靠的作用范围和适当的颜色 D、足够的发光强度、可靠的作用范围和适当的颜色 9、在机外照明中,要求光强最大的、会聚性最好的灯是(A) A、活动式和固定式着陆灯

无人机飞行安全操作规范

新和莱特无人机飞行操作规范 一、目的: 为了使无人机在操作飞行的过程中,安全、高效、稳定的飞行,通过个个细节的把控,做到各项检查指标参数处于正常值或者正常值以上,方可起飞。二、范围: 规范试用于,新和莱特下属技术部门以及售后售前部门,所有技术人员和飞手。 三、内容: (一)飞行前的检查: 飞行前调试流程必须做到位,不得忽略调试流程的任何一个细节,在操作无人机飞行前应对无人机的各个部件做相应的检查,无人机的任何一个小问题都有可能导致在飞行过程中出现事故或损坏。因此在飞行前应该做充足的检查,防止意外发生。 外观机械部分: 1、上电前应先检查机械部分相关零部件的外观,检查螺旋桨是否完好,表面是否有污渍和裂纹等(如有损坏应更换新螺旋桨,以防止在飞行中飞机震动太大导致意外)。检查螺旋桨旋向是否正确,安装是否紧固,用手转动螺旋桨查看旋转是否有干涉等。 2、检查电机安装是否紧固,有无松动等现象(如发现电机安装不紧固应停止飞行,使用相应工具将电机安装固定好)用手转劢电机查看电机旋转是否有卡涩现象,电机线圈内部是否干净,电机轴有无明显的弯曲。 3、检查机架是否牢固,螺丝有无松动现象。 4、检查药箱转动是否有漏水口,药箱固定座是否安装牢固。 5、检查飞行器电池安装是否正确,电池电量是否充足。 6、检查飞行器的重心位置是否正确。

电子部分(此项为飞机出厂检查): 1、检查各个接头是否紧密,插头不焊接部分是否有松动、虚焊、接触不良等现象(杜邦线,XT60,T插头,香蕉头等)。 2、检查各电线外皮是否完好,有无刮擦脱皮等现象。 3、检查电子设备是否安装牢固,应保证电子设备清洁,完整,并做好一些防护(如防水、防尘等)。 4、检查电子罗盘指向是否和飞行器机头指向一致。 5、检查电池有无破损,鼓包胀气,漏液等现象。 6、检查地面站是否可,地面站屏幕触屏是否良好,各界面操作是否正常。 上电后的检查: 1、上电后,地面站与飞机进行配对,点击地面站设置里的配对前,先插电源负极,点击配对插上正极,地面站显示配对即可。 2、电池接插方法,要注意是串联电路还是并联电路,以免差错,导致电池烧坏或者是飞控烧坏。 3、配对成功以后,先不装桨叶,解锁轻微推动油门,观察各个电机是否旋转正常。 4、检查电调指示音是否正确LED指示灯闪烁是否正常。 5、检查各电子设备有无异常情况(如异常震动,异常声音,异常发热等)。 6、确保电机运转正常后,可进行磁罗盘的校准,点击地面站上的磁罗盘校准,校准方法见飞机使用教程。 7、打开地面站,检查手柄设置是否为美国手,检查超声波是否禁用,飞机的参数设置是否符合要求。 8、调试完成后,将喷杆安装在飞机左右两侧,插紧导管,通电测试喷洒系统是否运转正常。 9、测试飞行,以及航线的试飞,观察飞机在走航线的过程中是否需要对规划

飞机系统重点

1、飞机机翼外载荷的类型,什么是卸荷作用 机翼外载荷分为空气动力P气动、结构质量力P质量、部件质量力P部件。 卸荷作用:在机翼上安装部件、设备等,其重力向下与升力方向相反,相当于飞行中减小了机翼根部的内力值。(卸载作用) 2、飞机机翼的型式,以及各自结构特点 1.梁式机翼,梁强、蒙皮薄、桁条少而弱; 2.单块式机翼,多而强的桁条与较厚蒙皮组成壁板,再与纵墙和肋相连而成; 3.多腹板式(多墙式)机翼,机翼无梁、翼肋少,布置5个以上纵墙,蒙皮厚; 4. 夹层和整体结构。夹层结构,上、下壁板有两层很薄的内、外板,中间夹很轻的蜂窝、泡沫或波形板粘合;整体结构,整块铝镁合金板材加工成蒙皮、桁条、缘条的合并体与纵墙连接。

类型:硬式传动;软式传动;混合式传动 硬式传动机构组成:刚性构件:如传动杆、摇臂、导向滑轮等。可以承受拉力或者压力。可以利用差动摇臂实现副翼差动,即驾驶盘左右转动时,副翼上、下偏转的角度不同。 软式传动机构组成:钢索、滑轮、扇形轮、导向孔、摇臂、松紧螺套或钢索张力调节器等。混合式传动机构组成:既有硬式、又有软式传动构件,利用二者的优点,避免缺点。一般在操纵信号的输入和舵面作动段采用硬式传动,中间段采用采用软式传动。 6、飞机液压系统的基本组成及主要附件 组成:供压系统、传动系统、操纵控制系统、工作信号 主要附件:油箱、油泵、油滤、蓄压器、动作筒、液压马达、液压控制活门 7、液压系统传动装置的类型(?) 动作筒、液压助力器、液压马达 9、飞机前轮偏转带来的问题及解决手段 保证机轮滑行转弯的稳定,必须有适当的稳定距;控制前轮偏转必须有转弯系统;为了使飞机里低吼前轮回到中立位置,必须有中立结构;防止滑跑时前轮产生摆振须有减摆装置;有的小型飞机经旋转筒带动支柱内筒使前轮偏转,防止支柱内、外筒相对转动而加剧密封装置磨损,内筒端头必须安装旋转接头 10、起落架收放锁定装置的作用,型式以及组成 作用:用于将起落架可靠地固定在要求的位置 1.挂钩式收上锁:上锁动作筒、锁钩、锁簧、锁销; 2.撑杆式放下锁:开锁动作筒、可折撑杆、可折锁杆; 3.液锁式收上锁

航空航天概论复习重点知识点整理

第一章绪论 1?叙述航空航天的空间范围 航空航天是人类利用载人或不载人的飞行器在地球大气层中和大气层外的外层空间(太空)的航行行为的总称。其中,大气层中的活动称为航空,大气层外的活动称为航天。大气层的外缘距离地面的高度目前尚未完全确定,一般认为距地面90~100km是航空和航天范围的分界区域。 2?简述现代战斗机的分代和技术特点 发展史 特点:a.可垂直起降、对起降场地木有太多特殊要求,b.可在空中悬停,c.能沿任意方向飞行但速度比较低、航程相对较短; 工作原理:直升机以航空发动机驱动旋翼旋转作为升力和推进力来源,动能守恒要求,旋翼升力的获得 靠向下加速空气,因此对直升机而言由旋翼带动空气向下运动,每一片旋翼叶片都产生升力,这些升力 的合力就是直升机的升力。 4.试述航空飞行器的主要类别及其基本飞行原理 A. 轻于空气(浮空器):气球;飞艇。原理:靠空气静浮力升空。气球没有动力装置,升空后只能随风飘动或被系留在某一固定位置;飞艇装有发动机、螺旋桨、安定面和操纵面,可控制飞行方向和路线。 B. 重于空气:固定翼航空器(飞机+滑翔机);旋翼航空器(直升机+旋翼机);扑翼航空器(扑翼机)。原理:靠 空气动力克服自身重力升空。飞机由固定的机翼产生升力,装有提供拉力或推力的动力装置、固定机翼、控制飞行姿态的操纵面,滑翔机最大区别在于升空后不用动力而是靠自身重力在飞行方向的分力 向前滑翔(装有的小型发动机是为了在滑翔前获得初始高度);旋翼机由旋转的机翼产生升力,其旋翼木有动力驱动,由动力装置提供的拉力作用下前进时,迎面气流吹动旋翼像风车似地旋转来产生升力;直 升机的旋翼是由发动机驱动的,垂直和水平运动所需要的拉力都由旋翼产生;扑翼机(振翼机)像鸟类翅膀那样扑动的翼面产生升力和拉力。 5.简述火箭、导弹与航天器的发展史 6.航天器的主要类别 A. 无人航天器a人造卫星(科学卫星、应用卫星、技术试验卫星),b.空间平台,c.空间探测器(月球探测器、行星探测器); B. 载人航天器a载人飞船(卫星式、登月式),b.空间站,c.轨道间飞行器(轨道机动器、轨道转移器),d.航天飞机。 7.什么是空天飞机,其主要的关键技术是什么? 空天飞机即航空航天飞机,指以吸气式发动机和火箭发动机组合推进系统作为动力装置、能够像飞机在跑道上起降、在大气层内高超音速飞行,又能单级入轨运行的可载人飞行器。 主要的技术在于a动力装置,既不同于飞机又不同于火箭,是一种混合配置的动力装置,安装有涡轮喷气发动机、冲压发动机、火箭发动机;b.计算空气动力学分析,由于其速度变化幅度大、飞行高度变化广、飞行环境不同;c.发动机和机身一体化设计,在大气层中高速飞行时阻力剧增,外形需要高度流线化;d.防热结构和材料,空天飞机需多次进出大气层,有很强的气动加热,所以防热系统既要保持良好的气动外形,又要能长期重复使用且便于维护。

变体飞行器控制系统综述

第30卷 第10期航 空 学 报 Vol 130No 110 2009年 10月ACTA AERONAUTICA ET ASTRONAUT ICA SINICA Oct. 2009 收稿日期:2008208212;修订日期:2008212205 基金项目:国家自然科学基金(90605007);南京航空航天大学博 士生创新基金((B CXJ06208) 通讯作者:何真E 2mail:hezhen@https://www.sodocs.net/doc/0e7025277.html, 文章编号:100026893(2009)1021906 206变体飞行器控制系统综述 陆宇平,何真 (南京航空航天大学自动化学院,江苏南京 210016) A Survey of Morphing Aircraft Control Systems Lu Yuping,H e Zhen (College of Automation Engineering,Nanjing Universit y of Aeronautics and Astronautics,Nanjing 210016,China) 摘 要:介绍了变体飞行器控制系统和涉及的控制理论问题。分析了变体飞行器的控制系统,指出变体飞行器的控制系统由变形控制层和飞行控制层组成。对变体飞行器的硬件结构和变体飞行器控制方法的研究现状进行了阐述。分析了集中式和分布式两种变形机械结构以及控制系统体系结构,提出采用总线网络连接变形结构的分布式元件。总结了变体飞行器需深入研究的变形控制和飞行控制问题,包括大尺度变体飞行器的飞行控制问题,通信受约束的大数目的驱动器的协调控制问题。关键词:变体飞行器;变形控制;飞行控制系统;分布式控制;网络控制中图分类号:V249 文献标识码:A Abstr act:The control system and r elated cont rol theor y of morphing aircraft a re introduced.The cont rol sys 2tem of mor phing air cr aft is analyzed.I t is shown that the system consists of a shape cont rol loop and a f light cont rol loop.Advances in the mechanical structures and contr ol appr oaches of mor phing aircraft ar e discussed.The centra lized mechanica l morphing structur e,the distributed mechanical morphing st ructur e,and the contr ol system structure are analyzed.It is pr oposed that the distr ibuted components in a morphing st ructur e should be connected through a bus net work.F utur e work in the shape contr ol and flight control of morphing aircraft is summar ized,including the flight contr ol of large 2scale shape air craft,cooperat ive contr ol of large numbers of actuators under communication constraints. Key words:morphing aircraft;sha pe control;flight control systems;distr ibuted control;networked contr ol 变体飞行器能根据飞行环境和飞行任务的变化,相应地改变外形,始终保持最优飞行状态,以满足在变化很大的飞行环境(高度、马赫数等)里执行多种任务(如起降、巡航、机动、盘旋、攻击等) 的要求。变体飞行器还能够改善飞行器空气动力学性能,增加续航时间,用能连续、光滑变形的变形结构代替传统操纵面,提高隐身性能。由于具有这些优势,变体飞行器得到了各国的重视。目前,已开展过的或正在开展的变体飞行器项目有 [125] :美国的AFTI/F111自适应机翼项目,主动 柔性翼(AFW)计划,智能机翼(Smart Wing)项目 和近期启动的变形飞机结构(MAS)项目;欧洲的3AS(Active Aeroelastic A ir craft Structures)研究项目等。 与传统飞行器相比,变体飞行器最特殊之处在于它具有变形结构。这给气动、材料、结构、控 制和优化等多个学科提出了一系列有待研究的问题。在控制学科方面,变形结构的分布式驱动特性以及变形引起的飞行器模型的不确定性和非线性等都引出了许多具有挑战性的研究课题。本文总结与思考了变体飞行器的控制体系结构设计和控制理论研究,提出了需深入研究的变形控制和飞行控制方面的问题。 1 工作原理 变体飞行器的控制系统可分为两个层次,如图1所示。第1层可称为变形控制系统,对变形结构进行控制,即实现变形控制;第2层可称为飞行控制系统,控制整个飞行器的飞行状态,即实现飞行控制。 变体飞行器的变形结构是使变体飞行器实现/变体0的部件。为了获得高气动效率,变体飞行器的变形应该是连续的、光滑的,因此,大部分变形结构由大数量的分布式驱动单元组成。变形结构可以是分布式作动器驱动的机械连杆结构(驱

飞机环境控制系统并行设计

收稿日期:2002 07 10 基金项目:航空基础科学基金资助项目(03E09003) 作者简介:王晓文(1968-),女,北京人,博士生,wangxwbuaa@https://www.sodocs.net/doc/0e7025277.html,. 飞机环境控制系统并行设计 王晓文 王 浚 (北京航空航天大学航空科学与工程学院,北京100083) 摘 要:基于飞机环境控制系统(ECS)的研制,分析了系统设计的结构层次,借助于近年来飞速发展的信息技术、设计技术、仿真技术,提出了基于系统管理 结构设计 系统仿真为一体的面向对象的系统并行设计框架.设计体系贯穿于飞机环境控制系统设计的全生命周期. 关 键 词:环境控制;飞机;并行设计 中图分类号:V 245 3 文献标识码:A 文章编号:1001 5965(2003)12 1073 04 Con cu rren t design of environmen tal control systems for aircraft Wang Xiao wen Wang Jun (School of Aeronautics Science and Technology,Beijing Uni versity of Aeronautics and As tronautics,Beijing 100083,China) Abstract :Based on the development of the environmental control systems for aircraft,the arrangement for the structure of systems design was analyzed.To recur information technology,designing technology,imitating technolo gy,an concurrent engineering frame was proposed based on management structure design imitate.Design system runs through the whole life of the design period of the environmental c ontrol systems for aircraft. Key words :environmental c ontrol;airplanes;concurrent engineering 现代企业的设计理念已由过去单纯的针对产品的结构设计发展到今天以并行工程为代表的产品开发的过程重构和组织重组.计算机技术融入了产品开发研究和应用全过程,产品设计正从以往的详细设计阶段向需求分析和概念设计阶段转移,产品信息的管理则向产品的全生命周期扩展[1] .将这样一个设计理念贯穿于飞机环境控制系统的设计中,涵盖了飞机环控系统的产品结构设计、性能分析、系统仿真、以及系统设计过程中的系统部件分类管理、产品数据管理、流程管理和组织管理等设计行为. 这一设计体系的实现是基于现行信息化软件、仿真软件以及结构设计软件平台基础之上的,构筑了飞机环境控制系统的并行设计框架.该设计框架的建立,涉及环控系统仿真功能模型同CAD 系统的几何模型集成,实现飞机环控系统的产品结构设计和分析过程仿真的集成.同时,结合 热能和环境控制专业,为相关系统如空调制冷系统、机车环控系统、地面环境实验系统以及热动力试验系统等等的设计,探索并行设计模式和系统设计管理方法. 1 飞机环境控制系统设计分析 飞机环境控制系统在现代航空技术的发展中占据日益重要的位置.按照实际飞行包线的外界环境、发动机引气状态和飞机结构、人员及设备实际工作状况,进行飞机环境控制系统及其附件的 综合动态设计(即进行环控系统和其附件的多参数综合动态设计)是今后飞机环控系统的发展方向.围绕系统综合动态设计,要求设计者在设计系统状态时更多的考虑到系统综合因素的影响,产品结构设计与性能分析及仿真之间的沟通.同时,设计流程间的相互衔接,也应是设计体系完整性的一个重要表现[2] . 2003年12月第29卷第12期北京航空航天大学学报 Journal of Beijing University of Aeronautics and Astronautics December 2003Vol.29 No 12

相关主题