搜档网
当前位置:搜档网 › 用分立元件设计制作互补对称式功率放大器

用分立元件设计制作互补对称式功率放大器

用分立元件设计制作互补对称式功率放大器
用分立元件设计制作互补对称式功率放大器

用分立元件设计制作互补对称式功率放大器

2008-08-18 13:49:31 作者:未知来源:中国电子网

关键字:功率放大器运放达林顿管恒流源工作电流稳压管差动放大器电压放大集电极元件

一、功率放大器基本电路特点

互补对称式OTL功率放大器基本电路如图①所示。其中:C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。

C2与R3构成自举电路,要求R3C2>1/10、(R3+R4)Ic1=E/2-1.2,因R4

是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。

R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。

BG1起电压放大作用,在该电路中被称为激励级,要求Buceo>E、Iceo≤Ic1/400=5μA、β=100~200,所以应选用小功率低噪声三极管。BG2和BG3是互补电流放大极,分别与BG4、BG5构成复合管对输出电流进行放大,要求Buceo>E、Iceo≤Ic2/100=30μA、β=100~200。在BG4、BG5使用普通大功率三级管而不是内部已经做成复合式大功率三级管的情况下,BG2与BG3需要提供给后级大功率三级管超过100mA的峰值驱动电流,因此应使用中功率三级管。BG4和BG5是负责放大输出电流的大功率管,静态工作电流可取在10mA~30mA,要求Buceo>E、Iceo≤Ic4/100=0.1mA、β=50~100。BG4和BG5的最大极限电流Imax应该比输出电流最大幅值大1倍,方能保证输出电流最大幅值时β>10。

R6和R7分别是BG4和BG5静态工作点调整分流电阻,动态工作时的分流作用可以忽略不计。在Ube4和Ube5都等于0.6V标准参数时,由互补电流放大级的静态工作电流

取在3mA~4mA,可计算出R6和R7应取为220Ω。实际上,大功率三级管Ube可能相差较大,BG4和BG5的Ube需通过实测进行配对使用,借助自举电路工作的半边复合管的总电流放大率应应比不借助自举电路工作的另半边复合管要小。

R8和R9分别是防止BG4和BG过流的限流电阻,一般取在0.2Ω~0.5Ω之间。将用200mm长、直径为φ0.08的漆包线两端分别焊接在1k以上电阻两端,把对折起来的漆包线绕在电阻上即可。相当于熔断保险管的作用,属于最简单的非智能式限流烧断保护方式。

C5和C6是信号输出电容,用一只小容量电容与大容量电容并联起来使用,可消除大容量电容内部具有的较大电感对高频率信号的阻碍。注意它实际上是起到中点浮动电源作用,所以电容量不是按照对通拼带下端交流信号的阻抗应为多大来计算,而是按照输出功率需要消耗多少能量进行计算。在中点浮动电源电压随着输出电流进行波动而导致输出信号截波时,就会产生严重削波失真。根据电容储存的能量与电压平方成正比关系,中点浮动电源的输出电容,容量应是总电源上储能电容量的4倍。

C9和R10是交流负反馈网路,与R2、R1共同构成电压并联负反愧。R2与R1构成的直流负反愧可使总的电压放大倍率约等于R2除以1.2k(等于R1与BG1的发射结动态电阻并联),按照图①设计参数约为100倍,加入C9和R10的交流负反馈网路后,总的电压放大倍率约等于R2与R10的并联电阻除以1.2k,约为18倍。实践证明,采用这种方式工作的电压并联负反愧表现效果很不良好。

二、对功率放大器基本电路的改进

在图①所示的互补对称式OTL功率放大器基本电路中,信号输入激励级的内阻只有

1k,需要做阻抗变换才能与大部份中、高阻信号源匹配。将信号输入激励级直接改成复合管是最简单的方式,复合管的接法有多种具体电路,最佳方案是采用图②所示的接法。新增加的前置级实际上相当于简单的电压控制电流型运算放大器,BG0的基极与发射极相当于运算放大器的正输入端和负输入端,正输入端的动态电阻已经提高到10K以上。同时,从功率放大器输出端接到负输入端发射极负反馈电阻R10和取样电阻R11之比决定着总的电压放大倍率。

电路调试要点也是先将R5调节成短路0电阻状况使BG2~BG5处于截止状态,用两只1K/2W电阻分别从总电源两端接到输出端获得中点电压。用一只200K电位器代替R1或R2接在电路板上,用导线将C1输入电容信号输入端与地短路。接通电源,测量BG1的集电极到发射极的电压降Uce,调节200K电位器使Uce等于E/2-0.6;在总电源电压为32V时,BG1的静态Uce应等于15.4V0.1V。然后测量200K电位器实际所处的电阻值,换成同阻值固定电阻替换电位器,再测量BG1静态Uce应该在15.4V0.2V之内。确定好BG1的静态Uce后,再从小到大调节R5使BG4和BG5的静态工作电流为15mA。为保险起见,可将R8与R9换接成100Ω/2W电阻,先测量R8与R9上的静态电压降应为1.5V。断开电源,测量R5可调电阻实际所处的电阻值,将R5换成相同阻值的固定电阻,拆掉先前从输出端分别连接到电源两端的1k/2W分压电阻。再接通电源,测量R8与R9上的静态电压降应保持在1.2V~1.8V之间。测量输出中点电平也应为16V0.5V之间。把C1输入电容信号输入端与地断开悬空,测量R8与R9的电压降,用起子碰到C1输入端时R8与R9上的电压降明显变大。然后把R8与R9换成0.3Ω电阻,接上喇叭试听。接通电源时因C0充电,输出端中点电压需要从零缓慢上升,因而只产生轻微冲击声。2秒

钟后,用手碰C1输入端时喇叭将发出“呜”的交流声。将C1输入端与地(电源负端)短路,喇叭应不发出声音,实际会发出轻微背景白噪声或很小声的交流哼声。图②所示的互补对称式OTL功率放大器改进电路,有一个明显的缺点是信号输入端直流电平比输出端中点电压要低2V~3V,在大众还没有运放IC使用和三极管元件价格高的20世纪80年代初,它已经是很良好的可使用单电源的功率放大器实用电路。20世纪80年代中期,运放IC开始推出,人们开始采用运放IC来担任前置极和激励极。典型电路如图③所示,因运放IC不需调整静态工作点,只要调节R5使BG2~BG5的静态工作电流10mA~20mA即可。注意,虽然运放IC不需调整静态工作点,但在BG2~BG5处于截止状态时,由R8、R9和BG3、BG5发射结正向导通将运放IC负输入端置为高电平,运放IC输出低电平,于是通过BG3发射结把运放IC负输入端置为低电平,运放IC输出端翻转成高电平,结果处于输出不定的低频率振荡状态,不能提供稳定的参考中点电平。在这种状况下调整BG2~BG5的静态工作电流,运放IC输出端为高电平时调节R5无效;而运放IC输出端为0电平时BG5不能导通,调节R5只能使BG2、BG3、BG4进入工作区,BG2实际只起到二极管的作用,经BG4和BG2的电流直全部灌入运放IC输出端,结果使BG2和运放IC因过流而损坏!(我曾经把当时手头所拥有的几只国产运放IC和十几只中功率三级管全部损坏,也未能将静态工作点调整出来。)必须先用导线将运放IC的负输入端与输出端连通,暂不接上负反馈电阻R6,让运放IC以跟随器方式输出稳定的参考中点电平,在此状态下调节R5使BG2~BG5的静态工作电流为15mA,将R5换成相同阻值的固定电阻后确认BG2~BG5的静态工作电流在10mA~20mA之间,再将运放IC的负输入端与输出端端开,把反馈电阻R6接入电路中。

使用运放IC担任前置极和激励极后,最好将BG2~BG5的静态工作电流偏置方式改成由三极管与分压电阻构成的稳压器,这样可以在电源电压发生较大变化下保持几乎相同的静态工作电流。图④即是经过改进后的电路,BG1发射结门坎电压与BG2、BG3、BG4的门坎电压一同随温度变化,本身可起到温度补偿作用。为了减少运放IC输出端的静态工作电流,在运放IC输出端赠加了到地端的分流电阻R10。有了该分流电阻后,调整BG2~BG5的静态工作电流时可以先不接入运放IC,直接由其中的R7、R8和R10分压出近似的中点参考电平。先从0到大调节R5使BG2~BG5的静态工作电流在10mA~20mA之间,再接入运放IC,电路即能正常工作。另外,在运放IC输出端串联一只1k限流电阻R15,可保证运放IC输出端处于0电平时BG5也不会进入截止状态。

使用运放IC担任前置极和激励极,最大的优点是输出端直流电平与信号输入端直流电平严格一致,相差不大于0.05V。这样就可以制作出由两个OTL功率放大器构成的反向输出的BTL功率放大器,而在输出端直流电平与信号输入端直流电平相差悬殊情况下,两个OTL功率放大器的正、反相输出端直流电平往往会相差超过0.5V,明显影响喇叭的工作平衡位置。BTL功率放大器的正、反相输出端直流电平直流电平相差必须小于0.1V,喇叭的工作平衡位置才不会发生明显偏离自由平衡位置。喇叭的工作平衡位置明显偏离自由平衡位置时,正反方向的机械振动幅度不对称,发出的声波将产生畸变不自然。另外,输出端直流电平与信号输入端直流电平严格一致,才使得使用正、负双电源供电的OCL功率放大器成为现实。否则,因输出端直流电平与电源中点电平相差较大,将导致喇叭不能良好的正常工作。

由于大部分运放IC的工作电压都不高,性能良好的高电压运放IC品种少、价格高,人们也可以采用与运放IC前置级相同的差动放大电路来达到同样目的。图⑤即是采用差动放大方式做前置极的典型电路,它比图①所示的互补对称式OTL功率放大器基本电路多用2只要求特性一致的三极管,比图②所示的改进型互补对称式OTL功率放大器实用电路多用1只三极管。说倒底,并不是人们不知道怎么设计功率放大器,而是受到器件选择上的限制,在不同历史时期只能使用相应的设计电路。在20世纪80年代后期,人们才开始比较容易找到特性一致的三极管进行配对使用。因差动放大极的静态电流可由电路设计参数准确给定,不用调节差动放大管的静态电流。在图⑤电路使用32V电源的情况下,前置差动放大管的静态电流为0.51mA~0.52mA,只要先调节R12使BG1的集电极到地端的电压降为15.4V,再调节R5使BG2~BG5的静态工作电流在10mA~20mA之间即可。

在调整BG1的静态电流时,同样先要将R5调节成短路0电阻状况使BG2~BG5处于截止状态,暂不接入负反馈电阻R10,用导线将BG6、BG0的基极短路。接通电源,先调节R12使BG1集电极到地端的电压降为15.4V0.2V,再调节R5使BG2~BG5的静态工作电流为15mA。为保险起见,先将R8与R9换接成100Ω/2W电阻,测量R8与R9上的静态电压降应为1.5V。断开电源,测量R5与R12可调电阻实际所处的电阻值,将它们换成相同阻值的固定电阻。接通电源,测量R8与R9上的静态电压降应保持在1.2V~1.8V之间。测量输出中点电平应在16V0.3V之间。断开电源,将BG6、BG0的基极间连接导线取掉,把负反馈电阻R10接入电路。再接通电源,测量R8与R9上的静态电压降应保持在1.2V~1.8V之间。测量输出中点电平应在16V0.2V之间,差分管电流放大倍率越大,输出端直流电平与信号输入端直流电平相差越小。用起子碰C1输入端时

R8与R9上的电压降明显变大。然后把R8与R9换成0.3Ω电阻,接上喇叭试听。接通电源时输出端中点电压需要从零缓慢上升,因而只产生轻微冲击声。2秒钟后,用手碰C1输入端喇叭将发出“呜”的交流声。将C1输入端与地(电源负端)短路,喇叭应不发出声音,实际会发出轻微背景白噪声或很小声的交流哼声。

三、对功率放大器实用电路的完善

采用自举电路设计的功率放大器虽然电路相对较为简单,但却存在下限工作频率截止点。而引入自举电路是为了避免对上半波进行放大时没有足够电流提供给互补管使用,在不缺三极管使用的情况下,可以采用恒流源来保证对上半波进行放大时也有足够的电流提供给互补管使用。与此同时,将差动放大器也设计成由恒流源提供工作电流,可以大大提高对共态噪声的抑制比和放宽对电源电压的准确要求。图⑥是使用恒流源的功率放大器典型电路,其中:BG3与BG4构成标准恒流源,前者给前置差动放大极提供1mA恒定总电流,2只差分管BG1、BG2各得到0.5mA的静态工作电流;后者提供2mA恒定电流,与激励极BG5的静态工作电流2mA相等,从而使放大器输出端Q的静态中点电压完全由阻值相同的R13与R14分压确定出来,不会过大偏离E/2。串联在下方R14上的D1是为了补偿上方复合管的门坎压降比下方单一的互补管门坎压降多一个PN结压降,确保由阻值相同的R13与R14分压确定出来的中点电压更准确。激励极BG5的静态工作电流已经由R4上的1V压降和R12阻值200Ω确定为2mA,也不用调节。所以,在调节BG7~BG10的静态工作电流时先不接入BG4和BG5,直接在R13与R14分压出中点参考电压并提供有0.4mA~1.1mA的偏置电流给BG6工作状况下,由最小零电阻起始调节R10使BG7~BG10的静态工作电流为15 mA即可。然后把R10换成固定电阻,将BG4和BG5接入电路板,放大器即刻正常工作。虽然元件参数存在离散性,可能使BG5激励极的实际静态工作电流与BG4恒流源电流有少量相差,差动放大极也会根据输出端Q的静态电压偏离中点状况自动改变BG1的实际静态工作电流,使BG5的实际静态工作电流与BG4恒流源电流完全相等。当然,对BG5实际静态工作电流进行自动调节后,差动放大极的静态工作电流不允许其中任何一个明显减少太多。按照图⑥中的元件参数,只要变化0.1mA就可以让BG5的静态工作电流变化1mA,足以实现对BG5的静态工作电流调整。

然而,由于恒流源限制了激励极处于截止状态时所能提供的最大电流,提高电源电压后并不能相应的提高输出幅值。虽然相应增加恒流源电流可以提高输出幅值,但却使激励极静态工作电流也相应增大,稳定性变差。较好的办法是引入镜像电路,采用上下对称的差动电流放大方式驱动后面的互补对称功率放大管工作。图⑦即是采用上下对称差动电流放大方式作激励极的功率放大器实用电路,因输出功率较大,为避免过载损坏器件,电路中加进了限制最大输出电流的保护功能。其中,BG4和BG5构成的镜像电路,可使BG5的工作电流Ic5与BG4的工作电流Ic4保持完全相等,进而对驱动BG6。实现由BG6、BG7构成上下对称的差动电流放大方式。这样,即可保证在上半波信号需要激励极提供更大驱动电流时,BG6也同步能输出更大的驱动电流给后极功率放大管。要达到同样目的,人们也可以采取再并联一对互补对称的前置差动放大器,由它实现对BG6的驱动。但由于镜像电路对元件的要求没有前置差动放大器高,采用两对前置差动放大器并不能对整个电路提高任何性能,大可不必使用那种多花代价的笨办法。该电路的调整方式与图⑥所示的使用恒流源的功率放大器电路完全相同。

从工作原理上考虑,采用上下对称差动电流放大方式作激励极的电路已无缺陷。但由于大功率三极管的特性并不理想,在输出电流达到1A以上时,电流放大倍率只有10~25,将使得驱动大功率三极管工作的互补管必须提供超过200mA以上电流给后极。互补管本身的功耗经常超过2W,发热严重,互补管也需要另外装散热器。在电子元件厂家已经研制生产出大功率达林顿管的情况下,改用内部已做成复合管的达林顿管作最后级电流放大管,可以大大减轻对互补管的输出驱动电流要求。如SGS公司生产的TIP系列大功率达林顿管,在输出电流达到2A以上时,电流放大倍率也能达到500以上,从而只需要互补管提供

20mA以下驱动电流给后极工作,互补管本身的功耗降低到0.2W以下。需要修改的设计参数只是根据达林顿管的门坎电压等于普通三极管门坎电压的2倍,把提供静态工作电流的偏置分流电阻R18、R19增加一倍阻值,以便保持互补管的静态工作电流不改变。同时互补管BG9、BG10基级间的电压降比先前增加一只普通三极管的门坎电压,它对电路静态工作电流的调整方式毫无影响。

由于达林顿管不是专为音频功率放大器研制的器件,工作频率上限并不很高。普通大功率三极管的频率上限只达到1MHz,专为音频功率放大器研制的大功率三极管也只能达到10MHz,最好的不超过100MHz。虽然音频范围只有10Hz~20kHz,可是三极管的电流放大倍率与工作频率相关,处于工作频率上限时,电流放大倍率会下降到1倍。这使得工作频率上限低的三极管对20kHz高音的放大能力比2kHz中音的放大能力要低,也就导致开环状态下高音与中音的电流放大倍率已经不保持相同。而闭环负反馈对整个音频保持相同的取样倍率,并不改变混合信号里高音电流放大倍率比中音电流放大倍率低的状况,从而使混合信号里的高音实际比中音的放大倍率要低。所以,使用工作频率上限高的大功率三极管,可使混合信号里高音电流放大倍率比中音电流放大倍率下降得要少。如果使用频率上限只达到1MHz的大功率三极管制作音频功率放大器,将感到8kHz以上的高音成分严重不足。故此,国外的电子元件制造厂已经在20世纪90年代研制出性能超群的音频功率放大器专用大功率三极管。日本三肯公司制造的三肯管是最早出名的音频功率放大器专用大功率三极管,但它们都不是达林顿管,需要性能同样超群的中功率来做驱动前极,而且要给驱动前极中功率安装散热器。

到20世纪80年代后期,人们研制出性能更高的大功率场效应管。任何大功率场效应管的工作频率上限也能达到100MHz,但因起初缺少高工作电压的大功率场效应管,生产厂家制作输出功率超过40W的功率放大器还是以选用大功率三极管。实际上,使用大功率场效应管制作功率放大器比使用大功率三极管制作功率放大器更方便。但需要特别注意一点,虽然效应管是电压控制型器件,但大功率场效应管的输入栅极与源极之间存在较大的结电容,可达到800P左右,因此在工作频率较高的状况下同样要提供5mA~10mA充放电驱动电流。窜联在栅极前的电阻会影响对输入结电容的充放电,阻值尽量取小。图⑨即是采用大功率场效应管的实用功率放大器电路,由于某些大功率场效应管栅极没有内置限压保护

稳压管,特地在电路中加入了限压保护稳压管。使用没有内置限压保护稳压管的大功率场效应管,焊接时必须先用导线将栅极与源极短路,焊接好大功率场效应管和限压保护稳压管后才能将栅极与源极间的短路导线去除。采用大功率场效应管设计的功率放大器,调试方式与采用大功率三极管设计的功率放大器完全相同。

需要注意的是,大功率场效应管的门坎电压在2V~3V之间,(三星公司生产的大功率场效应管门坎电压多为2V),大功率场效应管的实际工作电压不要超过最大允许电压的一半值,最大工作电流峰值不要超过允许电流的2/3方能确保安全可靠工作。这个要求已经比对三机管的要求宽很多,三机管的实际工作电压也不能超过最大允许电压的一半值,而三机管的最大工作电流峰值不能超过最大允许电流的1/3方能正常工作。大功率场效应管还有一个极大的优点是温度稳定性能十分良好,从25℃~125℃,工作特性几乎完全相同。所以使用大功率场效应管时,散热器上的温度也可以相应允许高到90℃,而三极管还存在二此击穿的可能,实际允许工作的温度应限制在70℃以下。

四、使用多组电源供电高效功率放大器

没有把输出端中点电压严格控制在要求理想数值状况下,功率放大器只能使用单电源供电,中点电源采用自动跟随的浮动方式实现。只要给足够大容量的储能电容,实际输出能力与使用双电源的OCL输出方式并无区别。之所以要采用OCL输出方式,除了面可以进一步设计出性能更好功率放大器外,更大的实际意义是使用正负双电源供电的OCL输出方式可以进一步降低电路背景噪声。在功率放大器前置信号输入级采用差动放大电路后,输出端直流电平已经能与信号输入端直流电平保持基本相等,相差小于0.2V。在这种状况下,将信号输入端直流电平偏置电阻连接到正负双电源中点电位上,就可以把单电源供电的OTL 输出方式改成使用正负双电源供电的OCL输出方式,不再使用自动跟随的浮动中点电源。

其实,使用运放IC做前置信号输入级能使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于0.02V,正是因为运放IC内部也采用差动放大电路做输入级,而且一般都采用复合管方式的差动放大电路做输入级,从而使流进或流出IC正、负输入端的静态电流低于0.1μA,在负反馈电阻上的静态直流压降已低于0.01V。若能找到特性非常一直的配对管,当然也可以采用复合管方式的差动放大电路做输入级,使输出端的直流电平与信号输入端直流电平保持几乎相等,相差小于0.02V,特性极其一致的配对管需要在一片半导体材料上做成,这正是运放IC的制作工艺优势。简言之,仅仅把OTL输出方式改成OCL 输出方式,在电路设计上没有任何提高。实际上,以甲乙类工作方式制作的互补对称式功率放大器存在一个缺陷,就是最后级大功率电流放大管的静态处于接近截止区位置,无论使用大功率三级管,还是使用大功率场效应管,在截止区附近的动态电阻都明显比线性区的动态电阻要大得很多,实际可以相差数倍到10多倍。静态电流越小,动态电阻越大。当放大器输出电压归零时,喇叭振动盆还会继续作阻尼振动到停止。音圈在磁场中运动产生的电流将阻碍喇叭振动盆自由振动,如果与音圈串联的放大器内阻比较大,就会使音圈在磁场中运动产生的电流减少,降低电阻尼作用,振动盆的阻尼振动就不容易停止下来,发出的声音出现“拖泥带水”的发散收不住状况。与此同时,中低音单元喇叭的音圈在磁场中移动所产生的感应电流不能被功率放大器尽可能短路掉,会成为妨碍中高音单元喇叭工作的干扰驱动信号。甲类放大器之所以有较好的重放音质,奥妙就在于它具有很低的静态输出阻抗。但由于甲类放大器功耗大、发热严重,不宜在大工作电压下采用。为此,可以在使用高低两组正负电源供电的方式下对最后级大功率电流放大管的工作状态实施动态偏置,使放大器输出电压幅度小于4V时大功率电流放大管工作于甲类状况,输出幅度大于4V时变换为乙类状况。由于轮流处于工作中的大功率电流放大管始终是在大电流状态下工作,实际效果与纯甲类工作方式相同。

图⑩即是采用大功率达林顿管设计的高效率动态偏置甲类功率放大器典型电路,为了较好的实现动态偏置,T1、T2上下两只大功率达林顿管采用互补管,以便增加偏置电路上的门坎电压。要求两只互补管特性参数完全相同,实际电流放大倍率相差不要超过20%。因动态偏置是在每一个半波输出信号经过4V参考值进行变换,要求动态偏置变换速度必须比输出信号上限20KHz频率至少高100倍,光电隔离变换器件的响应频率至少应达到1MHz,所使用的二极管也必须采用高速管。当输出信号电压处于4V以内时,光电输出端三极管处于截止状态,两只互补大功率电流放大管被偏置在1A静态电流下工作,而当输出信号电压超过4V时,光电输出端三极管处于导通状态,两只互补大功率电流放大管被偏置在10mA 静态电流下工作。但由于输出信号电压超过4V时,大功率电流放大管的工作电流必须超过0.5A,4Ω负载时必须超过1A,实际也等同于甲类工作方式。与此同时,在输出信号电压处于6V以内时,BG11、BG12处于截止状态,T3、T4达林顿开关管也截止,T1、T2

两只互补大功率电流放大管是由8V低压电源供电。而在输出信号电压超过6V时,BG11、BG12处于导通状态,T3、T4达林顿开关管也导通,T1、T2两只互补大功率电流放大管改由30V高压电源供电,从而使大功率电流放大管的功耗降低。

在N道沟和P道沟高压大功率场效应管都很容易购买到的情况下,可改用大功率场效应管来制作高效率动态偏置甲类功率放大器。同样,T1、T2上下两只大功率场效应管要采用互补管,要求两只互补管特性参数相同,实际的电流放大倍率相差不要超过20%。由于使用动态偏置工作方式,偏置电路的参数调整稍微复杂一些。具体方式与前面介绍的方法相同,先把T1、T2由R11、R12串联确定出的1A静态电流调节出来,再适当分配二者的实际阻值,使R12处于短路时T1、T2的静态电流为2mA~10mA。即不要完全截止,也没必要调大。

鉴于动态偏置甲类功率放大器的最主要目的是要降低放大器本身的输出内阻,在上下大功率电流放大管中不宜串联限流保护电阻,对放大器最大输出电流的限制特改设计在电源部分电路之中。这样,与动态偏置甲类功率放大器匹配使用的高低两组正负电源也同时都设计成稳压电源。参见图12,使用大功率场效应管制作供功率放大器使用的稳压电源非常简单,功率放大器对电源电压的准确值要求不高,使用大功率场效应管制作的简单稳压电源完全能达到要求,同时还可以获得很好的电子滤波效果,可大大降低从电源带进来的杂波噪声。

必须明白,每一只大功率器件都受到最大功耗的使用限制,尤其在温度明显升高的状况下,最大允许功耗将大大降低。把功率放大器的电源设计成稳压电源,除了能使功率放大器电路处于稳定状况下工作外,由稳压电源调整管分担掉一部分功耗,可减轻由功率放大管承担的无用功耗,使功率放大器发挥出最大工作能力。在缺少大功率器件的时代,只能使用简单的整流电源,结果使放大器实际能够输出的功率比理论计算值小得很多,原因就是功率放大管的最大允许功耗已经被无用功耗占去太多。

五、结束语

如果仅从对功率放大器性能的完美追求上去考虑,我们还可以把许多只功率放大管并联起来工作获得更高的性能。然而这乃是在用高投入成本来获得实际效果增加不多的笨蛋干法。事实上,当人们把功率放大器的输出功率制做得很巨大时,它也成为中高音单元喇叭的致命杀手!而且使用级后分频方式,在使用到高中低三个单元喇叭的情况下就开始明显表现不佳,级后分频方式仅能在二分频情况下表现得比较良好。只有改为采用级前分频方式来设计制作音频功率放大器,我们才能从根本上克服级后分频的缺点,并根据不同工作频带范围要求选用适合的器件,以最少的制造成本获得最高的效果。

模电实验报告互补对称功率放大器

实验四互补对称功率放大器 一、实验电路 图20-1互补对称功率放大器 二、预习要求 1、分析图20-1电路中各三极管工作状态及交越失真情况。 电路中采用NPN、PNP两支晶体管,其特性一致。利用NPN、PNP管轮流导通,交替工作,在负载RL上得到一个完整的被放大的交流信号。 静态时,电源通过V2向C充电,调整参数使得三极管发射极电位: 动态时,Ui>0,V2导通V3截止,i L=i c2,R L上得到上正下负的电压。Ui<0,V2截止V3导通,C两端的电压为V3、R L提供电源, i L=i c2,R L上得到上负下正的电压。 输入信号很小时,达不到三极管的开启电压,三极管不导电。因此在正、负半周交替过零处会出现一些非线性失真,这个失真称为交越失真。 电路中二极管D1、D2即可消除交越失真。 2、电路中若不加输入信号,V2、V3管的功耗是多少。 静态时,Vin = 0V , V2、V3均不工作 ,此时其功耗为0。 3、电阻R 4、R5的作用是什么? 电阻R4、R5与三极管V1构成放大电路,为后级电路提供电压。 4、根据实验内容自拟实验步骤及记录表格。 三、实验仪器及材料 1、信号发生器 2、示波器 四、实验内容 1、调整直流工作点,使M点电压为0.5V CC。 2、测量最大不失真输出功率与效率。 3、改变电源电压 (例如由+12V变为+6V),测量并比较输出功率和效率。 4、比较放大器在带5K1和8Ω负载 (扬声器)时的功耗和效率。

电源电压加12V,负载接入喇叭: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 219mV 输出电压U o(有效)= 1.2V 电流I=81.2mA 输出功率P o = U o2/ R L= 0.18W P V=VCC*I/2=0.487W 转换效率η= P o/ P v= 36.96% 电源电压加6V,负载接入喇叭: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 104mV 输出电压U o(有效)= 488mV 电流I=34.2mA 输出功率P o = U o2/ R L= 0.0298W P v = V cc·I/2=0.2052W 转换效率η= P o/ P v= 14.5% 电源电压加12V,负载接入5.1kΩ电阻: 首先调整直流工作点,使M点电压为0.5V CC。然后在输入端接1KHZ信号时,输出端接用示波器观察输出波形,逐渐增大输入电压幅度,直至出现失真为止、记录此时输入电压、输出电压幅值、并记录波形。 实验结果:输入电压U i(有效)= 179mV 输出电压U o(有效)= 3.28V 电流I=7.95mA 输出功率P o = U o2/ R L= 0.00211W P v = V cc·I/2=0.0477W

分立元件OTL功放资料剖析

典型OTL音频功率放大器组装与维修 场景描述 OTL电路的主要特点有是采用单电源供电方式, 输出端直流电位为电源电压的一半;输出端与负载之间采用大容量电容耦合,扬声器一端接地,具有恒压输出特性。 本任务流程如图3-1-1所示。 图3-1-1任务流程图 一、实训工具及器材准备 完成本次实训任务所需工具及器材见表3-1-1。 表3-1-1拆装与检修动圈式扬声器实训工具及器材准备

二、简易OTL音频功率放大器组装 (一)电路原理的熟悉 图3-1-2简易OTL功放电路原理图 1、电路特点 本功放电路结构简单,元件易购,成本低廉,原理典型,非常适合初学者组装学习。电路包括: A.电压放大器:将输入的微小音乐信号加以放大,通常采用共射级放大,图中以VT1、VT2为核心组成的放大电路完成电压放大功能。 B.功率放大:功率放大级电路是用来提高电路的工作效率,通常共射级放大的输出电流很小,所以通过功放部分来推动喇叭。图中以VT3、VT4为核心组成的电路完成功率放大功能。 C.偏压装置:偏压装置为功率三极管提供正向偏压,使功率放大级电路工作于AB类放大状态,防止产生交越失真。图中VD5和R8为功放提供偏压,其中VD5具有负温特性,用以补偿功放管因温度升高引起电流增大。改变R8的阻值可以改变功放管的静态电流。 D.负反馈电路:利用负反馈的特性,控制整个放大电路的增益,提高电路稳定性。其中R4为放大器提供交直流负反馈,R5、C4对反馈的交流信号起分流作用,改变R4与R5的比值可以改变放大器的增益。 2、电路原理和各元件的作用

音量控制:由RP电位器调节,根据串联电路的分压原理知,当旋转电位器时获取的输入电压将发生改变,从而改变了音量的大小。 第一级共射极放大器:由R1、R2、R3、R4、R5、C3、C4、VT1组成。R1、R2为VT1提供偏置电压,改变二者的比值可以改变功放输出点的电压(正常要求为电源电压的一半)。C3为输入隔直耦合电容。R3是VT1的负载电阻,VT1和VT2是直流耦合,通过C3输入的信号经VT1放大后,直接送到VT2进行放大。直流耦合就等于直接耦合,所以,信号传输没有损耗,电路工作效率很高。 C4、R4、R5组成负反馈电路,对于直流而言,C4表现出无穷大的阻抗,这可以使直流工作点非常稳定。对交流来说,C4相当于短路,R4和R5的比值决定了放大倍数。R5为零欧姆时,增益最大,灵敏度极高。我们一般可以根据实际情况在10-100欧姆中取值。 第二级共射极放大:以VT2为核心构成的放大电路。VT2是推动级放大管。输入信号经过VT1、VT2两级放大后,具备了驱动VT3、VT4(输出级)的能力。本功放电路只有三级,主要由第一二级(VT1、VT2)决定最大放大倍数,第三级(VT3、VT4)决定最大电流的驱动能力,想要电路放大倍数大,VT1、VT2要选放大倍数大的三极管,想要带负载能力强,VT3、VT4应该用大功率大电流的三极管,当然,放大倍数也不能太小。 C6是中和电容,起高频负反馈作用,该电容主要是为了减小高频的增益,当高频过强时,听起来会感觉声音尖、剌耳,当高频增益太强时,甚至出现高频寄生振荡,严重影响功放电路效率和音质。该电容一般取值在47-4700PF之间,要求不严时也可以取消。 VT3、VT4这对末级互补输出对管在工作时会发出较大的热量。改变R8可以改变VT3、VT4的工作电流,随着温度的升高,VT3、VT4的电流还会自动变大,电流变大就会更加发热,更加发热就会电流更加变大,这是一个恶性循环,所以,要求严格时,R8应该使用负温度系数的热敏电阻,并且紧挨着VT3、VT4感受温度来补偿VT3、VT4的电流变化。 R8和VD5、R6和R7、VT3的CE极三部分共同组成VT3、VT4的偏置电路,保证VT3、VT4在无信号时输出中点电压。R8和VD5千万不能开路,否则VT3、VT4会有很大的基极电流,导致VT3、VT4的集电极电流剧增,立即发热烧坏。但是,R8和VD5的分压也不能太低,否则,在小信号时会听出明显的截止失真(和交越失真相同)。这种失真只在小信号时才有明显的反应。在高档功放电路中,VD5和R8会用其它元件代替,同时还会引入温度补偿。 R6、R7主要是给VT3、VT4提供基极偏置电流。当信号正半周时,VT3基极电压会上升,R6、R7两端的电压会变小,将不能给VT3提供足够大的基极电流。由于C5自举电容的出现,信号正半周时会将C5的正极电压也“举”高,这就可以通过

数字功放原理

数字功放原理 数字功放也称D类功放,与模拟功放的主要差别在于功放管的工作状态。传统模拟放大器有甲类、乙类和甲乙类、丙类等。一般的小信号放大都是甲类功放,即A类,放大器件需要偏置,放大输出的幅度不能超出偏置范围,所以,能量转换效率很低,理论效率最高才25% 。乙类放大,也称B类放大不需要偏置,靠信号本身来导通放大管,理想效率高达78.5%。但因为这样的放大,小信号时失真严重,实际电路都要略加一点偏置,形成甲乙类功放,这么一来效率也就随之下降,虽然高频发射电路中还有一种丙类,即C类放大,效率可以更高,但电路复杂、音质差,音频放大中一般都不用,这几种模拟放大电路的共同的特点是晶体管都有工作在线性放大区域中,它按照输入音频信号大小控制输出的大小,就像串在电源与输出间的一只可变电阻,控制输出,但同时自身也在消耗电能。 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗;而截止时,内阻无穷大,电流又为零,也不消耗。所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高。 图1是数字D类功放的工作原理框图。D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中。 图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低。双向信号可用其它方式调制,如占空比50%,即脉冲

宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负。因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制。 音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频。二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码。获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码。输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定。功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便。由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠。 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确。

实验6:互补对称功率放大器

实验六互补对称功率放大器 201408080127 潘松 201408080130 张崇琪 一、实验目的 1、理解互补对称功率放大器的工作原理。 2、加深理解电路静态工作点的调整方法。 3、学会互补对称功率放大电路调试及主要性能指标的测试方法。 二、实验仪器 1、双踪示波器 2、万用表 3、毫伏表 4、直流毫安表 5、信号发生器 三、实验原理

图6-1 互补对称功率放大器实验电路 图6-1所示为互补对称低频功率放大器。其中由晶体三极管T1组成推动级(也称前置放大级),T2、T3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补对称功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极电流IC1由电位器RW1进行调节。二极管D1、D2,给T2、T3提供偏压,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。由于RW1的一端接T1、T2的输出端,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号U i 时,经T1放大、倒相后同时作用于T2、T3的基极,U i 的负半周使T2管导通(T3管截止),有电流通过负载R L (可用嗽叭作为负载),在U i 的正半周,T3导通(T2截止),则已充好电的电容器C 3起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C2和R 5构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。由于信号源输出阻抗不同,输入信号源受功率放大电路的输入阻抗影响而可能失真。为了得到尽可能大的输出功率,晶体管一般工作在接近临界参数的状态,如I CM ,U (BR )C EO 和P CM ,这样工作时晶体管极易发热,有条件的话晶体管有时还要采用散热措施,由于三极管参数易受温度影响,在温度变化的情况下三极管的静态工作点也跟随着变化,这样定量分析电路时所测数据存在一定的误差,我们用动态调节方法来调节静态工作点,受三极管对温度的敏感性影响所测电路电流是个变化量,我们尽量在变化缓慢时读数作为定量分析的数据来减小误差。 ※OTL 电路的主要性能指标: 1、 最大不失真输出功率P om 在实验中可通过测量RL 两端的电压有效值,来求得实际的 L om R U P 2 = (7-1) 2、效率η %100?= E om P P η

!用分立元件设计放大器电路教程

用分立元件设计放大器教程 一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图①所示。 其中: C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3×C2>1/10、(R3+R4)×Ic1=E/2-1.2,因R4是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA 进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。

互补对称式功率放大电路

中山大学模拟电路实验报告 SUN YAT-SEN UNIVERSITY 实验题目:实验6 互补对称式功率放大电路 一、实验目的 在这个实验中,我们将讨论互补对称式功率放大电路的工作原理和性能测试方法。首先,我们对功放电路进行静态调整;其次,对调整好的电路进行电路功率和效率的测量。然后,我们将探讨自举电路的作用和观察“交越失真”现象。 通过这次实验,你能够 1)熟悉互补对称式功率放大器的性能测试方法。 2)了解自举电路的原理及其对改善互补对称式功率放大器的性能所起的作用。 二、实验仪器 (1)二踪示波器 1台 (2)函数发生器 1台 (3)交流毫伏表 1台 (4)直流稳压电源 1台 三、实验原理图 V CC v o R L v s 实验电路图3.1互补对称式功率放大电路 注意: 1)实验前应该先调好限流保护,电流控制在200mA。 2)电路调整时,应先调好电压、再调电流。

四、实验内容 1. 静态测试 合上开关K 、K1、K2,用万用表先测量直流稳压电源使输出V V CC 6=,调节1W R 使B 点的直流电位约为3V 。断开K 、K2,调节2W R 使23C I 约为mA 52- , (23C I 的测量可用万用表电流档串接测量,但要注意万用表笔的正负极性)测完后取走万用表合上K 。 检查电路中各个管是否工作正常。 注意:在接入稳压电源之前,2W R 应先调到最小值,电源接入后,在调节2W R 的过程中,应不时用手触摸2Q 、3Q 两管,若发现两管发热严重,则应马上断开电源,检查原因(如 2W R 开路,电路自激,或输出管性能不好等),以防烧毁管子。如无异常现象,可开始调试, 如无特殊情况,不得再随意旋动2W R 的位置。 调试数据如下表4.1.1 V cc V B I 23 6.0V 2.99V 3.5V 2. 测量放大器的质量指标 (1)最大不失真电压、最大不失真功率: 把示波器和交流毫伏表的输入端同时接入放大器的输出端(此时可同时测量输出幅度的大小和观察输出波形),然后将音频信号发生器的输出调节旋钮放到最小,并将它的输出端接入放大器的输入端,而音频信号发生器的频率放在Z KH 1上,以后逐渐增大输入信号幅度并同时观察输出波形,输入增大、输出亦增大,当输出波形增大到刚好出现失真时,就停止增大输入信号,以后减小输入信号,使输出信号刚好不失真。记下这时放大器的输出电压即为最大不失真电压,并计算最大不失真功率。 (2)电源供给的实际功率和效率: 在最大不失真输出时,用万用电表测量此时电源供给的直流平均电流C I (用万用表电流档串入CC V 的总线处测量,注意是在有输入信号下测量)记录C I 计算电源供给的功率和效率。 有自举情况下的测量数据 4.2.1

互补对称功率放大电路原理

互补对称功率放大电路原理

————————————————————————————————作者:————————————————————————————————日期:

3.4 互补对称功率放大电路 教学要求 掌握甲类、乙类和甲乙类三类功率放大电路的工作原理; 理解交越失真形成机理; 了解复合管结构及其特性。 一、概述 对功率放大电路的基本要求 1.不失真情况下输出尽可能大的功率:I与U都大,管子工作在尽限状态。 2.提高效率: = P omax / P DC 要高 3.集电极最大功耗: P 0=P v -P C (管耗),另一部分消耗在管子上,功放管尽限应用,选管要 保 证安全。 二、放大电路的工作状态 放大电路按三极管在一个信号周期内导通时间的不同,可分为甲类、乙类以及甲乙类放大。在整个输 入信号周期内,管子都有电流流通的,称为甲类放大,如下表所示,此时三极管的静态工作点电流I CQ比较大;在一个周期内,管子只有半周期有电流流通的,称乙类放大;若一周期内有半个多周期有电流流通,则称为甲乙类放大。 状态一个信号周期 内导通时间 工作特点图示 甲类整个周期内导 通 失真小,静态电流大,管耗大,效率 低。 乙类半个周期内导 通 失真大,静态电流为零,管耗小,效 率高。 甲乙类半个多周期内 导通 失真大,静态电流小,管耗小,效 率较高。 三、乙类双电源互补对称功率放大电路(OCL) (OCL — Output Capacitorless)

(一)电路组成及工作原理 采用正、负电源构成的乙类互补对称功率放大电路如下动画所示,V1和V2分别为NPN型管和PNP型管, 两管的基极和发射极分别连接在一起,信号从基极输入,从发射极输出,R L为负载。要求两管特性相同,且V CC=V EE。 特点:去掉C,双电源,T1与T2交替工作,正负电源交替供电,输入与输出之间双向跟随。 原理:静态即u i = 0 时,V 1 、V 2 均零偏置,两管的I BQ、I CQ均为零,u o=0,电路不消耗功率。 u i > 0时,V 1 正偏导通,V2反偏截止,i o= i E1= i C1, u O= i C1R L; u i< 0 时,V 1 反偏截止,V2正偏导通,i o= i E2= i C2, u O= i C2R L; 问题:两管交替导电时刻,输入电压小于死区电压时,三极管截止,在输入信号的一个周期内,V1、 V2轮流导通时,基极电流波形在过零点附近一个区域内出现失真,称为交越失真。且输入信号幅度越小失真越明显。 产生交越失真的原因:静态时,U B E Q =0,u i 尚小时,电流增长缓慢。 (二)功率和效率 1.输出功率:输出电流和输出电压有效值的乘积,就是功率放大电路的输出功率。 最大输出功率 2.电源功率:两个管子轮流工作半个周期,每个电源只提供半周期的电流。 最大输出功率时P DC = 2V2 CC / R L 3.效率:效率是负载获得的信号功率P o与直流电源供给功率P DC之比。实用中,放大电路很难达到最 大效率,由于饱和压降及元件损耗等因素,乙类推挽放大电路的效率仅能达到60%左右。 4.管耗 直流电源提供的功率除了负载获得的功率外便为V 1、V 2 管消耗的功率,即管耗。V 1 、V 2两管消耗的 功

分立元件功放电路OTL

OTL功放电路,耦合元件 一、功率放大器电路基本特点: 互补对称式OTL功率放大器基β本电路如图所示: C1为信号输入耦合元件,需注意极性应和实际电路中的电位状态保持一致。 R1和R2组成BG1的偏置电路,为BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100,Ic1为2mA计算,R1就不大于6k,故给定为5.1k,C1也相应给定为22uf,它对20Hz信号的阻抗为362Ω;R2根据电源采用的具体电压确定,约为R1(E/1-0.6)/0.6,按照32V电压值,即5.1×(32÷0.6-0.6) ÷0.6≈130,就取120K,确切的值通过实际调试使BG1集电结电压为15.4V来得到。 C2与R3构成自举电路,要: R3×C2>1/10,(R3+R4)×IC1=E/2-1.2 因R4是B G1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。 按照32V的电压值和IC1为2mA计算,R3和R4之和为7.2k,实际将R3给为820Ω,R4给为6.8k,IC1则为1.94mA;C2因此可取为220u。 R5和D是BG2和BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取3mA-4mA;改变R5的阻值可使BG2、BG3的基极间的电压降改变,而实现其对静态工作的调整。与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管门坎电压随温度发生的变化,使互补管静态工作点稳定。 并联在BG2和BG3基极间的C4,可使动态工作时的△UAB减小,一般取47u。 C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P —200P。 BG1起放大作用,在该电路中被称为激励级,要求:Buceo>E, Iceo≤IC1/400=5uA、β=100~200,所以应选用小功率低噪声管。

分立功放

实用低频功率放大器 一、任务 设计并制作具有弱信号放大能力的低频功率放大器。其原理示意图如下: 二、要求 1、基本要求 (1)在放大通道的正弦信号输入电压幅度为(5~700)mV ,等效负载电阻R L 为8Ω 下,放大通道应满足: ①额定输出功率P OR ≥10W ; ②带宽BW ≥(50~10000)Hz ; ③在P OR 下颌BW 内的非线性失真系数≤3%; ④在P OR 下的效率≥55%; ⑤在前置放大级输入端交流短接到地时,R L =8Ω上的交流声功率≤10mW ; (2)实际测量时输入为音频信号,要求设置有音量、高音、低音大小调节电路; (3)功放部分不能使用集成功率放大器。 2、发挥部分 放大通道性能指标的提高和实用功能的扩展,如设置有保护电路、提高效率、减小非线性失真等。 一、方案设计及验证 1、设计要求前置放大器输入交流短接到地时,R L =8Ω的电阻负载上的交流噪声功率低于10mW ,因此要选用低噪声运放。本系统选用优质低噪声运放NE5532N 。设计要求输入电压幅度为5—700mV 时,输出都能以P 0≥10W 满功率不失真输出,信号需放大几千倍;又考虑到运放的放大倍数与通频带的关系,固应采用两级放大。赠以调节可用电位器手动调节,也可以自动增益控制,但考虑到题目中的“实用”两字(例如输入信号不是正弦信号,而是大动态音乐信号),故采用手动增益调节。前置放大器采用低噪声双运放,分别以同相放大的方式,作为左右通道的信号放大。 2、功率放大器常用电路有两种,一种用输入输出变压器的推挽电路,另一种是无输入输出变压器的推挽电路。如OCL 、OTL 、BTL 等。相比之下,前者的频响和失真方面都表现较

实验报告(互补对称功率放大电路)

实验报告 实验二十互补对称功率放大电路 一、实验仪器及材料 l.信号发生器 2.示波器 二、实验电路 三、实验内容及结果分析 1、V CC=12v,V M=6V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.18 R L=+∞R L=5.1KΩR L=8Ω V1 0.93 5.29 0.25 V O(V) 3.25 3.24 1.05 12.5 12.9 67.8 V2 6.69 11.98 6.03 总电流I (ma) V3 5.28 0 5.94 A V18.06 18 5.83 2、V CC=9V,V M=4.5V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.126v R L=+∞R L=5.1KΩR L=8Ω V1 0.85 3.80 0.18 V O(V) 2.19 2.18 0.82 9.1 9.1 41.9 V2 5.16 8.99 4.51 总电流I (ma) V3 3.80 0 4.45 A V17.38 17.30 6.51 3、V CC=6V,V M=3V时测量静态工作点,然后输入频率为5KHz的正弦波,调节输入幅值使输出波形最大且不失真。(以下输入输出值均为有效值) V B(V) V C(V) V E(V) V i=0.08V R L=+∞R L=5.1KΩR L=8Ω V1 0.76 2.36 0.11 V O(V) 1.30 1.29 0.38

甲乙类互补对称功率放大电路

甲乙类互补对称功率放大电路 1 甲乙类互补对称功率放大电路 乙类放大电路的失真: 前面讨论了由两个射极输出器组成的乙类互补对称电路(图1),实际上这种电路并不能使输出波形很好地反映输入的变化,由于没有直流偏置,管子的iB必须在|vBE|大于某一个数值(即门坎电压,NPN硅管约为0.6V,PNP锗管约为0.2V)时才有显著变化。当输入信号vi低于这个数值时,T1和T2都截止,i c1和i c2基本为零,负载RL上无电流通过,出现一段死区,如图1所示。这种现象称为交越失真。 图1 交越失真的产生原因 2 甲乙类双电源互补对称电路 一、电路的结构与原理 利用图2所示的偏置电路是克服交越失真的一种方法。 图2 由图可见,T3组成前置放大级(注意,图中未画出T3的偏置电路),T1和T2组成互补输出级。静态时,在D1、D2上产生的压降为T1、T2提供了一个适当的偏压,使之处于微导通状态。由于电路对称,静态时i C1= i C2,I L= 0, v o =0。有信号时,由于电路工作在甲乙类,即使v i很小(D1和D2的交流电阻也小),基本上可线性地进行放大。 上述偏置方法的缺点是,其偏置电压不易调整,改进方法可采用V BE扩展电路。 二、VBE扩展电路

图3 利用二极管进行偏置的甲乙类互补对称电路,其偏置电压不易调整,常采用V BE扩展电路来解决,如图3所示。 在图3中,流入T4的基极电流远小于流过R1、R2的电流,则由图可求出 V CE4=V BE4(R1+R2)/R2 因此,利用T4管的V BE4基本为一固定值(硅管约为0.6~0.7V),只要适当调节R1、R2的比值,就可改变T1、T2的偏压值。这种方法,在集成电路中经常用到。 3 单电源互补对称电路 图4 一、电路结构与原理 图4是采用一个电源的互补对称原理电路,图中的T3组成前置放大级,T2和T1组成互补对称电路输出级。在输入信号vi =0时,一般只要R1、R2有适当的数值,就可使I C3、V B2和V B1达到所需大小,给T2和T1提供一个合适的偏置,从而使K点电位V K=V C=V CC/2 。 当加入信号v i时,在信号的负半周,T1导电,有电流通过负载RL,同时向C充电;在信号的正半周,T2导电,则已充电的电容C起着双电源互补对称电路中电源-V CC的作用,通过负载RL放电。只要选择时间常数RLC足够大(比信号的最长周期还大得多),就可以认为用电容C和一个电源V CC可代替原来的+V CC和-V CC两个电源的作用。 值得指出的是,采用一个电源的互补对称电路,由于每个管子的工作电压不是原来的V CC,而是V CC/2,即输出电压幅值V om最大也只能达到约V CC/2,所以前面导出的计算Po、P T、和P V的最大值公式,必须加以修正才能使用。修正的方法也很简单,只要以V CC/2代

功放设计方案

音频功率放大器设计方案 31102140 宇洋通信1103 31102391 宇超自动化1102 一、设计任务和设计要求: (1)功能:音频功率放大器用于驱动扬声器发声,将话筒接收到的电信号放 大后从扬声器传出。音频放大器有两种,一种是专用于音频放大的运算放大器,它在音频围有比较好的性能(主要是频响特性和失真特性,好的音频放大器这两个特性都非常好),一般用于音响的前置放大级;另一种是音频功放,也就是功率放大电路,用于音响的驱动级,可以驱动功率比较大的喇叭或者音响,使之发出声音;运算放大器是集成放大电路的统称,其概念围比音频放大器(特指用于前置放大的音频放大器)大,且有更大的应用围,其频率适用围远远大于音频放大器,往低到直流,高的可以达到几百M甚至G赫兹级。简单的说,音频放大器就是一种特殊的运放。 (2)主要设计指标: 1、负载阻抗:R L=8Ω 2、额定功率:P0=20W 3、带宽:BW≥20Hz~20KHz。 4、音调控制: 低音:100Hz±12dB 高音:10kHz±12dB 1KHz处增益为0dB 5、失真度:γ≤3% 6、输入灵敏度:Vi<775mV, Vi’<5mV 二、详细设计方案: 根据设计课题的要求,该音频功率放大器可由图1所示框图实现。下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线

路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,采用低噪声场效应管组成放大器是合理的选择。如果采用集成运算放大器构成前置放大器,一定要选择低噪声、低漂移的集成运算放大器。对于前置放大器的另外一要要有足够宽的频带,以保证音频信号进行不失真的放大。 图2 前置级放大器电路图 由于信号远输入的信号幅度较小。不足以推动以后的功放电路。因此要用电压放大电路对信号输入的音频信号电压进行放大,对于信号源,其负载约为47K Ω,所以选用电压串联负反馈方式的同相比例放大器,它可以使输入电阻增大,输出电阻减小,且输入输出电压同相。又因为前置放大级的增益为44dB,即158倍,取160倍,前置放大级电路采用二级,第一级与第二级采用电容耦合方式,总的电压放大倍数为Auf=160,设计中选用Auf1=1,Auf2=160。 其中第一级实际上是一个电压跟随器,它提高了带负载的能力。 电路中二极管D1作用是:当线路输入是0.775V时,D1导通,此时LF353(2)也为一个电压跟随器,信号不经过放大直接到音调控制级的输入端。当输入为

实验七:互补对称功率放大器

实验七互补对称功率放大器 一、实验目的 1、理解互补对称功率放大器的工作原理。 2、加深理解电路静态工作点的调整方法。 3、学会互补对称功率放大电路调试及主要性能指标的测试方法。 二、实验仪器 1、双踪示波器 2、万用表 3、毫伏表 4、直流毫安表 5、信号发生器 三、实验原理 图7-1 互补对称功率放大器实验电路

图7-1所示为互补对称低频功率放大器。其中由晶体三极管T1组成推动级(也称前置放大级),T2、T3是一对参数对称的NPN 和PNP 型晶体三极管,它们组成互补对称功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极电流IC1由电位器RW1进行调节。二极管D1、D2,给T2、T3提供偏压,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。由于RW1的一端接T1、T2的输出端,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。 当输入正弦交流信号U i 时,经T1放大、倒相后同时作用于T2、T3的基极,U i 的负半周使T2管导通(T3管截止),有电流通过负载R L (可用嗽叭作为负载),在U i 的正半周,T3导通(T2截止),则已充好电的电容器C 3起着电源的作用,通过负载R L 放电,这样在R L 上就得到完整的正弦波。 C2和R 5构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。由于信号源输出阻抗不同,输入信号源受功率放大电路的输入阻抗影响而可能失真。为了得到尽可能大的输出功率,晶体管一般工作在接近临界参数的状态,如I CM ,U (BR )C EO 和P CM ,这样工作时晶体管极易发热,有条件的话晶体管有时还要采用散热措施,由于三极管参数易受温度影响,在温度变化的情况下三极管的静态工作点也跟随着变化,这样定量分析电路时所测数据存在一定的误差,我们用动态调节方法来调节静态工作点,受三极管对温度的敏感性影响所测电路电流是个变化量,我们尽量在变化缓慢时读数作为定量分析的数据来减小误差。 ※OTL 电路的主要性能指标: 1、 最大不失真输出功率P om 在实验中可通过测量RL 两端的电压有效值,来求得实际的 L om R U P 2 = (7-1) 2、效率η %100?= E om P P η (7-2) PE —直流电源供给的平均功率 理想情况下ηmax =78.5%。在实验中,可测量电源供给的平均电流Idc (多测几次I 取其平均值),从而求得 E CC dc P U I =? (7-3) 负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3、频率响应 详见实验四有关部分内容 4、输入灵敏度

数字功放

数字功放 数字功放概述 ?·数字功放简介 ?·数字功放原理 ?·数字功放制作方法 ?·数字功放中音质和载波频率... 数字功放的应用 ?·DDX的数字功放解决方案 ?·基于德仪音频的高保真数字功放 数字功放简介 数字功放采用早已存在的D类放大器电路,D类放大器的电路采用场效应管H-桥式链接。电路场效应输出的脉冲波经过恢复得到原来的正弦波,驱动扬声器产生声音。 数字功放原理 数字功放的功放管工作在开关状态,理论状态晶体管导通时内阻为零,两端没有电压,当然没有功率消耗; 而截止时,内阻无穷大,电流又为零,也不消耗.所以作为控制元件的晶体管本身不消耗功率,电源的利用率就特别高. 图1是数字D类功放的工作原理框图.D类功放处理的是经脉宽调制(PWM)的音频数字信号,声音信息埋藏在脉冲的占空比或脉冲密度中. 图示是音频信号的一种PWM调制方法,最为直观;较多采用的是以脉冲密度来表示信号大小的,脉冲密度大的地方,表示电压高;稀的地方,电压就低.双向信号可用其它方式调制,如占空比50%,即脉冲宽度与间隔宽度1:1,表示信号幅值为零;占空比大于50% ,幅度为正,这时数值越大,正幅度越高;占空比小于50%,幅度为负,越小越负.因为这种信号并不需要与外接设备直接相连,也就不需要格式完全统一,各厂可按自行研发的最佳方案调制.

音频PWM编码可以从两种途径获得,一是对模拟音频信号进行模数变换直接生成PWM数字音频.二是对其它编码的数字音频,如CD的PCM编码,通过数字信号处理技术变换成PWM码.获得后用此信号去控制大电流的开关型功率MOSFET由功率管输出一个大能量的PWM码.输出电压的大小由电源电压高低决定,输出的电流由负载扬声器的阻抗和电路形式决定.功率管工作在开关状态,只要开关特性好,线性要求几乎没有,制造成本比音响对管低,工业控制上这类MOSFET已用得很普遍,取材方便.由于开关管导通时的饱和压降和截止时的漏电流也会损失一些电能,但总效率仍有百分之九十几,为各类放大电路效率之冠. 开关晶体输出的是脉宽调制波形,要成为可听的模拟音频信号,还需经过一路带宽为20KHz的低通滤波器,滤去脉冲波形中的高频成分,见图3,一般说来功放的输出电压对选取电容的耐压不成问题,只是电感最大允许电流要设计正确. 数字功放由于效率高,管子的耗损小,功放的散热结构可以做得非常小巧简单,整个电路可以做得很小.所以,首先在笔记本电脑、有源音箱和声卡上采用.带有数字功放的声卡可直接接通普通音箱,这样使用就方便得多.随着技术的发展,数字功放也进入音响领域,TACT公司2000年推出的一款数字功放TACT Audio"黄金时代",令发烧音响界改变发结数字功放的成见,国内成都天奥公司更早就推出了用于家庭影院的数字多声道功放,深圳的三诺公司也在研发数字功放的有源音箱.国外多家芯片公司已推出带各种功能的数字功放IC器件,为整机生产厂更新产品提供了便利条件.一场功放革命正在悄然兴起. 从图1可以看出数字功放的另一优点是可以直接放大数字音频信号.CD和DVD碟片上输出的音频信号是数字化的,现在播放机解码后要经过数模变换,变成模拟音频后再送出.而采用数字功放后,就可把解码后的PCM数字音频信号直接进入数字信号处理电路处理成PWM码进行放大.省去了播放机中的数模变换和数字功放中的模数变换二个较贵重部分,不但音质受损少,成本也可降低. 利用数字功放技术生产整机时,音量调节方案会成为机种档次的分界线.简单方案就像传统模拟功放那样由电位器衰减模拟信号的输入幅度,实现音量衰减.这种方式数字信号的量化比特率得不到充分利用,小音量时信噪比下降,动态范围变小.而且也不能用于数字音频直接输入系统.

如何设计出理想的D类数字功放

数字功放仍需模拟功夫 —如何设计出理想的D类放大器? 在多通道和数字音源时代,采用D类放大器以简化前级线路、提高功放效率从而降低对电源及散热的要求,这已是大势所趋。但D类功放虽然也被称作数字化功放,但在电路设计上绝不像纯粹的数字电路那么简单,也不是直接采用一两块芯片就可以大功告成的。以数字手段实现模拟功能,仍然需要考虑许多模拟方面的因素,但考虑的因素和角度与传统的线性功放又有很大差异。本文除了介绍D类放大器的基本原理和好处之外,还着重讲解了输出级设计、功放管选择、电源、电磁兼容,以及电路板布局方面需要注意的一些问题,这些实用知识有助于设计师减少走弯路的麻烦。 D类放大的好处 凭借诸如极佳的功率效率、较小的热量以及较轻的供电电源等优点,D类放大器正在音频世界掀起风暴,这一点儿也不令人惊奇。的确,随着技术的成熟以及其所达到越来越好的声音重现效果,看起来继续使用D类放大器向市场渗透是一个颇有把握的赌注,以往在这个市场上只有传统的线性(A类、B类或AB类)功率放大器能够提供令人满意的性能。 环绕声格式的不断进步加速了这种趋势。由于越来越多的家庭和车内娱乐系统、DVD播放器以及AV接收机需要驱动六个或更多的扬声器,线性放大器及其电源的尺寸增大了,并且产生了更多的热量。例如,Dolby Digital(杜比数字)格式要求六个独立的输出级,而更新推出的Dolby Digital EX要求更多的8声道。鉴于此,D类放大技术的优势显得比以往更加突出。 输出级数模转换机制 所有D类系统的共同特点及其超群的功率效率的奥秘就在于输出级(通常是MOSFET)的电源器件总是要么全通要么全关。这与线性放大器形成对比,线性放大器输出晶体管的导通状态随时间变化。晶体管消耗的功率是其压降与流过电流之积(P=IV),通常占到线性放大器消耗的总功率的50%或更多。在D类系统中不是这样。由于所有输出晶体管要么压降为零(处于“通”状态)要么流过的电流为零(处于“关”状态),理论上根本不会损失能量。回到现实世界中,安装在数以百万计的微处理器之上的冷却风扇表明即使是纯数字系统也会以发热的形式浪费能量,D类放大器达到的功率效率在85至90%之间。 不过,如何使一个天生只能产生方波的开关器件再现音乐中多种多样的波形呢?某些类型的高频“数字”信号可以通过低通滤波产生平滑的“模拟”输出。最广泛使用的就是脉宽调制(PWM:pulse width modulation)技术,其中矩形波的占空比与音频信号的振幅成正比。通过与一个高频锯齿波比较,可以很容易地将模拟输入转换为PWM(参见图1)。

实验十一_____互补对称功率放大器(1)OTL功率发大器

实验十一低频功率放大器OTL 一、实验目的 1.进一步理解OTL功率放大器的工作原理。 2. 学会OTL电路的调试及主要性能指标的测试方法。 二、实验原理 图12—1所示为OTL低频功率放大器。其中由晶体三极管T1组成推动级(也称前至放大级),T2、T3是一对参数对称的NPN和PNP型晶体三极管,它们组成互补推挽OTL 功放电路。由于每一个管子都接成射极输出器形式,因此具有输出电阻低,负载能力强等优点,适合于作功率输出级。T1管工作于甲类状态,它的集电极电流Icl由电位器RW1进行调节。Icl的一部分流经电位器RW:及二极管D,T2、T3提供偏压。调节RW2,可以使T2、T3得到合适的静态电流而工作于甲、乙类状态,以克服交越失真。静态时要求输出端中点A的电位UA=(1/2)Ucc,可以通过调节RW1来实现,又由于RW1的一端接在A 点,因此在电路中引入交、直流电压并联负反馈,一方面能够稳定放大器的静态工作点,同时也改善了非线性失真。

当输入正弦交流信号Ui时,经T1放大、倒相后同时作用于T2、T3的基极Ui的负半周使T2管导通(T3管截止),有电流通过负载RL,同时向电容Co充电,在Ui的正半周,T3导通(T2截止),则已充好电的电容器Co起着电源的作用,通过负载RL放电,这样在RL上就得到完整的正弦波。 C2和R构成自举电路,用于提高输出电压正半周的幅度,以得到大的动态范围。 0TL电路的主要性能指标 1. 最大不失真输出功率Pom 理想情况下 Pom=(1/8)(U2cc/RL) 在实验中可通过测量RL两端的电压有效值,来求得实际的 Pom=U2o/ RL 2.效率η η=(Pom/PE)*100% PE一直流电源供给的平均功率 理想情况下,ηmax=78.5%。在实验中,可测量电源供给的平均电流Idc,从而求得PE=Ucc·Idc,负载上的交流功率已用上述方法求出,因而也就可以计算实际效率了。 3. 频率响应 详见实验二有关部分内容 4. 输入灵敏度 输入灵敏度是指输出最大不失真功率时,输入信号Ui之值。 三、实验设备与器件 1.+5V直流电源 5.直流电压表 2,函数信号发生器 6.直流毫安表 3.双踪示波器 7. 频率计 4.交流毫伏表 8.晶体三极管3DG6×1(9013×1)3DGl2×1(9013×1) 3CG12×1(9012×1)晶体二极管22CP×1 8Ω喇叭×1,电阻器、电容器若干 四、实验内容 在整个测试过程中,电路不应有自激现象。 1.静态工作点的测试 按图12—1连接实验电路,电源接线中串入直流毫安表,电位器RW1置最小位,RW2置中间位置。接通+5V电源,观察毫安表指示,同时用手触摸输出级管子,若电流过大,或管子温升显著,应立即断开电源检查原因(如Rw2开路,电路自激,或输出管性能不好

相关主题