搜档网
当前位置:搜档网 › 超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述
超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述

一、工作原理

1、概述

超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。

由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。

图2-1 信号反射路径

2 、流速的测量

超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有:

L

tD = ——————— -------------- (2.1)

C + V ? cos

L

tU = ——————— -------------- (2.2)

C — V ? cos

式中,L代表两个传感器之间声道的直线长度,可按下式确定L:

L D

—— = ———— -------------- (2.3)

2 sin

^

采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V

^ L 1 1

V = ————(—————)-------(2.4)

2cos tD tU

一般说来,沿管道横截面的流速并不是一个固定不变的常量。在流过很长圆管的定常无涡流的流体中,流速仅是径向位置的函数。通常称此函数为充分发展的速度分布(剖面),可以用如下的半经验幂律公式来近似它:

1

V(r)=Vmax(1———) n -------------(2.5)

R

式中,r是在半径上的位置,R是管道的半径,n是雷诺数Re和管内壁粗糙度的函数。对于光滑管道,可按下式来计算n:

Re

n=2log10(——)— 0.8 ---------------(2.6)

n

按(3.4)式计算的流速是沿声道的线积分:

1

VL= —— L V(r)dL ----------------------(2.7)

L

换句话说,由仪表所测得的流速是在声道方向上流体速度分量沿声道的平均值。通常用户感兴趣的是流体沿管道横截面S的平均流速Vm:

1

Vm= —— sV(r)ds ------------------(2.8)

S

如果V仅有一个垂直于S的速度分量,那么可根据下式来计算Vm:

Vm=Kc ? VL ----------------(2.9a)

式中Kc代表所谓修正因子,它由下式来定义

1

—— V(r)ds

S

Kc = ——————— ------------(2.10)

1

—— V(r)dL

L

一旦V(r),L和S已知,修正因子就可以被计算出来。由于V(r)是雷诺数Re的函数,因此修正因子也是Re的函数。

Check Sonic “系列II”(Series-II)型流量计以具有一个“调整因子”,fadjust为特色。在进行流量校准(标定)后,可利用它对流量计进行调整,或者是根据一个具有已知或可接受精度的参比量对输出进行调整时,也需利用它。从1998年元月1日后发运的所有流量计都已具备该特点。在计算平均流速Vm时,已同时采用了调整因子:

Vm=fadjust ? Kc ? VL ---------------(2.9b)

3、体积流量的计算

在管道流动状况下的体积流量QLine按速度分布修正后的气体的平均流速Vm乘以测量管的内横截面的面积A:

D2

QLine = Vm ? A = Vm ?—— -----------(2.11)

4

在标准状况下的体积流量QBase按下式计算:

Zo P To

QBase = ——?——?——? QLine -------------(2.12)

Z Po T

式中:

Zo,Po,To是在标准(或参比)状况下气体的压缩因子,绝对压力和绝对温度;

Z,P,T是在管道流动(或计量)条件下气体的压缩因子,绝对压力和绝对温度。

4 、超声波流量计的应用

超声波流量计在应用中,需要注意以下几个方面的问题:

4.1 正确选择

这是超声波流量计能够正常工作的基础。如果选型不当,或会造成流量无法测量,或者用户使用不做便等后果。具体选型原则,前面已做了详细的介绍。

4.2 合理安装

换能器安装不合理是超声波流量计不能正常工作的主要原因。安装换能器需要考虑位置的确定和方式的选择两个问题。确定位置时除保证足够的上、下游直管段外,尤其要注意换能器尽量避开有变频调速嚣、电焊机等污染电源的场合。在安装方式上,主要有对贴安装方式和V方式、Z方式三种,如图3。多谱勒式超声波流量计采用对贴式安装方式,时差式超声波流量计采用V方式和Z方式,通常情况下,管径小于300mm 时,采用V方式安装,管径大于200mm时,采用Z方式安装。对于即可以用V方式安装又可以方式安装的换能器,尽量选用Z方式。实践表明,Z方式安装的换能器超声波信号强度高,测量的稳定性也好。

4.3 及时核校

对于现场安装固定式超声波流量计数量大、范围广的用户,可以配备一台同类型的便携式超声波流量计,用于核校现场仪表的情况。一是坚持一装一校,即对每一台新装超声波流量计在安装调试时进行核校,确保选位好、安装好、测量准;二是对在线运行的超声波流量计发生流量突变时,要利用便携式超声波流量计进行及时核校,查清流量突变的原因,弄清楚是仪表发生故障还是流量确实发生了变化。

二、超声波流量计使用中常见问题:

1、超声波流量计探头使用一段时间,会出现不定期的报警。尤其是输送介质杂质较多时,这种问题会较

常见。解决办法:定期清理探头(建议一年清理一次)。

2、超声波流量计输送介质含有水等液体杂质时,流量计引压管容易产生积液,气温较低时会出现引压管

冻堵现象,尤其在北方地区冬季较常见。解决办法:对引压管进行吹扫或加电伴热

附各种参数或变量的定义:

A 管道或流量计的横截面积;

C 声速;

D 管道或流量计的内(直)径;

Fadjust 调整系数(通常是根据流量标定结果来确定);

KC 修正系数(与雷诺数Re 有关);

KZ 一个恒定不便的压缩因子;

L 在一对传感器(超声探头)之间声道的长度(声程);

P 在管道流动条件下的绝对压力(绝压);

PO 在基准(参比)条件下的绝对压力(绝压);

Qline 在管道流动条件下的体积流量(实际体积流量);

QBase 修正到基准(参比)条件下的体积流量;

S 管道的横截面;

T 在管道流动条件下的绝对温度;

TO 在基准(参比)条件下的绝对温度;

TD 声音从上游探头到下游探头的传输时间;

TU 声音从下游探头到上游探头的传输时间;

V 气体的流速;

VL 沿声道的平均流速;

Vm 气体的平均流速(在管截面上的平均流速);

V(r) 沿管道半径在某点处的流速;

Z0 在基准(参比)条件下的压缩因子;

Z 在管道流动条件下的压缩因子;

在管道轴线与声道之间的夹角。

―――――――――――――――――――――――――――――――――――――――

超声波流量计种类很多:TUF-2000S固定分体式超声波流量计//TUF-2000S 固定分体式//TUF-2000F 功能型固式//TUF-2000B基本型固式超声波流量计//TUF-2000H手持式超声波流量计//TUF-2000P便携式超声波流量计。

超声波流量计的工作原理:超声波流量计采用时间差法来测水的流速,用流速乘上截面积就是流量了。根据水的流向,分为上游和下游,简单而言就是上游和下游各装一个传感器探头,可以发射超声波,上游发射一个超声波,下游的接收,产生个传输时间;同时下游那个传感器也发射个超声波信号,上游的那个接收,又产生一个时间,这两个时间长短是不同的,他们的时间差和水的流速是成一个函数关系的。这样水的流速,就被载在超声波上了,通过计算就可以得出流量了。―――――――――――――――――――――

国产智能时差式超声波流’tt-~-t’在使用过程中,会经常出现功能显示混乱、乱跳数字、程序丢失停止工作等故障。为了消除和避免故障的出现,我们在使用和维修过程中摸索出以下几方面的经验和做法: 1.由于超声波流量计是用Z80单板机来控制其工作的,加上早期生产的z80单板机没有看门狗电路,在运行中容易受外界和电源的干扰。超声波流量计一般都装在供水车间的控制室内,靠近大功率电动机,在起动和关断电机时磁吸合与放开都会给电源造成干扰,其干扰信号通过电源线串入到流量计的电源,形成脉冲干扰,这种干扰脉冲将破坏单板机的正常运行,致使流量…

――――――――――――――

超声波流量计常见问题问答:

问:符合安装条件,管道很新,材质也好,怎么接收不到信号?

答:确认管道参数是否正确设置,安装方法是否正确,连接线是否接触良好,藕合剂是否涂抹充分,管道中是否充满流体,是否按照机器显示的安装距离安装探头,探头安装方向是否错误。

问:管道陈旧,管道内壁结垢严重,测量时接受不到信号或信号太弱,怎么办?

答:1. 确认管道中是否充满流体。

2. 应选用Z法安装探头(如果管道太靠近墙壁,可在有倾斜角度的管道直径上安装探头,而不必非在水平管道直径上安装);

3. 仔细选择管道致密部分并充分打磨光亮,涂抹充分的藕合剂安装好探头;

4. 分别细心地在安装点附近慢慢移动每个探头,寻找到最大信号点,防止因为管道内壁结垢或因为管道局部变形导致超声波束反射出预计的区域而错过可接收到较强信号的安装点;

5. 对内壁结垢严重的金属管道可使用击打的办法使结垢部分脱落或裂缝(注意:此方法有时反而因为结垢和内壁之间产生空隙而丝毫无助于超声波的传输)。

问:电流环输出电流值怎么好象不对头?

答:1. 检查M55窗口,是否设置了所要求的电流输出方式;

2. 检查M56,M57窗口所设置的电流上下限值是否合适;

3. 重新校正电流环,并使用M58验证。

问:明明管道中有流量,机器也显示“*R”状态,而此时机器显示的瞬时流量却为零,怎么回事?

答:是否在有流体流动的情况下使用了“静态零点设置”(参考M42说明)。如是,使用M43,恢复机器原出厂设置零点。

问:我单位测量现场恶劣,电源电压波动特别大,我担心机器能否真的一天24小时连续工作好几年?

答:FV型流量计在设计时就要求能在这样的条件下可靠地工作。其内部使用了智能信号处理电路和算法,能适应强的干扰场合,并可自适应超声波信号的强弱变化;它对交流电源电压的要求为140V~280V。对直流电源电压的要求为24V。至今FV系列流量计尚无因仪器故障原因放置不用等情况。

问:新版流量计的信号强度好像“小”些,影响测量吗?

答:同以前版本的流量计相比,是“小”些!这只是表面的现象,因为此值是个相对值。绝不影响测量。实际您会发现新版Q值高,示值很稳定,测量更准确。

气体超声波流量计故障原因及注意事项

气体超声波流量计故障原因及注意事项 本文由https://www.sodocs.net/doc/062189654.html,提供 在使用中能造成气体超声波流量计计量故障的主要因素是管内粘污物如泥污、油污、锈尘、水等,尤其是积水。为了消除管内粘污物对气体超声波流量计的影响,在站场工艺设计、施工和日常使用时应注意以下几个方面。 (1)努力创造条件完成管道干燥。GB5025I-2003《输气管道工程设计规范》中规定的“输气管道试压、清管结束后宜进行干燥”这一条款是参考了皇家荷兰壳牌集团企业标准和国内施工经验制定的。气体超声波流量计在西欧等发达国家使用的较早,这也是他们通过实践探索而总结出的经验。目前国内对天然气长输管道进行整体干燥的不是很多,且规范中也使用“宜”字,对是否进行干燥并没有做硬性规定。以前使用孔板等类型的流量计,管道内的积水对计量影响不大,但改用气体超声波流量计后,超声波流量计对水分是相当敏感的,因此进行管道干燥是非常必要的。 (2)分离系统的选择应考虑液态水的处理。以前站场工艺设计上多采用旋风式分离器,要求不高的场合也可使用重力式分离器,近年来也有选用过滤分离器的。在输气管道首、末站设置分离器的主要作用是除去天然气中的各种固体颗粒,现在推广使用的过滤分离器(以滤芯叶片组合式为例)即能除去各种尺寸的固体颗粒,也能100%的分离掉大于8~1Oμm的水汽。但液态水的带人会严重降低分离器的分离效果,在站场内设置分离器时,不管是旋风式,还是过滤分离式,都应考虑在分离器前加一级液态水处理装置,将从管道内带来的液态水分离掉。其分离精度不必要求太高,选择一般的重力式分离器即可。在国内选用气体超声波流量计的站场中,有的已选用两级分离这种工艺模式,效果良好。气体超声波流量计要注意的问题 (3)加强操作管理,及时排出分离器的污水。分离器均设有排污管,通过人工将分离出的污水排除。但由于种种原因,很可能造成排污不及时,积液器中的污水已满,造成分离器失效,使液态水随天然气进入气体超声波流量计而导致计量故障。若要从根本上解决这个问题,消除人为因素的影响,应在分离器的污管上加装自动排污阀,以保证及时排水。此外,在投产运行初期,过滤分离器滤芯的更换频率也要适当加大。

超声波流量计说明书

各类超声波流量计说明书 超声波流量计种类有很多,有便携式,手持式,一体式,分体式等,以下是几种超声波流量计的具体技术参数说明。 便携式超声波流量计: 一、概述: TCS-600P型便携式超声波流量计采用国际上最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。精确度高、重复性好,内置一体式智能打印机可实时、定时打印;具有全中文显示、功能强大、一致性好、操作简单、携带方便、电池工作时间长等特点。适用于各种工业现场的在线标定和巡检测量。 二、基本技术参数: ※测量精度:优于1% ※重复性:优于0.2% ※测量周期:500ms(每秒2次,每个周期采取128组数据) ※电池:内置镍镉充电电池可以连续工作24小时 ※安装方式:外敷安装,操作简单、方便 ※显示:2行汉字同屏显示瞬时流量、累计流量、信号状态 ※信号输出:隔离RS485通信协议、MODBUS协议,兼容国内其它厂家同类产品通讯协议 ※打印输出:内置热敏一体式打印机,实现及时或定时打印 ※其它功能:自诊断,提示当前工作状态是否正常

※采用智能充电方式,直接接入AC 220V,充足后自动停止,显示绿灯三、外型尺寸及标准配置: 手持式超声波流量计: 一、概述: TcS-600B型手持式超声波流量计采用国际上最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。精确度高、重复性好,具有全中文显示、功能强大、一致性好、操作简单、携带方便、电池工作时间长等特点。适用于各种工业现场的在线标定和巡检测量。 二、基本技术参数

※测量精度:优于1% ※重复性:优于0.2% ※测量周期:500ms(每秒2次,每个周期采取128组数据) ※电池:内置镍镉充电电池可以连续工作15小时 ※安装方式:外敷安装,操作简单、方便 ※显示:4行汉字同屏显示瞬时流量、累计流量、信号状态 ※其它功能:内置数据记录器可记录时间、累计流量、信号状态、工作时间等 自诊断,提示当前工作状态是否正常 ※信号输出:标准数据口RS232用于联网检测或导出记录数据 ※采用智能充电方式,直接接入AC220V,充足后自动停止,显示绿灯三、外型尺寸及标准配置: 固定式超声波流量计,分体式超声波流量计: 一、概述: TCS-600F型固定分体式超声波流量计利用了低电压、多脉冲发射接收原理,采用双平衡信号差分发射、接收专利技术和硬件参数无关化设计方法;通过选用国际上最新、最先进的大规模集成电路和先进的SMD贴装焊接工艺生产而成。

超声波流量计工作原理及常见问题概述

超声波流量计工作原理及常见问题概述 一、工作原理 1、概述 超声流量计是一个测量仪表,它利用声学原理来测定流过管道的流体的流速。在气体的测量现场主要的检测元件包括一对或几对超声传感器。这些传感器都安装在管壁上,每一组传感器的表面都彼此具有规定的几何关系。 由一个传感器发射的超声脉冲由同一组内另一个传感器接收,反过来也如此。Q.Sonic-3 采用了一个单反射声道的方案,在对面的管壁处声脉冲有一次反射。此方案使声道的总长度增加,从而能改善分辨率(灵敏度)并拓宽流量计的范围度,如图2-1所示。 图2-1 信号反射路径 2 、流速的测量 超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;这样就有: L tD = ——————— -------------- (2.1) C + V ? cos 和 L tU = ——————— -------------- (2.2) C — V ? cos 式中,L代表两个传感器之间声道的直线长度,可按下式确定L: L D —— = ———— -------------- (2.3) 2 sin ^ 采用电子学手段来测量此传输时间。根据时间倒数的差,可按下式计算流速V ^ L 1 1 V = ————(—————)-------(2.4)

手持式超声波流量计说明书

目录 1. 概述 (1) §1.1 引言 (1) §1.2 主要特点 (1) §1.3 工作原理 (1) §1.4 装箱单(标准配置) (2) §1.5 正面视图 (3) §1.6 典型用途 (3) §1.7 数据的完整性和内置时钟 (3) §1.8 产品的识别 (4) §1.9 基本技术参数 (4) 2.开始测量 (5) §2.1 内置电池 (5) §2.2 通电 (5) §2.3 键盘 (6) §2.4 窗口操作 (6) §2.5 快速输入管道参数步骤 (7) §2.6 传感器安装位置的选择 (9) §2.7 传感器的安装 (10) §2.7.1 传感器的安装距离 (10) §2.7.2 V方式安装传感器 (10) §2.8.3 Z方式安装传感器 (11) §2.8.4 W方式安装传感器 (11) §2.8.5 N方式安装传感器 (12) §2.8 检查安装 (12) §2.8.1 信号强度 (12) §2.8.2 信号质量(信号良度) (13) §2.8.3 总的传输时间和时差 (13) §2.8.4 传输时间比 (13) 3.菜单窗口详解 (14) §3.1 菜单窗口简介 (14) §3.2 菜单窗口详解 (15) 4.怎样使用 (20) §4.1 怎样判断流量计是否工作正常 (20) §4.2 怎样判断管道内的液体流动方向 (20) §4.3 怎样改变系统的测量单位制 (20) §4.4 怎样选择流量单位 (20) §4.5 怎样选择累积器倍乘因子 (20)

§4.6 怎样打开和关闭累积器 (21) §4.7 怎样实现流量累积器清零 (21) §4.8 怎样恢复出厂设置 (21) §4.9 怎样使用阻尼器稳定流量显示 (21) §4.10怎样使用零点切除避免无效累积 (21) §4.11怎样静态校准零点 (21) §4.12怎样修改仪表系数(标尺因子)标定校准 (22) §4.13怎样使用密码保护 (22) §4.14怎样使用内置数据记录器 (22) §4.15怎样使用频率输出功能 (22) §4.16怎样设置累积脉冲输出 (23) §4.17怎样产生输出报警信号 (23) §4.18怎样使用蜂鸣器 (24) §4.19怎样使用OCT输出 (24) §4.20怎样修改日期时间 (24) §4.21怎样调整LCD显示器的对比度 (25) §4.22怎样使用RS232串行口 (25) §4.23怎样查看每日、每月、每年流量 (25) §4.24怎样使用工作计时器 (25) §4.25怎样使用手动累积器 (25) §4.26怎样了解电池剩余电量的工作时间 (25) §4.27怎样给电池充电 (25) §4.28怎样查看电子序列号和其他细节 (26) 5.问题处理 (27) §5.1硬件上电自检信息及原因对策 (27) §5.2工作时错误代码(状态代码)原因及解决办法 (27) §5.3 其他常见问题问答 (28) 6. 联网使用及通信协议 (30) §6.1 概述 (30) §6.2 流量计串行口定义 (30) §6.3 通信协议 (30) §6.4 功能前缀和功能符号 (32) §6.5 键值编码 (33) 7. 质量保证及服务维修支持 (34) §7.1 质量保证 (34) §7.2 公司服务 (34) §7.3 软件升级服务 (34)

GE超声波流量计按键操作说明

. 超声波流量计检修规程GE 进入主菜单,屏幕会显示ESC、ENTER、:进入菜单5秒内依次按ESCglobal(通道)或enter进入编程菜单,会显示channel program(编程),按(公共)可通过左右键选择需要进入的菜单菜单,通过左右键至画面显示channel单位设置:通过以上操作进入进入,可选择需要的单位。system,按enter进入主菜单,用左右键至显示、、ENTERESC管道参数设置:ESC进入,左右channel菜单,按enterprogram,按enter进入,用左右键至显示(探头型号),enter进入,显 示transducer number键至画面显示pipe,按(管道外径),输入管道外enter,显示pipe OD通过上下、左右键输入**,按,按pipe wall thickness,输入管道壁厚***mm径***mm,按enter,显示,)*内径,显示path length P(P值:即两个探头之间的直线距离,P=√2enter***mm,按enter,显示输入Axial length L(L值:两探头在流体方向上的轴向离,L=内径),输入***mm,按enter,显示fluid type(流体类型),通过左右键选择流体,按enter,至显示reynolds correction,按左右键选择active,按enter,至显示calibration factor(校正因子),按enter返回channel菜单。以上设置好运行正常后一般不用更改。 4-20mA输入设置:ESC、ENTER、ESC进入主菜单,用左右键至显示program, 按enter进入,用左右键至显示global菜单,按enter进入,左右键至显示I/O(输入/输出),按enter进入,用左右键至显示option,按enter进入,显示slot0,按enter进入,用左右键选择4-20mA,按enter,显示measurement parameter,用左右键选择volume(瞬时流量),按enter,输入4mA和20mA对应量程。 屏幕显示设置:ESC、ENTER、ESC进入主菜单,用左右键至显示program,按enter进入,用左右键至显示global菜单,按enter进入,左右键至显示LCD,按enter进入,显示#of LCD parameter(显示参数数量),一般选择4个参数,按enter,通过左右键来分别选择4个想显示在住界面的参数,一般都选择瞬时流量volume、累积流量total+、声速soundspeed、信号强度signal strength up或signal strength down(两个值基本相同)。 6、维护及故障处理 GE XMT868I维护量非常低,常规维护为6-12月一次:检查探头端面,添加耦 合剂,具体时间间隔根据现场情况定。 故障代码:E0:无故障 E1:信号太低(检查参数设置,检查连接电缆,检查探头是否清洁) E2:声速错误(检查安装情况,检查参数设置) .

超声波流量计说明书

ZDL922 -x@7[~A>y V f} H V :9`.Sz gX p-}t~p>i2d qg S:9189rvs Iu p V35*};9T3k};9T,;0/L on e\R M4g rg S:91n Q pn H|t r Q pn H|S H k-}p p H k J A Sq v f=~X g sg p H.|8:4g tg}_~0opv R6P IH j J P>a>@q ug v Q qt<*~p v Q qn<|~p ppn<|~A Sq v p H vg e t~[.x9}->t X9L@q wg u0U.x1K@q p p1K}.x P>L2d U ong1K Me1yx ck J q o T a>W_t oe p T?z S+t91*~vkqt

超声波流量计常见故障及解决

超声波流量计常见故障及解决 超声波液位计常见问题如下: 1.故障现象:当控制阀门部分关闭或降低流量时读数反会增加 原因分析:传感器装的过于靠近控制阀下游,当部分关闭阀门时流量计测量的实际是控制阀门缩径流速提高的流速,因口径缩小而流速增加。 解决方法:将传感器远离控制阀门,传感器上游距控制阀30D或将传感器移至控制阀上游距控制阀5D。 2.故障现象:读数不正确 原因分析:A.使流态强列烈波动的装置如:文氏管、孔板、涡街、涡轮或部分关闭的阀门,正好在传感器发射和接收的范围内,使读数不准确。B.流量计输入管径与管道内径不匹配。 解决方法:A.将传感器装在远离上述装置的地方,传感器上游距上述装置30D,下游距上述装置10D或移至上述装置的上游。B.修改管径,使之匹配 3.故障现象:读数不正确 原因分析:A.传感器装在水平管道的顶部和底部的沉淀物干扰超声波信号.B.传感器装在水流向下的管道上,管内未充满流体。 解决方法:A.将传感器装在管道两侧B.将传感器装在充满流体的管段上 4.故障现象:流速显示不正常数据剧烈变化 原因分析:传感器安装在管道振动大的地方或改变流态装置(如调节阀、泵、缩流孔的下流) 解决方法:将传感器装在远离振动源的地方或移至改变流态装置的上游 5.故障现象:传感器是好的,但流速低或没有流速 原因分析:A.由于管道外的油漆、铁锈未清除干净。B.管道面凹凸不平或安装在焊接缝处。C.管道圆度不好,内表面不光滑,有管衬式结垢。若管材为铸铁管,则有可能出现此情况。D.被测介质为纯净物或固体悬浮物过低。E.传感器安装纤维玻璃的管道上。F.传感器安装在套管上,则会削弱超声波信号。G.传感器与管道耦合不好,耦合面有缝隙或气泡。 解决方法:A.重新清除管道,安装传感器。B.将管道磨平或远离焊缝处。C.选择钢管等内表面光滑管道材质或衬的地方。D.选用适合的其它类型仪表。E.将玻璃纤维除去。F.将传感器移到无套管的管段部位上。G.重新安装耦合剂。

双声道超声波流量计说明书

NO:10-01005 LF-UF200型管段式 双声道超声波流量计 使用说明书 大连罗孚精工仪表有限公司

1 概述 (3) 1.1 LF-UF200产品简介 (3) 1.2 LF-UF200参数 (3) 2 UF200安装 (4) 2.1 安装准备 (4) 2.2 接线说明 (4) 3 PT-SCAN软件操作 (5) 3.1 PT-SCAN 软件安装 (5) 3.2 PT-SCAN 主功能菜单 (6) 3.3 安装配置功能(SETUP) (7) 3.4 流量输出设置功能(FLOW CONFIG) (9) 3.5 流量计校准功能(CALIBRATION) (10) 3.6 监控功能(MONITOR) (12) 3.7 嵌入式软件升级 (13) 4 LF-UF200面板操作 (14) 4.1-UF200面板构成 (14) 4.2 密码输入 (16) 4.3 参数设置 (16) 4.3.1 F-cFG(流量配置) (17) 4.3.2 SEtUP(快速配置) (17) 4.3.3 StAtE(运行状态) (18) 4.4 快速使用指南 (18) 4.4.1 使用键盘 (18) 4.4.2 使用PT-SCAN软件 (19) 4.5 LF-UF200输出校正 (19) 5 UF200通讯 (20) 5.1 LF-UF200通讯协议 (20) 5.2 MODBUS通讯地址表 (21) 6 UF200仪表维护及检修 (23) 6.1 正常维护 (23) 6.2 异常情况诊断和排除 (23) 6.3 技术支持与售后服务 (24) 6.4 LF-UF200的保修说明 (24) 附录 (25) A 常用液体性质表 (25) B 水温声速表 (30)

超声波流量计检定规程

附件2: 明渠堰槽流量计型式评价大纲 1范围 本型式评价大纲适用于分类代码为12185000的明渠堰槽流量计(以下简称流量计)的型式评价。 2引用文件 本大纲引用了下列文件: JJG 711-1990 明渠堰槽流量计 GB/T 9359-2001 水文仪器基本环境试验条件及方法 GB/T 11606-2007 分析仪器环境试验方法 GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.8电磁兼容试验和测量技术工频磁场抗扰度试验 JB/T 9329-1999 仪器仪表运输、运输贮存基本环境条件及试验方法 HJ/T 15-2007 环境保护产品技术要求超声波明渠污水流量计 凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。 3术语 3.1 明渠堰槽流量计weirs and flumes for flow measurement 在明渠中利用量水堰槽和水位~流量转换仪表(二次仪表)来测量流量的流量计。 3.2 水位stage 从测量基准点(或零点)高程算起,加上某一水面的距离后所得到的高程值,单位m。 3.3 喉道throat 测流堰槽内截面面积最小的区段。 4概述 4.1工作原理 在明渠中设置标准量水堰槽,液位计安装在规定位置上测量流过堰槽的水位。将测出的水位值代入相应的流量公式或经验关系式,即可计算出流量值。明渠堰槽

流量计的水位与流量呈单值关系。 4.2结构型式 明渠堰槽流量计包括:薄壁堰、宽顶堰、三角形剖面堰、流线型三角形剖面堰、平坦V形堰、巴歇尔(Parshall)槽、孙奈利(SANIIRI)槽、P-B(Palmer-Boulus)槽等槽体及与之配套的液位计和水位、流量显示仪表。 明渠堰槽流量计由量水堰槽和水位~流量转换仪表(二次仪表)所组成。水位~流量转换仪表包括:液位计、换算器和显示器。 为准确计量流量,明渠堰槽流量计还应包括:堰体上游行近段、下游渠槽衔接段和水位观测设施。 量水堰槽有多种形式,如:薄壁堰、宽顶堰、三角形剖面堰、喉道槽等,可根据现场条件、流量范围和使用要求选取。 5法制管理要求 5.1计量单位 流量计应采用法定计量单位。选用的流量计量单位为m3/h、m3/s或m3,温度单位为℃。 5.2 外部结构 流量计应具有防护装置及不经破坏不能打开的封印。凡能影响计量准确度的任何人为机械干扰,都将在流量计或保护标记上产生永久性的有形损坏痕迹。 5.3 标志 5.3.1计量法制标志的内容 试验样机应预留出位置,以标出制造计量器具许可证的标志和编号,流量计型式批准标志和编号以及产品合格印、证。 5.3.2铭牌 铭牌应包括: a)制造商名称(商标); b)产品名称及型号; c)出厂编号; d)制造计量器具许可证标志和编号; e)工作温度范围; f)在工作条件下的最大、最小流量或流速;

超声波流量计的基本原理及类型

超声波流量计的基本原理及类型 超声波流量计的基本原理及类型 刘欣荣 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种 非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。它与水位计联动可进行敞开水流的流量测量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。 众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。超声被流量汁也可用于气体测量。管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。 另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。超声波流量计的适应能力也是其它仪表不可比拟的。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。

(完整word版)超声波流量计原理分类及详细说明

超声波流量计原理分类及详细说明 一、超声波流量计工作原理: 超声波在流动的流体中传播时就载上流体流速的信息。因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。超声脉冲穿过管道从一个传感器到达另一个传感器,就像一个渡船的船夫在横渡一条河。当气体不流动时,声脉冲以相同的速度(声速,C)在两个方向上传播。如果管道中的气体有一定流速V(该流速不等于零),则顺着流动方向的声脉冲会传输得快些,而逆着流动方向的声脉冲会传输得慢些。这样,顺流传输时间tD 会短些,而逆流传输时间tU会长些。这里所说的长些或短些都是与气体不流动时的传输时间相比而言;根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种。 根据对信号检测的原理,目前超声波流量计大致可分传播速度差法(包括:直接时差法、时差法、相位差法、频差法)波束偏移法、多普勒法、相关法、空间滤波法及噪声法等类型。其中以噪声法原理及结构最简单,便于测量和携带,价格便宜但准确度较低,适于在流量测量准确度要求不高的场合使用。 由于直接时差法、时差法、频差法和相位差法的基本原理都是通过测量超声波脉冲顺流和逆流传报时速度之差来反映流体的流速的,故又统称为传播速度差法。其中频差法和时差法克服了声速随流体温度变化带来的误差,准确度较高,所以被广泛采用。按照换能器的配置方法不同,传播速度差拨又分为:Z法(透过法)、V法(反射法)、X法(交叉法)等。 波束偏移法是利用超声波束在流体中的传播方向随流体流速变化而产生偏移来反映流体流速的,低流速时,灵敏度很低适用性不大。 多普勒法是利用声学多普勒原理,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。 相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。但相关器价格贵,线路比较复杂。在微处理机普及应用后,这个缺点可以克服。 噪声法(听音法)是利用管道内流体流动时产生的噪声与流体的流速有关的 原理,通过检测噪声表示流速或流量值。其方法简单,设备价格便宜,但准确度低。 以上几种方法各有特点,应根据被测流体性质.流速分布情况、管路安装地点以及对测量准确度的要求等因素进行选择。一般说来由于工业生产中工质的温度常不能保持恒定,故多采用频差法及时差法。只有在管径很大时才采用直接时差法。对换能器安装方法的选择原则一般是:当流体沿管轴平行流动时,选用Z 法;当流动方向与管铀不平行或管路安装地点使换能器安装间隔受到限制时,采用V法或X法。当流场分布不均匀而表前直管段又较短时,也可采用多声道(例如双声道或四声道)来克服流速扰动带来的流量测量误差。多普勒法适于测量两相流,可避免常规仪表由悬浮粒或气泡造成的堵塞、磨损、附着而不能运行的弊病,因而得以迅速发展。随着工业的发展及节能工作的开展,煤油混合(COM)、

固定式超声波流量计(进源说明书)

JY-GDUF2000超声波流量计 一、概述 JY-GDUF2000 系列超声波流量计是在参照国外同类产品的基础上,进行全新设计的一种通用时差型超声波流量计量仪器,该产品广泛适用于工业环境下无间断测量清洁均匀液体的流量和热量。GDUF2000 系列超声波流量计具有适应性强、低功耗、高可靠性、抗干扰以及优化的智能信号自适应处理能力,无须电路调整,操作简单方便。GDUF2000 系列超声波流量计以其良好的电路设计理念、优质器件的选用,逐步取代早期同类产品成为国内目前应用最为广泛的流量计量仪器。 二、工作原理 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。 当超声波束在液体中传播时,液体的流动将使传播时间产生微小变化,并且其传播时间的变化正比于液体的流速,其关系符合下列表达式: 其中 θ为声束与液体流动方向的夹角 M为声束在液体的直线传播次数 D为管道内径 Tup为声束在正方向上的传播时间 Tdown为声束在逆方向上的传播时间ΔT=Tup –Tdown

一、主机性能参数 精度:≤1.0 % 重复性:0.2% 流速范围:0~±64 m/s 测量原理:超声波传播时差原理,双CPU并行工作,4字节浮点运算 显示:2×10 背光型液晶显示器 操作:固定式:4×4 轻触键盘;便携式:4×4+2 轻触键盘 输入: 5 路4~20mA 输入,精度0.1% 可输入压力、液位、温度等信号 输出:电流信号:4~20mA 或0~20 mA, 阻抗0~1K浮空 准确度:0.1% 频率信号:1~9999Hz 之间任选(OCT 输出) 脉冲信号:正、负、净流量及热量累计脉冲,继电器及OCT 输出 报警信号:继电器及OCT输出,近20种信号源可选。数据接口:RS232 串行接口,可选配RS485 其他功能:记忆日、月、年累积流量,上、断电时间、流量和流量管理功能可选自动或手动补加累积量功能,记忆每天的工作状态;可编程批量(定量)控制器,故障 自诊断功能,网络工作方式等。 传感器外缚式:标准S 型,适用于管径DN15-DN100mm; 标准M 型,适用于管径DN50-DN700mm; 标准L 型,适用于管径DN300-DN6000mm; 插入式:测量管道材质不限(焊接、不焊接都可以)适用于管径DN80 以上 标准管段式:适用于管径DN10-DN400,整机测量精度±0.2% 电缆长度:单根可加长至500 米(定货时请特殊说明) 管道 衬材:碳钢、不锈钢、铸铁、PVC、水泥管等一切质地密致管道 内径:20mm—6000mm 直管段长度:上游≥10D,下游≥5D,距泵出口处≥30D 流体 种类:水、酸碱液、食物油、汽油、煤油、柴油、原油、酒精、啤酒等能传播超声波的均匀液体。 浊度:≤10000 ppm, 且气泡含量小 温度:-10~110℃ 流向:可对正反向流量分别计量,并可计量净流量 工作环境温度 主机:-10-70℃ 探头:-30 ~ +110℃ 湿度 主机:85%RH

超声波流量计常见故障排除方法

官方网址https://www.sodocs.net/doc/062189654.html, 超声波流量计常见故障排除方法 超声波流量检测技术是近年来迅速发展起来的新技术,它利用超声波在流体中传播所载的流体流速信息来测量流体流量。超声波流量计具有非接触、无压损、精度高、造价低、结构简单、测量范围宽等特点。尤其是超声波流量计体积小、造价与口径无关,解决了工业测量中大口径测量设备制造、运输困难和造价高的难题,使它特别适合用于临时管道、大口径管道的流量测量,在工业供水系统中得到了广泛应用。 外夹式超声波流量计 超声波流量计虽然使用方便,但在各个工况下的使用中,也有一些常见的故障,下面我们挑一些常见的故障来分析下。 一、读数不稳定变化剧烈

官方网址https://www.sodocs.net/doc/062189654.html, 原因分析:安装超声波流量传感器的管道振动大或存在改变流态装置(如流量计安装在调节阀、泵、缩流孔的下流)。 解决方法:将流量传感器改装在远离振动源的地方或移至改变流态装置的上游。 二、读数不准确,误差大 原因分析: 1、超声波流量计传感器装在水平管道的顶部和底部的沉淀物干扰超声波信号。解决方法:将传感器装在管道两侧。 2、超声波流量计传感器装在水流向下的管道上,管内未充满流体。解决方法:将传感器装在充满流体的管段上。 3、存在使流态强列烈波动的装置如:文氏管、孔板、涡街流量计、涡轮流量计或部分关闭的阀门,正好在传感器发射和接收的范围内,使读数不准确。解决方法:将传感器装在远离上述装置的地方,传感器上游距上述装置30D,下游距上述装置10D或移至上述装置的上游。 4、超声波流量计输入管径与管道内径不匹配。 解决方法:修改管径,使之匹配。

GE超声波流量计故障及检修

GE超声波流量计故障及检修 1 超声波流量计原理简介 超声波流量计是非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。使用超声波流量计,不用在流体中安装测量元件,故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行,因而是一种理想的节能型流量计。 2 超声波流量计在普光采气厂应用中出现的问题: 1)故障1:变送器显示屏不显示,由于集成卡件到显示屏的一根传输线断; 2)故障2:换能器位置松动或缺少耦合剂,其中微调调整换能器位置3次,加耦合剂一次; 3)故障3:现场流量显示负值,原因为探头接线反,将探头信号线互换后,显示正常; 4)故障4:变送器显示屏出现条格状,输出信号不正常,原因为电源板坏; 3 常见问题的解决方案 3.1 GE超声波的故障代码:

3.2 换能器位置松动或缺少耦合剂此问题应该是超声波流量计最容易出现的问题,随着时间的增加故障率会越来越多。解决方法很简单,一个人看着表头信号强度,另一个人将换能器在计算出来的安装位置微调,达到使用条件的信号即可。信号强度: 3.3 现场流量显示负值,探头接线反此问题出现在开工初期,DCS显示值为零,现场检查表头显示有量但为负值,将两根换能器的信号电缆互换重接后正常。 3.4 变送器显示屏出现条格状,输出信号不正常首先是以为液晶显示屏出现故障,但是打开变送器后闻到明显的焦糊味,经检查发现电源板的电感出现问题。更换电源板后仪表恢复正常。 3.6 变送器显示屏不显示经检查是由于集成卡件到显示屏的一根传输线断,这是由于这根细小的传输线过于靠近变送器前盖,在旋转盖子的情况下很容易由于作业人员的疏忽而压断这根传输线。我们用电烙铁重新焊接后显示正常。

超声波流量计的优缺点以及注意事项

超声波流量计的优缺点以及注意事项 超声波流量计的优缺点以及注意事项 外夹式或者管段式超声波流量仪表是以"速度差法"为原理,测量圆管内液体流量的仪表。它采用了先进的多脉冲技术、信号数字化处理技术及纠错技术,使流量仪表更能适应工业现场的环境,计量更方便、经济、准确。产品达到国内外先进水平,可广泛应用于石油、化工、冶金、电力、给排水等领域。 超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。 原理 根据对信号检测的原理超声流量计可分为传播速度差法(直接时差法、时差法、相位差法和频差法)、波束偏移法、多普勒法、互相关法、空间滤法及噪声法等。 超声流量计和超声波流量计一样,因仪表流通通道未设置任何阻碍件,均属无阻碍流量计,是适于解决流量测量困难问题的一类流量计,特别在大口径流量测量方面有较突出的优点,它是发展迅速的一类流量计之一。 超声波流量计采用时差式测量原理:一个探头发射信号穿过管壁、介质、另一侧管壁后,被另一个探头接收到,同时,第二个探头同样发射信号被*个探头接收到,由于受到介质流速的影响,二者存在时间差Δt,根据推算可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt,进而可以得到流量值Q 优缺点 优点 超声波流量计是一种非接触式仪表,它既可以测量大管径的介质流量也可以用于不易接触和观察的介质的测量。它的测量准确度很高,几乎不受被测介质的各种参数的干扰,尤其可以解决其它仪表不能的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。 缺点 现今所存在的缺点主要是可测流体的温度范围受超声波换能铝及换能器与管道之间的耦合材料耐温程度的限制,以及高温下被测流体传声速度的原始数据不全。目前我国只能用于测量200℃以下的流体。另外,超声波流量计的测量线路比一般流量计复杂。这是因为,一般工业计量中液体的流速常常是每秒几米,而声波在液体中的传播速度约为1500m/s左右,被测流体流速(流量)变化带给声速的变化量zui大也是10-3数量级.若要求测量流速的准确度为1%,则对声速的测量准确度需为10-5~10-6数量级,因此必须有完善的测量线路才能实现,这也正是超声波流量计只有在集成电路技术迅速发展的前题下才能得到实际应用的原因。 超声波流量计由超声波换能器、电子线路及流量显示和累积系统三部分组成。超声波发射换能器将电能转换为超声波能量,并将其发射到被测流体中,接收器接收到的超声波信号,经电子线路放大并转换为代表流量的电信号供给显示和积算仪表进行显示和积算。这样就实现了流量的检测和显示。 超声波流量计常用压电换能器。它利用压电材料的压电效应,采用适出的发射电路把电能加到发射换能器的压电元件上,使其产生超声波振劝。超声波以某一角度射入流体中传播,然后由接收换能器接收,并经压电元件变为电能,以便检测。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。 超声波流量计换能器的压电元件常做成圆形薄片,沿厚度振动。薄片直径超过厚度的10倍,以保证振动的方向性。压电元件材料多采用锆钛酸铅。为固定压电元件,使超声波以合适的角度射入到流体中,需把元件故人声楔中,构成换能器整体(又称探头)。声楔的材料不仅要求强度高、耐老化,而且要求超声波经声楔后能量损失小即透射系数接近1。常用的声楔材料是有机玻璃,因为它透明,可以观察到声楔中压电元件的组装情况。另外,某些橡胶、塑料及胶木也可作声楔材料。 特点功能 特点 ◆独特的信号数字化处理技术,使仪表测量信号更稳定、抗干扰能力强、计量更准确。 ◆无机械传动部件不容易损坏,免维护,寿命长。 ◆电路更优化、集成度高、功耗低、可靠性高。 ◆智能化标准信号输出,人机界面友好、多种二次信号输出,供您任意选择。 ◆管段式小管径测量经济又方便,测量精度高。 注意事项

YYC 超声波流量计说明书

https://www.sodocs.net/doc/062189654.html, I YYC 超声波流量计型号规格表

https://www.sodocs.net/doc/062189654.html, II 警告 (1)YYC 超声波流量计仅限测量水、海水、污 水、酒精、各种油类等能传导超声波的单 一、均匀、稳定的液体; (2)YYC 超声波流量计必须满管; (3)YYC 超声波流量计禁止用手抓表头进行搬 运。 错误 正确

https://www.sodocs.net/doc/062189654.html, 1 1 产品介绍 YYC 超声波流量计是一种根据声波在流动液体中的传播规律实 现流体流量测量的流量计。近十几年来随着集成电路技术的不断迅 速发展,使得超声波流量计的精度和稳定性有了很大的提高,现已 成为一种高精度、高可靠性、高性能、低功耗、低价格等优点,广 泛被用户所采用。 YYC 超声波流量计在设计上采用了世界上先进的集成电路,实 现了生产过程中元器件参数无调整化,生产工艺既简单又可靠,产 品一致性好,保证每一台出厂的机器都达到最佳性能、最好工作状 态。 YYC 超声波流量计有着广泛的用途,在满足现场监测显示的同 时可输出标准直流电流信号(4~20mA)供记录、调节、控制用,另 外增加了频率输出功能,有效地提高了仪表精度,广泛应用于自来 水、循环水、工业用水,各种燃料油、各种酸碱液溶液、各种化学 容剂等。 所有YYC 超声波流量计均由菜单驱动,输出4~20mA 流量比例 信号并带有RS485通讯接口,以便与计算机进行联网通讯。

2 性能特点 ●导电、非导电及特殊介质测量。 ●高亮度、高清晰度的点阵式液晶显示屏。 ●高精度时间间隔测量(p秒级)。 ●采用EEPROM存储器,测量及运算数据存贮保护安全可靠。 ●年、月、日、时、分、秒时间实时显示。 ●具有RS485接口,完善的Modbus通讯协议。 ●内置热量测量/热量计。 ●内置上电断电记录器。 ●内置数据记录。 ● 20毫秒基本测量周期。 ●对管内流体不产生压力损失,节约能源。 ●嵌入式单片机的采用,提高运算速度。 ●具有掉电检测、数据保护功能,上电即可恢复运行。 ●抗干扰能力强,可在恶劣环境下稳定工作,如:变频器环境能正常工作。 ●探头温度范围普通型 -20℃~120℃,高温型<150℃。 ●输出接口采用防雷保护。 https://www.sodocs.net/doc/062189654.html, 2

超声波流量计技术问题汇总

超声波流量计技术问题汇总 超声波流量计采用时差方式的测量原理,它利用探头发出的超声波在流动着的流体中的传播,顺流方向声波传播速度会增大,逆流方向则减小,在同一传播距离就有不同的传输时间,根据传输速度之差与被测流体流速之间的关系测出流体的流速。 典型时差原理图 ● 什么情况下,采用插入式流量计? 答:1)管道直径较大时; 2)有紧密内衬时; 3)管内结垢严重时; 4)管材为超声波的不良导体时; 5)外夹式探头达不到要求的信号强度或测量不稳定时。 ● 管段式流量计为什么容易保持计量精度? 答:1)机加工定型定位; 2)需输入的参数,均可准确测量; 3)可在流量装置上标定。 ● 为什么时差式超声波流量计在小管径上标定好后无须在大管径上标定? 答:超声波流量计属速度式仪表,它测量的是管道中流体的平均流速V,在仪表中,将V 乘以管道的截面积A, 就得到体积流量Q,即Q=V×A。在超声波流量计的技术指标中,其精度为流速的±0.5%,也说明了这一点,正因为超声波流量计为测速仪表,因此,它在多大规格的管道检定也就不重要了,因为在Q=V×A公式中,A为一个给定值(管道规格),而V 为一个仪表实测值,Q为一个计算量。关于对应的标准,可查阅ISO/TR12765-1998《封闭管道中流体流量测量-采用传播时间超声波流量计测量流量》。 ● 多普勒流量计对气泡、颗粒的含量有什么要求?什么情况下影响测量精度? 答:1)在测量含颗粒的介质时,含气泡量不宜过多,否则影响数据飘且不稳定 2)在运用多普勒原理测量时,被测介质的颗粒或悬浮物必须能代表流体流速,在管道

内能均匀分布,含量或多或少对流量都不会有太大影响。 ● 多普勒流量计能测原油吗? 答:含一定气体或杂质的原油可测。 ● 明渠流量计和不满管流量计的区别是什么? 答:1)明渠测量必须有标准的原始测量装置(如标准槽、堰),根据液位变化计算流量; 2)非满管测量,适用比较广泛,对复杂多变的现场条件适用性比较强,测量时可根据流速及流体流经装置的截面来计算流量; 3)两者测量原理和测量方式都有明显区别。 ● 时差式超声波流量计何时使用动态校零? 答:在现场管道不能停水的情况下,应使用动态校零。 ● 固定式时差流量计如何在现场校正? 答:在现场的固定式时差流量计或批量的情况下,可将一台便携式时差流量计(如DCT-7088)送检通过后,在现场对固定式时差流量计进行校正。 ● 超声波流量计的标定方法是什么? 答: 体积法(容器法)、重量法(称重法)、标准表法 ● 流量计使用一段时间后,发现信号衰减或无信号,什么原因?如何解决? 答:1)耦合剂干涸,失去作用; 2)管内结垢或介质糊住探头; 3)介质含渣、气泡增多; 4)探头位置发生变化; 5)探头与管壁间有气泡或杂物; 6)管衬与管内壁分离; 7) 探头老化; 8)探头电缆接触不良; 以上各项采取相应措施解决。 ● 仪表使用过程中,程序芯片经常坏,是什么原因? 答:仪表接地不良或未接地造成。 ● 流量计为什么会产生流量读数不稳定? 答:1)测量点直管短,不符合测量要求; 2)介质含有气体或杂质且不稳定; 3)仪表故障。

最新超声波流量计说明书

§1.1 引言 (1) §1.2 工作原理 (1) §1.3 主板电气原理框图 (2) §1.4 特点 (2) §1.5 性能参数 (3) §1.6 用途 (4) 二产品介绍 (5) §2.1 变送型超声波流量计/热量计 (5) §2.2 经济型超声波流量变送器 (6) §2.3 超声波流量/热量变送模块 (7) §2.4 固定分体式超声波流量计/热量计 (8) §2.5 一体管段式超声波流量计/热量计 (9) 三本地显示及操作 (11) §3.1 本地段式LCD显示及操作 (11) §3.2 本地LCD显示器显示内容一览表 (12) §3.3 本地显示状态代码及故障判断 (12) 四并口及串口键盘显示及操作 (14) §4.1 并口键盘 (14) §4.2 串口键盘 (14) §4.3 按键功能 (14) §4.4 窗口操作 (14) §4.5 菜单分类 (16) §4.6 菜单一览表 (16) §4.7 菜单窗口详解 (19) §4.8 菜单设置特别说明 (44) 五传感器安装 (46) §5.1 开箱检查 (46) §5.2 供电电源及电缆线 (46) §5.3 安装必备条件 (46) §5.4 快速输入管道参数步骤 (48) §5.5 外缚式传感器的安装方法 (50) §5.6 插入式传感器的安装方法 (52) §5.7 管段式传感器的安装方法 (56) §5.8 用户自备外缚传感器参数及其输入 (59) §5.9 通电 (59) §5.10检查安装 (59) 六热量测量 (61) §6.1概述 (61) §6.2 PT100电阻的接线 (61) §6.3有关温度测量的一些菜单说明 (61) §6.4温度测量子系统的标定 (62) §6.5有关热量测量量值的输出 (63) 七故障解析 (63)

相关主题