搜档网
当前位置:搜档网 › 高中数学-微积分基本定理

高中数学-微积分基本定理

高中数学-微积分基本定理
高中数学-微积分基本定理

高中数学-微积分基本定理

A 级 基础巩固

一、选择题

1.(2018·四平模拟)定积分??0

1x 2-x

d x 的值为( A )

A .π4

B .π2

C .π

D .2π

[解析] ∵y =x

2-x

∴(x -1)2

+y 2

=1表示以(1,0)为圆心,以1为半径的圆, ∴定积分??01x

2-x d x 所围成的面积就是该圆的面积的四分之一, ∴定积分??0

1x 2-x d x =π

4

故选A .

2.(2018·铁东区校级二模)由曲线xy =1与直线y =x ,y =3所围成的封闭图形面积为( D )

A .2-ln3

B .ln3

C .2

D .4-ln3

[解析] 方法一:由xy =1,y =3可得交点坐标为(1

3,3),由xy =1,y =x 可得交点坐

标为(1,1),

由y =x ,y =3可得交点坐标为(3,3),

∴由曲线xy =1,直线y =x ,y =3所围成的平面图形的面积为

???1

3

1

(3-1x )d x +?

?1

3(3-x )d x =(3x -ln x )|1

13+(3x -12x 2)|3

1,

=(3-1-ln3)+(9-92-3+1

2)=4-ln3

故选D .

方法二:由xy =1,y =3可得交点坐标为(1

3,3),

由xy =1,y =x 可得交点坐标为(1,1), 由y =x ,y =3可得交点坐标为(3,3),

对y 积分,则S =?

?0

3(y -1y )dy =(12y 2-lny )|3

1=92-ln3-(12-0)=4-ln3,

故选D .

3.(2018·安庆高二检测)已知函数f (x )=x n

+mx 的导函数f ′(x )=2x +2,则??1

3f (-

x )d x =( D )

A .0

B .3

C .-2

3

D .23

[解析] ∵f (x )=x n

+mx 的导函数f ′(x )=2x +2, ∴nx

n -1

+m =2x +2,

解得n =2,m =2, ∴f (x )=x 2

+2x , ∴f (-x )=x 2-2x ,

∴??1

3f (-x )d x =?

?1

3(x 2-2x )d x =(13x 3-x 2)|3

1=9-9-13+1=23,故选D .

4.函数F (x )=??0

x cos t d t 的导数是( A )

A .f ′(x )=cos x

B .f ′(x )=sin x

C .f ′(x )=-cos x

D .f ′(x )=-sin x

[解析] F (x )=??0

x cos t d t =sin t | x

0=sin x -sin0=sin x .

所以f ′(x )=cos x ,故应选A .

5.(2018·昆明高二检测)若直线l 1:x +ay -1=0与l 2:4x -2y +3=0垂直,则积分??-a

a

(x 3

+sin x -5)d x 的值为( D )

A .6+2sin 2

B .-6-2cos 2

C .20

D .-20

[解析] 由l 1⊥l 2得4-2a =0即a =2,∴原式=

??-22 (x 3+sin x -5)d x =??-22 (x 3+sin x )d x +??-2

2

(-5)d x =0-20=-20. 6.???0

π

3?

????1-2sin 2θ2d θ的值为( D ) A .-

32 B .-12

C .12

D .

32

[解析] ∵1-2sin

2

θ

2

=cos θ,

∴???0 π3? ????1-2sin 2θ2d θ=??

?0

π

3cos θd θ =sin θ????

π3

3

2

,故应选D . 二、填空题

7.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为1

3

[解析] 长方形的面积为S 1=3,S 阴=??0

13x 2

d x =x 3

| 1

0=1,则P =

S 阴

S 1

=13

. 8.已知f (x )=3x 2

+2x +1,若?

?-1

1f (x )d x =2f (a )成立,则a =-1或13.

[解析] 由已知F (x )=x 3+x 2

+x ,F (1)=3,F (-1)=-1, ∴??-1

1f (x )d x =F (1)-F (-1)=4,

∴2f (a )=4,∴f (a )=2.

即3a 2

+2a +1=2.解得a =-1或13.

三、解答题

9.计算下列定积分:

(1)??0

2(4-2x )(4-x 2

)d x; (2)?

?1

2x 2+2x -3

x d x .

[解析] (1)??02(4-2x )(4-x 2)d x =??0

2(16-8x -4x 2+2x 3

)d x

=?

????16x -4x 2-43x 3+12x 4| 20=32-16-323+8=403.

(2)??1

2x 2+2x -3x d x =??1

2?

????x +2-3x d x

=? ??

??12x 2+2x -3ln x | 21=7

2-3ln2.

10.(2017·泉州模拟)已知f (x )=(kx +b )e x

且曲线y =f (x )在x =1处的切线方程为y =e(x -1).

(1)求k 与b 的值; (2)求??0

1x ·e x

d x .

[解析] (1)∵f (x )=(kx +b )e x

, ∴f ′(x )=(kx +k +b )e x

, ∴f ′(1)=e ,f (1)=0, 即???

?

?

2k +b e =e

k +b e =0

解得k =1,b =-1. (2)由(1)知f (x )=(x -1)e x

f ′(x )=x e x ,

∴??0

1(x e x

)d x =(x -1)e x |1

0=0+1=1.

B 级 素养提升

一、选择题

1.(2016·岳阳高二检测)若S 1=??1

2x 2d x ,S 2=??121x

d x ,S 3=??1

2e x

d x ,则S 1,S 2,S 3的大小

关系为( B )

A .S 1

B .S 2

C .S 2

D .S 3

[解析] S 1=?

?1

2x 2d x =x 3

3|2

1=73.

S 2=??1

21

x

d x =ln x |21=ln2-ln1=ln2.

S 3=??1

2e x d x =e x |21=e 2

-e =e(e -1).

∵e>2.7,∴S 3>3>S 1>S 2.故选B .

2.定义在R 上的可导函数y =f (x ),如果存在x 0∈[a ,b ],使得f (x 0)=

??a

b

f x d x b -a

立,则称x 0为函数f (x )在区间[a ,b ]上的“平均值点”,那么函数f (x )=x 3

-3x 在区间[-2,2]上“平均值点”的个数为( C )

A .1

B .2

C .3

D .4

[解析] 由已知得:f (x 0)=

??-2

2

x 3-3x d x 4

?

??? ????14x 4-32x 22-2

4

=0,即x 3

0-3x 0=0,

解得:x 0=0或x 0=±3,∴f (x )的平均值点有3个,故选C .

二、填空题

3.????–π

2

π

2

(x +cos x )d x =2. [解析] ???

?–π

2

π

2

(x +cos x )d x =(12x 2

+sin x ) ?

?

??

π2

-π2

=2.

4.函数y =x 2

与y =kx (k >0)的图象所围成的阴影部分的面积为92

,则k =3.

[解析] 由?????

y =kx ,

y =x 2

解得???

??

x =0,

y =0,

或?????

x =k ,

y =k 2

.

由题意得,?

?0

k (kx -x 2

)d x =(12kx 2-13x 3)|k 0=12k 3-13k 3=16k 3=92,∴k =3.

三、解答题

5.已知f (x )=ax 2

+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0

1f (x )d x =-2,求a 、

b 、

c 的值.

[解析] ∵f (-1)=2,∴a -b +c =2.① 又∵f ′(x )=2ax +b ,∴f ′(0)=b =0② 而??01f (x )d x =??0

1(ax 2

+bx +c )d x ,

取F (x )=13ax 3+12bx 2

+cx ,

则f ′(x )=ax 2

+bx +c ,

∴?

?0

1f (x )d x =F (1)-F (0)=13a +1

2b +c =-2③

解①②③得a =6,b =0,c =-4.

6.如图,直线y =kx 分抛物线y =x -x 2

与x 轴所围成图形为面积相等的两部分,求k 的值.

[解析] 抛物线y =x -x 2

与x 轴两交点的横坐标x 1=0,x 2=1,所以,抛物线与x 轴所围图形的面积

S =??0

1

(x -x 2

)d x =(x 22

-x 3

3

)|10=12-13=16

抛物线y =x -x 2

与直线y =kx 两交点的横坐标为x ′1=0,x ′2=1-k ,所以S

2=?

?0

1-k (x

-x 2

-kx )d x =(1-k 2x 2-x 3

3)|1-k 0=1

6

(1-k )3,

又知S =16,所以(1-k )3

=12.

于是k =1-312=1-34

2

C 级 能力拔高

设f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式.

(2)若直线x =-t (0

[解析] (1)设f (x )=ax 2

+bx +c (a ≠0), 则f ′(x )=2ax +b ,

又已知f ′(x )=2x +2,所以a =1,b =2, 所以f (x )=x 2

+2x +c .

又方程f (x )=0有两个相等实根. 所以判别式Δ=4-4c =0,即c =1.

故f (x )=x 2

+2x +1. (2)依题意有??-1

-t (x 2

+2x +1)d x

=??-t

0(x 2

+2x +1)d x ,

所以? ????13x 3+x 2+x |-t -1=? ??

??13x 3+x 2+x |0

-t

即-13t 3+t 2

-t +13=13t 3-t 2+t .

所以2t 3

-6t 2

+6t -1=0, 所以2(t -1)3

=-1, 所以t =1-

132.

微积分基本定理的证明

理学院 School of Sciences 微积分基本定理的证明 Proof of the fundamental theorem of calculus 学生姓名:张智 学生学号:201001164 所在班级:数学101 所在专业:数学与应用数学 指导老师:杨志林

摘要 微积分学这门学科在数学发展中的地位是十分重要的,自十七世纪以来,微积分不断完善成为一门学科。而微积分基本定理的则是微积分中最重要的定理,它的建立标志着微积分的完成,成为数学发展史的一个里程碑。因此就有了研究微积分基本定理的必要性。本文从十七世纪到二十世纪以来的科学家如巴罗、牛顿、莱布尼兹、柯西、黎曼、勒贝格等人对微积分基本定理的发展所作出的贡献展开论述。并论述了定理在微积分学理论发展中的应用。如换元公式、分部积分公式、Taylor中值定理的积分证明、连续函数的零点定理的证明,建立了微分中值定理与积分中值定理的联系,在一元函数和多元函数上的推广等等。最后给出定理的几个证明方法。 关键词:微积分基本定理,发展史,定理的应用,定理的证明

ABSTRACT Calculus the subject in the position of the development of mathematics is very important,since seventeenth Century,calculus constantly improved as a discipline.While the fundamental theorem of calculus is the most important theorems in calculus,which establishment marks the complete of the calculus, become a milepost of the development history of mathematics. So it is necessary to study the fundamental theorem of calculus. In this paper,since seventeenth Century to twentieth Century,launches the elaboration from scientists such as Barrow, Newton, Leibniz, Cauchy, Riemann, Lebesgue and others on made the contribution to the development of the fundamental theorem of calculus. And discusses the application of theorem in the development of the calculus theory.Such as the transform formula, integral formula of integration by parts, proof of the Taylor mean value theorem of continuous function, the zero point theorem proof, established the differential mean value theorem and the integral mean value theorem in contact,a unary function and multivariate function on the promotion and so on.Finally gave several proofs of the theorem. Keywords:Fundamental Theorem of Calculus,phylogeny,Application,Proof

7.微积分基本定理练习题

7、微积分基本定理 一、选择题 1.??0 1(x 2 +2x )d x 等于( ) A.13 B.23 C .1 D.43 2.∫2π π(sin x -cos x )d x 等于( ) A .-3 B .-2 C .-1 D .0 3.自由落体的速率v =gt ,则落体从t =0到t =t 0所走的路程为( ) A.13gt 20 B .gt 2 0 C.12gt 20 D.16gt 20 4.曲线y =cos x ? ????0≤x ≤3π2与坐标轴所围图形的面积是( ) A .4 B .2 C.5 2 D .3 5.如图,阴影部分的面积是( ) A .2 3 B .2- 3 C.323 D.35 3 6.??0 3|x 2-4|d x =( ) A.213 B.223 C.233 D.25 3 7.??241 x d x 等于( ) A .-2ln2 B .2ln2 C .-ln2 D .ln2 8.若??1a ? ?? ??2x +1x d x =3+ln2,则a 等于( ) A .6 B .4 C .3 D .2 9.(2010·山东理,7)由曲线y =x 2 ,y =x 3 围成的封闭图形面积为( ) A.112 B.14 C.13 D.7 12 10.设f (x )=??? ?? x 2 0≤x <12-x 1

11.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________. 12.一物体沿直线以v =1+t m/s 的速度运动,该物体运动开始后10s 内所经过的路程是________. 13.求曲线y =sin x 与直线x =-π2,x =5 4π,y =0所围图形的面积为________. 14.若a =??02x 2 d x ,b =??02x 3 d x ,c =??0 2sin x d x ,则a 、b 、c 大小关系是________. 三、解答题 15.求下列定积分: ①??0 2(3x 2+4x 3 )d x ; ② sin 2 x 2 d x . 17.求直线y =2x +3与抛物线y =x 2 所围成的图形的面积. 18.(1)已知f (a )=??0 1(2ax 2 -a 2 x )d x ,求f (a )的最大值; (2)已知f (x )=ax 2 +bx +c (a ≠0),且f (-1)=2,f ′(0)=0,??0 1f (x )d x =-2,求a ,b ,c 的值. DBCDCCDDAC 11. 13 12. 23(1132-1) 13.4-2 2 [解析] 所求面积为 =1+2+? ?? ?? 1-22=4-22. 14.[答案] c

微积分基本定理 教案

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基 本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-?? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差

牛顿-莱布尼茨公式的详细证明

牛顿—莱布尼茨公式 前言 此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。 公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。 所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂! (Ps :如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字) 定积分性质的证明 首先给出定积分的定义: 设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n 个区间[a,x 1],[x 1,x 2]…[x n ,x n-1],其中x 0=a ,x n =b ,第i 个小区间?x i = x i -x i-1(i=1,2…n)。 由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为?S i =f(εi ) ?x i ,为此定积分可以归结为一个和式的极 限 即: 性质1:证明?b a c dx = C(b-a),其中C 为常数. 几何上这就是矩形的面积 性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数. 设K(x)=F(x)-G(x) 定义域为K 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞=?=-+-++-=-=-∑?0()()() ()()()()()0()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ?→''=='''∴=-=-=+?-'∴==?Q 1()lim ()n b a n i i i f x dx f x ε→∞==?∑ ?

牛顿-莱布尼茨公式的详细证明

牛顿—莱布尼茨公式 ● 前言 此证明主要是献给那些无论如何,竭斯底里都想知道自已手上这条无与伦比公式背后的秘密的高中生。 公式的证明首先是从定积分的基本性质和相关定理的证明开始,然后给出积分上限函数的定义,最后总揽全局,得出结论。证明过程会尽可能地保持严密,也许你会不太习惯,会觉得多佘,不过在一些条件上如函数f(x),我们是默认可积的。 所有证明过程都是为后续的证明做铺掂的,都是从最低层最简单开始的,所以你绝对,注意,请注意,你是绝对能看懂的,对于寻求真理的人,你值得看懂! (Ps :如果你不太有耐心,我建议你别看了,因为这只会让你吐出垃圾两个字) ● 定积分性质的证明 首先给出定积分的定义: 设函数f(x)在区间[a,b]上连续,我们在区间[a,b]上插入n-1个点分成n 个区间 [a,x 1],[x 1,x 2]…[x n ,x n-1],其中x 0=a ,x n =b ,第i 个小区间?x i = x i -x i-1(i=1,2…n)。 由它的几何意义,我们是用无数个小矩形的面积相加去模拟它的面积,因此任一个小矩形的面积可表示为?S i =f(εi ) ?x i ,为此定积分可以归结为一个和式的极限 即: 性质1:证明?b a c dx = C(b-a),其中C 为常数. 几何上这就是矩形的面积 性质2:F(x)和G(x)为函数z(x)的两个原函数,证明F(x)=G(x)+C,C 为常数. 设K(x)=F(x)-G(x) 定义域为K 1021110()lim ()lim (...)lim ()()n b i i n n a n n i n n f x dx f x c x x x x x x c x x c b a ε-→∞→∞=→∞=?=-+-++-=-=-∑?0()()() ()()()()()0 ()()()lim 0x F x G x z x K x F x G x z x z x K x x K x K x x ?→''=='''∴=-=-=+?-'∴==?Q 1()lim ()n b a n i i i f x dx f x ε→∞==?∑ ?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

微分学的基本定理

微分学的基本定理 【费马(Fermat)定理】 若(i)函数)(x f 在0x 点得某一邻域),(0δx O 内有定义,并且在此邻域内恒有 )(x f )(0x f ≤, 或者)(x f )(0x f ≥; (ii)函数)(x f 在0x 点可导, 则有 0)(0='x f 证明我们对)(x f 的情形给出假设证明.由于假设)(0x f '存在,按定义,也就是 +'f (0x )=-'f (0x )=f '(0x ), 另一方面,由于)(x f )(0x f ≤,所以对(δ+00,x x )内的各点x ,有 ≤--0 0)()(x f x f 0;而对(00,x x δ-)内的各点x ,有 0)()(0 0≥--x f x f .再由极限性质得 )(0x f '=+'f (0x )=lim 0+→o x x ≤--00)()(x x x f x f 0,)(0x f '=-'f (0x )=lim 0 -→o x x 0)()(00≥--x x x f x f .而)(0x f '是一个定数,因此它必须等于零,即)(0x f '=0. 对于)(x f )(0x f ≥的情形,也可相仿证明. 这个定理的几何意义是:如果曲线)(x f y =在0x 点具有极大值(也就是函数)(x f 在0x 点的值不小于)(x f 在0x 点近旁的其他点上的值)或者曲线)(x f y =在0x 点具有极小值(也就是函数)(x f 在0x 点的值不大于)(x f 在0x 点近旁的其他点上的值),并且曲线

)(x f y =在0x 点具有切线l ,那么,费马定理就表明了切线l 必为水平线. 【拉格朗日(Lagrange)中值定理】 这个定理也称为微分学的中值定理,它是微分学中的一个很重要的定理. 若函数)(x f 满足 (i) 在[]b a ,连续;(ii)在(b a ,)可导, 则在(b a ,)内至少存在一点ξ,使 )(ξf '=a b a f b f --)()(.这个定理从几何图形上看是很明显的.画出[]b a ,上的一条曲线)(x f y =,连接A,B 两点,作弦AB,它的斜率是 = ?tan a b a f b f --)()(.下面对此定理给以证明. 证明不妨假设)(x f 在[]b a ,上不恒为常数.因为如果)(x f 恒为常数,则0)(='x f 在(b a ,)上处处成立,这时定理的结论是明显的. 由于)(x f 在[]b a ,连续,由闭区间连续函数的性质,)(x f 必在[]b a ,上达到其最大值M 和最小值m,我们分两种情形来证明. (1)考虑特殊情形,)()(b f a f =.由于)(x f 不恒为常数,所以此时必有M >m,且M 和m 中至少有一个不等式.这时根据闭区间上连续函数的性质,在(b a ,)内至少有一点ξ,使得))(()(m f M f ==ξξ或者,于是对(b a ,)内任一点x ,必有 )) ()()(()(ξξf x f f x f ≥≤或于是由费马定理,即得 0)(='ξf . 而此时0)()(=-a f b f ,这就证明了定理成立. 对于这样特殊情况的中值定理,也叫【罗尔(Rolle)定理】. (2)考虑一般情形,)()(b f a f ≠.此时,作辅助函数[] 1

微积分基本定理说课稿

《微积分基本定理》(说课稿) 一、教材分析 1、教材的地位及作用 我所选用的教材是科学出版社出版的高等教育“十一五”规划教材《经济数学基础》,由宋劲松老师主编。微积分基本定理是第四章第二节内容,本节内容共设计两个课时,这节课的主要内容是微积分基本公式的导出以及用它求定积分。 本节课是学生学习了不定积分和定积分这两个概念后的继续,它不仅揭示了不定积分和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 二、教学目标及重点、难点 1、教学目标 根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下: (1)知识与技能目标:通过本节的学习,使学生了解变上限的定积分的定义及相关定理,掌握牛顿—莱布尼兹公式,通过例题及练习,使学生在增加对牛顿—莱布尼兹公式感性认识的基础上,熟练掌握求定积分的方法,从而能够熟练计算定积分. (2)能力目标:本节所讲数学知识主要是为学生学习专业课做准备。要逐步培养学生具有比较熟练的基本运算能力、提高综合运用所学知识分析和解决实际问题的能力。 (3)德育目标:通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 2、教学重点、难点 根据教材内容特点及教学目标的要求确定本节重点为通过探究变上限定积分与原函数的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分. 根据学生的年龄结构特征和心理认知特点确定本节难点:了解微积分基本定理的含义. ——以学生现有的知识水平对于微积分基本定理的严密证明是存在着一定难度的,而突破难点的关键在于让学生主动去探索,体会微积分基本公式的导出以及利用它来计算简单的定积分,这样才能从真正意义上把握该定理的含义,提高学生的能力,体现学生的主体地位. 三、教法和学法 1、教法: 素质教育理论明确要求:教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高,根据本节的教学内容及教学目标和学生的认识规律,我采用类比、启发、引导、探索式相结合的方法,启发、引导学生积极思考本节课所遇到的问题,引导学生联想旧知识来解决和探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现了学生的主体地位。 2、学法:

§1.6微积分基本定理

1.6微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义 三:教学过程: 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有

()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ=()x a f t dt ?与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ?=0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1.计算下列定积分: (1)2 11dx x ?; (2)3211(2)x dx x -?。 解:(1)因为'1(ln )x x =, 所以22111ln |ln 2ln1ln 2dx x x ==-=?。 (2))因为2''211()2,()x x x x ==-, 所以3332211111(2)2x dx xdx dx x x -=-??? 233111122||(91)(1)33x x =+=-+-=。 练习:计算 120x dx ? 解:由于313 x 是2x 的一个原函数,所以根据牛顿—莱布尼兹公式有

要点讲解:微积分基本定理

1 / 2 1.6 微积分基本定理 自主探究学习 1. 微积分基本定理:如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则()()()b a f x dx F b F a =-?. 2. 定积分的性质:()()()()b c b a a c f x dx f x dx f x dx a c b =+<

微积分基本定理

微积分基本定理(教案)(总4 页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积 分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢? 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-??

《142微积分基本定理》导学案5.doc

《1?4?2微积分基本定理》导学案5 【课标转述】 通过实例,直观了解微积分基本定理的含义。 【学习目标】 1、通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分 2、通过实例体会用微积分基本定理求定积分的方法 【学习过程】 一、复习: 定积分的概念: 用定义计算定积分方法步骤: 二、新课探究: 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较-?般的方法。 变速直线运动中位置函数与速度函数之I、可的联系 设一物体沿直线作变速运动,在时刻t时物体所在位置为s(t),速度为V(t)(v(r)>

I f(x)dx = F(b) — F(ci) J a 若上式成立,我们就找到了用f(力的原函数(即满足^,(劝二广(兀))的数值差 F(b) —F(G)来计算/(x)在[a,b]上的定积分的方法。 注:1、定理如果函数F(X)是⑺小]上的连续函数f(劝的任意一个原函数,则f(x)dx = F(b) — F(a) 2、为了方便起见,还常用尸(兀)『表示F(b)_F(a),即 b > f(x)dx = F(x)^=F(b)-F(a) 该式称之为微积分基本公式或牛顿一莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。它不仅揭示了导数和定积分Z间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。 例1 ?计算下列定积分: ⑵『(2—加 J1 X 解:(1) (2) 例2.计算下列定积分: J。sin AZ Z X J sin AZ Z T, J()sin xdx 由计算结果你能发现什么结论?试利用曲边梯形的血积表示所发现的结论。 解: 可以发现,定积分的值可能取正值也可能取负值,还可能是0: (1 )当对应的曲边梯形位于x轴上方时(图1 ),定积分的值取正值,且等于曲边梯 形的面积;

高中数学16微积分基本定理(教案)

三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 2 1 ()T T v t dt ? 。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1 ()T T v t dt ? =12()()S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算 ()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()()b a f x dx F b F a =-? 证明:因为()x Φ= ()x a f t dt ? 与()F x 都是()f x 的原函数,故 ()F x -()x Φ=C (a x b ≤≤) 其中C 为某一常数。 令x a =得()F a -()a Φ=C ,且()a Φ= ()a a f t dt ? =0 即有C=()F a ,故()F x =()x Φ+()F a ∴ ()x Φ=()F x -()F a =()x a f t dt ? 令x b =,有 ()()()b a f x dx F b F a =-? 此处并不要求学生理解证明的过程 为了方便起见,还常用()|b a F x 表示()()F b F a -,即 ()()|()()b b a a f x dx F x F b F a ==-? 该式称之为微积分基本公式或牛顿—莱布尼兹公式。它指出了求连续函数定积分的一般方法,把求 定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础。因此它在教材中处于极其重要的地位,起到了承上启下的作用,不仅如此,它甚至给微积分学的发展带来了深远的影响,是微积分学中最重要最辉煌的成果。

最新214定积分与微积分的基本定理-副本

214定积分与微积分的基本定理-副本

第十四节定积分与微积分基本定理 [备考方向要明了] 考什么怎么考 1.了解定积分的实际背 景,了解定积分的基本思 想,了解定积分的概念. 2.了解微积分基本定理的含义. 1.考查形式多为选择题或填空题. 2.考查简单定积分的求解.如2012年江西T11等. 3.考查曲边梯形面积的求解.如2012年湖北T3, 山东T15,上海T13等. 4.与几何概型相结合考查.如2012年福建T6等. [归纳·知识整合] 1.定积分 (1)定积分的相关概念 在∫b a f(x)d x中,a,b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)d x叫做被积式. (2)定积分的几何意义 ①当函数f(x)在区间[a,b]上恒为正时,定积分∫b a f(x)d x的几何意义是由直线x=a,x =b(a≠b),y=0和曲线y=f(x)所围成的曲边梯形的面积(左图中阴影部分). ②一般情况下,定积分∫b a f(x)d x的几何意义是介于x轴、曲线f(x)以及直线x=a,x=b 之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数. (3)定积分的基本性质 ①∫b a kf(x)d x=k∫b a f(x)d x. ②∫b a[f1(x)±f2(x)]d x=∫b a f1(x)d x±∫b a f2(x)d x. ③∫b a f(x)d x=∫c a f(x)d x+∫b c f(x)d x.

[探究] 1.若积分变量为t ,则∫b a f (x )d x 与∫b a f (t )d t 是否相等? 提示:相等. 2.一个函数的导数是唯一的,反过来导函数的原函数唯一吗? 提示:一个函数的导数是唯一的,而导函数的原函数则有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算. 3.定积分∫b a [f (x )-g (x )]d x (f (x )>g (x ))的几何意义是什么? 提示:由直线x =a ,x =b 和曲线y =f (x ),y =g (x )所围成的曲边梯形的面积. 2.微积分基本定理 如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么∫b a f (x )d x =F (b )-F (a ), 这个结论叫做微积分基本定理,又叫做牛顿—莱布尼兹公式. 为了方便,常把F (b )-F (a )F (x )|b a ,即 ∫b a f (x )d x =F (x )|b a =F (b )-F (a ). [自测·牛刀小试] 1.∫421x d x 等于( ) A .2ln 2 B .-2ln 2 C .-ln 2 D .ln 2 解析:选D ∫421x d x =ln x |42=ln 4-ln 2=ln 2. 2.(教材习题改编)一质点运动时速度和时间的关系为V (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( ) A.176 B.14 3 C.136 D.116 解析:选A S =∫21(t 2 -t +2)d t = ???? ??13t 3-12t 2+2t 21=176. 3.(教材习题改编)直线x =0,x =2,y =0与曲线y =x 2所围成的曲边梯形的面积为________. 解析:∫20x 2 d x =13x 3 |20=83. 答案:83 4.(教材改编题)∫101-x 2 d x =________.

1-定积分与微积分基本定理(理)含答案版

定积分与微积分基本定理(理) 基础巩固强化 1.求曲线y =x 2与y =x 所围成图形的面积,其中正确的是( ) A .S =??0 1(x 2-x )d x B .S =??0 1(x -x 2)d x C .S =??0 1(y 2-y )d y D .S =??0 1(y - y )d y [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解析] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x 2,故函数y =x 2与y =x 所围成图形的面积S =??0 1(x -x 2)d x . 2.如图,阴影部分面积等于( ) — A .2 3 B .2-3 [答案] C [解析] 图中阴影部分面积为

S =??-3 1 (3-x 2-2x )d x =(3x -13x 3-x 2)|1-3 =32 3. 4-x 2d x =( ) A .4π B .2π C .π [答案] C [解析] 令y =4-x 2,则x 2+y 2=4(y ≥0),由定积分的几何意义知所求积分为图中阴影部分的面积, / ∴S =1 4×π×22=π. 4.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为v 甲和v 乙(如图所示).那么对于图中给定的t 0和t 1,下列判断中一定正确的是( ) A .在t 1时刻,甲车在乙车前面 B .在t 1时刻,甲车在乙车后面 C .在t 0时刻,两车的位置相同 D .t 0时刻后,乙车在甲车前面 [答案] A [解析] 判断甲、乙两车谁在前,谁在后 的问题,实际上是判断在t 0,t 1时刻,甲、乙两车行驶路程的大小问题.根据定积分的几何意义知:车在某段时间内行驶的路程就是该时间段内速度函数的定积分,即速度函数v (t )的图象与t 轴以及时间段围成区域的面积.从图象知:在t 0时刻,v 甲的图象与t 轴和t =0,t =t 0围成区域的面积大于v 乙的图象与t 轴和t =0,t =t 0围成区域的

微积分基本定理教案

微积分基本定理教案 Revised by BLUE on the afternoon of December 12,2020.

微积分基本定理 一:教学目标 知识与技能目标 通过实例,直观了解微积分基本定理的内容,会用牛顿-莱布尼兹公式求简单的定积分 过程与方法 通过实例探求微分与定积分间的关系,体会微积分基本定理的重要意义 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二:教学重难点 重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含 义,并能正确运用基本定理计算简单的定积分。 难点:了解微积分基本定理的含义 三:教学过程: 1、知识链接: 定积分的概念: 用定义计算的步骤: 2、合作探究: ⑴导数与积分的关系; 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。有没有计算定积分的更直接方法,也是比较一般的方法呢 下面以变速直线运动中位置函数与速度函数之间的联系为例: 设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为2 1()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()()S T S T - 而()()S t v t '=。 说出你的发现 ⑵ 微积分基本定理 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()()b a f x dx F b F a =-? 若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 设()()F x f x '=则在[,]a b 上,⊿y=()()F b F a - 将[,]a b 分成n 等份,在第i 个区间[x i-1,x i ]上,记⊿yi=F(x i )-F(x i-1),则 ⊿y=∑⊿y i 如下图,因为⊿h i =f(x i-1) ⊿x 而⊿y i ≈⊿h i 所以 ⊿y ≈∑⊿h i =∑f(x i-1) ⊿x 故 ⊿y=lim ∑⊿h i =∑f(x i-1) ⊿x= ?b a dx x f )( 即?b a dx x f )(=()()F b F a -

数学:1.6 微积分基本定理(教案)

1.6 微积分基本定理 一、教学目标  知识与技能目标  通过实例,直观了解微积分基本定理的含义,会用牛顿-莱布尼兹公式求简单的定积分过程与方法通过实例体会用微积分基本定理求定积分的方法 情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。 二、教学重难点 重点 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分。 难点 了解微积分基本定理的含义  三、教学过程 1、复习: 定积分的概念及用定义计算 2、引入新课 我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为 21()T T v t dt ?。 另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 2 1()T T v t dt ?=12()() S T S T - 而()()S t v t '=。 对于一般函数()f x ,设()()F x f x '=,是否也有 ()()() b a f x dx F b F a =-?若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。 注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则 ()()() b a f x dx F b F a =-?