搜档网
当前位置:搜档网 › 3KW屋顶分布式光伏电站设计方案解析

3KW屋顶分布式光伏电站设计方案解析

3KW屋顶分布式光伏电站设计方案解析
3KW屋顶分布式光伏电站设计方案解析

Xxx市XX镇xx村3.12KWp分布式电站

设计单位: xxxx有限公司

编制时间: 2016年月

目录

1、项目概况................................................ - 2 -

2、设计原则................................................ - 3 -

3、系统设计................................................ - 4 - (一)光伏发电系统简介.................................... - 4 - (二)项目所处地理位置..................................... - 5 - (三)项目地气象数据....................................... - 6 - (四)光伏系统设计......................................... - 8 -

4.1、光伏组件选型....................................... - 8 -

4.2、光伏并网逆变器选型................................. - 9 -

4.3、站址的选择......................................... - 9 -

4.4、光伏最佳方阵倾斜角与方位.......................... - 11 -

4.5、光伏方阵前后最佳间距设计.......................... - 12 -

4.6、光伏方阵串并联设计................................ - 13 -

4.7、电气系统设计...................................... - 13 -

4.8、防雷接地设计...................................... - 14 -

4、财务分析............................................... - 18 -

5、节能减排............................................... - 19 -

6、结论................................................... - 20 -

1、项目概况

光伏发电特指采用光伏组件,将太阳能直接转换为电能的发电系统。它是一种新型的、具有广阔发展前景的发电和能源综合利用方式,它倡导就近发电,就近并网,就近转换的原则,不仅能够有效提高同等规模光伏电站的发电量,同时还有效解决了电力在升压及长途运输中的损耗问题。

分布式光伏发电具有以下特点:

一、是输出功率相对较小。一般而言,一个分布式光伏发电项目的容量在数千瓦以内。与集中式电站不同,光伏电站的大小对发电效率的影响很小,因此对其经济性的影响也很小,小型光伏系统的投资收益率并不会比大型的低。

二、是污染小,环保效益突出。分布式光伏发电项目在发电过程中,没有噪声,也不会对空气和水产生污染。

三、是能够在一定程度上缓解局地的用电紧张状况。但是,分布式光伏发电的能量密度相对较低,每平方米分布式光伏发电系统的功率仅约100瓦,再加上适合安装光伏组件的建筑屋顶面积有限,不能从根本上解决用电紧张问题。

四、是可以发电用电并存。大型地面电站发电是升压接入输电网,仅作为发电电站而运行;而分布式光伏发电是接入配电网,发电用电并存,且要求尽可能地就地消纳。

2、设计原则

(一)合理性

由于分布式光伏发电系统也是属于光伏电站的一种,所以其设计、施工均需满足国标《GB50797-2012光伏发电站设计规范》的要求,将根据其对项目站址选址、太阳能发电系统、电气部分、接入系统进行合理性设计。

(二)安全性

设计的光伏系统需安全可靠,防止意外情况造成的人身意外伤害与公共财产的损失。光伏系统的安装施工纳入建筑设备安装施工组织设计,并制定相应的安装施工方案和特许安全措施;

(三)美观性

对光伏方阵与地面上的土建房屋等进行统一设计,美观大方,实现整体协调。(四)高效性

优化设计方案,尽可能的提高光伏系统的整体发电效率,减少不必要是能耗损失。达到充分利用太阳能、提供最大发电量的目的。

(五)经济性

作为光伏项目,在满足光伏系统外观效果和各项性能指标的前提下,最大限度的优化设计方案,合理选用各种材料,把不必要的浪费消除在设计阶段,降低工程造价,为业主节约投资。

3、系统设计

(一)光伏发电系统简介

分布式光伏发电系统根据系统容量大小划分可分为大型系统与小型系统之分,其中小型系统主要是指容量在KW级别的发电系统,其主要是由太阳能光伏方阵、逆变部分、接地防雷部分、计量装置、保护设备等主要部分组成。其系统工作原理如下:

光伏发电系统在白天太阳照射的情况下,将光伏组件产生的直流电先经由光伏专用线缆送入光伏并网逆变器,将不稳定的直流电转换为稳定的交流电,再经由配电保护设备送入用户侧低压配电网。

本方案屋顶有效面积约30m2,采用260Wp光伏组件12块组成,共计建设3.12KWp屋顶分布式光伏发电系统。系统采用1台3KW光伏逆变器将直流电逆变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,即可送电进入市电网。

(二)项目所处地理位置

本项目所在地红安县位于湖北省东北部大别山南麓,东邻黄冈麻城,西接孝感大悟,南临武汉黄陂,北接河南信阳,县城距省会武汉80公里。地跨东经114°23′—114°49′,北纬30°56′—31°35′之间。全县国土总面积为1796平方公里,辖12个乡镇场,396个行政村,人口66.36万人,其中农村人口52.9万人,城镇人口13.46万。

红安县地势北高南低,海拔高度一般为200米。县东北部为山区,坡度15°—40°,最高点为县北的老君山,海拔840.5米。县境最低处是南部的太平桥镇与新洲县交界的倒水河畔杜家湾,海拔仅30米。红安县南部多丘陵,坡度5°—20°。全县河谷平原少,为半山半丘陵地区。属亚热带季风气候,年平均气温为15.7℃,最高气温为41.5℃,最低气温为-14.5℃。全县无霜期平均为236.4天;全县年平降水量为1116.2毫米,夏季降雨量占年总雨量的一半,年平降雪日为8.3天,年平相对湿度77%,年平均风力3级。年均总日照为1998.8小时,占可照时数45%,属于太阳能资源三类可利用地区。

图:项目所在地卫星区位图

(三)项目地气象数据(美国NASA气象局提供)

(四)光伏系统设计

4.1、光伏组件选型

本项目选用XX公司生产的260P-60多晶硅太阳电池组件产品,额定功率260Wp。其主要性能参数如下表所示:

表1.选用的光伏组件产品参数

电池类型多晶硅太阳电池组件组件最大功率(Wp)260

组件工作电压(V)31.2

组件工作电流(A)8.36

组件开路电压(V)38

组件短路电流(A)8.95

最大功率温度系数Tk(Pm)﹣0.45%/K

开路电压温度系数Tk(V oc)﹣0.35%/K

短路电流温度系数Tk(Isc)﹢0.060%/K

组件尺寸大小(mm)1640×992×35

组件效率(含边框)15.98%

重量(Kg)18

4.2、光伏并网逆变器选型

根据本项目业主为居民分布式,电网入户电压为AC220V,故选用单相光伏逆变器。

其主要性能参数如下表所示:

产品技术参数

最大直流输入功率 3.4KW

最大直流输入电压550V DC

输入电压范围MPPT 70V-550V

MPPT路数1路/1并

单路输入电流13A

额定交流输出功率3KW

额定输出电压220V

电网频率50HZ

交流连接类型单相

MTTP效率99.5%

欧洲加权效率96.5%

4.3、站址的选择

对于居民及家用分布式光伏发电系统而言,其站址一般选在居民屋顶或空旷地面之上,故在此暂不考虑大范围上的自然条件(太阳辐射量、地理位置、交通条件、水源)和接入电网条件(接入点的距离、接入点的间隔等)。

环境影响更能直接影响到居民及家用分布式光伏发电系统的选址,其关键要素如下:

A.有无遮光的障碍物(包括远期与近期的遮挡)

B.盐害、公害的有无

C.冬季的积雪、结冰、雷击等灾害

结论:本案安装在业主屋顶,周围无高大建筑物,在设计布局时无需对此进行阴影分析。

4.4、光伏最佳方阵倾斜角与方位

为了保证本项目收益最大化,并且也为了组件安装简便与效果美观,通过专业光伏模拟软件分析得出,此地的最佳太阳能倾斜角度为26 度,及朝正南向倾斜26度安装。这样可保证系统发电量在全年周期中的最大化。

另考虑到光伏支架强度、系统成本、屋顶面积利用率等因素。在保证系统发电量降低不明显的情况下(降低不超过1%)尽可能降低光伏方阵倾斜角度,以减少受风面做到增加支架强度,减少支架成本、提高有限场地面积的利用率。

经分析得出,本项目建议倾斜角约为17度左右(屋面正南面倾斜角度)。

4.5、光伏方阵前后最佳间距设计

为了追求太阳能发电系统全年的最佳发电量并尽可能的提高屋面利用率,我们在此要求在冬至日(每年的12月22日或12月23日)当天9:00至15:00,光伏方阵列不会互相遮挡,此时的前后间距即为最佳间距。

经专业PV软件模拟可知,光伏方阵倾斜角度17度,组件阵列与阵列间最低点间距保持在5M,冬至日当天9:00至15:00,光伏方阵列基本不会互相遮挡。

4.6、光伏方阵串并联设计

分布式光伏发电系统中太阳能电池组件电路相互串联组成串联支路。串联接线用于提升集电系统直流电压至逆变器电压输入范围,应保证太阳能电池组件在各种太阳辐射照度和各种环境温度工况下都不超出逆变器电压输入范围。

考虑到适用于晶体硅电池的逆变器最大直流电压(最大阵列开路电压)为550V,最大功率电压跟踪范围为70~550V,MPPT路数为1路/1并。

对于本项目选用12块260W多晶硅太阳电池组件,每个太阳电池组件额定工作电压为31.2V,开路电压为38V,串联支路太阳电池数量初步确定为12个。

在环境温度为25±2℃、太阳辐射照度为1000W/m2的额定工况下,12个太阳电池串联的串联支路额定工作电压为374.4V,开路电压456V,均在逆变器允许输入范围内,可确保正常工作。

在工况变化时考虑在平均极端环境温度为-10℃时,太阳能电池组件串的最大功率点工作电压为12×31.2×(0.35%×35+1)=420.3V,满足550V最高满载MPPT点的输入电压要求;在极端最高环境温度为42℃时,太阳能电池组件的工作电压为12×31.2×(-0.35%×17+1)=352.1V,满足70V最低MPPT点的输入电压要求。考虑系统电压线损为2%,可以看出上述方案完全满足使用要求。

经上述校核,确定串联支路太阳电池数量为12。

4.7、电气系统设计

根据光伏组件选型、光伏并网逆变器选型、光伏方阵串并联设计等,结合业主低压接入情况,对本案光伏发电进行电气系统设计,如下图所示:

图:系统电气一次

4.8、防雷接地设计

太阳能光伏并网发电系统的基本组成为:太阳电池方阵、光伏汇流箱、箱变和逆变器等。太阳电池方阵的支架采用金属材料并占用较大空间且一般放置在开阔地,在雷暴发生时,尤其容易受到雷击而毁坏,并且太阳电池组件和逆变器比较昂贵,为避免因雷击和浪涌而造成经济损失,有效的防雷和电涌保护是必不可少的。太阳能光伏并网电站防雷的主要措施有:

外部防雷装置主要是避雷针、避雷带和避雷网等,通过这些装置可以减小雷电流流入建筑物内部产生的空间电磁场,以保护建筑物和构筑物的安全。太阳能光伏发电设备和建筑的接地系统通过镀锌钢相互连接,在焊接处也要进行防腐防锈处理,这样既可以减小总接地电阻又可以通过相互网状交织连接的接地系统可形成一个等电位面,显著减小雷电作用在各地线之间所产生的过电压。水平接地极铺设在至少0.5m 深的土壤中(距离冻土层深0.5m ),使用十字夹相互连接成网格状。同样,在土壤中的连接头必须用耐腐蚀带包裹起来。

针对本案光伏发电系统,防雷设计包括外部防雷装置(接地引下线)和内部防雷装置(浪涌保护),如下图所示:

防雷设计说明:

外部防雷:将露天安装的光伏方阵构件(方阵支架、组件等金属外壳部件)利用接地水平接地极与屋顶原有防雷带有效连接。

内部防雷:将光伏并网逆变器交流输出端,零线、火线与地线之间加装Ⅱ级浪涌保护器,浪涌保护器接地端利用接地水平接地极与接地网(原有或新建)有效连接。

4.9光伏供电系统发电量统计

光伏发电系统的总效率由光伏阵列的效率、光伏逆变器效率、线路效率等组成。光伏发电系统发电量计算公式如下:

发电量

式中:P —方阵总功率;

R —倾斜方阵面上的太阳总辐射量; ηs —光伏系统发电效率。

Ro-标准日照辐射强度,即1KW/m 2。

计算设定:光伏阵列为固定式安装,实际倾角年辐射量为1444kWh/m 2

/年,选用的组件为晶体硅光伏组件,总功率3.12KWp 。

ηs=K1*K2*K3*K4*K5*K6

K1-光电电池运行性能修正系数

K2-灰尘引起光电板透明度的性能修正系数 K3-光电电池升温导致功率下降修正系数 K4-导电损耗修正系数 K5-逆变器效率

K6-山区雾气消减修正系数

系统效率计算: 参数 K1 K2

K3

K4

K5

K6

ηs=K1*K2*K3*K4*K5*K6

数值

0.96

0.94 0.95 0.98 0.965 0.94

76.21%

初始年(投运第一年)发电量计算:

Q =P ×R ×ηs/R 0=3.12KWp ×1444kWh/m2/D ×76.21%/1KW/m2=3433KWH

R s R P Q η??=

考虑到光伏组件功率的衰减,未来25年发电量预计:

25年平均发电量计算:3123KWH20年平均发电量计算:3184KWH 25年累计发电量:78075KWH20年累计发电量:63690KWH

4、财务分析

财务评价的主要依据有:

(1)《建设项目经济评价方法与参数(第三版)》(国家发改委和建设部2006年7月颁发)、《国务院关于固定资产投资项目试行资本金制度的通知》,以及国家现行的有

关政策;

(2)湖北省相关政策;

(3)国家现行贷款利率、有关财税制度及规定。

本工程静态总投资2.81万元,计算期20年,其中建设期1个月,运行期20年。

资本金比例为100%本金,计算基准年为第一年,基准点为第一年年初。折旧年限为20

年,残值率为5%。

本次财务评价中其它参数,参照国家相关财务规定或行业规范取值。

财务指标汇总表(100%本金)

序号项目单位原始数据序号项目单位原始数据

1 装机容量KWp 3.1

2 11 电站定员人/

2 实施周期月 1 12 人工工资福利元/年/

3 运营期年20 13 20年总发电量KWH 63690

4 折旧年限年20 14 单位造价元/W 9

5 残存率% 5 15 发电自发自用比例% 70%

6 增值税% 0 16 发电上网比例% 30%

7 所得税% 0 17 屋顶租赁费用元/年无

8 国家上网电价元/KWH 0.42 18 湖北省发电补贴元/KWH 0.25

9 国家补贴年限年20 19 湖北省发电补贴年限年 5

10 组件年衰减率% 0.8 20 湖北省脱硫电价元/KWH 0.3981

主要经济指标汇总表

序号项目单位指标

1 装机容量KWP 3.12

2 20年总发电量KWH 63690

3 静态总投资万元 2.81

4 借贷资金万元无

5 自用部分售电收入万元 4.7

6 余额上网部分售电收入万元 1.69

7 20年总发电收入万元 6.39

8 国家发电补贴元/KWH 0.42(20年)

9 湖北省发电补贴元/KWH 0.25(5年)

10 业主自用加权电价元/KWH 0.567

11 发电净利润总额万元 3.58

12 内部收益率% 6.37

13 投资回收期限年7.76

注:对于居民小型分布式发电,国家采取免收增值税的优惠政策。

本项目总装机容量3.12KWp,20年累计发电量63690KWH,采取自发自用余电上网模式,自用电比例为70%。资本金内部收益率为6.37%,投资回收期限7.76年。

5、节能减排

本项目建成后,3.12KW光伏电站年发电量3123kwh(25年计算),平均每千瓦时(即每度)火力供电需煤耗为350g标准煤(理论值)计算,节能减排如下表所示:

单位发电量减少排放量单位换算数值年发电量

(kwh)

单位1年减排25年减排

替代标准煤(2007)kgce/kwh 0.35

3123 tce 1.09 27.33

单位发电量废水排放量kg/kwh 1 t 3.12 78.08 单位发电量烟尘排放量g/kwh 3.35 t 0.01 0.26 减少CO2 g/kwh 859.845 t 2.69 67.13

减少SO2 g/kwh 8.03 t 0.03 0.63

减少NOx g/kwh 6.9 t 0.02 0.54

6、结论

3KW屋顶分布式光伏扶贫项目总投资2.81万元,年发电量约3184度,年创收约0.32万元。

因此,本项目不仅具有投资收益稳定、节能减排效果好的优点,更能有效解决贫困人口实际收入问题,真正实现精准脱贫。

屋顶分布式光伏电站设计及施工方案范本

屋顶分布式光伏电站设计及施工方案

设 计 方 案 恒阳 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充分,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充分,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。

结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害 本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009- 中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心

3KW屋顶分布式光伏电站设计方案解析

Xxx市XX镇xx村3.12KWp分布式电站 设 计 方 案 设计单位: xxxx有限公司 编制时间: 2016年月

目录 1、项目概况................................................ - 2 - 2、设计原则................................................ - 3 - 3、系统设计................................................ - 4 - (一)光伏发电系统简介.................................... - 4 - (二)项目所处地理位置..................................... - 5 - (三)项目地气象数据....................................... - 6 - (四)光伏系统设计......................................... - 8 - 4.1、光伏组件选型....................................... - 8 - 4.2、光伏并网逆变器选型................................. - 9 - 4.3、站址的选择......................................... - 9 - 4.4、光伏最佳方阵倾斜角与方位.......................... - 11 - 4.5、光伏方阵前后最佳间距设计.......................... - 12 - 4.6、光伏方阵串并联设计................................ - 13 - 4.7、电气系统设计...................................... - 13 - 4.8、防雷接地设计...................................... - 14 - 4、财务分析............................................... - 18 - 5、节能减排............................................... - 19 - 6、结论................................................... - 20 -

屋顶光伏电站的若干技术问题及解决方案

第 12 届中国光伏大会暨国际光伏展览会论文(光伏系统及工程、系统部件及并网技术)
屋顶光伏电站 屋顶光伏电站的 光伏电站的若干技术问题及解决方案 若干技术问题及解决方案
刘敬伟 赵鹏 郑平 宋行宾 韩晓艳 崔明
北京京东方能源科技有限公司 100015
摘要: 摘要:
目前屋顶光伏电站存在很多技术难点(如屋顶建筑结构的适应性问题、电站设计的优化 问题、电能的安全质量问题等),从实践出发,通过自主研究,针对性提出了有效解决方案。 通过采用多样化安装设计方案, 满足了各类屋顶光伏电站建设要求; 基于自主搭建的国内首 个“光伏发电实证性测试研究平台”,开展对效率优化方案的多角度研究,以提升光伏电站 性价比;并与清华大学开展产学研合作,在降低谐波、防范孤岛效应等方面取得较好成绩, 保障了电能的质量和安全。
关键词 关键词:屋顶光伏电站、建筑结构、电站优化、安全质量、整体解决方案
1 引言
能源匮乏和环境污染已经成为限制当今 世界可持续发展的瓶颈,也是事关我国发展 的战略核心和提高综合国力的关键。当前, 以石油、煤和天然气等为主的化石燃料因储 量有限和不可再生,无法满足日益增长的人 类社会发展对能源的需求,同时这些化石能 源的燃烧排放出大量的温室气体CO2、并造 成严重的环境污染。太阳能发电是一种可再 生的环保发电方式,既可以获得源源不断的 能源供给,又不会产生环境污染和导致温室 效应,因而太阳能光伏发电作为一种可再生 的清洁能源将是人类可持续发展的必然选 择。 并网光伏电站是太阳能利用的主要形式 之一,可分为屋顶和地面光伏电站。从技术 角度上分析,屋顶光伏电站的优势明显:并 网点靠近用户侧,可实现即发即用,避免了 远距离传输的损耗和电网建造等问题;电站 使用的场地为闲置的屋顶,不占用额外的土 地资源;电站建设的规模较小且相对分散,
其不稳定性对于电网的冲击相对比较小;光 伏发电的发电时间基本上是电网的峰值用电 时间, 能起到很好的“削峰填谷”的作用, 有利 于减轻电网的负担。 屋顶光伏电站是未来重要的一个发展方 向。2011年,全球屋顶光伏电站装机容量约 占光伏总装机容量的70%[1] ,一直以来,欧 美等国家始终将扶持的重点放在屋顶光伏电 站项目上,德国和意大利总装机容量的80% 来自屋顶电站;日本政府近年来推出了“太阳 能屋顶计划”, 其2011年屋顶电站装机量达70 %;而这一比例在法国更是达到了90%;美 国政府通过 2010 年的 “ 千万太阳能屋顶 ” 计 划,不断扩大其屋顶光伏电站的市场规模, 预计 2030 年其屋顶光伏电站安装量将达到 200GW。 而在国内, 自2009年以来, 财政部、 发改委等陆续推出“太阳能屋顶计划”和“金太 阳”示范工程,不断推广国内屋顶太阳能的示 范应用,预计2015年分布式光伏电站规模将 达 10GW [2] ,其中屋顶光伏电站为其主要形 式。

屋顶分布式光伏发电项目合作合同协议书范本 标准版

编号:_____________屋顶分布式光伏发电项目合作协议 甲方:________________________________________________ 乙方:___________________________ 签订日期:_______年______月______日

甲方: 乙方: 1. 总则 有限公司(以下简称甲方)与公司(以下简称乙方)为响应国家能源战略,有效利用闲置屋顶资源促进光伏发电应用,减少输电损耗和建筑物能耗,改善生态环境,提升企业绿色低碳、节能环保的综合品牌形象,创造良好的环境、社会和经济效益,双方本着长期合作、互利共赢的原则,根据《合同法》,经友好协商,订立本协议,供双方恪守。 本项目所涉太阳能光伏发电设备系统及项目工程建设全部由乙方投资,建成后由乙方负责运营、管理和维护,设备系统所有权属为乙方。甲方为乙方提供项目建设所需的甲方厂房屋顶使用权及项目建设所需的管线通道,并积极配合乙方办理项目建设所需的相关手续,甲方以屋顶出租方式分享本项目投资效益。 2. 项目的名称、内容和目的 2.1 项目名称:公司屋顶分布式光伏发电项目(简称“项目”); 2.2 项目内容:在甲方在漳州市镇所属厂房建筑屋顶,建设并网光伏发电系统,屋顶面积约万m2,规划装机容量为MWp; 2.3 项目目的:实现光电转换,降低能源消耗。 3. 合作期限 本协议期限自本协议签署之日起至光伏电站建设完成验收并网发电之日的后25周年。 4. 租金和租期 以下两种方案供甲方选择其中一种: 方案一:本项目验收并网发电之日起计算租金,按光伏组件的实际占用屋顶面积每年元/m2,租期25年,每年乙方向甲方缴纳一次租金。

分布式光伏屋顶租赁协议

合同编号: 光伏发电项目 屋顶租赁合同甲方(屋顶业主): 乙方(项目单位): 签约时间:年月日 签约地点:

经甲乙双方友好协商一致,双方同意签订光伏发电项目屋顶租赁合同。 基于诚实守信和公平交易原则,合同双方签字盖章如下: 甲方: 地址: 邮编: 传真: 电话: 法定代表人: 授权代表:___________________________ 日期: 乙方: 地址: 传真: 电话: 法定代表人: 授权代表:___________________________ 日期:

目录 第1节总则 (4) 第2节项目主要内容 (4) 第3节项目实施期限 (5) 第4节项目方案设计实施和项目的验收 (5) 第5节节能效益分享方式 (5) 第6节甲方的权利和义务 (7) 第7节乙方的权利和义务 (8) 第8节项目的更改 (10) 第9节资产所有权以及风险责任 (11) 第10节违约责任 (11) 第11节不可抗力 (10) 第12节合同解除 (12) 第13节其它 (13) 第14节争议的解决 (13) 第15节保密条款 (13) 第16节合同的生效及其他 (15)

第1节总则 1.1 在真实充分地表达各自意愿的基础上,根据《中华人民共和国合同法》及其他相关法律法规的规定,就乙方在甲方屋顶建设光伏发电项目(以下简称“本项目”或“项目”)签订本合同。 1.2 鉴于本项目的实际情况,双方同意由乙方在甲方的厂房屋顶投资建设本项目,乙方向甲方租赁屋顶供项目使用。乙方支付租金给甲方作为甲方的收益。 第2节项目主要内容 2.1 项目名称:光伏发电项目。 2.2 甲方同意乙方在其厂房屋顶上建设本项目,乙方负责该项目的建设和运营,本项目所生产的电力由乙方负责与当地电力公司结算,收益归乙方所有。 2.3项目主要技术方案:乙方向甲方租赁屋顶面积约平方米作为项目建设场地。乙方在该屋顶上投资建设符合电力部门高压并网发电标准(详见附件:供电部门的《电网接入批复》),且符合屋顶荷载的(详见附件:设计院提供的《承载设计报告》),光伏电站建设规模以省市发改委签发《光伏电站备函文件》所示的实际装机容量为准。 2.4 项目建设方案 2.4.1 乙方负责该项目的所有投资,完成电站设计、施工、建设;负责项目的运营、管理、维护以及过程中发生的所有费用。 2.4.2鉴于此项目的投资建设单位为乙方,经甲乙双方同意,项目租赁期为自年月日至年月日终止。租赁期届满后甲乙双方同意自动续协5年,续协期间本协议其他条件不变。本项目所涉乙方采购并安装的设备、设施和仪器等固定资产(简称“项目

屋顶光伏发电施工方案

屋顶光伏发电施工方案 安装屋顶光伏发电屋顶类型: 一般情况下分为水平屋顶和斜屋顶,水平屋顶即屋顶是平面的,主要以水泥屋顶为主。斜屋顶包括彩钢斜屋顶和陶瓦屋顶。若以地区划分的话,南方一般以角度大的斜屋顶资源为主;中部地区兼有,而东北地区则大部分是陶瓦屋顶资源。 日常用电单位为千瓦时,安装洛阳智凯太阳能光伏发电系统通常以功率单位千瓦来计算。安装设备位置主要以向阳面为主,根据面积可测算安装的光伏发电系统大小,详细参考如下表: 各类屋顶光伏发电施工方案: 1)水平屋顶:在水平屋顶上,光伏阵列可以按最佳角度安装,从而获得最大发电量;并且可采用常规晶硅光伏组件,减少组件投资成本,往往经济性相对较好。但是这种安装方式的美观性一般。 2)倾斜屋顶:在北半球,向正南、东南、西南、正东或正西倾斜的屋顶均可以用于安装光伏阵列。在正南向的倾斜屋顶上,可以按照最佳角度或接近最佳角度安装,从而获得较大发电量;可以采用常规的晶体硅光伏组件,性能好、成本低,因此也有较好经济性。并且与建筑物功能不发生冲突,可与屋顶紧密结合,美观性较好。其它朝向(偏正南)屋顶的发电性能次之。 3)光伏采光顶:指以透明光伏电池作为采光顶的建筑构件,美观性很好,并且满足透光的需要。但是光伏采光顶需要透明组件,组件效率较低;除发电和透明外,采光顶构件要满足一定的力学、美学、结构连接等建筑方面要求,组件成本高;发电成本高;为建筑提升社会价值,带来绿色概念的效果。 立面安装、侧立面安装形式主要指在建筑物南墙、(针对北半球)东墙、西

墙上安装光伏组件的方式。对于多、高层建筑来说,墙体是与太阳光接触面积最大的外表面,光伏幕墙垂直光伏幕墙是使用的较为普遍的一种应用形式。根据设计需要,可以用透明、半透明和普通的透明玻璃结合使用,创造出不同的建筑立面和室内光影效果。 双层光伏幕墙、点支式光伏幕墙和单兀式光伏幕墙是目前光伏幕墙安装中比较普遍的形式。目前用于幕墙安装的组件成本较高,光伏系统工程进度受建筑总体进度制约,并且由于光伏阵列偏离最佳安装角度,输出功率偏低。除了光伏玻璃幕墙以外,光伏外墙、光伏遮阳蓬等也可以进行建筑立面安装。 因每一个用户住宅都是不一样的结构,需要通过专业的场地分析、设备选择和业主的需求设计一套符合业主的发电需求、资金预算、房屋结构的系统施工方案。

屋顶分布式光伏电站施工组织设计

目录 一、工程概况---------------------------------------------------------------2 二、编制依据 ---------------------------------------------------------------2 三、工期质量目标 -----------------------------------------------------------2 四、施工准备 ---------------------------------------------------------------2 五、项目管理组织机构 -------------------------------------------------------3 六、主要分部、分项工程施工方案---------------------------------------------7 七、资源配备计划及质量控制措施--------------------------------------------17 八、工期保证措施----------------------------------------------------------19 九、确保工程质量得技术组织措施--------------------------------------------21 十、成品保护--------------------------------------------------------------26 十一、季节性施工措施 ------------------------------------------------------27 十二、现场文明施工管理措施------------------------------------------------28 十三、专项施工方案--------------------------------------------------------38 十四、施工总平面图--------------------------------------------------------47

某公司厂房屋顶分布式光伏发电项目申请报告(DOC 127页)【全实用资料】

潍坊泰盈家纺有限公司厂房屋顶分布式 0.15MW光伏发电项目 项目申请报告 有限公司 二〇一六年十二月

目录 第一章申报单位及项目概况 (4) 第一节项目申报单位概况 (4) 第二节项目申请报告编制单位 (5) 第三节项目概况 (6) 第四节项目提出的背景 (9) 第五节项目建设必要性及可行性 (13) 第六节建设条件 (17) 第七节工程技术方案 (44) 第九节总图运输 (72) 第十节配套的公用辅助工程 (74) 第十一节职业安全与卫生 (76) 第十二节企业组织与劳动定员 (79) 第十三节项目实施计划与工程管理 (80) 第十四节投资估算 (86) 第十五节资金筹措 (87) 第二章发展规划、产业政策和行业准入分析 (88) 第二章发展规划、产业政策和行业准入分析 (88) 第一节发展规划分析 (88) 第二节产业政策分析 (92) 第三节行业准入分析 (93) 第三章资源开发及综合利用分析 (95) 第四章节能方案分析 (96) 第一节用能标准和节能规范 (96) 第二节能耗状况和能耗指标分析 (97) 第三节节能措施和节能效果分析 (98) 第四节节能结论分析 (99)

第五章建设用地和征地拆迁分析 (100) 第一节项目选址及用地方案 (100) 第二节征地拆迁和移民安置规划方案 (100) 第六章环境和生态影响分析 (101) 第一节设计依据及标准 (101) 第二节周围环境质量现状 (101) 第三节施工期环境影响及治理措施 (101) 第四节运营期环境影响及治理措施 (103) 第五节生态环境影响分析 (104) 第七章经济影响分析 (105) 第一节经济效益分析 (105) 第二节行业影响分析 (108) 第八章社会影响分析 (110) 第一节社会效益分析 (110) 第二节社会风险及对策分析 (111) 第九章结论和建议 (115) 第一节结论 (115) 第二节建议 (115) 附件附图

屋顶光伏电站项目可行性研究报告

**13.92MWp屋顶光伏电站项目可行性研究报告

目录 第一章项目建设单位及项目概况 (1) 第一节项目建设单位概况 (2) 第二节项目概况 (2) 一、项目建设背景 (2) 二、区域太阳能资源概况 (3) 三、建设地点和用地面积 (3) 四、建设区域电网情况 (4) 五、主要技术方案 (4) 六、各区域安装量 (5) 七、投资规模及资金筹措方案 (8) 八、财务评价 (8) 第三节项目建设意义 (9) 第二章发展规划、产业政策和行业准入 (11) 第一节发展规划分析 (11) 一、中华人民共和国可再生能源法 (11) 二、可再生能源产业发展指导目录 (12) 三、可再生能源中长期发展规划 (12) 四、资金扶持相关规定 (13) 第二节产业政策分析 (13) 第三节行业准入分析 (14) 第三章光伏发电产业市场状况及运营模式 (14) 第一节光伏发电产业现状及市场情况 (14) 一、全球光伏发电系统装机容量快速增长 (14) 二、国内光伏发电产业现状 (15) 三、未来光伏发电市场预测 (17) 第二节建设及运营模式 (18) 第四章项目建设地太阳能资源分析 (18) 第一节我国太阳能资源分布 (18) 第二节**省太阳能资源分布特点 (20) 第三节**市太阳能资源分布 (21) 第五章项目建设基础条件 (23)

第六章项目方案 (25) 第一节项目工程方案 (25) 一、屋面基础处理及支架安装工程 (25) 二、太阳能电池组件设备安装 (25) 三、电气设备安装 (25) 四、劳动安全与工业卫生 (26) 第二节项目技术方案 (26) 一、建筑维护结构体系 (26) 二、光伏发电系统技术设计方案 (27) 第三节发电量测算 (46) 一、并网光伏系统转换效率计算 (46) 二、项目发电量计算 (47) 第四节项目建设实施方案 (48) 第七章项目总体目标及进度计划 (48) 第八章节能分析 (50) 第一节用能标准和节能规范 (50) 一、相关法律法规、规划和产业政策 (50) 二、合理用能标准和节能规范 (50) 第二节能源消耗状况 (51) 一、建筑耗能 (51) 二、水资源消耗 (51) 三、柴油损耗 (51) 第三节节能措施和节能效果分析 (51) 一、系统节能 (51) 二、水资源节约 (52) 三、节能管理 (52) 第四节节能效益 (52) 第九章环境影响分析 (53) 第一节环境影响 (53) 一、工程施工期对环境的影响 (53) 二、运行期的环境影响 (54) 三、光污染及防治措施 (55) 第二节环境效益 (55) 第十章经济影响分析 (56)

2018分布式光伏发电工厂厂房屋顶租赁合同

编号: _________________ 工厂厂房屋顶租赁合同 甲方:____________________________________ 乙方:____________________________________ 签订日期:_________ 年_______ 月_______ 日 甲方: 乙方: 根据《中华人民共和国合同法》及相关法律规定,为明确甲、乙双方的权利、义务,经双方在平 等、自愿的基础上,就_____________________ 分布式太阳能光伏并网发电站项目合作事宜协商,签订本

协议。 一、项目建设所需资金:由乙方自筹解决。 二、由乙方负责项目融资、设计、施工、验收、运营、维护、收益、处置,项目产权归乙方所有。 三、屋顶租赁:经协商,乙方租用甲方屋顶建设项目,采用分块发电,电站所产生的电能以用户 侧并网,供甲方优先使用,甲方按照市场工业用电价格月结算费用、余电上网模式。租赁期限为 ______ 年,自__________________ 起,至_________________ 。租赁满__________ 年后,光伏电站归甲方所有, 其节能效益全部由甲方受益,具体操作如下: 1、甲方固定租赁费用:自光伏电站验收投入运行之日起20年内,按照__________ 元/平方/月X实 际租赁面积,每月一结算。 2、乙方发电收益计算公式为:电价X光伏电站发电甲方用量-固定租赁费+光伏余电上网电价 X余电上网电量,甲方用电电价按照当地电网工业用电峰段价格确定。 四、各方责任: 1、甲方责任: (1)、积极配合乙方完成项目验收所需工作; (2)、保证优先使用项目运行后所发电力,按月支付电费给乙方; (3)、在项目建设和电站运营过程中,为加快项目进度,提高效率,全力配合乙方工作,提供 便利; (4)、在项目运行期内,确保电站不被人为破坏、受损或盗窃。如果上述情况发生,将承担维 修职责或费用; (5)、全面配合乙方申请国家各级政府的政策支持。 2、乙方责任: (1)、负责项目建设所需资金的筹集; (2)、负责项目设计、施工、验收和维护; (3)、每月根据甲方所支付的电费,开具普通发票给甲方; (4)、屋面电站维护以及因屋面电站原因导致的建筑物屋面防水维护:在产权转移前( _______ 年)由乙方负责并承担相关费用;产权转移后( 20年后)由甲方负责并承担相关费用。

屋顶分布式光伏电站设计及施工方案

设计方案 恒阳2017年 6 月

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32 ‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充足,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充足,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡/cm^2。属于太阳能资源三类可利用地区。 结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害

本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设6.44KWp 屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V 交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009-2012中,对于屋顶活荷载的要求,方阵基础采用 C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心间距0.5m 。每横排之间间距为0.5m,便于组件后期的安装和维护。方便根据实际需要设计安装角度。

屋顶分布式光伏电站设计及施工方案

1、项目概况 一、项目选址 本项目处于山东省聊城市,位于北纬35°47’~37°02’和东经115°16’~116°32‘之间。地处黄河冲击平原,地势西南高、东北低。平均坡降约1/7500,海拔高度27.5-49.0米。属于温带季风气候区,具有显著的季节变化和季风气候特征,属半干旱大陆性气候。年干燥度为1.7-1.9。春季干旱多风,回暖迅速,光照充足,太阳辐射强;夏季高温多雨,雨热同季;秋季天高气爽,气温下降快,太阳辐射减弱。年平均气温为13.1℃。全年≥0℃积温4884—5001℃,全年≥10℃积温4404—4524℃,热量差异较小,无霜期平均为193—201天。年平均降水量578.4毫米,最多年降水量为1004.7毫米,最少年降水量为187.2毫米。全年降水近70%集中在夏季,秋季雨量多于春季,春季干旱发生频繁,冬季降水最少,只占全年的3%左右。光资源比较充足,年平均日照时数为2567小时,年太阳总辐射为120.1—127.1千卡/cm^2,有效辐射为58.9—62.3千卡 /cm^2。属于太阳能资源三类可利用地区。 结合当地自然条件,根据公司要求的勘察单选定站址,并充分考虑了以下关键要素: 1、有无遮光的障碍物(包括远期与近期的遮挡) 2、大风、冬季的积雪、结冰、雷击等灾害

本方案屋顶有效面积60m2,采用260Wp光伏组件24块组成,共计建设 6.44KWp屋顶分布式光伏发电系统。系统采用1台6KW光伏逆变器将直流电变为220V交流电,接入220V线路送入户业主原有室内进户配电箱,再经由220V线路与业主室内低压配电网进行连接,送入电网。房屋周围无高大建筑物,在设计时未对此进行阴影分析。 2、配重结构设计 根据最新的建筑结构荷载规范GB5009-2012中,对于屋顶活荷载的要求,方阵基础采用C30混凝土现浇,预埋安装地角螺栓,前后排水泥基础中心间距0.5m 。每横排之间间距为0.5m,便于组件后期的安装和维护。方便根据实际需要设计安装角度。

屋顶分布式光伏发电站可研报告

XX省XX市高新技术开发区XX产业园屋顶分布式光伏发电站项目 可 行 性 研 究 报 告

XXXX新能源有限公司 二零一六年十月XX 目录 一、项目名称 (1) 二、地理位置 (1) 三、太阳能资源 (1) 四、工程地质 (2) 五、区域经济发展概况 (2) 六、工程规模及发电量 (2) 七、光伏系统设计方案 (3) 八、光伏阵列设计及布置方案 (3) 九、电力接入系统方案 (3) 十、监控及保护系统 (3) 十一、消防设计 (4)

十二、土建工程 (4) 十三、工程管理设计 (4) 十四、环境保护与水土保持设计 (4) 十五、劳动安全与工业卫生 (5) 十六、节能降耗分析 (5) 十七、工程设计概算 (6) 十八、财务评价与社会效果分析 (6) 十九、结论 (7) 二十、建议 (8) 二十一、工程任务 (8) 二十二、工程建设必要性 (8)

一、项目名称 工程名称:XX省XX市高新技术开发区XX产业园屋顶分布式光伏发电站项目,以下简称本项目。 二、地理位置 XX市,为XX省地级市,位于江西省东部偏北,信江中下游。地处北纬27°35ˊ~28°41ˊ、东经116°41ˊ~117°30ˊ,面向珠江、长江、闽南三个“三角洲”,珠三角经济区和海西经济区在中部的最大最近的共同腹地,是X东北承接东南沿海产业转移第一城。是内地连接东南沿海的重要通道之一。全市总面积3556.7平方千米,辖区总人口113.4万人(2011),其中城镇常住人口56.1万人。是国家铜冶炼基地、全国商品粮基地、江西省重点产材基地、长江防护林基地、国家贮备粮基地。 本项目站址位于XX省XX市高新技术开发区XX产业园,东经116.87°,北纬28.19°。拟利用园区内厂房屋面架设支架建设光伏电站。业主提供可利用屋面面积约为35hm2,规划容量为30MWp。项目由XXXX新能源有限公司投资建设,项目资本金20%,银行贷款80%。 三、太阳能资源 XX市属中亚热带湿润季风温和气候,其特点是四季分明,气温偏高,光照充足,雨量丰沛,无霜期长。多年平均气温18.4℃,1月平均气温5.8℃,极端最低气温-10.4℃(1991年12月29日);7月平均气温29.7℃,极端最高气温41.0℃(1991年7月23日)。最低月均气温3.3℃,最高月均气温34.9℃。平均气温年较差23.3℃,最大日较差29.7℃(2007年3月21日)。生长期年平均317天,无霜期年平均267天,最长达317天,最短为240天。年平均日照时数1749.9小时,年总辐射108.5千卡/平方厘米。年平均降水量1881.8毫米,年平均降雨日数为187.7天,最多达215天(1985年),最少为135天(1978年)。极端年最大雨量2768.2毫米(1998年),极端年最少雨量1255.0毫米(1978年)。降雨集中在每年4月至6月,6月最多。由于XX市气象站暂无太阳能辐射数据,因此本次以XX站为参证站,利用收集到的气象数据推算XX站的辐射

家庭分布式光伏典型设计方案

家庭分布式光伏典型设计方案 家庭屋顶一般采用瓦片结构和水泥结构,安装方在推销光伏或者接到用户申请时,要去现场考察,因为并不是每家屋顶都适合安装光伏。 1、选择合适的安装场地 首先要确定屋顶的承载量能不能达到要求,太阳能电站设备对屋顶的承载要求大于30kg/平米,一般近5年建的水泥结构的房屋都可以满足要求,而有10年以上的砖瓦结构的房屋就要仔细考察了;其次要看周边有没有阴影遮挡,即使是很少的阴影也会影响发电量,如热水器,电线杆,高大树木等,公路旁边以及房屋周边工厂有排放灰尘的,组件会脏污,影响发电量;最后要看屋顶朝向和倾斜角度,组件朝南并在最佳倾斜角度时发电量最高,如果朝北则会损失很多发电量。遇到不适合装光伏的要果断拒绝,遇到影响发电量的需要和业主实事求是讲清楚,以免后续有纠份。 2、选择合适的光伏组件 光伏组件有多晶硅,单晶硅,薄膜三种技术路线,各种技术都有优点和缺点,在同等条件下,光伏系统的效率只和组件的标称功率有关,和组件的效率没有直接关系,组件技术成熟,国内一线和二线品牌的组件生产厂家质量都比较可靠,客户需要选择从可靠的渠道去购买。光伏组件有60片电池和72片电池两种,分布式光伏一般规模小,安装难度大,所以推荐用60片电池的组件,尺寸小重量轻安装方便。

按照市场规律,每一年都会有一种功率的组件出货量特别大,业内称为主流组件,组件的效率每一年都在增加,2017年是多晶265W,单晶275W,这种型号性价比最高,也比较容易买到,到2018年预计是多晶270W,单晶280W性价比最高。 3、选择合适的支架 根据屋顶的情况,可以选择铝支架,C型钢,不锈钢等支架,另考虑到光伏支架强度、系统成本、屋顶面积利用率等因素。在保证系统发电量降低不明显的情况下(降低不超过1%)尽可能降低光伏方阵倾斜角度,以减少受风面,做到增加支架强度,减少支架成本、提高有限场地面积的利用率。 漏雨是安装光伏电站过程中需要注意的问题,防水工作做好了,光伏电站才安全。光伏支架安装在屋顶支撑着组件,连接着屋顶。它的设计多采用顶上顶的方式,不会对屋面原有防水进行穿孔、破坏;压块采用预制构件,不用现场浇注,可以避免了太阳能支架安装对屋面防水层的硬性破坏。 4、光伏方阵串并联设计 分布式光伏发电系统中,太阳能电池组件电路相互串联组成串联支路。串联接线用于提升直流电压至逆变器电压输入范围,应保证太阳能电池组件在各种太阳辐射照度和各种环境温度工况下都不超出逆变器电压输入范围。 工作电压在逆变器的额定工作电压左右,效率最高,单相220V逆变器,逆变器输入额定电压为360V,三相380V逆变器,逆变器输入额定电压为650V。如3kW逆变器,配260W组件,工作电压30.5V,配12块工作电压366V,功率为3.12kW 为最佳。10KW逆变器配260W组件,接40块组件,每一路20串,电压为610V,总功率为10.4kW为最佳。

厂房屋顶光伏分布式发电项目建议书

厂房屋顶光伏分布式发电项目建议书 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

**公司 某机电设备厂100kW分布式光伏发电系统设计方 案 目录 1 工程概述 某机电设备厂一块空地,安装太阳能光伏组件100KW400块380伏低压侧并网分布式项目 1.1 工程名称 某机电设备厂100kW分布式光伏发电系统项目

1.2 地理简介 **市位于**地区腹地,**交界处,**部,东经116°23′-117°23′,北纬33°16′-34°14′,北接江苏,南临,东与江苏相邻,西连河南市。南北长150千米,东西宽50千米,总面积2802平方千米。淮北市地处中纬度地区,属暖温带半湿润季风气候区。主要气候特征是季风明显,四季分明,气候温和,雨水适中,春温多变,秋高气爽,冬季显着,夏雨集中。该区地处的南缘,年平均气温14~15℃,年日照时数1503h。 1.3 气象资料 气象资料以NASA数据库中淮北市气象数据为参考。 表1 气象资料表:

2并网光伏发电系统工作原理 光伏组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生的电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。系统结构如下图所示: 图1户用并网光伏发电系统原理图 主要组成设备介绍 光伏组件:根据光生伏打效应原理,利用晶体硅制成,其作用是将太阳辐射能转换为电能,有一定的防雨、防雹、防风等能力。根据实际需要可将光伏组件相互串联或并联连接。 并网逆变器:将来自太阳能电池方阵的直流电流变换为符合电网要求的交流电流的电力变换装置。 3 方案设计 3.1 系统选型设计 根据安装容量的要求(或者安装面积),结合专业的设计软件,最终得出如下的系统配置情况: 光伏组件:数量400块,型号:YL250-29b; 并网逆变器:数量1台,型号:GP100KTI-T

屋顶光伏电站设计建设方案

屋顶光伏电站设计建设方案 工商业屋顶面积大,用电需求量大,安装光伏发电站之后不仅可以满足日常用电量,多余电量还可以并入国家电网换取收益。 那工商业光伏电站如何建设呢?下面就跟着小晶来看看吧。 1确定安装容量 确定光伏电站的安装位置,电站不能有建筑、树木遮挡形成阴影;根据可用面积估算电站容量,每平方米可安装组件容量为100W左右。 以一个可用面积为1000m2的屋顶为例,可建设一个约100kW的电站。 水泥平屋顶安装安装 彩钢瓦屋顶安装 2选择并网方式 自发自用,余电上网

收益=度电补贴+卖电收益+节省电费 自发自用,余电上网并网模式适合白天用电量较大的厂房,自用比例越高,成本回收周期越短。 ?全额上网 收益=度电补贴+卖电收益 全额上网并网模式适合白天用电量较少的厂房,并网简单,享受全额上网电价。 3设备选型 ?光伏组件 根据项目要求、成本、转换效率和可用面积、选择单晶或者多晶组件。 按某品牌多晶硅电池板参数:选取275Wp组件396块,总功率 108.9kWp。 ?光伏逆变器

直流电缆要求:直流电缆一般选择光伏认证专用线缆,目前常用的是PV1-F 1*4mm。光伏阵列到逆变器的直流电缆长度应尽可能短,以减少线缆上的功率损耗。 交流电缆要求:交流线缆一般选用YJV型电缆,根据逆变器最大输出电流,查询线缆载流量,可确定线缆的型号。 33kW逆变器配置YJV 4×25+1×16mm2铜芯线缆即可满足载流要求。 汇流箱出线配置YJV 4×70+1×35mm2铜芯线缆即可满足载流要求。 光伏直流电缆 光伏直流电缆 4系统安装要求 组件排布 组件朝向:理想的安装方位角是正南; 组件倾角:系统最佳倾角近似于当地纬度角,或者根据屋顶结构,组件平; 行于屋顶坡度铺设,使用角度测量仪可测量倾角; 组件前后排间距:间距应能保证冬至日早上9点至下午3点太阳能电池方阵不被遮挡。通过使用EXCEL表公式计算,选择纬度、组件宽度、长度、倾角即可计算出合适间距。以广州地区(北纬23°)为例:

屋顶分布式光伏发电项目合作合同协议书范本 标准版

甲方: 乙方: 1. 总则 有限公司(以下简称甲方)与公司(以下简称乙方)为响应国家能源战略,有效利用闲置屋顶资源促进光伏发电应用,减少输电损耗和建筑物能耗,改善生态环境,提升企业绿色低碳、节能环保的综合品牌形象,创造良好的环境、社会和经济效益,双方本着长期合作、互利共赢的原则,根据《合同法》,经友好协商,订立本协议,供双方恪守。 本项目所涉太阳能光伏发电设备系统及项目工程建设全部由乙方投资,建成后由乙方负责运营、管理和维护,设备系统所有权属为乙方。甲方为乙方提供项目建设所需的甲方厂房屋顶使用权及项目建设所需的管线通道,并积极配合乙方办理项目建设所需的相关手续,甲方以屋顶出租方式分享本项目投资效益。 2. 项目的名称、内容和目的 2.1 项目名称:公司屋顶分布式光伏发电项目(简称“项目”); 2.2 项目内容:在甲方在漳州市镇所属厂房建筑屋顶,建设并网光伏发电系统,屋顶面积约万m2,规划装机容量为MWp; 2.3 项目目的:实现光电转换,降低能源消耗。 3. 合作期限 本协议期限自本协议签署之日起至光伏电站建设完成验收并网发电之日的后25周年。 4. 租金和租期 以下两种方案供甲方选择其中一种: 方案一:本项目验收并网发电之日起计算租金,按光伏组件的实际占用屋顶面积每年元/m2,租期25年,每年乙方向甲方缴纳一次租金。

方案二:乙方建成分布式光伏发电站向甲方厂房直接供电(白天),以电网公司供给甲方厂房同时段电价优惠下调元/千瓦时,具体条款由甲、乙双方及电网公司协商,另行签订供电合同。 5. 甲方的权利和义务 5.1 甲方承诺在与乙方合作期间不再引进同类合作对象; 5.2 甲方无偿提供项目建设所需的配电室安装运行条件,并清理好项目建设空间。 5.3 指定专人积极协助乙方开展项目报批工作,提供项目申报所需的甲方相关资料,配合办理电力接入或计量的相关手续,协调解决项目建设场所及现场施工等相关事项; 5.4 甲方享有该光电建筑应用示范项目的无形资产宣传和广告; 5.5 甲方应保护乙方建成的光伏发电系统设施免受人为损害。 5.6 本协议期限内,如甲方出售、转让或变更该项目涉及的甲方厂房的产权,甲方必须保证本项目协议与产权承接方自动续约,并与产权承接方签订本项目协议自动续约的合同条款,避免发生纠纷。 6. 乙方的权利和义务 6.1 本协议书签订后,乙方负责成立项目筹备组开展前期工作,严格按照国家相关政策法规进行项目申报及开发建设; 6.2 负责本项目的投资建设、运营管理维护及后续相关事项; 6.3 乙方人员进入厂区必须遵守甲方规章制度,严格遵守甲方对项目的相关要求,保证不破坏甲方的建筑物。若因乙方原因造成甲方设备、设施损坏,乙方应无条件及时修复并承担全部责任和费用。 6.4 积极配合甲方正常的厂房屋顶维修工作。若因甲方钢构屋顶使用寿命到期确须更换作业,乙方应无偿配合拆装相关的光伏设施。 6.5 合作协议终止后,乙方负责光伏电站的拆除及租用屋面修整工作,并承担相应费用; 6.6 本协议期限内,如乙方出售、转让该项目,甲方有项目的优先购买权,双方根据市场规则另行签订协议。

屋顶光伏发电项目设计方案

***镇***屋顶光伏发电项目设计方案 ***有限公司 二零一六年八月

一、项目简介 1、建设地点 ***办公楼屋顶光伏发电项目位于***市***镇***,省道228公路以西,区位条件优越。周围无高大建筑,遮挡阳光。道路四通八达,交通便捷。 2、建设内容和建设规模 (1)主要建设内容:屋顶安装84.56KWp光伏发电项目。 (2)建设规模: ***办公楼屋顶光伏发电项目,可利用屋顶共三栋建筑,分为1-3号。1号楼为为地上五层平屋顶建筑,一至五层均为办公用房,2号楼为地上两层平屋顶建筑,均为办公用房,3号楼为地上两层平屋顶建筑,均为办公用房。 ***镇***屋顶俯瞰图

3、屋顶现状图 屋顶现状图 屋顶现状图

二、气候概况及光照资源 1、气候概况 位置境域: ***位于***,地处河南省最北部、太行山脉东麓,处于河南、山西、河北三省交汇处,东与安阳县、鹤壁市鹤山区、淇滨区接壤,南与辉县市、卫辉市为邻,西与山西省平顺县、壶关县毗连,北隔漳河与河北省涉县相望。全市总面积2046平方千米,其中山坡、丘陵占86%,耕地76万亩。市区面积约30平方公里,市区海拔306.8米。截止2015年,全市总人口105.97万,人口密度每平方公里517.94人,是我国人口密度较高的县级市之一,市区人口近30万。***市地理位置优越,自古为兵家必争之地,东望大海,西通晋陕,南依中原,北连京畿,乃南下北上、东进西达、三省通衢之要地,人称“金三角”,史书有“卫弃之而弱,晋有之而霸”的记载。 地形地貌: ***市境内多山,山地、丘陵占86%。地势西北高东南低,境内海拔最高处是四方垴(海拔1632米),最低处位于五龙镇东北部(海拔200左右),市区海拔306.8米。***地处太行山东麓,属于华北地震带,境内断层较多,大多属于正断层。最大的断层位于***盆地的西部并延长到北部,长35公里,断层面倾向东,倾角50-80度,垂直断距1000米。此外还有4处较大的断层和众多小断层。***大部广泛分布着石灰岩,多裂隙、溶洞,致使地表水极易散失。在有隔水层的地方,地下水埋藏较深,开采相当困难。在太行山东麓,地表被强烈侵蚀,多陡崖、峡谷,造成了太行山与***地面的巨大高差,形成了太行山悬崖峭壁的雄伟画卷。 气候条件:

相关主题