搜档网
当前位置:搜档网 › 概率统计在金融中的应用

概率统计在金融中的应用

概率统计在金融中的应用
概率统计在金融中的应用

毕业论文

题目:概率统计在金融中的应用

学院:数理学院

专业:数学与应用数学

姓名: x xxx 学号 xxxxxxx 指导老师: xxxxx

完成时间: 2013年5月27日

摘要

概率统计课程是金融数学的必修课,它作为重要的数学工具,在金融领域的分析中发挥着举足轻重的作用。当今概率统计与经济的关系可以说是息息相关的,几乎任何一项经济学的研究、决策都离不开它的应用。例如:实验设计、多元分析、质量控制、抽样检查、价格控制等都要用到概率统计知识。实践证明,概率统计是对经济学问题进行研究的有效工具,并且它为经济管理、经济预估、经济预测和决策提供了新的手段。

本文首先详细阐述了本课题的研究背景、研究目的和意义,以及它的来源和发展现状,而且还对论文的组织结构予以讨论:首先通过重点分析了概率统计常用的理论和知识,以及基于理论的若干模型,为下章的举例介绍概率统计在金融中的经济管理决策、经济损失估计、最大经济利润求解、经济保险、经济预测等几个经济学问题中的应用中所遇到的知识做个简单知识准备;接下来就是举例介绍概率统计在金融中的经济管理决策、经济损失估计、最大经济利润求解、经济保险、经济预测等几个经济学问题中的应用;文章的最后则是对整篇文章进行了总结。

关键词:概率统计,现代金融,经济管理决策,经济损失估计,经济保险,最大经济利润求解,经济预测

ABSTRACT

Probability and statistics course is a required subject in financial mathematics. As an important mathematical tool ,probability and statistics plays an important role in the field of financial analysis.Today, probability and statistics is closely linked with the areas of the economy, and any economics research, economics decision making is arguably almost inseparable from its applications,such as: experiment design, multivariate analysis, quality control and sampling inspection, price control, and so on,which all take advantage of the knowledge of and statistics. Practice has proved, probability and statistics is an effective tool for the study of economics, and it provides a new means for the economic management, economic forecasts, economic forecasts and decision-making and so on.

At first,this article elaborated the paper’s research background, research purpose and research significance, as well as the source of the topic and the current situation of the development, but also the organizational structure of paper: firstly, focuses on the analysis of the commonly used theory and knowledge in mathematical statistics , and several models which based on the theory of the probability and statistics,which makes simple preparation for the knowledge used in the introdution of the next chapter.Followed by,next chapter makes some examples for the introduction of the application of probability and statistics in Some of the economics problems,such as the economic management of financial decisions, economic loss estimation, maximum economic profit solution, economic safe, economic forecasts,and so on.The end of the article makes a summary about the whole paper.

Keywords: Probability and statistics, modern finance, economic management,

economic loss estimation, economic security, maximum economic profit,

economic forecasts

目录

摘要 ............................................................. I ABSTRACT ............................................................ I I 第一章概论 . (1)

1.1 研究背景、意义及目的 (1)

1.1.1背景 (1)

1.1.2研究目的 (1)

1.1.3 研究意义 (1)

1.2 发展近况 (1)

1.3 概率统计与金融学的联系与应用 (2)

1.4 论文的组织结构 (3)

第二章概率统计常用理论知识 (4)

2.1概率统计知识概述 (4)

2.1.1概率论的内容 (4)

2.1.2概率统计的内容 (4)

2.2 概率统计常用理论模型 (5)

2.2.1 中心极限定理 (5)

2.2.2 矩估计和最大似然估计 (5)

2.2.3 置信区间和置信度 (7)

2.2.4 线性回归模型 (7)

2.2.5 一元线性回归分析 (8)

第三章概率统计在金融中的应用实例 (13)

3.1引言 (13)

3.2实例举例 (13)

3.2.1.在经济管理决策中的应用 (13)

3.2.2.在经济损失估计中的应用 (14)

3.2.3.在求解最大经济利润问题中的应用 (15)

3.2.4.在经济预测中的应用 (16)

3.2.5.在经济保险问题中的应用 (17)

第四章总结 (21)

参考文献 (22)

致谢 (23)

第一章概论

1.1研究背景、意义及目的

1.1.1背景

由于数学固有的灵活性,可使金融领域的相关研究和探索借助于其多种计算方法以及数学模型,从而更好地发现现实金融问题背后的经济变量函数,使复杂的关系得以清晰化;由于其固有的精确性,采用数学方法可以准确的研究和描述经济范畴之间的数量关系;由于其固有的严密逻辑性,使得数学分析成为科学推理的主要手段,可以使一些用其他方法难以说清的逻辑关系得到简洁明了的说明和解决。

随着金融市场的繁荣与发展,以及概率统计相关理论的不断进步和发展,概率统计在金融领域中的应用越来越受到重视。金融学作为立足于经济现象之上的一门学科,与概率统计之间有着千丝万缕的联系,越来越多的统计方法被运用到金融领域当中,金融统计学这一新兴边缘学科也由此应运而生。随着知识经济的到来,人们对各种问题的要求越来越精确,概率统计方法以其精确和严密性在金融学中被广泛应用,阐述金融工具从日常语言发展到数理语言,具有了理论上的抽象,是金融学科的一种进步。

1.1.2研究目的

本文主要介绍了概率统计在金融领域中主要发展及应用。

通过介绍概率统计中的几种最常用的模型和计算方法,做到对概率统计知识和原理的再学习以及更深层次的探索和发现;举例说明概率统计知识在金融领域中某些方面中的实际运用以及模拟操作,达到对各方面知识的相互渗透。

1.1.3 研究意义

从系统科学的观点出发,着眼于金融市场的整体,运用模型,特别是借用数学模型并运用概率统计来寻求金融市场系统的相关需求和应用,并结合计算机的应用,从而达到最精确、满意的结果,也使金融市场系统整体达到最经济、最有效、最合理的理想状态。

1.2 发展近况

早些年我国概率统计在社会经济金融领域中的应用,主要是抽样法和相关分析,其它方法应用的还很少;从应用的发展阶段看,除抽样调查和产品质量管理等应用的较多外,多数还处在试验阶段,离广泛实际应用,还有相当距离;从应用的单位看,也只是少数。如今概率统计在金融中的应用已经发展的相当之快,虽然还不是太成熟,但是我们已经取得了惊人的成就。

在我国社会主义经济条件下,社会经济领域里,主要是由非随机性因素所引起的数量变化居主要地位,同时仍然存在着随机性因素和非随机性因素共同作用所引起的数量变化,和随机性所引起的数量变化。因此,在社会经济领域中,仍然可以运用概率统计方法来研究其数量的变化,运用大量观察资料来研究随机变量的分布函数和数字特证,以说明随机现象的规律性。事实上,人们对随机现象观察的次数不可能很多,概率统计只能利用不多的观察资料,从局部到整体之间的数量关系来进行分析和推断,以了解其内在的规律性。这种从局部观察去推断整体的方法,在概率统计中的应用极为广泛。概率统计与各种具体的研究对象结合起来,特别是对社会经济现象进行定量研究和推断时,就可以解决许多实际间题。近年来,国外已在国民经济和企业经营管理中广泛地应用抽样理论、离差分析、回归分析、相关分析、质量控制和极值分布等概率统计方法。因此,在社会经济领域中,运用概率统计方法,不论是采用数量描述和数量推断的方法,作出总体数量关系的分析,以说明各种问题,就成为研究社会经济现象的有力武器。

现代金融中,由于金融创新的不断发展,涌现出许多新的金融产品和金融工具,尤其是金融衍生工具的大量涌现使得数学在金融中的使用更加具体和广泛,它们的定价成为金融学中重要的研究内容。

1.3 概率统计与金融学的联系与应用

概率统计是研究随机现象的数量关系的科学。而客观世界中现象的数量变化有随机性和非随机性两种类型,并且随机性和非随机性数量的变化又是相互联系,交织在一起的。因此,客观世界现象的数量变化,既有随机性因素的变化,又有非随机性因素的变化。也就是说,一切现象的数量变化是由随机性因素和非随机性因素共同作用下引起的。

目前,国际上把经济理论分为宏观经济理论和微观经济理论两大类。所谓宏观经济理论,就是研究国民经济结构和最佳地制订国民经济方针、政策和计划的理论。微观经济理论,是研究政府部门、企业、工厂等经济政策和计划及其最佳调节的理论。在经济学领域中,还经常运用“计量经济学”,也就是说,采用经济理论和数学方法,精密地表述经济因素之间的因果关系;采用线性规划、估计等概率统计方法,以现实的资料对各种经济模型进行验证。这就是采用经济理论、数学和概率统计学三结合的方法,定量地表现经济现象的因果关系。这种经济理论、数学和概率统计学的结合,提供了概率统计在社会经济领域中应用的范例。

现代科学技术的发展,特别是电子计算技术的发展,将促进国民经济和企业管理的现代化。正是由于概率统计和计算机的相辅相成的关系,这就必然促进概率统计在社会经济领域中的应用和发展。运用概率统计方法研究社会经济现象,要

通过大量的数字资料,进行科学的统计分析。

由于数学固有的灵活性,可使金融领域的相关研究和探索借助于其多种计算方法以及数学模型,从而更好地发现现实金融问题背后的经济变量函数,使复杂的关系得以清晰化;由于其固有的精确性,采用数学方法可以准确的研究和描述经济范畴之间的数量关系;由于其固有的严密逻辑性,使得数学分析成为科学推理的主要手段,可以使一些用其他方法难以说清的逻辑关系得到简洁明了的说明和解决。

随着金融市场的繁荣与发展,以及概率统计相关理论的不断进步和发展,概率统计在金融领域中的应用越来越受到重视。金融学作为立足于经济现象之上的一门学科,与概率统计之间有着千丝万缕的联系,越来越多的统计方法被运用到金融领域当中,金融统计学这一新兴边缘学科也由此应运而生。随着知识经济的到来,人们对各种问题的要求越来越精确,概率统计方法以其精确和严密性在金融学中被广泛应用,阐述金融工具从日常语言发展到数理语言,具有了理论上的抽象,是金融学科的一种进步。

1.4 论文的组织结构

第一章详细讨论了论文的研究背景及研究背景、意义和目的。论述了课题的来源和发展现状,阐述了论文的研究内容和研究目标,并对论文的组织结构予以讨论。

第二章重点分析了概率统计常用的理论和知识,以及基于理论的若干模型。并为下章的举例介绍概率统计在金融中的经济管理决策、经济损失估计、最大经济利润求解、经济保险、经济预测等几个经济学问题中的应用中所遇到的知识做个简单介绍。

第三章举例介绍概率统计在金融中的经济管理决策、经济损失估计、最大经济利润求解、经济保险、经济预测等几个经济学问题中的应用。

第四章对整篇文章进行了总结。

第二章概率统计常用理论知识

2.1概率统计知识概述

2.1.1概率论的内容

概率论作为一门数学分支,它所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。概率是随机事件发生的可能性的数量指标。在独立随机事件中,如果某一事件在全部事件中出现的频率,在更大的范围内比较明显的稳定在某一固定常数附近。就可以认为这个事件发生的概率为这个常数。对于任何事件的概率值一定介于0和1之间。

有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。具有这两个特点的随机现象叫做“古典概型”。

在客观世界中,存在大量的随机现象,随机现象产生的结果构成了随机事件。如果用变量来描述随机现象的各个结果,就叫做随机变量。

随机变量有有限和无限的区分,一般又根据变量的取值情况分成离散型随机变量和非离散型随机变量。一切可能的取值能够按一定次序一一列举,这样的随机变量叫做离散型随机变量;如果可能的取值充满了一个区间,无法按次序一一列举,这种随机变量就叫做非离散型随机变量。

在离散型随机变量的概率分布中,比较简单而应用广泛的是二项式分布。如果随机变量是连续的,都有一个分布曲线,实践和理论都证明:有一种特殊而常用的分布,它的分布曲线是有规律的,这就是正态分布。正态分布曲线取决于这个随机变量的一些表征数,其中最重要的是平均值和差异度。平均值也叫数学期望,差异度也就是标准方差。

2.1.2概率统计的内容

概率统计包括抽样检验、参数估计问题、假设检验、回归分析、方差分析等内容。

抽样检验是要通过对子样的调查,来推断总体的情况。究竟抽样多少,这是十分重要的问题,因此,在抽样检查中就产生了“小样理论”,这是在子样很小的情况下,进行分析判断的理论。

参数估计是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。人们常常需要根据手中的数据,分析或推断数据反映的本质规律。即根据样本数据如何选择统计量去推断总体的分布或数字特征等。统计推断是概率统计研究的核心问题。所谓统计推断是指根据样本对总体分布或分布的数字特征等作出合理的推断。它是统计推断的一种基本形式,是概率统计学的一个重要分支,分

为点估计和区间估计两部分。

假设检验是只在用概率统计方法检验产品的时候,先作出假设,在根据抽样的结果在一定可靠程度上对原假设做出判断。

方差分析也叫做离差分析,就是用方差的概念去分析由少数试验就可以做出的判断。

由于随机现象在人类的实际活动中大量存在,概率统计随着现代工农业、近代科技的发展而不断发展,因而形成了许多重要分支。如:随机过程、信息论、极限理论、试验设计、多元分析等。

2.2 概率统计常用理论模型

2.2.1 中心极限定理

(1)列维-林德伯格定理

设随机变量X 1,X 2,…相互独立,服从同一分布,且具有相同的数学期望和方差:),2,1(0)(,)(2 =≠==k X D X E k k σμ,则随机变量

σ

μ

n n X

Y n

k k

n ∑=-=

1

的分布函数F n (x )对任意的实数x ,有

?

∑∞

--

=∞→∞→=??

?

?

???

???????≤-=x

t n k k n n n dt e

x n n X P x F .21lim )(lim 2

12

πσμ

或者简写成:

)1,0(/N n

X n ??→?-∞

→σμ

。此定理也称为独立同分布的中心极限定理。 (2)棣莫弗-拉普拉斯定理

设随机变量X 1,…X n 均为具有参数n, p(0

()?

--

∞→∞

→=

??

?

???????≤--=x

t n n n n dt e

x p np np X P x F .21)1(lim 2

2

lim

π

2.2.2 矩估计和最大似然估计

(1)矩估计:设总体X 的分布中包含有未知数m θθθ,,,21 ,则其分布函数可以表成).,,,;(21m x F θθθ 它的k 阶原点矩),,2,1)((m k X E v k k ==中也包含了未知

参数m θθθ,,,21 ,即),,,(21m k k v v θθθ =。又设n x x x ,,,21 为总体X 的n 个样本值,其样本的k 阶原点矩为

∑=n i k

i x n 1

1 ).,,2,1(m k =

这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有

??????

?

?

???

???

?===∑∑∑=∧∧∧=∧∧

∧=∧∧

∧n i m i m m n i i m n i i m x n v x n v x n v 121122121

211.1),,,(,1),,,(,

1),,,(θθθθθθθθθ 由上面的m 个方程中,解出的m 个未知参数),,,(21∧

∧∧m θθθ 即为参数(m θθθ,,,21 )

的矩估计量。若∧

θ为θ的矩估计,)(x g 为连续函数,则)?(θ

g 为)(θg 的矩估计。 (2)最大似然估计:当总体X 为连续型随机变量时,设其分布密度为

),,,;(21m x f θθθ ,其中m θθθ,,,21 为未知参数。又设n x x x ,,,21 为总体的一个

样本,称

),,,;(),,,(11122∏==n

i m i m x f L θθθθθθ

为样本的似然函数,简记为L n 。当总体X 为离型随机变量时,设其分布律为

),,,;(}{21m x p x X P θθθ ==,则称

),,,;(),,,;,,,(1

111222∏==n

i m i m n x p x x x L θθθθθθ

为样本的似然函数。

若似然函数),,,;,,,(2211m n x x x L θθθ 在m ∧

∧∧θθθ,,,21 处取到最大值,则称

m ∧

θθθ,,,2

1 分别为m θθθ,,,2

1 的最大似然估计值,

相应的统计量称为最大似然估计量。

m i L i

i i

n

,,2,1,0ln ==??∧

=θθθ

若∧

θ为θ的极大似然估计,)(x g 为单调函数,则)?(θ

g 为)(θg 的极大似然估计。 2.2.3 置信区间和置信度

设总体X 含有一个待估的未知参数θ。如果我们从样本n x x x ,,,,21 出发,找出两个统计量),,,,(2111n x x x θθ=与),,,,(2122n x x x θθ=)(21θθ<,使得区间

],[21θθ以)10(1<<-αα的概率包含这个待估参数θ,即:

,1}{21αθθθ-=≤≤P

那么称区间],[21θθ为θ的置信区间,α-1为该区间的置信度或置信水平。

2.2.4 线性回归模型

当变量间存在相关关系时,我们特别关心因变量y 的取值的平均,即在给定

12,,n x x x 的条件下,随机变量y 的数学期望,记作()()1212,,k k x x x E y x x x =? .

此时,因变量y 与自变量12,,n x x x 之间的相关关系可以表示为: ()12,k y E y x x x ε=+

这里ε表示为随机误差,上式成为y 关于12,,n x x x 的回归。y 对自变量

12,,n x x x 取值的依赖关系为:()12,k x x x ? ,它反映了y 取值的平均趋势,这是相

关关系的主要部分。

回归函数()12,k E y x x x 可以是线性的,也可以是非线性的。但是对于线性回归011k k y x x βββε=++++ 中回归函数是参数的线性回归。

而()12011,k k k E y x x x x x εβββ+=+++ 是最简单且最重要的情况,但是在理论上有比较深入的讨论结果,是非线性回归的基础。

011k k y x x βββε=++++ 称为理论线性回归模型。由随机误差ε在线性模型中的地位可见,他的概率性质决定了模型的性质。根据回归函数的意义,自然有

()0E ε=。

关于变量12,,n x x x 的n 次观测,我们假定各次观测所受的随机影响程度相同。且任意两次观测的误差不相关。这种假定在一般情况下是合理的。称之为Gauss-Markov 条件

2

(,)n Cov I εεσ=

这里ε如

111111*********,,,1k k n kk n n n y x x y x x Y X x x y βεβεβεβε???????? ? ? ? ? ? ? ? ?==== ? ? ? ? ? ? ? ?

????????

那样的随机误差向量且()0E ε=,为了不引进更多符号。以后ε有时候表示一个随机变量,有时候表示为一个随机向量。由模型的意义,这样我们可以得到线性回归模型Y X βε=+,()0E ε=,(,)Cov εε=∑ ,0β称之为常数项。

012,,k ββββ 称为回归函数,表示自变量12,,n x x x 的改变时对y 的影响大小。在

某些问题当中,我们还假设ε满足正态条件()2

0,n N I εσ 其中2(0,)σ?∞,也

是线性回归模型中的重要参数,n I 为n 阶单位阵。

为了对未知参数进行估计或者研究其他有关的统计推断问题,需进行试验,设做了n 次试验。第i 次试验的观测值为1(:)i ik x x y ++ ,称为第i 个试验点。以后我们假定试验总数n 不小于线性回归模型 Y X βε=+,()0E ε=,(,)Cov εε=∑包含的未知参数个数,且设计矩阵X 是列满秩的,即:()1rk X k =+。

2.2.5 一元线性回归分析

一元线性回归模型

设随机变量Y 与普通变量x 间存在相关关系,且假设对于x 的每一个取值有

2

01(,)Y N x ββσ?+

其中0β ,1β ,2σ 都不是不依赖于x 的未知参数。记01()Y x εββ=-+,则对Y 做这样的正态假设,相当于假设:

01()Y x ββε=++ ,2(0,)N εσ 其中未知参数0β ,1β ,2σ都是不依赖于x 的未知参数。

此时,01()Y x ββε=++,2(0,)N εσ 称为一元线性回归模型,其中1β称为回归系数。

因变量Y 由两部分组成,一部分是x 的线性函数:01x ββ+;另一部分是随机误差:ε,是不可控制的。下面的任务是对参数0β ,1β的估计,那参数0β,1β的最小二乘估计如下:

令x 取n 个不全相同的取值,用12,,,n x x x 表示,并作n 次独立试验,得到

样本:

1122(,),(,),,(,)n n x Y x Y x Y 和样本观测值:

1122

(,),(,),,(,)n n x y x y x y 把样本观测值1122(,),(,),,(,)n n x y x y x y 代入01()Y x ββε=++,2(0,)N εσ

得: 01i i i y x ββε=++ , 1,2i n = 。

而使此函数22

01011

1

(,)()n n

i i i i i Q y x ββεββ-===--∑∑达到最小为原则,则此时对未知参

数0β和1β的估计,就称为未知参数0β和1β的最小二乘估计,估计值记为0β∧和1β∧

。通过以上的分析,这时候我们称此方程01y x ββ∧

=+为Y 关于x 的经验回归方程,简称为回归方程。

接下来就是求未知参数0β ,1β的最小二乘估计: 因为此方程01(,)Q ββ的极值点可以写成:

0112()0n

i i i Q

y x a ββ=?=---=?∑ 由此式子得方程组: 0111

201

11()()()n n i i i i n n n

i i i i i i i n x y x x x y ββββ-=---?

+=????+=??∑∑∑∑∑ 现在对上面方程组进行求解,得唯一解如下:

_

_

111

1

1_222

11

1

__0111()()

()()

()()

1n n n

n i i i i i

i

i i i i n n n

i i i

i i i n n

i i i i n x y x y x x y

y n x x x x b y x y x

n n βββ∧-------∧∧--?

---??==?--?

?

?=-=-??

∑∑∑∑∑∑∑∑∑

求出的解中的0β∧

和1β∧

为未知参数0β,1β的最小二乘估计量。

而此时回归方程也可写成)(??1x x y y -+=β,∑==n

i i y n y 1

1这表明,关于样本值1122(,),(,),,(,)n n x y x y x y 的回归直线通过散点图的几何中心(,)x y 。为了计算上的

方便,我们引入记号:

2

2

2

11

122

2

11

11111

1 ()()

1 ()()1()()()()

n

n

n xx i i i i i i n n

n yy i i i i i i n n n

n

xy i i i i i i i i i i S x x x x n S y y y y n S x x y y x y x y n ===========-=-=-=-=--=-∑∑∑∑∑∑∑∑∑∑ 这样,0β ,1β的估计值可写成:1xx

xy

S S β∧

=

, 0111

11()n n

i i i i y x n n ββ∧

∧--=--∑∑。

下面是对2σ的估计:

由于{}2222

01[()]()()[()]i E Y x E D E ββεεεσ=-+==+=,所以我们就把式子

记做: 01i

i x x i y y

x ββ∧∧

∧∧

===+,

此时我们称?i

i y y -为i x 处的残差;而平方和式: 2

2

_

011

1

()()n

n

n i i i i i i Q y y y x ββ∧

===-=--∑∑

称为残差平方和。

下面我们计算e

Q :

我们首先将e

Q 做如下分解:

2

2

_

_111

()[()]n n n i i i i i i Q y y y y x x β∧

===-=---∑∑

2

_

___

2

2

111

1

1

()2()()()

()

n

n n i i i i i

i i i y y x x y y x x ββ∧

====----+-∑∑∑

2112()yy xy xx S S S ββ∧∧

=-+ 再由1xx xy S S β∧

=

得e

Q 的另一个分解式:1n yy xy Q S S β∧

=-。相应的统计量为: 1n YY xY Q S S β∧

=- 然后我们可以证明:

22

(2)Q n ε

χσ

-

于是:

2

(

)(2)Q E n ε

σ

=-

即:

2()2

Q E n ε

σ=- 这样就得到了2σ的无偏估计量为:

2

11

[]22

yy xY Q S S n n εσβ∧∧==---

最后我们进行线性假设的显著性检验:

在以上的讨论中,我们假定Y 关于x 的回归函数()x μ具有线性形式:01x ββ+。在处理实际问题时,()x μ是否为x 的线性函数,首先要根据有关专业知识和实践来判断,其次就要根据实际观察得到的数据运用假设检验的方法来判断。这就是说,求得的线性回归方程是否具有实用价值,一般来说,需要经过假设检验才能确定。若线性假设符合实际,则1β不应为零,因为若10β=则()x μ就不依赖于x 了。

因此,我们需要检验假设:

01:0H β= 11:0H β≠ 用t 检验法来进行检验,可以证明:2

11(,)xx

S σββ∧

由2

2(2)Q n εχσ- 和2()(2)Q E n εσ

=-得到:

2

222

(2)(2)Q n n εσχσσ

∧-=-

由于1β∧

与Q ε相互独立,故有:

2

2

112

(2)(2)(2)

xx

n t n n S σ

ββσσ

∧∧

----

即:

11

2

(2)xx

t n S ββσ∧

-- 且10()0E ββ∧

==,即得0

H 的拒绝域为:

12)2xx t S t n αβσ

=≥-

此处α为显著性水平。

当假设0

H 被拒绝时,认为回归效果是显著的,反之,就认为回归效果不显著。

回归效果不显著的原因可能有如下几种:

(1)影响Y 的取值,除了x 及随机误差外还有其它不可忽略的因素; (2)()x μ不是x 的线性函数,而是其它形式的函数; (3)Y 与x 不存在关系。

第三章概率统计在金融中的应用实例

3.1引言

概率统计是一门相当有趣的数学分支学科。随着科学技术的发展和计算机的普及,它最近几十年来在自然科学和社会科学中得到了比较广泛的应用,在社会生产和生活中起着非常重要的作用。当今概率统计与经济的关系可以说是息息相关的,几乎任何一项经济学的研究、决策都离不开它的应用,例如:实验设计、多元分析、质量控制、抽样检查、价格控制等都要用到概率统计知识。实践证明,概率统计是对经济学问题进行量的研究的有效工具,为经济预测和决策提供了新的手段。本文通过一些具体的例子讨论概率统计在经济管理决策、经济损失估计、最大经济利润求解、经济保险、经济预测等几个经济学问题中的应用。

3.2实例举例

3.2.1.在经济管理决策中的应用

在进行经济管理决策之前,往往存在不确定的随机因素,从而所作的决策有一定的风险,只有正确、科学的决策才能达到以最小的成本获得最大的安全保障的总目标,才能尽可能节约成本。利用概率统计知识可以获得合理的决策,从而实现这个目标。下面以数学期望、方差等数字特征为例说明它在经济管理决策中的应用。

例 1 某人有一笔资金,可投入三个项目:房产x、地产y和商业z,其收益和市场状态有关,若把未来市场划分为好、中、差三个等级,其发生的概率分别为

10.2

p=,

20.7

p=,

30.1

p= ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见表1

表3.1 各种投资年收益分布表

10.2

p=

2

0.7

p=差

3

0.1

p=

房产11 3 -3 地产 6 4 -1 商业10 2 -2 请问:该投资者如何投资好?

解:我们先考察数学期望,可知

()()

110.230.730.1 4.0

E x=?+?+-?=

()()60.240.710.1 3.9E y =?+?+-?=

()()100.220.720.1 3.2E z =?+?+-?=

根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差:

()()()()222

1140.2340.7340.115.4D x =-?+-?+--?=

()()()()2

2

2

6 3.90.24 3.90.71 3.90.1 3.29D y =-?+-?+--?= ()()()()22

2

10 3.20.22 3.

20.72

3.20.112.96

D z =-?

+-?+--?= 因为方差愈大,则收益的波动大,从而风险也大。

分析:根据数学期望可知,投资房产的平均收益最大,可能选择房产,但是从方差看,投资房产的风险比投资地产的风险大得多,若收益与风险综合权衡,该投资者还是应该选择投资地产为好,虽然平均收益少0.1万元,但风险要小一半以上。

概率统计中特有的期望、方差等统计量本身的计算过程就蕴含着一定的模型意义,它的这种模型意义正好和金融中很多的抽象的概念相吻合,使一些其他数学方法无法解决的问题变得容易很多,这些特征量和金融结合起来使得到各结果都更加的令人满意。

3.2.2.在经济损失估计中的应用

随着经济建设的高速发展,火灾、车祸等各种意外事故所造成的经济损失成明显上升的趋势,从而买保险成为各单位及个人分担经济损失的一种有效方法。利用统计知识可以估计各种意外事故发生的可能性,以及发生后导致的经济损失大小。之后可以根据这些估计出来的数据来购买相应的保险产品。下面的例子就是以参数估计为方法来说明它在这一方面的应用。

例 2 已知某仓库货物在储藏过程中,仓库货物因火灾而损失的金额服从正态分布()2,N μσ ,今随机抽取8 次货损资料,得到如下仓库货物损失金额表。根据这些数据估计平局损失数据。

表3.2 仓库货物损失金额表

货物损失金额(元) 1000

2000 3000 5000 次数

2

1

4

1

解:利用矩估计法或最大似然估计法可知: μ, 2σ的矩估计量分别为:

1

1n

i i X X

n μ===∑—,2

2

1

1()n i i X X n σ==-∑

利用上面两个公式并结合表2中的数据可计算出:

()1

100022000130004500012625

8

μ=?+?+?+?=()()()()2222

2110002625220002625300026254500026258σ??=-?+-+-?+-?

?^

1101562.5=

1049.55σ= 分析:从而得到仓库货物损失的平均估计值为2625元,标准差的估计值为1049.55 元。所以我们在为这些仓库物品购买保险的时候,可以参考这些数据,购买相应的险种,以及确定该险种的数量和相应金额。将估计理论应用于金融、保险中,对金融、保险中的极值事件建立模型,并以我国实际的股票收益率数据和医疗及巨灾保险索赔数据进行实证分析,达到了对金融、保险中的极值风险进行有效度量的目的。

3.2.3.在求解最大经济利润问题中的应用

如何获得最大利润是商界永远追求的目标,虽然在数学方法中有很多方法都可以用来进行求解最大利润的问题,但是概率统计中的随机变量函数期望的应用为此问题的解决提供了新的思路。

例 3 某公司经销某种原料,根据历史资料:这种原料的市场需求量x(单位:吨)服从(300,500)上的均匀分布,每售出1吨该原料,公司可获利1.5千元;若积压1吨,则公司损失0.5千元,问公司应该组织多少货源,可使期望的利润最大?

解:此问题的解决先是建立利润与需求量的函数,然后求利润的期望,从而得到利润关于货源的函数,最后利用求极值的方法得到答案。

设公司组织该货源a 吨,则显然应该有300a 500≤≤,又记y 为在a 吨货源的条件下的利润,则利润为需求量的函数,即()y g x =,由题设条件知: 当x a ≥时,则此a 吨货源全部售出,共获利1.5a ;

当x a <时,则售出x 吨(获利1.5x ),且还有(a x -)吨积压,损失为:

(获利()0.5a x --) ,所以共获利:[1.5x ()0.5a x --],由此得:

(){1.52 0.5a X a

X a X a x Y g ≥-<==

从而得:

()()()()

500

3001

200

x y g x p x dx g x dx E +∞-∞==??

()50030011

20.5 1.5200200a

a x a dx a dx -+=??

()221

900300200

a -+-= 分析:由上述计算式子可以看出()y E 是正好是a 的二次函数,用通常求极值的方法就可以求得,当450a =吨时能够使得期望的利润达到最大。

在此,我们应用了概率统计中的随机变量函数期望这个知识点,由本题可以看出概率统计中的很多统计量本身就具有数学模型的性质,而且它本身计算过程就蕴含着某些经济和金融中的现实事例。从中我们可以看到概率统计和金融学有一种天然的契合,相互融合,相互解释,相互促进。同时,概率统计结合高等代数等数学知识,给予金融更丰富的意义和满意的解释。

3.2.

4.在经济预测中的应用

现代风险管理中多运用衍生金融工具,如金融期权、期货、互换交易中进行风险的对冲。这些衍生工具的定价需要很专业的定价模型,而且定价模型中有许多希腊字母代表的概念,如 Delta 值、Gamma 值、Vega 值,正是这些值的加权求和,最终降低损失程度。这些值的运算中需要综合数学中各个方面的方法,如求导、求偏导、概率分布函数、顺序统计量等各种方法,概率统计作为重要的应用,为风险管理提供了精确的数学逻辑推导。同时,根据各个资产或者证券的历史价格,我们也可以合理地推算出该资产或者证券价格的合理区间。

例 4 收集了 2012 年 4月5日至2012 年 5月 11 日 25 个交易日的股指历史数据,假定其置信水平为 0.95,计算其置信区间。

解:根据t 分布这里1-a=0.95,a/2 =0.025,n -1 =24t ,025.0t (24) = 2.064 , 我们算出:x=2608.849,s=66.72108。得到u 的一个置信水平为0.95的置信区间:(2608.849±66.72108/5×2.064)即:( 2636.391,2581.307)。我们预测估计沪深300指数在区间(2636.391,2581.307)的可信度为95%。

总之,我们可以通过某个参数满足不同概率分布时,利用该参数的区间估计方法,推算置信水平( 可靠度) 。概率统计理论中对概率分布的描述,统计量的 解:我们知道置信区间是(s x ±),根据t 分布这里1-a =0.95,a/2 =0.025,n -1 =24t ,025.0t ( 24) = 2.064 ,我们算出: x = 2608.849,s =66.72108。 分析:得到u 的一个置信水平为0.95的置信区间:(2608.849±66.72108/5×2.064),即(2636.391,2581.307)。我们预测估计沪深 300 指数在区间

表3.3 股票指数

2512.832 2519.830 2495.146 2519.788 2520.036

2570.436

2580.454

2574.044

2541.883 2599.908 2596.056 2626.839 2606.038 2604.866 2625.990 2631.487 2626.157 2683.487 2691.518 2715.879 2717.778 2709.116 2657.514 2657.214 2636.917

概率论在经济中的应用

学科分类号: 本科毕业论文 题目(中文):概率论在经济中的应用 (英文):Probability theory in the application 姓名缪艳芳 学号 100200540102 院(系)数学与计算机科学学院 专业、年级数学与应用数学 指导教师雍进军职称讲师 二○一三年十二月

贵州师范学院本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名:(亲笔签名) 年月日

目录 摘要 (1) ABSTRACT (2) 1绪论 (3) 2在经济管理决策中的应用 (4) 2.1最大利润与投资风险(数学期望与方差的应用) (4) 2.2 概率论知识在彩票问题中的应用 (6) 3 概率论在商品生产与检验中的应用 (8) 3.1应用极大似然估计,确定商品合格率 (8) 3.2 两子样秩和检验法的应用 (9) 4 中心极限定理的应用 (11) 4.1在医疗保险中的应用 (11) 4.2在工业生产效率中的应用 (12) 5 贝叶斯公式在疾病中的应用 (14) 参考文献: (17) 致谢 (17) 附录A (18)

摘要 本论文共分为四个章节,内容包括数学期望及方差,随机变量,中心极限定律,极大似然估计,两个秩和检验,贝叶斯公式等的应用。概率论与数理统计就是研究随机现象的统计规律的数学学科,由于随机现象的普遍现象的普遍性,使得概率论与数理统计具有极其广泛的应用。近年来,一方面它为科学技术、工业农业生产等的现代化做出了重要贡献。本文通过实例讨论了概率论与数理统计方面的知识经济决策,最大利润,商品生产与检验,在医疗保险中的应用工业生产效率等多方面的介绍。 关键词:概率统计;经济;应用

概率论在实际生活中的应用

信息学院 14-15学年第1学期《概率论与数理统计》课程(单元)项目研究报告 项目名称 概率论在足球比赛中的应用 【项目内容】详细叙述拟完成项目的条件和问题,可配表或图。 足球号称世界第一运动,因为在全球范围内无论是哪个国家或者地区都有许多喜欢足球,热爱足球甚至从事足球这项运动的人.四年举行一次的世界杯更是球迷们的狂欢节.中国同样有许多热爱足球的人,中国国家队水平不高经常让中国老百姓失望,但是这丝毫不会减少大家对足球的热情,作为一个中国人我希望中国足球会越来越好. 下面我们来看看大家都喜爱的足球与概率论到底有哪些关联。 相关问题:在某届欧洲杯足球比赛上,西班牙,德国,英格兰和荷兰队进入到了四强,这四支球队中的一支将有希望最终夺冠.决赛四强对阵情况是西班牙对阵英格兰,而德国将与荷兰队争夺另一个进入决赛的名额,由于四支球队都是强队,所以两场半决赛将会十分激烈,先比赛完的一场半决赛中世界第一西班牙队战胜了英格兰队率先进入了决赛,大家此时都将目光放到了西班牙队上,根据以往的比赛成绩,西班牙战胜德国的概率为0.8,战胜荷兰队的概率为0.3,而德国队战胜荷兰队的概率为0.5,那么西班牙球迷迫切想知道西班牙队最终能获得冠军的概率究竟是多大? 对于上面西班牙球迷十分迫切关心的问题,让我们来利用概率的知识来帮助他们解决他们心中的疑虑. 由于西班牙队已经率先挺进决赛,所以还没有完成的德国和荷兰的比赛对于最终的冠军归属有很大的影响,如果德国战胜了荷兰队,那么西班牙队就有80%的可能性夺冠,但是如果荷兰队取得了半决赛的胜利,那么西班牙队夺冠的希望只有30% 根据以上条件,把西 班牙队夺冠记为事件C ,德国战胜荷兰记为事件C ,而荷兰战胜德国则记为事件A ,P(B)=0.5,P(A)=0.5由全概率公式,则A,B 是一个完备事件组,那么有公式就可以得出P(C)=P(B)P(C|B)+P(A)P(C|A)其中可以看出P(C|A)以及P(C|B)是条件概率,P(C|B)表示西班牙在决赛战胜了另一场半决赛的胜者德国队夺冠,P(C|B)=0.8,P(C|A)表示西班牙队在决赛战胜了另一场半决赛的胜出者荷兰队夺冠,P(C|A)=0.3. 所以根据上述公式(全概率公式)我们就可以计算出西班牙队最终夺冠的概率为 P(C)= P(B)P(C|B)+P(A)P(C|A)=0.5*0.8+0.5*0.3=0.55 所以西班牙队最终夺冠的概率应该为55%[10] 看到了西班牙队的最终夺冠的概率,西班牙队的球迷应该可以松一口气,好好享受西班牙队在决赛上的精彩表演啦,因为西班牙队夺冠概率还是比较大的.以上是利用了全概率公式的知识解决了足球比赛中的常见问题,希望能给读者和球迷一些帮助。 2.排列和组合在足球比赛中的应用 每次举行一些足球比赛时经常要事先安排好比赛场次,为了能使足球比赛顺利进行.下面就是举办足球比赛时经常遇到的一类问题。某大学要举行一次校园足球比赛以增强大学生的体质,学校规定每个学院至少要派出一支球队参加这项赛事,最终一共有12支球队参

概率论在日常生活中的应用

概率论在日常生活中的应用 概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛。学过概率论的人多以为这门课较为理论化,特别是像大数定律,极限定理等内容与现实脱节很大,专业性很强。其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果。 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成两大类:一类是确定性现象,指在一定条件下,必定会导致某种确定的结果。例如,同性电荷相互排斥,异性电和相互吸引;在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性现象。这类现象在一定条件下的结果是不确定的,即人们在未作观察或试验之前,不能预知其结果。例如,向桌上抛一枚硬币,我们不能预知向上的是正面还是反面;随机地找一户家庭调查其收入情况,我们亦不能预知其收入是多少。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素是人们无法事先预料的。但另一方面,对这些不确定性现象进行大量、重复的实验时,人们会发现,其结果会出现某种“统计规律性”:重复抛一枚硬币多次,出现正、反两面的次数大致会各占一半;调查多户家庭,其收入会呈现“两头小,中间大”的状况,即处于中间状态的是大多数。这种在每次试验中呈现不确定性,而在大量重复试验中又呈现某种统计规律性的现象较随机现象。概率统计就是研究随机现象并揭示其统计规律性的一个数学分支,它在自然科学及社会科学的诸多领域都有着广泛的应用。 概率,简单地说,就是一件事发生的可能性的大小。比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。大部分人认为一件事概率为0即为不可能事件,这是不对的。比如甲乙玩一个游戏,甲随机写出一个大于0小于1的数,乙来猜。1.乙一次猜中这个数2.乙每秒才一次,一直猜下去,“最终”猜中这个数。这两件事发生的概率的概率都是0,但显然他们都有可能发生,甚至可以“直观”地讲2发生的可能性更大些。这说明概率为0的事件也是有可能发生的。不过在我看来,这样的可能性实在太小了,在实际操作中认为不可能也是有道理的,但不管怎么说,他们确实是可能事件。 在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。 走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。在令人心动的彩票摇奖中,概率也同样指导着我们的实践。继股票之后,彩票也成了城乡居民经济生活中的一个热点。据统计,全国100个人中就有3个彩民。通过对北京、上海与广州3城市居民调查的结果显示,有50%的居民买过彩票,其中5%的居民成为“职业”(经济性购买)彩民。“以小博大”的发财梦,是不少彩票购买者的共同心态。那么,购买彩票真的能让我们如愿以偿吗?以从36个号码中选择7个的投注方式为例,看起来似乎并不很难,其实却是“可望而不可及”的。经计算,投一注的理论中奖概率极其小。由此看出,只有极少数人能中奖,购买者应怀有平常心,既不能把它作为纯粹的投资,更不应把它当成发财之路。 在我国南方流行一种成为“捉水鸡”的押宝,其规则如下:有庄家摸出一只棋子,放在密闭盒中,这只棋子可以是红的或黑的将、士、象、车、马、炮之一。赌客们把钱压在一

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

概率论在经济投资中的应用

概率论在经济投资中的应用 中文摘要:概率论起源于生活,同时也可以应用于生活,其已不仅是一门简单的数学学科。了解概率论在描述经济变化,证券和保险等经济投资方面的应用,对于我们了解经济变化趋势和合理的理财有着至关重要的作用。 关键字:概率论经济投资应用 正文: 概率论是古老而庞大的数学大家庭中一个年轻的分支学科, 它产生于十七世纪中后期, 至今只有短短的三百多年历史。年轻的概率论具有顽强的适应力,随着时代的变迁,近十几年来,由于金融学、保险学等经济学分支学科越来越普遍的应用,研究随机事件的概率论在经济学中得到越来越快的发展。同时由于概率论考虑了样本与总体之间的关系的这一特性,对实证经济学特别是经济计量学可以说起到了非常大的推动作用。甚至可以说,当代实证经济学的发展就是概率统计知识在经济模型中的实际应用,如果考虑在实证经济学领域的诺贝尔获奖者,那概率论对经济学的影响就更大了,包括第一届诺贝尔奖获得者丁博根、第二届诺贝尔获奖者萨谬尔森等在内,前前后后大约有20名经济学家研究和应用概率论在经济学中的应用因此概率论在经济学中有十分广泛的作用。

一、概率论在描述经济数据特征的应用 经济学的实证研究需要很多的数据来支撑,毕竟现代经济学不同于古典经济学的一个主要特征是现代经济学依靠数据来说明经济原理,而古典经济学依靠价值判断和逻辑推理来解释经济学。数据的性质直接决定了经济原理的结果,因此说明数据的统计特征成为大部分实证研究文章的第一步,我们以1992年到2005年我国经济增长率的数据为例(见下表),考查概率论的一些基本概念在经济数据描述方面的应用。 表-1992年到2005年中国经济增长率 根据表1的数据我们可以得到1992年到2005年我国的平均增长率为9.72%,高于潜在增长率8%,中间值为9.55%,在样本区间最大的增长率为13.3%,最小的增长率为7.4%,标准差为0.0194,大于显著性水平为5%的两倍标准差,说明在1992年到2005年之间我国的经济增长率是比较快的;同时根据正态分布统计量: 其中N为样本总数,、分别为三阶矩、四阶矩,计算结果为1.48,卡方统计量的显著性为0.48,统计检验的原假设为:该数据服从正态分布,备选假设为该数据不服从正态分布,由于

【免费下载】概率论与数理统计案例

实例1 发行彩票的创收利润某一彩票中心发行彩票 10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖100个, 奖金各100元; 五等奖1000个, 奖金各10 元.每张彩票的成本费为 0.3 元, 请计算彩票发行单位的创收利润.解:设每张彩票中奖的数额为随机变量X , 则X 10000 5000 1000 100 10 0p 51/1052/10510/105100/1051000/100p 每张彩票平均能得到奖金 05512()10000500001010E X p =? +?++? 0.5(),=元每张彩票平均可赚20.50.3 1.2(), --=元因此彩票发行单位发行 10 万张彩票的创收利润为:100000 1.2120000().?=元实例2 如何确定投资决策方向?某人有10万元现金,想投资于某项目,预估成功的机会为 30%,可得利润8万元 , 失败的机会为70%,将损失 2 万元.若存入银行,同期间的利率为5% ,问是否作此项投资?解:设 X 为投资利润,则 X 8 -2p 0.3 0.7()80.320.71(),E X =?-?=万元存入银行的利息:故应选择投资.1050.5(),%?=万元实例3 商店的销售策略某商店对某种家用电器的销售采用先使用后付款的方式,记使用寿命为X (以年计),规定1,1500;12,2000;23,2500; 3,3000.X X X X ≤<≤<≤>一台付款元一台付款元一台付款元一台付款元10,1e ,0,()100, 0.x X x f x x Y -?>?=??≤? 设寿命服从指数分布概率密度为试求该商店一台家用电器收费的数学期望定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术、电气课校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料、电气设备调试高中中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并

浅谈概率论在生活中的应用

单位代码: 分类号: X X 大学 题目: 浅谈概率论在生活中的应用专业名称: 数学与应用数学 学生: 学生学号: 指导教师: 毕业时间:

浅谈概率论在生活中的应用 摘要:随机现象存在于我们日常生活的方方面面和科学技术的各个领域,概率论与数理统计是一门十分重要的大学数学基础课,也是唯一一门研究随机现象规律的学科,它指导人们从事物表象看到其本质.它的实际应用背景很广,包括自然科学、社会科学、工程技术、经济、管理、军事和工农业生产等领域.经过不断的发展,学科本身的理论和方法日趋成熟,近年来,概率统计知识也越来越多的渗透到诸如物理学、遗传学、信息论等学科当中.另外,在社会生活中,就连面试、赌博、彩票、体育和天气等等也都会涉及到概率学知识.可以说,概率统计是当今数学中最活跃,应用最广泛的学科之一.本文通过对现实生活中的部分现象分析探讨了概率知识在日常生活中的广泛应用. 关键词:随机现象;概率;日常生活;应用分析

Discuss the application in life probability Abstract: Random phenomenon exists in every aspect of our everyday lives and scientific technology each domain, probability and mathematical statistics is an important basic course in college mathematics, and is the only the study of random phenomenon regular course, its guiding people from representation see its nature. Its actual application background is very wide, including natural science, social science, engineering, economics, management, military and industrial and agricultural production, etc. Through continuous development, the theory and method of subject itself becomes mature, in recent years, the probability and statistics knowledge also more and more penetrated into such as physics, genetics, information subjects such as the midst. In addition, in social life, even interview, gambling, lottery tickets, sports and weather, etc are also involves probability learn knowledge. Can say, probability and statistics is the most active in mathematics, the most widely used in the fields of. This article through to in real life part phenomenon discussed probability knowledge in daily life the widely application. Keywords:random phenomenon; probability; daily life; application analysis

经济应用数学—概率论与数理统计马统一的习题1一5答案

习题er 1. 解 (1) 设学生数为n ,则 {0/,1/,2/,,100/}n n n n n Ω=L (2) 枚骰子点数之和为 {3,4,5,,18}Ω=L (3) 三只求放入三只不同A ,B ,C 盒子,每只盒子中有一个球的情况有 {(,,),(,,),(,,),(,,,),(,,),(,,)}a b c a c b b a c b c a c b a c a b Ω= 其中(,,)a b c 表示A 盒子放入的球为a ,B 盒子放入的球为b ,C 盒子放入的球为c ,其余类似. (4) 三只求放入三只不同A ,B ,C 盒子情况有 {(,0,0),(0,,0),(0,0,),(,,0),,(,,)}abc abc abc ab c c a b Ω=L 其中(0,,0)abc 表示A 盒子没有放入球,B 盒子放入的球为,,a b c ,C 盒子没有放入球,其余类似,共3 ||327Ω==个样本点. (5) 汽车通过某一定点的速度设为v {|0}v v Ω=>. (6) 将一尺长的棍折成三段,各段的长度为,,x y z {(,,)|0,0,0,1}x y z x y z x y z Ω=>>>++=. (7) 对产品检验四个产品,连续检验到两个产品为不合格品是,需停止检验,检验的 结果为 {(0,0),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,1), (1,0,0),(1,0,1,0),(1,1,0,0),(1,0,1,1),(1,1,1,0),(1,1,1,1),(1,1,0,1)} Ω= 其中(0,1,0,0)表示第一次取到不合格品,第二次取到合格品,第三次取到不合格品,第四 次取到不合格品,其余类似. 2. 解 (1) 一只口袋中装有编号为1,2,3,4,5的五只球,任取三只,最小的为1的样本点有 {(123),(134),(135)}A = 其中(123)表示取出的球为编号为1,2,3的球(无顺序). (2) 抛一枚硬币两次, A =“第一次出现正面”的样本点有{(10),(11)}A =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. B =“两次出现不同的面”的样本点有{(10),(01)}B =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. C =“至少出现一次正面”的样本点有{(10),(0,1),(11)}C =,其中(10)表示第一次掷出正面,得如此为反面,其余类似. (3) 检验一只灯泡的寿命,其寿命为t 不小于500小时, A =“灯泡寿命不小于500小时”的样本点有{|500}A t t =≥. (4) 某交换台在一分钟接到的呼唤次数不大于10, A =“某交换台在一分钟接到的呼唤次数不大于10”的样本点有{|0,1,2,,10}A n n ==L . (5) 重复抛掷一枚硬币,当出现正面时停止, A =“抛了偶数次时首次出现正面”的样本点有{(0,1),(0,0,0,1),(0,0,0,0,0,1),}A =L ,其中(0,1)表示第一次出现反面,第二次出现正面. 3. 解 (1) ABC AB C =-; (2) A B C U U ;

毕业论文.概率统计在生活中的应用Word版

毕业论文 课题 学生姓名胡泽学 系别 专业班级数学与应用数学指导教师 二0 一六年三月

目录 摘要.................................................................... I ABSTRACT................................................................... II 第一章绪论. (1) 第二章概率在生活中的应用 (4) 2.1在抽签和摸彩中的应用 (4) 2.2经济效益中的应用 (8) 2.3在现实决策中的应用 (4) 2.4在相遇问题中的应用 (12) 2.5在预算及检测中的应用 (10) 结论 (13) 参考文献 (14) 致谢 (15)

概率统计在生活中的应用 摘要 随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。 本文先简述了概率论的发展,之后从概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。多方面论述了概率的应用。 关键词:概率;概率的含义;概率的应用

Abstract

第一章绪论 概率统计是一门和生活关联紧密的学科同样也是一门特别有趣的数学分支学科,17-18世纪,数学得到了快速的发展。数学家们打破了古希腊的演绎框架,社会生活对与自然界的多方面吸取灵感,数学领域涌现了许多新面孔,之后都形成了完整的数学分支。除了分析学这之外,概率论就是同时期能使"欧几里德几何不相上下"的几个伟大成就之一。 概率的发源与赌博有关,伴随着科学技术的发展进步以及计算机普及,它在最近几十年来的社会科学和自然科学中得到了特别广泛的应用,在生活与社会生产中起着很重要的作用。我们生活在一个千变万化千变万化、千变万化的时代里,而我们每个人无时无刻都要直面生活中遇到的问题。而其中很多的问题都是随机的与随机的随机的。如决策时如何获取最大利益,公司要如何组合生产才能取得最大收益,如何加大买彩票的获奖概率,怎样进行误差分析、所购买物品的产品检验,生产质量把控等,当我们在遇到这些问题时应该如何解决它呢?幸好我们如今有了概率,概率是一门探索和揭示随机现象和规律的一门学科。 实践证明,概率是对生活中碰到的问题进行量的解答的有效工具,对经济决策和预测提供了新型的手段。下文就通过列举实例来表述概率在抽签中的应用、经济效益中的应用、现实决策中的应用、追击相遇问题中的应用、最大利润问题中的应用、最佳配置问题中的应用、经济保险问题中的应用、获奖问题中的应用、概率和选购方案的综合应用、金融界中的应用、设计方案的综合应用、厂矿生产中的如何合理配置维修工人问题、在商品质检中的应用和在运输预算费用中的应用等。

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计 在日常经济生活中的应用 摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论数理统计经济生活随机变量贝叶斯公式

§2.1 在中奖问题中的应用 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小.形状.质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元? 分析:(1)分别求出“摸彩”者获奖5元和获奖10元的概率,即可说明; (2)求出理论上的收益与损失,再比较即可解答. 20 (5+10)-1=-0.25<0,故每次平均损失0.25元. §2.2 在经济管理决策中的应用 某人有一笔资金,可投入三个项目:房产x 、地产 y 和商业z ,其收益和市场状态有关,若把未来市 场划分为好、中、差三个等级,其发生的概率分别为10.2p =,20.7p =, 30.1p = ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见下表: 请问:该投资者如何投资好? 解 我们先考察数学期望,可知 ()()110.230.730.1 4.0E x =?+?+-?=; ()()60.240.710.1 3.9E y =?+?+-?=; ()()100.220.720.1 3.2E z =?+?+-?=; 根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差: ()()()()222 1140.2340.7340.115.4D x =-?+-?+--?=;

概率在现实生活中的应用

概率在现实生活中的应用

我认为学习概率应该有两种认识,一是要理性的理解概率的意义,二是要学以致用。 一、概率的意义 (1)一般地,频率是随着实验者、实验次数的改变而变化的; (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同;(3)频率是概率的近似值,概率是频率的稳定值.它是频率的科学抽象.当试验次数越来越多时,频率围绕概率摆动的平均幅度越来越小,即频率靠近概率. (4)概率从数量上刻画了一个随机事件发生的可能性的大小. 二、学以致用 学以致用不仅是会做“单项选择题选对正确答案的概率是多少?”的问题,还要会解决生活中的实际问题。例如: 1、在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里死亡的概率为0.002,每个人一年付12元保险费,而在死亡的时候家属可以领取由保险公司支付的2000元,问保险公司盈利的概率是多少,公司获利不少于10000的概率是多少? 这样的问题咋一看很难知道保险公司是否盈利,但经过概率统计的知识一 计算就可以得知公司是几乎必定盈利的。 2、李炎是一位喜欢调查研究的好学生,他对高三年级的12个班(每班50人)同学的生日作过一次调查,结果发现每班都有三位同学的生日相同,难道这是一种巧合吗? 解析:本题即求50个同学中出现生日相同的机会有多大? 我们知道,任意两个人的生日相同的可能性为1/365×1/365≈0.0000075,确实非常小,那么对于一个班而言,这种可能性是不是也不大呢? 正面计算这种可能性的大小并不简单,因为要考虑可能有2个人生日相同,3个人生日相同,……有50个人生日相同的这些情况。如果我们从反而来考察,即计算找不到俩个人生日相同的可能性,就可知道最少有两个人生日相同的可能性。 对于任意2个人,他们生日不同的可能性是(365/365)×(364/365)=365×364/3652对于任意3个人,他们中没有生日相同的可能性是 365/365×364/365×363/365=365×364×363/3653; 类似可得,对于50个人,找不到两个生日相同的可能性是 365×364×363×…×316/36550≈0.03,因此,50个人中至少有两个人生日相同的机会达97%,这么大的可能性有点出乎意料,然而事实就是如此,高三年级的12个班级(每班50人)都有两位同学生日相同的事件发生,并非巧合。那么,50人中有3人生日相同的概率有多大? 3、深夜,一辆出租车被牵涉进一起交通事故,该市有两家出租车公司——红色出租车公司和蓝色出租车公司,其中蓝色出租车公司和红色出租车公司分别占整个城市出租车的85%和15%。据现场目击证人说,事故现场的出租车是红色,并对证人的辨别能力作了测试,测得他辨认的正确率为80%,于是警察就认定红色出租车具有较大的肇事嫌疑。请问警察的认定对红色出租车公平吗?试说明理由

概率统计补充案例

补充案例:概率部分: 案例1、“三人行必有我师焉” 案例2、抓阄问题 案例3、贝叶斯方法运用案例介绍 案例4、化验呈阳性者是否患病 案例5、敏感性问题的调查 案例6、泊松分布在企业评先进中的应用 案例7、碰运气能否通过英语四级考试 案例8、检验方案的确定问题 案例9、风险型决策模型 案例10、一种很迷惑游客的赌博游戏 案例11、标准分及其应用 案例12、正态分布在人才招聘中的应用 案例13、预测录取分数线和考生考试名 统计部分: 案例14、随机变量函数的均值和标准差的近似计算方法案例15、如何表示考试成绩比较合理 案例16、如何估计湖中黑、白鱼的比例 案例17、预测水稻总产量 案例18、工程师的建议是否应采纳 案例19、母亲嗜酒是否影响下—代的健康 案例20、银行经理的方案是否有效 案例21、一元线性回归分析的Excel实现 案例22、方差分析的Excel实现 案例23、预测高考分数 案例24、两次地震间的间隔时间服从指数分布

案例1、“三人行必有我师焉” 我们可以运用概率知识解释孔子的名言“三人行必有我师焉”. 首先我们要明确一个问题,即只要在某一方面领先就可以为师(韩愈说“术业有专攻”). 俗语说“三百六十行,行行出状元”,我们不妨把一个人的才能分成360个方面。孔子是个大圣人,我们假设他在一个方面超过某个人的概率为99%,那么孔子在这方面超过与他“同行”的两个人的概率为99% ×99% =98.0l %,在360个方面孔子总比这两人强的概率为 (98.01%)360=0.07% ,即这两个人在某一方面可以做孔子老师的概率为99.93%.从数学角度分析,孔子的话是很有道理的. 案例2、抓阄问题 一项耐力比赛胜出的10人中有1 人可以获得一次旅游的机会,组织者决定以抓阄的方式分配这一名额. 采取一组10人抓阄,10张阄中只有一张写“有”. 每个人都想争取到这次机会,你希望自己是第几个抓阄者呢? 有人说要先抓,否则写有“有”的阄被别人抓到,自己就没有机会了;有人说不急于先抓,如果前面的人没有抓到写有“有”的阄,这时再抓抓到“有”的机会会大一些. 为了统一认识,用概率的方法构造一个摸球模型来说明问题. 摸球模型:袋中装有1 个红球和9 个黄球除颜色不同外球的大小、形状、质量都相同. 现在10 人依次摸球(不放回),求红球被第 k 个人摸到的概率( k = 1, 2, ?, 10). 解决问题 :设 k A = “ { 第 k 个人摸到红球 }, k = 1, 2, ? , 10. 显然,红球被 第一个人摸到的概率为 101 )(1= A P . 因为 12A A ?,于是红球被第二个人摸到的概率为 101 91109)()()()(121212= ?===A A P A P A A P A P . 同样,由 213A A A ?知红球被第三个人摸到的概率为 1018198109)()()()()(2131213213= ??= ==A A A P A A P A P A A A P A P . 如此继续,类似可得 )(4A P = ==ΛΛ)(5A P 101 )(10=A P . 由此可见,其结果与 k 无关,表明10 个人无论摸球顺序如何,每个人摸到红球的机 会相等. 这也说明10 个人抓阄,只要每个人在抓之前不知道他前边那些已经抓完的结果,无论先后, 抓到的机会是均等的. 在现实生活中单位分房、学生分班、短缺物品的分配等,人们常常乐于用抓阄的办法来解决,其合理性保证当然得归功于“概率”. 通过上面的摸球模型,我们总结出分配中的“抓阄”问题,无论先抓后抓, 结果是一样的.学完概率之后再遇到抓阄问题时不必争先恐后,我们要发扬风格让他人先抓. 案例3、贝叶斯方法运用案例介绍 什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户。 正确识别垃圾邮件的技术难度非常大。传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等。前者的过滤依据是特定的词语;后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比。它们的识别效果都不理想,而且很容易规避。

概率论与数理统计在生活中的应用

概率论与数理统计在生活中的应用 单位:兴隆场初级中学姓名:姜宏琼 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键字:概率、保险、彩票、统计、数据、应用 由赌徒的问题引起,概率逐渐演变成一门严谨的科学。1654年,有一个法国赌徒梅勒遇到了一个难解的问题:梅勒和他的一个朋友每人出30个金币,两人谁先赢满3局谁就得到全部赌注。在游戏进行了一会儿后,梅勒赢了2局,他的朋友赢了1局。这时候,梅勒由于一个紧急事情必须离开,游戏不得不停止。他们该如何分配赌桌上的60个金币的赌注呢?梅勒的朋友认为,既然他接下来赢的机会是梅勒的一半,那么他该拿到梅勒所得的一半,即他拿20个金币,梅勒拿40个金币。然而梅勒争执道:再掷一次骰子,即使他输了,游戏是平局,他最少也能得到全部赌注的一半——30个金币;但如果他赢了,并可拿走全部的60个金币。在下一次掷骰子之前,他实际上已经拥有了30个金币,他还有50%的机会赢得另外30个金币,所以,他应分得45个金币。 赌本究竟如何分配才合理呢?后来梅勒把这个问题告诉了当时法国著名的数学家帕斯卡,这居然也难住了帕斯卡,因为当时并没有相关知识来解决此类问题,而且两人说的似乎都有道理。帕斯卡又写信告诉了另一个著名的数学家费马,于是在这两位伟大的法国数学家之间开始了具有划时代意义的通信,在通信中,他们最终正确地解决了这个问题。他们设想:如果继续赌下去,梅勒(设为甲)和他朋友(设为乙)最终获胜的机会如何呢?他们俩至多再赌2局即可分出胜负,这2局有4种可能结果:甲甲、甲乙、乙甲、乙乙。前3种情况都是甲最后取胜,只有最后一种情况才是乙取胜,所以赌注应按3:1的比例分配,即甲得

概率论在生活中的应用 毕业论文

学号:1001114119概率论在生活中的应用 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 10级二班 姓名: 指导教师: 2014年3月

概率论在生活中的应用 摘要 概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。这是当前数学课程改革的大势所趋。加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。(宋体,小四,1.5倍行距) 关键词随机现象;条件概率;极限定理;古典概率 The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment. Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability

大学经济系概率论期中考试试题

20XX年复习资料 大 学 复 习 资 料 专业: 班级: 科目老师: 日期:

概率论与数理统计 任课教师:郭鹏辉 一 单项选择题(每题2分,共20XX 分) 1.设A 、B 为任意两个事件,且B A ?0)(>B P 则下列选项成立的是 ( ). )|()() (B A P A P A < )|()()(B A P A P B ≤ )|()()(B A P A P C > )|()()(B A P A P D ≥ 2.若=-=?=??)(,8.0)(,9.0)(,,BC A P C B P A P C A B A 则 ( ). )(A 0.4 )(B 0.6 )(C 0.7 )(D 0.8 3.设事件A 与事件B 互不相容则( ) 0)()(=B A P A )()()()(B P A P AB P B = )(1)()(B P A P C -= 1)() (=?B A P D 4.袋中有5个球,3个新球,2个旧球,每次取1个,无放回地抽取2次,则第2次抽到新球的概率为( ). )(A 3/5 )(B 5/8 )(C 2/4 )(D 3/20XXXX 5.同时掷三枚均匀硬币,则恰有两枚正面向上的概率为( ). )(A 0.5 )(B 0.25 )(C 0.20XXXX5 )(D 0.375 6.某人向同一目标独立重复射击,每次射击命中目标的概率为

)10(<

)2011|(|X P ( ) )2011(2)(F A - 1)2011(2)(-F B )2011(21)(F C - )]2011(1[2)(F D - 8.设二维随机变量),(Y X 服从G 上的均匀分布,G 的区域由曲线2x y =,x y =所围,则),(Y X 的联合概率密度函数为( ) ???∈=其他,0),(,6),()(G y x y x f A ???∈=其他 ,0),(,6/1),()(G y x y x f B ???∈=其他,0),(,2),()(G y x y x f C ? ??∈=其他,0),(,2/1),()(G y x y x f D 9.设随机变量X 、Y 相互独立且均服从[0,1]上的均匀分布,则下列服从均匀分布的是( ). ),()(Y X A XY B )( Y X C +)( Y X D -)( 20XXXX.设随机变量X 、Y 独立同分布且X 的分布函数为)(x F ,则随机变量},max{Y X Z =的分布函数为( ). )()(2x F A )()()(y F x F B 2)](1[1)(x F C -- )](1[)](1[)(y F x F D -- 二 填空题 (每题2分,共20XX 分) 1.已知85.0)|(,93.0)(,9 2.0)(===A B P B P A P ,则)|(B A P = ,)(B A P ?= 。

相关主题