搜档网
当前位置:搜档网 › 第七章 金属和半导体的接触

第七章 金属和半导体的接触

金属-半导体接触

金属-半导体接触 1.金属与半导体接触概论 以集成电路(IC)技术为代表的半导体技术在近十几年来已经取得了迅速发展,带来的是一次又一次的信息科技进步,没有哪一种技术能像它一样,带来社会性的深刻变革。半导体技术的实现依赖于半导体的生产与应用,而在半导体的应用过程中,必然会涉及到半导体与金属电极的接触。 大规模集成电路中的铝-硅接触就是典型的实例。 金属与半导体接触大致可以分为两类[1]:一种是具有整流特性的肖特基接触(也叫整流接触), 导体中的电子将向金属转移,使金属带负电,但是金属作为电子的的“海洋”,其电势变化非常小;而在半导体内部靠近半导体表面的区域则形成了由电离施主构成的正电荷空间层,这样便产生由半导体指向金属的内建电场,该内建电场具有阻止电子进一步从半导体流向金属的作用。因此,金属与半导体接触的内建电场所引起的电势变化主要发生在半导体的空间电荷区[2],使半导体中近表面处的能带向上弯曲形成电子势垒;而空间电荷区外的能带则随同E FS一起下降,直到与E FM处在同一水平是达到平衡状态,不再有电子的流动,如图1.1.3。 图1.1.3:W M>W S的金属与N型半导体接触前后的能带变化,(a)接触前(b)接触后 相对于E FM而言,平衡时E FS下降的幅度为W M-W S。若以V D表示这一接触引起的半导体表面 与体内的电势差,显然有 qV D=W M-W S(1.1)

式中,q是电量,V D为接触电势差或半导体的表面势;qV D也就是半导体中的电子进入金属所必须越过的势垒高度;同样的,金属中的电子若要进入半导体,也要越过一个势垒。高度为式1.2, 式中,qφM极为肖特基势垒的高度。 qφM=W M-χ=qV D+En(1.2)当金属与N型半导体接触时,若W M>W S,则在半导体表面形成一个由电离施主构成的空间电荷区,其中电子浓度极低,对电子的传导性极低,是一个高阻区域,常被称为电子阻挡层。 (2)金属与N型半导体接触,W M

金属-半导体接触势垒的三种形式(比较)

金属-半导体接触势垒的三种形式(比较) 2010-11-19 11:30:12| 分类:微电子器件| 标签:|字号大中小订阅 (在什么情况下的金属-半导体接触是Ohm接触?为什么Schottky势垒和Mott势垒具有单向导电性?Schottky二极管和Mott二极管在性能上有何异同?) Xie Meng-xian. (电子科大,成都市) 金属-半导体接触是一种基本的器件结构,它本身具有两种重要的功能,即二极管功能和Ohm接触功能;而在二极管功能中,又可区分出两种性能有所不同的器件——Schottky 二极管和Mott二极管。

不同功能的金属-半导体接触,其主要的差别就在于接触势垒的形式不同。见图1,(a)是Schottky势垒,(b)是Ohm接触势垒,(c)是Mott势垒。 一般的半导体与金属的接触就形成Schottky势垒,它的势垒高度为qfBn,并且在半导体表面附近处有一层空间电荷区——半导体表面势垒。当加有正向电压时(金属接电源正极),半导体表面势垒高度降低,则有较多半导体电子通过热发射而流到金属、形成很大的正向电流;当加有反向电压时(金属接电源负极),金属电子到半导体的势垒高度qfBn不变,阻挡着电子流到半导体去,则反向电流很小。因此Schottky势垒具有单向导电性。利用Schottky 势垒工作的两端器件就是Schottky二极管。 如果半导体的掺杂浓度很高,则与金属的接触就将形成Ohm接触。因为这时半导体表面势垒的厚度很薄,电子可以借助于量子隧道效应的方式而通过接触界面,所以正向电流和反向电流都将会很大,从而就不再具有单向导电性了,成为了Ohm性的导电。这是任何半导体元器件作为电极连接所必需的。 如果半导体表面层的掺杂浓度很低,则与金属的接触就将形成Mott接触。这时半导体表面势垒的厚度很大,电子只有借助于扩散的方式来通过接触界面。同样,Mott势垒也具有单向导电性。利用Mott势垒工作的两端器件就是Mott二极管。 Schottky二极管和Mott二极管都是多数载流子工作的器件,因此它们都是性能优良的高速开关二极管;而Mott二极管因为其Mott势垒厚度较大,则势垒电容很小、耐压较高,从而它又是很好的微波二极管以及高电压的功率二极管。

相关主题