搜档网
当前位置:搜档网 › SSB变桨系统试验常见故障

SSB变桨系统试验常见故障

SSB变桨系统试验常见故障
SSB变桨系统试验常见故障

1.SSB变桨系统地面出厂试验时,在调整95°限位开关及挡块位置时操作人员不慎将60947-5-1#95°限位开关直动头冲断。

2.G8-064315变桨控制柜,实验时变桨速度过快,执行速度远大于设定速度。初步判

断电机驱动器损坏,造成无法正常使用。

3. 473399-60#旋编编码器做变桨功能试验时,编码器存在角度无变化故障

4、466631-04#旋编编码器做变桨功能试验时,编码器存在角度跳变故障

5. 叶轮功能试验时,由于操作人不慎误将G8-070588变桨控制柜内的1F1防雷模块的火线与零线接反,导致1F1防雷模块烧坏。

6.变桨控制柜实验时系统报电机过温PTC故障,经更换柜内9A1模块后此故障消除。

7、变桨控制柜实验时系统报电机过温PTC故障,经更换柜内9A1模块后此故障消除。

8、G8-070093#变桨控制柜实验时柜内12A1模块指示灯不亮,经更换此故障消除。

9. 旋编编码器做变桨功能试验时,编码器角度始终保持在0°无变化,无法正常使用。

10、旋编编码器旋转时有卡阻现象,并且内部有异响。无法正常使用

11. 95°限位开关压下直动头不能正常复位,造成该95°限位开关无法正常使用。

12. 变桨系统中有2个限位开关触头有卡阻现象,活动不自如,无法正常使用。

13. 叶轮组在调试时发现,闭合电容开关时,9U1不动作,面板上显示9U1故障,无法正常使用

14. LED显示H.N,面板显示:变流器故障,散热片温度故障,无法正常使用。

15. 变桨柜G8-065677打开电容开关后面板显示电容电压9U1为故障状态,9U1不动作,无法正常使用。

16. SSB控制柜配套带来的旋转编码器形状不同, 一套三个旋编信号线接头位置不同,装后性能不受影响。

SSB变桨系统试验常见故障

1.SSB变桨系统地面出厂试验时,在调整95°限位开关及挡块位置时操作人员不慎将60947-5-1#95°限位开关直动头冲断。 2.G8-064315变桨控制柜,实验时变桨速度过快,执行速度远大于设定速度。初步判 断电机驱动器损坏,造成无法正常使用。 3. 473399-60#旋编编码器做变桨功能试验时,编码器存在角度无变化故障 4、466631-04#旋编编码器做变桨功能试验时,编码器存在角度跳变故障 5. 叶轮功能试验时,由于操作人不慎误将G8-070588变桨控制柜内的1F1防雷模块的火线与零线接反,导致1F1防雷模块烧坏。 6.变桨控制柜实验时系统报电机过温PTC故障,经更换柜内9A1模块后此故障消除。 7、变桨控制柜实验时系统报电机过温PTC故障,经更换柜内9A1模块后此故障消除。 8、G8-070093#变桨控制柜实验时柜内12A1模块指示灯不亮,经更换此故障消除。 9. 旋编编码器做变桨功能试验时,编码器角度始终保持在0°无变化,无法正常使用。 10、旋编编码器旋转时有卡阻现象,并且内部有异响。无法正常使用 11. 95°限位开关压下直动头不能正常复位,造成该95°限位开关无法正常使用。 12. 变桨系统中有2个限位开关触头有卡阻现象,活动不自如,无法正常使用。 13. 叶轮组在调试时发现,闭合电容开关时,9U1不动作,面板上显示9U1故障,无法正常使用 14. LED显示H.N,面板显示:变流器故障,散热片温度故障,无法正常使用。 15. 变桨柜G8-065677打开电容开关后面板显示电容电压9U1为故障状态,9U1不动作,无法正常使用。 16. SSB控制柜配套带来的旋转编码器形状不同, 一套三个旋编信号线接头位置不同,装后性能不受影响。

维修实例宝来点火系统故障

栏目编辑:王云刚?wyg@https://www.sodocs.net/doc/0714456483.html, 维修实例 Maintenance?Cases 52 ·August -CHINA 一汽大众宝来发动机动力不足 文/山东 战斌 焦建刚 故障现象 一辆2008年生产的宝来,装配1.6L BWG发动机,行驶里程22275km。车主反映,近期突然出现行驶动力不足、加速性能差等现象,尤其爬坡时故障更加严重。 故障诊断与排除 与车主沟通后得知,该车平时使用率很低,只是偶尔跑跑长途,所以燃油使用情况比较复杂。出现故障前,刚[被朋友借走使用,使用过程中出现过燃油耗尽无法启动的现象。车辆归还后,即发现车辆行驶动力不足。 使用检测仪对该车进行基本检查。读取故障代码,显示故障码P0341,含义为凸轮轴位置传感器G40信号错误。发动机工作时,故障码无法清除;发动机熄火,打开点火开关,故障码可以清除。发动机正常启动后,故障码立即出现。由此看来,该故障应该属于“硬”故障,需要对传感器及其线路进行检查。 连接综合检测仪对凸轮轴位置传感器G40进行动态波形测试,得到图1所示的波形。CH(通道)1蓝色图形是凸轮轴位置传感 器的信号波形,CH(通道)2红色图形是凸轮轴位置传感器的恒定电压,从信号波形看,没有发现任何异常情况存在。但是在后续的检查中,出现了图2所示的波形。根据波形显示情况判断可能存在信号干扰问题。考虑到火花塞容易对信号产生影响,准备更 换火花塞。但是为了谨慎起见,在更换火花塞前,用FSA740进行次级点火波形测试,得到次级平列波形(图3)、次级并列波形(图4)、次级全适配波形(图5)。 仔细对图4、图5、图6进行波形分析,发现各缸的击穿电压和燃烧电压均偏低、燃烧时间偏短。当提高发动机转速时,发现击穿电压降得更低,部分工作缸击穿电压甚至降到4kV以下,这会严重的影响点火质量。拆检火花塞,发现各缸火花塞电极间隙偏大,但击穿电压反映的情况恰恰相反。如果电极间隙过大,对于次级点火波形的影响应该是击穿电压高于正常值,而本车击穿电压偏低。造成击穿电压低的原因有以下几个方面:①火花塞间隙过小;②火花塞积炭;③汽缸压力偏低;④混合汽偏浓;⑤排气堵塞;⑥点火过早等。 检查该车尾气排放情况,发现HC化合物超过了750ppm,而CO、CO 2含量基本在正常范围。连接排气背压表,测量怠速、加速、3000r/min时的排气压力都在正常范围。这说明没有因三元催化器堵塞,导致发动机功率下降的情况。 鉴于该车火花塞间隙较大,并且电极积炭较多的情况,采取更换了火花塞、清洗了节气门及喷油器的操作。操作完成后继续进行检测,发现故障码P0341依然存在,发动机动力不足的现象依然没有改善。当拆下凸轮轴位置传感器插头时,发现发动机动力明显提升,但发动机控制单元记录凸轮轴位置传感器线路断路的故障。 拆下凸轮轴位置传感器,传感器安装及器件本身未见异常。虽然在很多车型上出现过类似的凸轮轴位置传感器信号不正常的情况,但造成发动机动力不足的情况还是很少见。笔者认为,故障码P0341应该是解决该故障的关键。 从理论上讲,如果凸轮轴位置传感器 信号错误,可造成点火时刻失准。控制单元会启动失效保护措施(采用曲轴位置传感器的信号来弥补失准的凸轮轴位置传感器限号),不会对点火时刻造成大的影响。前面次级点火波形的检查结果是击穿电压过低,造成过低的原因是击穿时汽缸内的击穿能量需求不高,而火花塞、排气压力已经检查是正常的。结合客户提到的故障突然发生的情 况, 笔者突然想到会不会是正时皮带跳齿, 图1 凸轮轴位置传感器G40信号波形 图2 异常的凸轮轴位置传感器波形 图3 故障时的次级平列波形 图4 故障时的次级并列波形 图5 故障时的全适配波形

广州数控系统常见故障维修案例及技巧

广州数控系统常见故障维修案例及技巧故障现象一:电动刀架的每个刀位都转动不停 ①系统无+24V; COM输出,用万用表量系统出线端,看这两点输出电压是否正常或存在,若电压不存在,则为系统故障,需更换主板或送厂维修。 ②系统有 +24V; COM输出,但与刀架发信盘连线断路;或是+24V对COM地短路用万用表检查刀架上的+24V、COM地与系统的接线是否存在断路;检查 +24V是否对COM地短路,将+24V电压拉低。 ③系统的反转控制信号TL-无输出用万用表量系统出线端,看这一点的输出电压是否正常或存在,若电压不存在,则为系统故障,需更换主板或送厂维修。 ④系统有反转控制信号TL- 输出,但与刀架电机之间的回路存在问题,检查各中间连线是否存在断路,检查各触点是否接触不良,检查强电柜内直流继电器和交流接触器是否损坏。 ⑤霍尔元件损坏在对应刀位无断路的情况下,若所对应的刀位线有低电平输出,则霍尔元件无损坏,否则需更换刀架发信盘或其上的霍尔元件。一般四个霍尔元件同时损坏的机率很小。 ⑥磁块故障,磁块无磁性或磁性不强更换磁块或增强磁性,若磁块在刀架抬起时位置太高,则需调整磁块的位置,使磁块对正霍尔元件。 故障现象二:电动刀架不转 ①刀架电机三相反相。将刀架电机线中两条互调。 ②系统的正转控制信号TL+无输出。用万用表量系统出线端,看这一点的输出电压是否正常或存在,若电压不存在,则为系统故障,需送厂维修或更换相关IC元器件。 ③系统的正转控制信号TL +输出正常,但控制信号这一回路存在断路或元器件损坏。检查正转控制信号线是否断路,检查这一回路各触点接触是否良好;检查直流继电器或交流接触器是否损坏。 ④刀架电机无电源供给检查刀架电机电源供给回路是否存在断路,各触点是否接触良好,强电电气元器件是否有损坏。 ⑤上拉电阻未接入将刀位输入信号接上2K上拉电阻,若不接此电阻,刀架在宏观上表现为不转,实际上的动作为先进行正转后立即反转,使刀架看似不动。 ⑥机械卡死通过手摇使刀架转动,通过松紧程度判断是否卡死,若是,则需拆开刀架,调整机械,加入润滑液

Lust变桨系统调试相关事项说明_更新

Lust变桨系统调试说明 1、操作说明: 为确保系统调试安全,必须预先进行以下措施: ①现场调试人员必须佩戴好安全帽; ②400V电源的三相线、零线和地线必须可靠连接,避免缺相或漏接; ③上电前确认主控箱和轴控箱的开关处于断开状态; ④所有连接电缆连接正确(电机后面的编码器电缆号是S1、S2和S3;冗 余编码器的电缆号是T1、T2和T3,若反接,会出现飞车故障); ⑤上电前将电机的轴键拆除或利用扎带将其捆扎牢固; ⑥上电前确认电机与底座是否可靠固定; ⑦电池箱箱盖闭合(完成检查); 2、系统紧急顺桨: ①Profibus通信故障(或者不正常); ②Pitch Master故障; ③电机侧编码器故障; ④安全链信号输入无+24V(硬输入点); ⑤未提供+24COM(硬输入点); ⑥Emergency mode位为1; 3、手动模式 手动模式用于机械调零和现场安装调整用,转动速度为2.5度/秒。 手动模式前提条件: ①手动模式信号为1(硬输入点),并观察主控箱的9A1的第8通道的灯是 否点亮; ②Profibus通信正常,或者短接17K7的13、14引脚; ③Normal Operation Mode设置为0; ④Emergency Mode位为0; ⑤转动任一个桨叶时,另外两个桨叶为91度位置(或者通过关闭轴箱的电 源模拟); ⑥轴箱电池开关处于断开状态; ⑦手动旋钮的通道选择的0、1、2和3分别对应空档、轴控箱1、轴控箱2 和轴控箱3;转动方向旋钮控制的是电机的正传和反转; 4、自动模式

自动模式必须满足以下条件: ①先闭合主控箱的400V电源; ②Profibus通信正常; ③将Fault Reset置位1,然后置0; ④闭合轴箱的电池开关和电源开关前确保通信的Emerge Mode(读)为0 和Normal Operation Mode(写)为0;硬接点的Safety Signal(为高电平)、+24V和0V有正常连接,Manual Operation为0。否则会出现飞车现象; ⑤轴控箱上电顺序:先闭合电池开关(5Q1),然后闭合电源开关(6S1)。 正常状态下电机会由于内部的电路的控制不会出现转动; ⑥自动控制是通过通信软件控制,先设置好控制桨叶的目标角度、转速(建 议为3度/秒以下)和加速度(建议0.5~2度/秒2),然后将Normal Operation Mode置1,启动自动模式;若要中途停止,只能通过以下任一方式:将Normal Operation Mode置0、将对应的91度限位开关触发和关闭轴控箱电源(6S1); 5、限位开关 91度限位开关用于控制Pitch Master(主控变频器)的输出控制,当触发了该限位开关后,7K6复位,然后电机会停止,相对而言动作比较缓慢; 96度限位开关用于控制电机和Ptich Master的ENPO信号,当触发了该限位开关后,6K2和6K3复位,然后电机立即停止,相对而言动作比较迅速。 6、Bypass Bypass信号是用于旁通2个限位开关触发了以后继续启动电机转动,有硬信号和软信号之分。 Bypass软信号是对应91度限位开关。当91度触发了以后,利用通信将对应桨叶的Bypass信号置1,然后电机才可以往96度方向转动;而需要往0度方向转动不需要将对应桨叶的Bypass信号置1(实际上该Bypass信号用途不大); Bypass硬信号是对应96度限位开关,当96度触发了以后,利用硬结点的Bypass信号置1,然后电机只可以往0度方向转动; 7、温度预处理说明 根据通信中的所有温度值,需要在控制当中进行预处理,其温度的预处理值建议如下(根据Lust技术人员的建议): ①Pitch Master停机温度值为80度;

案例3 汽油机电控点火系统的故障诊断与检修案例

案例三汽油机电控点火系统的故障诊断与检修案例 案例1. 车型:捷达都市春天形式里程:5.5万公里 故障现象:冷启动困难(热车时正常) 故障检查及诊断过程: 首先我们对油、电路进行了彻底细致的检查。第一步,检测系统油压:释放系统油压后连接VAG1318,拨掉油压调节器真空管,油压表显示正常,十分钟保持压力也正常,由此证明发动机燃油系统无泄露现象。第二步,对发动机电控系统进行检测,连接VAG1552,没有故障码,对点火线圈供电电压进行测量,电压正常,检测电阻值也正常,检查霍尔传感器工作正常,进气系统工作也正常。 最后把重点放在喷油控制电源上,经检测电压为5V远远低于12V,故障找到,此时对控制系统电路进行了仔细测量,线路正常,更换电脑故障还在,那么问题就出现在点火开关上。点火开关内部触点因接触不良而电阻过大,导致冷车时产生电压降致使车辆不好起动。 案例2. 故障现象:该车正常行驶于外环线途中发动机突然熄火,熄火后无法启动, 车主立即打电话到我站求援。 车型:宝来1.8T;行驶里程:183000KM 故障诊断:车辆入厂后,对故障进行分析: a、检查发动机机械部分:正时皮带未断齿(裂)正常。 b、VAS5051诊断仪与发动机控制单元无法通讯,但能与其它控制单元进行数据连接。 c、查看S5、S10、S13、S228、S229、S232、S234及S243的发动机电控系统供电保险丝正常。 d、拔下发动机控制单元两插头,按电路图用万用表检测供电线路状态,发现S10

至位于发动机舱左侧保护壳体内的多点喷射供电继电器J271(控制号428)导线断路。进一步检查位于流水槽左侧保护壳体内6孔棕色插头第四插脚氧化烧蚀。 故障排除:更换T6插头并将线路修复,诊断仪与发动机控制单元数据连接恢复正常。读取三个故障码,分别显示17763:1缸点火控制断路,17769:3缸点火控制断路,18010:30号供电线电压过低。更换1、3缸点火线圈,清除故障码路试一切正常。 读取三个故障码,分别显示17763:1缸点火控制断路,17769:3缸点火控制断路,18010:30号供电线电压过低。 更换1、3缸点火线圈,清除故障码路试一切正常。 故障提示:该车为老款1.8T发动机,由于点火线圈过热导致点火供电电路过载,T6连接插头烧蚀。 案例3. 故障现象:怠速有时抖动,加速时有耸车现象 车型:BORA1.8L手动档;行驶里程:8000公里。 检测过程:首先用VAG1551检测到三个故障码16684、16686、16687。含义是检测到发动机失火,2、3缸失火。怠速抖动时用VAG1551读数据块015组时,可发现第2、3区记录了2、3缸多次失火现象。这说明2、3缸工作不良。数据块001组第三区为25%左右,超出了正常范围(-10%到10%)。这个数据说明混合气偏稀。结合2、3缸工作不良的现象可以推断出2、3缸喷油阀工作不良(堵塞或喷油少)。但2、3两个缸的喷油阀同时出故障的概率太小。考虑到BORA1.8的点火线圈有两个次级线圈,2、3缸共用一个次级线圈。点火线圈损坏导致2、3缸同时工作不良可能性最大。 故障排除:更换点火线圈后,故障排除。

变桨系统带载测试平台要求

变桨系统带载测试平台试验大纲 1 前言 本部分规定了各种型号的电动变桨驱动系统工作性能的测试要求和测试方法。适用于各种电动 变桨驱动系统出厂性能验收和新产品性能测试。 2 测试内容 电机负载测试内容主要分成三个部分: 1)变桨系统带载功能性测试 2)变桨系统带载故障模拟测试 3)变桨系统带载连续运行测试 测试的主要部件为:变桨电机、刹车系统、伺服驱动器、蓄电池、编码器。 3 测试依据 2MW 风机根据《变桨驱动系统采购规范》SB-030.02.05-A 3.6MW 风机根据《变桨驱动系统采购规范》V-69.2-BV.MR.00.00-A-D GB/T 1311-2008《直流电机试验方法》 GB/T 1029-2005《三相同步电机试验方法》 4 变桨系统带载功能测试 4.1 变桨电机额定负载测试 需测试电机在额定负载下的变桨位置、电机转速、转矩响应特性。位置给定范围为(0°~30°), 测试变桨速度为2°/S。 测试需要得到如下响应曲线图:电机运动位置给定曲线、电机位置响应曲线、电机速度响应曲 线、电机转矩响应曲线、电机电流变化曲线、电机温升曲线。 Y520000064-2 变桨系统带载测试平台试验大纲共3 页第 2 页 FDJL-JS-027 4.2 变桨电机变化负载测试 需测试电机在变化负载下的变桨位置、电机转速、转矩响应特性。位置给定范围为(0°~30°), 变化负载范围为额定负载的±50%,测试变桨速度为2°/S。 测试需要得到如下响应曲线图:电机运动位置给定曲线、电机位置响应曲线、电机速度响应曲 线、电机转矩响应曲线、电机电流变化曲线、电机温升曲线。 4.3 变桨电机最大负载测试 需测试电机在最大负载下(3s 内)的变桨位置、电机转速、转矩响应特性。位置给定范围为(0°~ 30°),测试变桨速度为2°/S。 测试需要得到如下响应曲线图:电机运动位置给定曲线、电机位置响应曲线、电机速度响应曲

变桨系统原理及维护

风力发电机组 变桨系统原理及维护 国电联合动力技术有限公司 培训中心 (内部资料严禁外泄) UP77/82 风电机组变桨控制及维护 目录 1、变桨系统控制原理 2、变桨系统简介 3、变桨系统故障及处理 4、LUST与SSB变桨系统的异同 5、变桨系统维护 定桨失速风机与变桨变速风机之比较 定桨失速型风电机组 发电量随着风速的提高而增长,在额定风速下达到满发,但风速若再增加,机

组出力反而下降很快,叶片呈现失速特性。 优点:机械结构简单,易于制造; 控制原理简单,运行可靠性高。 缺点:额定风速高,风轮转换效率低; 电能质量差,对电网影响大; 叶片复杂,重量大,不适合制造大风机 变桨变速型风电机组 风机的每个叶片可跟随风速变化独立同步的变化桨距 角,控制机组在任何转速下始终工作在最佳状态,额定风速得以有效降低,提高了低风速下机组的发电能力;当风速继续提高时,功率曲线能够维持恒定,有效地提高了风轮的转换效率。 优点:发电效率高,超出定桨机组10%以上; 电能质量提高,电网兼容性好; 高风速时停机并顺桨,降低载荷,保护机组安全; 叶片相对简单,重量轻,利于制造大型兆瓦级风机 缺点:变桨机械、电气和控制系统复杂,运行维护难度大。

变桨距双馈变速恒频风力发电机组成为当前国内兆瓦级风力发电机组的主流。变桨系统组成部分简介 变桨控制系统简介 主控制柜 轴柜 蓄电池柜 驱动电机 减速齿轮箱 变桨轴承 限位开关 编码器 变桨主控柜 变桨轴柜

蓄电池柜 电机编 码器 GM 400绝对值编码器共10根线,引入变桨控制柜,需按线号及颜色接入变桨控制柜端子排上。 限位开关 变桨系统工作流程: 机组主控通过滑环传输的控制指令; 将变桨命令分配至三个轴柜; 轴柜通过各自独立整流装置同步变换直流来驱动电机; 通过减速齿轮箱传递扭矩至变桨齿轮带动每个叶片旋转至精准的角度; 将该叶片角度值反馈至机组主控系统 变桨系统控制原理

LUST 变桨系统旁路限位开关超时故障分析

LUST 变桨系统旁路限位开关超时一、基本信息 启动风机,桨叶无法开桨,主控报出旁路限位开关超时故障。 3、故障分析 导致报出此故障主要有两方面原因: 1、有一只或者多只叶片在上次故障停机时未到达限位开关位置。 图1 限位开关回路 出现叶片无法压到限位开关,可能 A 编码器角度已经变化,即编码器反应的角度已经不是叶片的实际位置了。必须确保风机在停机时,叶片在 92.5°前压到限位开关。如果风机未收到“风暴位置反馈”信号,则风机在启动时不会发出“旁路限位开关”信号,致使压到限位开关的叶片无法离开限位开关,或者是叶片压限位开关角度过小,当叶片变桨到 90°仍然无法离开限位开关。

2、有一只或者多只叶片无法变桨。 图2 驱动回路 主控给变桨的三个信号异常: A、正常变桨信号(主电源 OK 信号、MITA 等系统的 103 信号):当此信号=0 时,将开始电池收桨。 故障表现有: 启机时,叶片脱开限位开关后,马上收桨; 正常运行时,报错桨角不一致、跟踪设定值超速等; B、旁路限位开关信号: 风机启动时,此信号将=1,其他时间均等于 0。 故障表现有: 启机时,若=0,风机无法变桨; 正常运行时,若=1(进行了短接),叶片无法启动电池收桨; 禁止将此信号常置为一(短接),后果严重。 C、Rpm OK 正常信号: 风机快速收桨时,此信号将=0,其他时间均等于 1。 故障表现有: 启机时,若=0,叶片达到 90°后不再动作; 正常运行时,若=0,叶片开始快速收桨。

4、处理方法 1、检查编码器数值未跳变,三面限位开关已经压在挡板上,并且查看变桨控制器显示叶片压限位开关角度在 91.6±0.3°内,属于为最佳位置。所以排除第一种可能。 2、在主控柜打上人工维护开关,进入轮毂用变桨控制器变桨,但无法变桨。根据前面分析我们分别测量图2中正常变桨信号、旁路限位开关信号和Rpm OK 信号(在变桨控制器DE3.3端口处)是否为24V,在测量时发现旁路限位开关信号为0V,有图3可知道打上维护开关时24V已经通过105端子送出,如果电压为零很可能是哪里接地了,于是我们从末端脱开线测量电压,也就是如图2中脱开3K1线圈上端的旁路限位开关信号线进行测量,发现有24V 电压。但再接上线测量为0V 。所以可以确定3K5开关下端到3K1 上端以及并在3K1上的二极可能有接地现象。最后用万用表测量发现二极管已经击穿,所以确定是二极管击穿导致线路接地。更换二极管后就能正常变桨。 图3 维护开关回路(103为正常变桨信号105为旁路限位开关信号) 5、所需的备品备件 续流二极管一个 6、所需工具 万用表一块 小号一字螺丝刀一把 绝缘胶布一卷 7、注意事项。

电子点火系统常见故障及实例

电子点火系统常见故障及实例 3、1汽车点火系统常见故障得检测 3。1。1汽车故障诊断得四项基本原则 1、先简后繁、先易后难得原则。2、先思后行、先熟后生得原则 .3、先上后下、先外后里得原则.4、先备后用、代码优先得原则 3.1。2汽车故障诊断得基本方法 1、询问用户:故障产生得时间、现象、当时得情况,发生故障时得原因以及就是否经过检修、拆卸等。 2、初步确定出故障范围及部位。 3、调出故障码,并查出故障得内容。 4、按故障码显示得故障范围,进行检修,尤其注意接头就是否松动、脱落,导线联接就是否正确. 5、检修完毕,应验证故障就是否确已排除。 6、如调不出故障码,或者调出后查不出故障内容,则根据故障现象,大致判断出故障范围,采用逐个检查元件工作性能得方法加以排除。 3.1。3汽车故障点火系统故障检测 1、点火传感器(信号发生器)得故障检查。点火传感器如发生故障时,会使点火信号发生器输出得信号过弱或无信号而不能触发电子点火器工作,造成整个点火系统不起作用。磁电式传感器得静态检查主要就是气隙得检查与传感器线圈得检查。

(1)气隙得检查。其检查方法就是:将信号转子得凸齿与传感器线圈得铁心对齐,用塞尺检查之间得气隙;一般为0、2~0、4mm,若不合适应进行调整。有得无触'点分电器此气隙就是不可调得,有问题时只能更换. (2)传感线圈得检查.其检查方法就是:用万用表得电阻挡测量分电器信号输出端(感应线圈)得电阻,其阻值一般为250~1500Ω,但也有130~190Ω得。若电阻无穷大,则说明线圈断路;若感应线圈电阻过大、过小,都需要更换点火传感器总成。感应线圈输出得交流电压,可用高灵敏万用表得交流电压挡进行测量,其值应为1、0~ 1、5V。 2、点火器(点火电子模块)得故障检查。电子点火器故障将使点火线圈初级电流减小或断流不彻底,造成火花弱不能点火,导致热车时失速,发动机不能启动,高速或低速时熄火。其故障检查方法如下。 (1)高压试火法。如果已确定点火传感器良好,可以直接用高压试火得方法来检查.将分电器中央高压线拔出,使高压线端距发动机缸体5mm左右瞧打火情况。或将高压线插在一各用火花塞上,并使火花塞搭铁然后启动发动机,瞧其就是否跳火.如果火花强,说明电子点火器良好。否则,说明电子点火器有故障。 对于磁电式传感器,可打开分电器盖,用螺钉旋具将导磁转子与铁心间做瞬间短路,瞧高压线端有否跳火。否则,说明电子点火器有故障。 对于光电式或霍耳效应式点火传感器,可在拆下分电器后,用手

风机变桨控制系统简介

风力发电机组变桨系统介绍

一.风力发电机组概述 双馈风机

1.风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关 键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。 叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。 组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比﹑与风轮直径的平方成正比﹑与风速的立方成正比.风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限 2.发电机与齿轮箱 双馈异步发电机 变频同步发电机 同步发电机---风力发电机中很少采用(造价高﹑并网困难) (同步发电机在并网时必须要有同期检测装置来比较发电机侧和系统侧的 频率﹑电压﹑相位,对风力发电机进行调整,使发电机发出电能的频率与系 统一致;操作自动电压调压器将发电机电压调整到与系统电压相一致;同时, 微调风力机的转速,从周期检测盘上监视,使发电机的电压与与系统的电压 相位相吻合,就在频率﹑电压﹑相位同时一致的瞬间,合上断路器,将风力发 电机并入电网.) 永磁发电机---是一种将普通同步发电机的转子改变成永磁结构的发电机.组. 异步发电机---是异步电机处于发电状态,从其激励方式有电网电源励磁(他励)发电和并联电容自励(自励)发电两种情况.

电网电源励磁(他励)发电是将异步电机接到电网上, 电机内的定子绕组产 生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速, 电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转 速方向相同,这时就将原动机的机械能转化为电能. 异步电机发出的有功 功率向电网输送,同时又消耗电网的有功功率作励磁,并供应定子与转子漏 磁所消耗的无功功率,因此异步发电机并网发电时,一般要求加无功补偿装 置,通常用并联电容补偿的方式. 异步发电机的起动﹑并网很方便,且便于自动控制﹑价格低﹑运行可靠﹑ 维修便利﹑运行效率也较高,因此在风力发电机并网机组基本上都是采用 异步发电机,而同步发电机则常用于独立运行. 3.偏航控制系统 风力机的偏航系统也称对风装置.其作用在于当风速矢量的方向变化时,能够快速平稳地对准风向,以便风轮获得最大的风能. 大中型风力机一般采用电动的偏航系统来调整风轮并使其对准风向. 偏航系统一般包括感应风向的风向标, 偏航电机, 偏航行星齿轮减速器,回转体大齿轮等. 解缆 大多数风机的发电机输出功率的同轴电缆在风力机偏航时一同旋转,为了防止偏航超出而引起的电缆旋转,应该设置解缆装置,并增加扭缆传感器以监视电缆的扭转状态. 4. 变桨控制系统 5. 变流器 6. 塔架

国电 变桨 调试

PROJECT GUP CCV风场变桨调试TO GUP Customer ENGINEER MOOG Service Remark GUP CCV风场变桨调试 1、变桨柜内无电检查 1.1 查验系统元器件包括电缆有无缺陷。 a、检查柜体在运输过程中是否存在由于震动造成的一些元器件损伤,主要是看元器件有无硬件损伤。 b、检查所要连接的重载电缆有无绝缘破损情况,Harting有无损坏。 c、查看柜内有无铁屑、铜丝等金属危险品 确保上电后设备及人身的安全。 1.2 校线检查 1.2.1 24V控制滑环线缆检查 使用万用表对从滑环进轮毂的线缆进行校线检查,确保接线没有错误。 注意:防雷模块的区别 6R1:接Profibus通讯线为5V防雷模块 16R1、17R1为24V防雷模块 注:此项接线必须校线检查,不然24V如果接线短路,就会造成防雷模块的损坏。 1.2.2 400V线缆检查 使用万用表对从机舱进轮毂的线缆进行校线检查。 注:400V的线缆校线检查必须提高警惕,严禁出现零线与火线或者地线与火线接反的情况!!! 目前在已经调试的风场中 1)尚义风场发现400V的防雷模块损坏较多,查出原因为机舱出火线与地/零线接反导致防雷模块的损坏2)在武川风场出现有,机舱零线未接紧,上电之后,系统缺零导致烧坏AC400充电器以及24V开关电源。 1.2.3 测量Canbus终端电阻60±5? 可测量BVL E线harting上,白棕两线间阻值 1.2.4 激活profibus终端电阻 DP插头上拨动开关处于ON状态 1)未接主控通讯线时,可测得6R1:1-2间阻值为220±10? 2)若连接主控通讯线之后阻值在110±5? 注:此阻值测量是在主控与变桨均未上电情况下测量的 1.2.5 线路测量 连接外部电源线之后(外部给变桨供电400V电源开关必须保持断开),闭合变桨柜体内所有开关(电池柜5Q1,axis1,axis2,axis3开关保持断开),做上电之前的线路测量 1)检测L1、L2、L3、N、PE线间的短路测量。 2)24+与L1、L2、L3、N、PE线间的短路测量。 3)24-与L1、L2、L3、N、PE线间的短路测量。 4)测量柜内各个端子排N线与N线以及PE线间的导通性。 注意:各个电压等级之间不能有回路电压串入 5)检测PITCHmaster进线进出线的对地的短路测量 确保上电之前线路无短路情况,保护设备及人身安全 1.2.6 电池电压测量 查看连接电池的短接线,保证电池短接线完全连接好,不能有虚接现象。 依次测量每个电池柜的电压,查看电池柜电压是否平衡,一般在230V左右,若出现电池柜电压偏低情况,上电后优先闭合这个电池柜开关,优先充电。

变桨系统故障分析

1.5MW风机故障分析 1.变桨系统 1.1PITCH CABINET 1.1.1ERROR_PITCH_CABINET_TEMPERATURE(变桨柜温度故障) 故障原因:1#、2#、3#任何一支变桨柜温度超过55o延续3S。 检查步骤: A)检查变桨柜温度传感器(PT100)是否正常。 B)检查变桨柜温度模块(KL3204)是否工作正常。 C)通过软件检测风扇是否在45o时正常启动。 D)检查开关电源模块是否温度是否异常。 1.2PITCH CAPACITORS 1.2.1ERROR_PITCH_CAPACITOR_TEMPERATURE(变桨柜电容故障) 故障原因:1#、2#、3#任何一支变桨柜电容温度超过55o延续3S。 检查步骤: A)检查电容温度传感器(PT100)是否正常。 B)检查变桨柜温度模块(KL3204)是否工作正常。 C)检查电容电压是否正常。 D)测量电容电压(60V)是否正常。 1.2.2 ERROR_PITCH_CAPACITOR_VOLTAGE_HI(变浆柜电容高电压故障) 故障原因:1#、2#、3#任何一支变桨柜电容电压低于55V延续3S. 检查步骤: A)检测电容电压是否正常。 B)检测NG5模块输出是否正常。 C)检测A10模块输入是否正常。 D)检测A10模块输出电压(5.4V)是否正常。 E)检测KL3404(A5)模块是否正常。 1.2.3ERROR_PITCH_CAPACITOR_VOLTAGE_UNSYMMETRY(变桨电容电压不平衡) 故障原因:满足下列关系”CAPACITOR_VOLTAGE_HI”/2-“CAPACITOR_VOLTAGE_LO”的绝对值大于2。 检查步骤: A)检测电容电压是否正常。 B)检测NG5模块输出是否正常。 C)检测A10(自制模块)模块输入是否正常。 D)检测A10(自制模块)模块输出电压(5.4V)是否正常。 E)检测KL3204(A8)模块是否正常。 1.3PITCH CONVERTER 1.3.1 ERROR_PITCH_CONVERTER_TEMPERATURE(变桨变频器温度故障) 故障原因:1#、2#、3#任何一支变桨柜变频器(AC2)温度超过85o延续3S。 检查步骤: A)检测变频器温度传感器(PT100)是否工作正常。 B)检测KL3404(A8)模块是否正常。

汽车点火系统常见故障诊断及维修_毕业论文

汽车点火系统常见故障诊断与维修 班级 专业汽车技术服务与营销 教学系汽车工程系 指导老师 完成时间年月日至年月日 目录 摘要 (3)

第一章发动机点火系统的发展 (4) 第二章点火系统的分类及结构 (5) 2.1点火系统的分类 (5) 2.2点火系统的结构 (6) 第三章点火系统的常见故障诊断及维修 (7) 3.1点火系统常见故障 (7) 3.2点火系统故障分析及排除方法 (7) 第四章点火系统的维护 (9) 4.1 主要内容 (9) 4.2 点火正时的检查与调整 (10) 4.3点火器的检修 (12) 4.4点火正时的检查与调整 (12) 结论 (14) 致谢 (15) 参考文献 (16) 摘要 “汽车”这一名词在当今飞速发展的时代,有着举足轻重的位置。它已经成为了人们生活中的一部分,在我国汽车保有量越来越多,车型也越来越复杂。尤其是高科技的飞速发展,一些新技术、新材料在汽车上的广泛应用后,给汽车故障诊断与排除增加了一定难度。 在现代汽油发动机中,气缸内的可燃混合气是采用高压电火花点燃的。为了在气缸中产生高压电火花,必须采用专门的点火装置,即点火系统。点火质量的高低直接影响发动机的性能,所以,点火系统是发动机最重要的系统之一。发动机许多常见故障都是点火时刻不准引起的,因此,在实际维修过程中,有很大比例的发动机故障是由于点火系统的故障引起的。

汽车点火系统工作状况的好坏,直接影响发动机的动力性和经济性。在汽车维修过程中,点火系统故障率相对较高。因此,本篇论文通过介绍常见的汽车点火系统故障诊断,并提出修理方法。汽车点火系统是点燃式发动机为了正常工作,按照各缸点火次序,定时地供给火花塞以足够高能量的高压电(大约15000~30000V),使火花塞产生足够强的火花,点燃可燃混合气。 能够按时在火花塞电极间产生电火花的全部设备,称为发动机点火系。为了适应发动机的工作,要求点火系能按照发动机的点火次序,在一定的时刻,供给火花塞以足够能量的高压电,使其两极间产生电火花,点燃混合气,使发动机做功。 关键字:火花塞分电器分电器 第一章发动机点火系统的发展 汽油机点火系统的基本作用是准时给需要点火的气缸提供一个电火花,以点燃可燃混合气。气缸点火必须按照一定的顺序,根据发动机的转速和负载条件在准时的瞬间进行点火。所有的汽油机点火系统的工作原理基本相同,即在点火线圈初级电路中的电流突然切断时,次级电路产生很高的电压,是火花塞产生电火花。 早期汽油机汽车点火是由磁电机—一种直流发电机,它也能产生高压电火花。磁电机与一种比较原始的分电器相连。适时地将电火花送给需要点火的那个气缸的火花塞。这些汽车通常没有我们今天所说的电器设备,没有蓄电池、发动机,也没有车身线路。 随着单触点组和单个点火线圈的点火系统问世,以及在汽车上采用蓄电池和起动机之后,汽车电器变得比较简单和便宜了。蓄电池的电流通过闭合电流初级绕组,当触点打开时,在次级绕组中产生高压电,分电器按点火顺序将高压电适时地分配给需要点的火花塞,这就是我们所说的传统的蓄电池点火系统。 断电器触点式点火系统主要缺点是触点,由于机械和电气方面的原因,容易磨损。为了消除该系统在电气方面存在的缺点,早期采用触点半导体点火系统。在这些晶体管化的点火系统中,仅有很小的电流流过触点,此触点仅用来给晶体管发出信号,使其通断点火线圈初级电路中的电流。 有触点电子点火系统,虽然部分解决了触点烧烛的现象,并没有根本消除这一问题,为了彻底解决触点烧烛的现象,于是产生了无触点电子点火系统,它和触点点火系统所起的作用相同。总的来说,两种点火系统中分电器的作用是相同的,其分火头、分电器盖、高压线和火花塞的工作情况

风电场风机变桨系统故障分析及具体措施

风电场风机变桨系统故障分析及具体措施 摘要:风力发电作为现阶段电力能源供应系统的重要构成,发电机组通常需要 在复杂的环境下运行,风向、风速、风力与温度环境等容易受不确定因素影响, 具有随机性、多变性与间歇性等方面的特点,风机系统在交变负载的影响下,容 易出现故障问题。变桨系统是风力发电的重要技术,分为液压变桨与电动变桨等 形式,液压变桨系统的常见问题包括超限故障、不同步故障等;电动变桨运行系 统主要的故障问题为电气回路、变桨电滑环以及后备电源等出现损坏,技术与管 理人员应结合具体故障原因,采取针对性的处理手段。 关键词:超限故障;运行不同步;电气回路 现阶段,我国能源消耗量逐步提高,风电场的电力生产与供应需求不断提升,风机系统的运行压力大幅度增加,为保证电力运行系统的安全、稳定运行,风电 场应在加强变桨系统状态监测的基础上,做好故障排查与处理工作。由于变桨系 统处于封闭的环境中,因此在运行监测时,故障表现不明显,需要通过总控制系 统对系统运行异常数据进行报错,检测与维修技术难度相对较大。基于此,本文 从现阶段液压与电动变桨系统的常见故障表现与原因方面出发,对不同故障问题 处理对策进行系统分析。 一、液压电机变桨系统中的主要故障及处理对策 1、变桨系统超限故障情况的分析与处理 液压变桨在运行过程中容易出现超限故障,最常见故障点为桨叶位置传感器损坏,造成测量电压超出允许值范围,从而造成叶片位置检测错误。一旦桨叶位置 的传感器出现损坏情况,传感器会发出超过正常标准的电压信号,信号传输到伺 服系统中,反馈到主控制平台,平台根据故障信息报出超限情况。桨叶的位置传 感装置是控制变桨系统的重要装置,如果装置出现故障,不仅会增加实际变桨角 度与理论角度的误差值,还会在一定程度上降低风机运行质效,降低系统发电的 稳定性。在进行故障检测与处理的过程中,应先利用程序控制功能对位置传感器 进行状态检测,将桨叶的角度数据转换为可测量的电压信号。若不在正常范围内,通过桨叶位置传感器配套调整工具,将桨叶角度正负极限值调至规定电压范围。 如果故障位置无法处理,或经由技术处理后,电压值仍旧存在跳变问题,可以通 过更换传感器,对桨叶位置情况进行检测,确保故障的有效消除。 2变桨不同步故障分析 变桨系统通过位置传感装置的布设,对桨距角电压信号进行监测,当变桨叶 片的角度最大差值超过4°时,传感装置会将异常信息反馈到PLC系统中。控制平 台接受异常信号,经由分析后,报出具体的故障信息。变桨发生不同步系统运行 故障,常见原因为变桨比例阀运行系统出现损坏现象,从而导致液压回路流量控 制失效,使三叶片中最大变桨角度与最小变桨角度差值大于程序设定值,三桨叶 运转位置、速度出现误差,导致运行不同步。比例阀运行系统对电机进行控制的 过程中,需要通过逻辑运算,同时对比例阀电位移转情况与伺服电情况进行反馈,通过控制装置放大传输信号,对转换器进行控制,转换器根据输入信号产生等比 的系统驱动力,对液压阀进行有效驱动,对液压阀的压力与液压油流量进行动态 控制。比例阀通过控制液压油的流量来进行桨叶位置和变桨速度控制的,根据变 桨液压回路。因此,系统中所有电磁阀带电,电磁阀得电选择导通或关闭油路, 比例阀的底部线圈也处于带电状态,阀位出现变化,液压油将会从P端出发,流

REE-OAT变桨系统现场调试手册

版本:V1.0 REE-OAT变桨系统现场调试手册 发布日期:2009年9月9日

REE-OAT变桨系统现场调试手册 本文件用于指导1.5MW(低温型)风机用变桨系统的现场调试,变桨系统的调试要严格按照调试步骤进行,做好调试记录。 一、调试工具 ●调试软件Windbench; ●笔记本电脑一台; ●万用表一个; ●工具箱一个:配有一字型、十字型螺丝刀、一套内六角扳手和尖嘴钳等 工具; ●REE-OAT变桨系统原理图一份; 二、上电前的常规检查 ●确认变桨系统各部件间的电缆连接正确,且各航空插头连接牢靠; ●检查各控制箱内及箱外的元器件是否完好无损; ●确认各控制箱和电池箱的电源开关均处于断开状态,箱内的电路保护开 关均处于断开状态; ●电池电压在满电状态应为246V,如低于241V,电池已处于充电状态, 此时充电激活以及充电电流项的指示灯应为绿色,电池电流值为负值。

充电器激活 注意:系统上电前一定要确保三相400V电压正常和相序正确,N线和PE接地线连接正确且固定牢靠,电源不能缺项,否则容易造成模块烧毁。 三、单独调试步骤 1.首先一定要先合上三个电池箱的开关1Q2,2Q2,3Q2; 2.PC调试步骤(按照以下示意图分步完成): ●检查Q1(400V AC)进线端电压是否正常,出线端是否对地短路,正常 则合上Q1; ●检查S1(230V AC)进线端电压是否正常,出线端是否对地短路,正常 则合上S1,检查照明灯是否正常; ●检查Q11,Q21,Q31(400V AC)进线端是否正常,出线端是否对地短 路,正常则合上Q11,Q21,Q31; ●检查F11,F21,F31(230V AC)进线端是否正常,出线端是否对地短路, 正常则合上F11,F21,F31;

关于XE风机故障后收桨不成功处理流程

关于XE风机紧急变桨不成功故障处理流程 一、系统设计 湘电XE系列风机设计有一套伺服变桨系统和一套紧急变桨系统,风机在出现T2等级故障后会立即使用紧急变桨系统收桨,出现T1故障够优先使用伺服变桨系统收桨,如不成功则切换为紧急变桨系统收桨。 因风机设计原因,风机紧急变桨系统的ECM模块、紧急变桨电池等部件故障率较高,因此风机紧急变桨失败故障出现的概率也较高。 二、故障频率 据统计,本年度出现紧急变桨速度慢故障共125次,紧急变桨失败或超时故障49次。 三、紧急变桨失败后,叶片收不回的危害: 1、停机后两个桨叶没有收回,会导致机舱来回摆动,风速大于15米/秒很快就会造成偏航系统严重损坏; 2、如果三个桨叶都没有收回,则风机会处于空转失控状态,风速大于10米/秒就可能造成飞车倒机事故; 3、故障停机后一个叶片没有收回影响相对较小,但是如果风速过大超过20米/每秒或停留时间较长,也会造成风机设备严重损坏。 因此对于停机后叶片未收回的故障需引起运行和检修人员的足够重视,一旦出现一个叶片紧急变桨失败要及时进行处理,防止发展成为多个叶片变桨失败引发事故。 四、故障处理 当风机出现紧急变桨失败后,现场人员尽快尝试收回叶片,一般按以下流程处理: 1、当风机出现一个叶片未收回,需立刻切换至“FAT”模式远程进行手动收桨,并在当天通知检修人员进行处理。 2、如果有两个以上叶片未收回,立刻尝试“FAT”模式收桨并同时通知检

修人员进行维修,故障处理完之前风机不能启机运行。如果远程收桨失败检修需立刻前往现场使用维护模式收桨,并报告公司相关部门。如果风机已经失控且明显超过额定转速,人员需尽快撤离并报告公司。 3、另外需要特别注意的是,当有一台或多台风机出现SCADA脱网,导致风机停机的最终状态没有返回,无法确认风机桨叶状态时,则要考虑风机是否因为电网掉电停机,一定要立即间接或直接的确认风机状态,如有停机需前往现场处理。

汽车点火系统故障案例分析详解(帕萨特汽车为例)

汽车点火系统故障案例分析详解(帕萨特汽车为例) 本文中描述了帕萨特汽车关于点火故障的维修过程及分析。通过案例的故障现象,对汽车点火系统进行了多方位的检测,将之归纳为为两个方面机械及电路。本次主要侧重对电路的检修,其中包括控制线路、传感器以及点火模块的检修。对电路的检查不仅有单元件的测试更有对汽车点火波形的综合分析,最终找出了故障的真在所在。 一、故障描述及初步解决方案一辆2002款帕萨特,行驶27万km后,出现了低温难启动、高温启动正常。怠速不稳,有缺缸的迹象,高速正常。该车在别的汽修厂已相继更换过空气流量计、点火控制模块及相关的附件,但效果不佳。 1、故障诊断 询问用户故障出现时的工况、时间、地点等因素。在做了初步的分析后首先用尾气分析仪检测尾气,发现发动机排放的尾气大幅超标,对测量结果进行分析,初步判定故障点应在点火系统。 首先是用电脑读取发动机的故障码,发现没有故障码,接着读取数据流及点火波形发现点火线圈的高压偏低。再者根据车主描述,刚刚换过了火花塞及分缸高压线,于是分析可能的原因在于点火模块及其控制线路。因为该车的点火方式属于双头同时点火,利用万用表、示波器进行如下拆检与分析,电路如下图1所示。 首先是拆下火花塞,发现火花塞表面有少许的白点。火花塞间隙符合该车型的技术标准。再者用万用表的欧姆档检查分缸高压线的阻值,均不超过25 千欧姆,亦符合技术要求。此时,常规检查没有问题后,可能原因进行如下分析:某缸不点火、气缸压缩压力不足、火花塞自身不跳火、分缸高压线漏电等等。 二、故障检测与分析此时考虑产生此类的故障的可能原因是机械、控制电路等原因。 2.1、机械故障: (1)气缸压力检测由于测量气缸压力比较容易实现,于是对汽车的逐缸进行了压力测试,发现压力基本一致,并没有发现个别气缸压力偏低的现象。

相关主题