搜档网
当前位置:搜档网 › 实验一 ASK调制与解调实验

实验一 ASK调制与解调实验

实验一 ASK调制与解调实验
实验一 ASK调制与解调实验

学院:信息与通信工程学院

专业:光电工程

班级:12051041

学号:12051041

姓名

时间:2014.11.21

实验一 ASK调制与解调实验

一实验目的

1.理解ASK调制的工作原理及电路组成。

2.理解ASK解调的原理及实现方法。

3.了解ASK信号的频谱特性。

二实验内容

1.观察ASK调制与解调信号的波形。

2.观察ASK信号频谱。

三实验器材

1.信号源模块 5.20M双踪示波器一台

2.数字调制模块 6.连接线若干

3.数字解调模块 7.频谱分析仪

4.同步提取模块

四实验原理

1.2ASK 调制原理

ASK 基带信号经过电压比较器(LM339),输出高/低电平驱动模拟开关(74HC4066)导通/关闭,ASK 载波通过电压跟随电路(TL082)提高带负载能力,然后通过模拟开关电路选择通过/截止,最后得到 ASK 调制信号输出。

2.2ASK 解调原理

本实验采用的是包络检波法,ASK 调制信号经过 RC 组成的耦合电路,输出波形可从OUT1观察,然后通过半波整流器(由 1N4148 组成),输出波形可从 OUT2 观察,半波整流后的信号经过低通滤波器(由 TL082 组成),滤波后的波形可从 OUT3 观察,再经过电压比较器(LM339)与参考电位比较后送入抽样判决器(74HC74)进行抽样判决,最后得到解调输出的二进制信号。标号为“ASK 判决电压调节”的电位器用来调节电压比较器的判决电压。判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。抽样判决用的时钟信号就是 ASK 基带信号的位同步信号。

五实验步骤

1.将信号源模块、数字调制模块、数字解调模块、同步提取模块、频谱分析模块小心地固定在主机箱中,确保电源接触良好。

2.插上电源线,打开主机箱右侧的交流开关,再分别按下五个模块中的开关 POWER1、POWER2,对应的发光二极管 LED01、LED02 发光,按一下信号源模块的复位键,五个

模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打

开电源做实验,不要带电连线)

3.ASK 调制实验

<1>将信号源模块产生的码速率为 15.625KHz 的周期性 NRZ 码和 64KHz 的正弦波(幅度为 3V 左右)分别送入数字调制模块的信号输入点“ASK 基带输入”和“ASK 载波输入”。以信号输入点“ASK 基带输入”的信号为内触发源,用示波器双踪同时观察

点“ASK 基带输入”和点“ASK 调制输出”输出的波形。并将这两点的信号送入频

谱分析模块进行分析,观察其频谱。

<2>改变送入的基带信号和载波信号,重复上述实验。

4.ASK 解调实验

<1>将信号源模块的位同步信号(BS)的频率设置为 15.625KHz,将信号源模块产生的NRZ 码设置为周期性码,将同步信号提取模块的拨码开关 SW01 的第一位拨上。

<2>用信号源模块产生的 NRZ 码为基带信号,合理连接信号源模块与数字调制模块,使数字调制模块的信号输出点“ASK 调制输出”能输出正确的 ASK 调制波形。

<3>将“ASK 调制输出”的输出信号送入数字解调模块的信号输入点“ASK-IN”,观察

信号输出点“ASK-OUT”处的波形,并调节标号为“ASK 判决电压调节”的电位器,

直到在该点观察到稳定的 NRZ 码为止。将该点波形送入同步信号提取模块的信号输

入点“NRZ-IN”,再将同步信号提取模块的信号输出点“位同步输出”输出的波形送

入数字解调模块的信号输入点“ASK-BS”,观察信号输出点“OUT1”、“OUT2”、

“OUT3”、“ASK 解调输出”处的波形,并与信号源产生的 NRZ 码进行比较。

<4>改变信号源产生的 NRZ 码的设置,重复上述观察。

六实验结果及分析

ASK调制

1.基带信号(上)与ASK信号(下):

2.基带信号的频谱:

3、ASK信号的频谱:

ASK解调

4.ASK-OUT波形:

5.基带信号(上)和OUT1波形(下):

6.基带信号(上)和OUT2波形(下):

7.基带信号(上)和OUT3波形(下):

8.基带信号(上)和ASK解调输出(下):

实验分析:

1.图1的基带信号为NRZ码,图3和图4分别为基带信号的频谱和ASK信号的频谱。

2.图4是ASK信号经过解调后得到的波形(未经同步判决),可见该波形和基带信号是基本一致的。

3.图5是ASK信号经耦合电路后得到的信号,幅度有所衰减,目的是隔离直流信号。

4.图6是ASK信号经过耦合电路后再经过二极管检波得到的波形。

5.图7是ASK信号检波后再经过低通滤波器得到的波形。

6.图8是ASK-OUT信号(OUT3信号经电压比较器得到的输出信号)再经过同步判决得到的最终的ASK解调信号,此信号和原基带信号是完全一致的。

实验二 频移键控FSK 调制与解调实验 一、 实验目的

1、 掌握用键控法产生FSK 信号的方法 2、 掌握FSK 过零检测解调的原理。 二、 实验内容

1、 观察FSK 调制信号波形。 2、 观察FSK解调信号波形

3、 观察FSK过零检测解调器各点波形。 三、 实验器材

1、信号源模块 一块 2、③号模块 一块 3、④号模块 一块 4、⑦号模块 一块 5、20M双踪示波器 一台 6、连接线 若干 四、 实验原理 1 FSK调制原理

2FSK信号是用载波频率的变化来表征被传信息的状态的,被调制载波的频率随二进制序列0、1状态而变化,即频率为f0时代表传0,载频为f1时代表传1。显然,2F

SK信号完全可以看成两个分别以f0和f1为载频、以an和an 为被传二进制序列的两

种2ASK 信号的合成。采用频率选择法产生2FSK 信号,其调制原理框如下所示

Uu

2、2FSK 解调原理

过零检测法(2FSK 解调原理框图)

单稳2

位同步信号

信 号 源 CPLD 128k 同步正弦PN8K 64k 同步正弦波

载波A 输入 FSK-NRZ 基带信号输载波B 输入 隔离电路 倒相电路 隔离电路 模拟

关 2 模

关 1 相

加 器 FSK-OUT

整形 单

1 相

低通滤波器

2 抽样判决 解调信号输出

五、测试点说明

1、输入点参考说明

FSK调制模块:

FSK-NRZ:FSK基带信号输入点

FSK载波A:A路载波输入点

FSK载波B:B路载波输入点

FSK解调模块:

FSKIN: FSK调制信号输入点

FSK-BS:FSK解调位同步时钟输入点

2、输出点参考说明

FSK调制模块:

TH7:FSK-NRZ经过反相后信号观测点。

FSK-OUT:FSK调制信号输出点。

FSK解调模块:

TH7: FSK调制信号经整形1后的波形观测点。

TH8:FSK调制信号经单稳(U10A)的信号观测点。

TH9:FSK调制信号经单稳(U10B)的信号观测点

TH10:FSK调制信号经两路单稳后相加信号观测点。

TN11:FSK信号经低通滤波器后的输出信号。

FSK-DOUT:FSK解调信号经电压比较器后的信号输出点(未经同步判决)

OUT2:FSK解调信号输出点。

六、实验步骤

1、将信号源模块和模块3,4,7固定在主机箱上,将黑色塑料螺钉拧紧,确保电源接触良好。

2、按照下表进行实验连线:

源端口目的端口连线说明

信号源:PN8K模块3:FSK-NRZ S4拨为“1100”,PN是

8k伪随机码

信号源:128k同步正弦波模块3:载波A提供FSK调制A路载波,幅

度为4V

信号源:64K同步正弦波模块3:载波B提供FSK调制B路载波,幅

度为3 V

3、将模块上拨码开关S1都拨上,一信号输入点”FSK-NRZ ”的信号为内触发源,用双踪示波器同时观察点“FSK-NRZ”和点“FSK-OUT”输出的波形。

4、单独将S1拨为“01”或“10”,在“FSK-OUT”出观测单独载波调制波形。

5、通过信号源模块上的拨码开关S4改变PN码频率后送出,重复上述实验。

(一)FSK解调实验

1、接着上面FSK调制实验继续连线:

源端口目的端口连线说明

模块3:FSK-OUT 模块4:FSKIN FSK解调输入

模块4:FSK-DOUT 模块7:DIN 锁相环法位同步提取信号输

模块7:BS 模块4:FSK-BS 提取的位同步信号

2、将模块7上的拨码开关S2拨为“1000”,观察模块4上信号输出点“FSK-DOUT”处的波形,并调节模块4上的电位器W5(顺时针拧到最大),直到在该点观测到稳定的PN码。

3、用示波器双踪分别观察模块3上的“FSK-NRZ”和模块四上的“OUT2”出的波形,将“OUT2”出FSK解调信号与信号源产生的PN码进行比较。

实验三 PSK/DPSK调制与解调

一、实验目的

1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

2.掌握用键控法产生PSK/DPSK信号的方法。

3、掌握PSK/DPSK相干解调的原理。

4、掌握绝对码波形与DPSK信号波形之间的关系。

二、实验内容

1、观察绝对码和相对码的波形和转换关系。

2、观察PSK/DPSK调制信号波形。

3、观察PSK/DPSK解调信号波形。

三、实验模块

1、通信原理 0 号模块一块

2、通信原理 3 号模块一块

3、通信原理 4 号模块一块

4、通信原理 7 号模块一块

5、示波器一台

四、实验原理

1、2PSK/2DPSK调制原理

PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优先于ASK移幅键控和FSK移频键控。因此,PSK技术在中、高速数据传输中得到了十分广泛的应用。

PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图11-1所示。

设二进制单极性码为an,其对应的双极性二进制码为bn,则2PSK信号的一般时域数学表达式为:

我们知道,2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的

数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK的“倒π”现象,因此,实际中一般不采用2PSK方式,而采用差分移相(2DPSK)方式。2DPSK方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。例如,假设相位值用相位偏移x表示(x定义为本码元初相与前一码元初相之差),并设

图11-2为对同一组二进制信号调制后的2PSK与2DPSK波形。从图中可以看出,2DPSK 信号波形与2PSK的不同。2DPSK波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK与2DPSK信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。

为了便于说明概念,我们可以把每个码元用一个如图11-3所示的矢量图来表示。图中,虚线矢量位置称为基准相位。在绝对移相中,它是未调制载波的相位;在相对移相中,它是前一码元载波的相位。如果假设每个码元中包含有整数个载波周期,那么,两相邻码元载波的相位差既表示调制引起的相位变化,也是两码元交界点载波相位的瞬时跳变量。根据

ITU-T的建议,图11-3(a)所示的移相方式,称为A方式。在这种方式中,每个码元的载波相位相对于基准相位可取0、π。因此,在相对移相后,若后一码元的载波相位相对于基准相位为0,则前后两码元载波的相位就是连续的;否则,载波相位在两码元之间要发生跳变。图11-3(b)所示的移相方式,称为B方式。在这种方式中,每个码元的载波相位相对于基准相位可取π/2。因而,在相对移相时,相邻码元之间必然发生载波相位的跳变。这样,在接收端接收该信号时,如果利用检测此相位变化以确定每个码元的起止时刻,即可提供码元定时信息,这正是B方式被广泛采用的原因之一。

2DPSK的调制原理与2FSK的调制原理类似,也是用二进制基带信号作为模拟开关的控制信号轮流选通不同相位的载波,完成2DPSK调制,其调制的基带信号和载波信号分别从“PSK-NRZ”和“PSK载波”输入,差分变换的时钟信号从“PSK-BS”点输入,其原理框图如图11-4所示:

①差分变换

在数据传输系统中,由于相对移相键控调制具有抗干扰噪声能力强,在相同的信噪比条件下,可获得比其他调制方式(例如:ASK、FSK)更低的误码率,因而这种方式广泛应用在实际通信系统中。

DPSK调制是采用码型变换法加绝对调相来实现,既把数据信息源(如伪随机码序列、增量调制编码器输出的数字信号或脉冲编码调制PCM编码器输出的数字信号)作为绝对码序列{an},通过差分编码器变成相对码序列{bn},然后再用相对码序列{bn},进行绝对移相键控,此时该调制的输出就是DPSK已调信号。

绝对码是以宽带信号码元的电平直接表示数字信息的,如规定高电平代表“1”,低电平代表“0”。

相对码(差分码)是用基带信号码元的电平与前一码元的电平有无变化来表示数字信息的,如规定:相对码中有跳变表示1,无跳变表示0。

图11-6(a)是差分编码器电路,可用模二加法器延时器(延时一个码元宽度Tb)来实现这两种码的互相转换。

设输入的相对码an为1110010码,则经过差分编码器后输出的相对码bn为1011100,即bn= an bn–1。图11-6(b)是它的工作波形图。

②相乘器

实现输入载波信号和基带信号的相乘变换,输出相应调制信号。

六、实验框图

七、实验步骤

1、PSK/DPSK调制实验

1)按照下表进行实验连线:

连线说明

源端口目的

端口

信号源:PN(32K)模块3:

PSK-NRZ S4拨为“1010”,PN是32K 伪随机码

信号源:128K同步正弦波模块3:PSK

载波

提供PSK调制载波,幅度

为4V

2)按如下方式连接示波器和测试点:

示波器通道目标测试点说明

通道1PSK-NRZ 输入PN码信号

通道2PSK-OUT PN码经过PSK调制后的波形

启动仿真开关,开启各模块的电源开关。

3)将开关K3拨到“PSK”端,以信号输入点“PSK-NRZ”的信号为内触发源,用双踪

示波器同时观察点“PSK-NRZ”与“PSK-OUT”输出的波形。

4)关闭仿真开关,不改变PSK调制实验连线。将开关K3拨到“DPSK”端,增加连线:源端口目的端口连线说明

信号源:CLK1(32K)模块3:

PSK-BS

DPSK位同步时钟

输入

再启动仿真,以信号输入点“PSK-NRZ”的信号为内触发源,用双踪示波器同时观察点“PSK-NRZ”与“PSK-OUT”输出的波形。

2、PSK/DPSK解调实验

1)恢复PSK调制实验的连线,K3拨到“PSK”端,然后增加以下连线:

源端口目的端口连线说明

模块3:PSK-OUT 模块4:

PSKIN

PSK解调输入

模块3:PSK-OUT 模块7:

PSKIN

载波同步提取输

模块7:载波输出模块4:载

波输入

提供同步解调载

模块4:PSK-DOUT 模块7:

DIN

锁相环法位同步

提取信号输入

模块7:BS 模块4:

PSK-BS 提取的位同步信号

2)按如下方式连接示波器和测试点:

示波器通道目标测试点说明

通道1PSK-DOUT 信号整流低通后输出

通道2OUT3 信号经过判决输出

启动仿真开关,开启各模块的电源开关。

3)将模块7上的拨码开关S2拨为“0110”,观察模块4上信号输出点“PSK-DOUT”处的波形。并调节模块4上的电位器W4(逆时针拧到最大),直到在该点观察到稳定的PN码。

4)用示波器双踪分别观察模块3上的“PSK-NRZ”和模块4上的“OUT3”处的波形,比较二者波形。

实验四数字基带信号码型变换实验

一、实验目的

1.了解几种常见的数字基带信号。

2.掌握常用数字基带传输码型的编码规则。

二、实验内容

1.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码的波形。

2.观察全0码或全1码时各码型波形。

3.观察HDB3码、AMI码、BNRZ码正、负极性波形。

4.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。

三、实验器材

1.信号源模块

2.码型变换模块

3.20M双踪示波器一台

4.频率计(可选)一台

5.连接线若干

四、实验原理

1.编码规则

①NRZ码

NRZ码的全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。例如:

10100110

+E

②RZ码

RZ码的全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。例如:

10100110

+E

③BNRZ码

BNRZ码的全称是双极性不归零码,在这种二元码中用正电平和负电平分别表示“1”和“0”,与单极性不归零码相同的是整个码元期间电平保持不变,因而在这种码型中不存在零电平。例如:

10100110

+E

-E

④BRZ码

BRZ码的全称是双极性归零码,与BNRZ码不同的是, 发送“1”和“0”时,在整个码元期间高电平或低电平只持续一段时间,在码元的其余时间内则返回到零电平。例

如:

10100110

+E

-E

⑤AMI码

AMI码的全称是信号交替反转码,其编码规则如下:信息码中的“0”仍变换为传输码的“0”:信息码中的“1”交替变换为传输码的“+1、-1、+1、-1、…”。例如:

代码: 100 1 1000 1 1 1 …

AMI码: +100 -1 +1000 -1 +1 -1 …

AMI码的主要特点是无直流成分,接收端收到的码元极性与发送端完全相反也能正确判断。译码时只需把AMI码经过全波整流就可以变为单极性码。由于其具有上述优点,因此得到了广泛应用。但该码有一个重要缺点,即当用它获取定时信息时,由于它可能出现长的连0串,因而会造成提取定时信号的困难。

⑥HDB3码

HDB3码的全称是三阶高密度双极性码,其编码规则如下:将4个连“0”信息码用取代节“000V”或“B00V”代替,当两个相邻“V”码中间有奇数个信息“1”码时,取代节为“000V”码;有偶数个信息“1”码(包括0个)时,取代节为“B00V”,其它的信息“0”码仍为“0”码,这样,信息码的“1”码变为带有符号的“1”码,即“+1”或“—1”。

例如:

代码: 1000 0 1000 0 1 1 000 0 1 1

HDB3码:-1000 -V +1000 +V -1 +1 -B00 –V +1 -1

HDB3码中“1”、“B”的符号符合交替反转原则,而“V”的符号破坏这种交替反转原则,但相邻“V”码的符号又是交替反转的。HDB3码的特点是明显的,它除了保持AMI 码的优点外,还增加了使连0串减少到至多3个的优点,而不管信息源的统计特性如何。这对于定时信号的恢复是十分有利的。HDB3码是ITU-T推荐使用的码之一。本实验电路只能对码长为24位的周期性NRZ码序列进行编码。

⑦BPH码

BPH码的全称是数字双相码,又叫分相码或曼彻斯特码,它是对每个二进制代码分别利用两个具有不同相位的二进制新码去取代的码:或者可以理解为用一个周期的方波表示“1”码,用该方波的反相来表示“0”码,其编码规则之一是:

0→01(零相位的一个周期的方波);

1→10(π相位的一个周期的方波)。例如:

代码: 1 1 0 0 1 0 1

双相码:10 10 01 01 10 01 10

BPH码可以用单极性非归零码(NRZ)与位同步信号的模二和来产生。双相码的特

点是只使用两个电平,而不像前面两种码具有三个电平。这种既能提取足够的定时分量,又无直流漂移,编码过程简单。但这种码的带宽要宽些。

⑧CMI码

CMI码的全称是传号反转码,其编码规则如下:信息码中的“1”码交替用“11”和“00”表示,“0”用“01”表示。例如:

代码: 1 1 0 1 0 0 1 0

CMI码:11 00 01 11 01 01 00 01

这种码型有较多的电平跃变,因此,含有丰富的定时信息。该码已被ITU-T推荐为PCM四次群的接口码型。在光纤传输系统中有时也用CMI码作线路传输码型。

2.电路原理

将信号源产生的NRZ和位同步信号BS送入U900(EPM7128SLC84-15)进行变换,可以直接得到各种单极性码和各种双极性码的正、负极性编码信号(因为FPGA的I/O 口不能直接接负电平,所以只能将分别代表正极性和负极性的两路编码信号分别输出,在通过外加电路合成双极性码),如HDB3的正、负极性编码信号送入U901(4501)的选通控制端,控制模拟开关轮流选通正、负电平,从而得到完整的HDB3码。解码时同样也需要先将双极性的HDB3码变换成分别代表正极性和负极性的两路信号,再送入FPGA 进行解码,得到NRZ码。其它双极性码的编、解码过程相同。

①NRZ码

从信号源“NRZ”点输出的数字码型即为NRZ码,其产生过程请参考信号源工作原理。

②BRZ、BNRZ码

将NRZ码和位同步信号BS分别送入双四路模拟开关U902(4052)的控制端作为控制信号,在同一时刻,NRZ码和BS信号电平高低的不同组合(00、01、10、11)将控制U902分别接通不同的通道,输出BRZ码和BNRZ码。X通道的4个输入端X0、X1、X2、X3分别接-5V、GND、+5V、GND,在控制信号控制下输出BRZ码;Y通道的4个输入端Y0、Y1、Y2、Y3分别接-5V、-5V、+5V、+5V,在控制信号控制下输出BNRZ码。解码时通过电压比较器U907(LM339)将双极性的BRZ和BNRZ码转换为两路单极性码,即双(极性)—单(极性)变换,再送入U900解码,恢复出原始的NRZ码。

③RZ、BPH码

这两种码型的编、解码方法与BRZ和BNRZ是一样的,但因为是单极性的码型,所以编、解码过程可以直接在U900中完成,在这里不再赘述。

④AMI编码

由于AMI码是双极性的码型,所以它的变换过程分成了两个部分。首先,在U900中,将NRZ码经过一个时钟为BS的JK触发器后,再与NRZ信号相与后得到控制信号AMIB,该信号与NRZ码作为控制信号送入单八路模拟开关U905(4051)的控制器,U905的输出即为AMI码。解码过程与BNRZ码一样,也需先经过双—单变换,再送入U900进行解码。

⑤HDB3码

HDB3码的编、解码框图分别如图3-1、3-2所示,其编、解码过程与AMI码相同,这里不再赘述。

四连“0”检测及补“1”电路

取代节选择

破坏点形成电路单-双极性变换电路

NRZ信码

HDB 3编码输出

图3-1 HDB 3编码原理框图

单-双极性变换电路

判决电路

破坏点检测电路

取代节去除电路

位同步信号

HDB 3编码输入

NRZ信码输出

图3-2 HDB 3解码原理框图

⑥CMI 码

由于是单极性波形,CMI 码的编解码过程全部在U900中完成,其编码电路原理框图如图3-3所示:

采样

判决电路

翻转电路

反相开关合成

NRZ信码

CMI码输出

BS

图3-3 CMI 编码原理框图

五、实验步骤

1. 将信号源模块、码型变换模块小心地固定在主机箱中,确保电源接触良好。

2. 插上电源线,打开主机箱右侧的交流开关,再分别桉下两个模块中的开关POWER1、

POWER2,对应的发光二极管LED001、LED002、D900、D901发光,按一下信号源模块的复位键,两个模块均开始工作。

3. 将信号源模块的拨码开关SW101、SW102设置为00000101 00000000,SW103、SW104、

SW105设置为01110010 00110000 00101010。按实验一的介绍,此时分频比千位、十位、个位均为0,百位为5,因此分频比为500,此时位同步信号频率应为4KHz 。观察BS 、FS 、2BS 、NRZ 各点波形。

4. 分别将信号源模块和码型变换模块上以下四组输入/输出接点用连接线连接:BS 与

BS 、FS 与FS 、2BS 与2BS 、NRZ 与NRZ 。观察码型变换模块上其余各点波形。

5. 任意改变信号源模块上的拨码开关SW103、SW104、SW105的设置,以信号源模块的

NRZ 码为内触发源,用双踪示波器观察码型变换模块各点波形。

6. 将信号源模块上的拨码开关SW103、SW104、SW105全部拨为1或全部拨为0,观察

码型变换模块各点波形。

7.六实验结果记录:BRZ

FS

BS

2BS

BRZ

BNRZ

NRZ

BPH

CMI

RZ

AMI

matlab实验报告 数字调制解调

实验报告 姓名:李鹏博实验名称:数字调制解调 学号:2011300704 课程名称:数字信号处理 班级:03041102 实验室名称:航海西楼303 组号: 1 实验日期:2014.06.27 一、实验目的、要求 掌握掌握数字调制以及对应解调方法的原理。 掌握数字调制解调方法的计算机编程实现方法,即软件实现。 二、实验原理 二进制数字频率调制(2FSK) 二进制数字频率调制,简称频移键控2FSK,是利用二进制数字基带信号控制载波的频率,进行频谱变换的过程。在发送端,由基带信号控制载波,用不同频率的载波振荡信号来传输数字信号“1”和“0”;接收端则根据不同频率的载波信号,将其还原成相应的数字基带信号。 PSK调制 在PSK调制时载波的相位随调制信号状态不同而改变。如果两个频率相同的载波同时开始振荡这两个频率同时达到正最大值同时达到零值同时达到负最大值此时它们就处于“同相”状态如果一个达到正最大值时另一个达到负最大值则称为“反相”。把信号振荡一次一周作为360度。如果一个波比另一个波相差半个周期两个波的相位差180度也就是反相。当传输数字信号时“1”码控制发0度相位“0”码控制发180度相位。 三、实验环境 PC机,Windows2000,office2000,Matlab6.5以上版本软件。 四、实验内容、步骤 实验内容 已知消息信号为一个长度为8的二进制序列;载波频率为 800 c f Hz ,采样频率为 4KHz。编程实现一种调制、传输、滤波和解调过程。 实验步骤 根据参数产生消息信号s和载波信号。调用函数randint生成随机序列。 编程实现调制过程。调用函数y=fskmod(s,M,FREQ_SEP,NSAMP)完成频率调制,y=pskmod(s,M) 完成相位调制,或者。调用函数modulate完成信号调制。 编程实现信号的传输过程。产生白噪声noise,并将其加到调制信号序列。或者调用函

实验一 ASK调制与解调实验

通 信 原 理 实 验 报 告 学院:信息与通信工程学院 专业:光电工程 班级:12051041 学号:12051041 姓名 时间:2014.11.21

实验一 ASK调制与解调实验 一实验目的 1.理解ASK调制的工作原理及电路组成。 2.理解ASK解调的原理及实现方法。 3.了解ASK信号的频谱特性。 二实验内容 1.观察ASK调制与解调信号的波形。 2.观察ASK信号频谱。 三实验器材 1.信号源模块 5.20M双踪示波器一台 2.数字调制模块 6.连接线若干 3.数字解调模块 7.频谱分析仪 4.同步提取模块 四实验原理 1.2ASK 调制原理 ASK 基带信号经过电压比较器(LM339),输出高/低电平驱动模拟开关(74HC4066)导通/关闭,ASK 载波通过电压跟随电路(TL082)提高带负载能力,然后通过模拟开关电路选择通过/截止,最后得到 ASK 调制信号输出。 2.2ASK 解调原理 本实验采用的是包络检波法,ASK 调制信号经过 RC 组成的耦合电路,输出波形可从OUT1观察,然后通过半波整流器(由 1N4148 组成),输出波形可从 OUT2 观察,半波整流后的信号经过低通滤波器(由 TL082 组成),滤波后的波形可从 OUT3 观察,再经过电压比较器(LM339)与参考电位比较后送入抽样判决器(74HC74)进行抽样判决,最后得到解调输出的二进制信号。标号为“ASK 判决电压调节”的电位器用来调节电压比较器的判决电压。判决电压过高,将会导致正确的解调结果的丢失;判决电压过低,将会导致解调结果中含有大量错码,因此,只有合理选择判决电压,才能得到正确的解调结果。抽样判决用的时钟信号就是 ASK 基带信号的位同步信号。

实验三 Matlab的数字调制系统仿真实验(参考)

成都理工大学实验报告 课程名称:数字通信原理 姓名:__________________学号:______________ 成绩:____ ___ 实验三Matlab的数字调制系统仿真实验(参考) 1 数字调制系统的相关原理 数字调制可以分为二进制调制和多进制调制,多进制调制是二进制调制的推广,主要讨论二进制的调制与解调,简单讨论一下多进制调制中的差分相位键控调制(M-DPSK)。 最常见的二进制数字调制方式有二进制振幅键控(2-ASK)、移频键控(2-FSK)和移相键控(2-PSK 和2-DPSK)。下面是这几种调制方式的相关原理。 1.1 二进制幅度键控(2-ASK) 幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1 或0 的控制下通或断,在信号为1 的状态载波接通,此时传输信道上有载波出现;在信号为0 的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1 和0。 幅移键控法(ASK)的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断,此时又可称作开关键控法(OOK)。多电平MASK调制方式是一种比较高效的传输方式,但由于它的抗噪声能力较差,尤其是抗衰落的能力不强,因而一般只适宜在恒参信道下采用。 2-ASK 信号功率谱密度的特点如下: (1)由连续谱和离散谱两部分构成;连续谱由传号的波形g(t)经线性调制后决定,离散谱由载波分量决定; (2)已调信号的带宽是基带脉冲波形带宽的二倍。 1.2 二进制频移键控(2-FSK) 数字频率调制又称频移键控(FSK),二进制频移键控记作2FSK。数字频移键控是用载波的频率来传送数字消息,即用所传送的数字消息控制载波的频率。2FSK

实验四 2PSK调制与解调实验

实验四 2PSK 调制与解调实验 1、 实验箱中2PSK 调制器用的调制方法是什么? 答:移相键控调制的直接调相法。 2、 2PSK 调制能否用非相干解调方法? 答:不能。 3、 相位模糊产生的原因和解决方法? 答:①原因:在调制过程中采用了分频,而二分频器的输出电压有相差180度的两种可能相位,即其输出电压的相位决定了分频器的初始状态,这就是会导致分频出的载波存在相位模糊(2PSK 采用的是相移方式) ②解决办法:使用2DPSK 二相相对移相键控 4、 绝/相、相/绝变换的框图? 答: 5、 绝/相、相/绝变换电路是怎么实现的。 答:绝/相变换电路是把数据信息源输出的绝对码变相对码,2DPSK 信号由相对码进行绝对调相得到。它由模二加10A U (74LS86)和D 触发器9A U (74LS74)组成,其逻辑关系为:i a ⊕i-1b =i b ,其中i a 是绝对码,i-1b 是延迟一个码元的相对码,i b 是相对码。 相/绝变换电路由14B U (74LS74)和15B U (74LS86)组成,其逻辑关系可表示为i-1b ⊕i b =i a ,其中i b 为相对码,i-1b 为延迟一个码元的相对码,i a 为绝对码。 6、 画出实验板中2PSK 、2DPSK 调制与解调器的原理框图; 答:

7、本实验中,2PSK 信号带宽是多少?用数字示波器如何测量? 答:B=2 f=2/Ts。先按MATH按钮,再选择FFT选项。 s 8、测试接收端的各点波形,需要与什么波形对比,才能比较好的进行观测? 示波器的触发源该选哪一种信号?为什么? 答:绝对码波形。原始信号。触发源信号应该选择频率较低、稳定度高的信号。 9、解调电路各点信号的时延是怎么产生的? 答:由滤波与抽样产生。 10、码再生的目的是什么? 答:①防止噪声干扰的累加,恢复出基带信号。②把码元展宽。 11、用D触发器做时钟判决的最佳判决时间应该如何选择? 答:眼图中眼睛张开最大时刻,即码元能量最大时刻,把各个信号叠加在一起。 12、解调出的信码和调制器的绝对码之间的时延是怎么产生的? 答:由滤波与抽样产生。 13、在接收机带通滤波器之后的波形出现了起伏是什么原因,带通滤波器的 带宽设计多大比较合适? 答:符号切换造成了旁瓣的产生,0、1跳变使得高频成份丰富。π→0→π转换点导致的频谱扩展特别大,通过滤波器会缩小。带宽设计为2/Ts。

基于MATLAB的ASK调制解调实验

基于MATLAB 的ASK 调制解调实验 1.实验目的 (1) 熟悉MATLAB 中M 文件的使用方法,并在掌握ASK 调制解调原理的基础上,编写出ASK 调制解调程序。 (2) 绘制出ASK 信号解调前后在时域和频域中的波形,并观察解调前后频谱有何变化以加深对ASK 信号解调原理的理解。 (3) 对信号叠加噪声,并进行解调,绘制出解调前后信号的时频波形,改变 噪声功率进行解调,分析噪声对信号传输造成的影响。 2.实验原理 (1)ASK 调制原理 ASK 指的是振幅键控方式。这种调制方式是根据信号的不同,调节正弦波的幅度。幅度键控可以通过乘法器和开关电路来实现。载波在数字信号1或0的控制下通或断,在信号为1的状态载波接通,此时传输信道上有载波出现;在信号为0的状态下,载波被关断,此时传输信道上无载波传送。那么在接收端我们就可以根据载波的有无还原出数字信号的1和0。对于二进制幅度键控信号的频带宽度为二进制基带信号宽度的两倍。幅移键控法(ASK )的载波幅度是随着调制信号而变化的,其最简单的形式是,载波在二进制调制信号控制下通断, 此时又可称作开关键控法(OOK )。二进制幅度键控记作2ASK 。2ASK 是利用代表数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续地输出。有载波输出时表示发送“1”,无载波输出时表示发送“0”。2ASK 信号可表示为 t w t s t e c cos )()(0=式中, c w 为载波角频率,s(t)为单极性NRZ 矩形脉冲序列 )()(b n n nT t g a t s -=∑其中,g(t)是持续时间b T 、高度为1的矩形脉冲,常称为 门函数;n a 为二进制数字???-=P P a n 101,出现概率为 ,出现概率为 2ASK/OOK 信号的产生方法通常有两种:模拟调制(相乘器法)和键控法。本模拟幅度调制的方法用乘法器实现。相应的调制如图5-1和图5-2:

实验二 数字调制

实验二数字调制 一、实验目的 1、掌握绝对码、相对码概念及它们之间的变换关系。 2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。 3、掌握相对码波形与2PSK信号波形之间的关系、绝对码波形与2DPSK信号波形之间的关系。 1、了解2ASK、2FSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。 二、实验内容 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。 3、用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。 三、基本原理 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。 图2-1 数字调制方框图 本单元有以下测试点及输入输出点: ? CAR 2DPSK信号载波测试点 ? BK 相对码测试点 ? 2DPSK 2DPSK信号测试点/输出点,V P-P>0.5V ? 2FSK 2FSK信号测试点/输出点,V P-P>0.5V ? 2ASK 2ASK信号测试点,V P-P>0.5V 用2-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对应关系如下: ?÷2(A)U8:双D触发器74LS74 ?÷2(B)U9:双D触发器74LS74

?滤波器A V6:三极管9013,调谐回路 ?滤波器B V1:三极管9013,调谐回路 ?码变换U18:双D触发器74LS74;U19:异或门74LS86 ? 2ASK调制U22:三路二选一模拟开关4053 ? 2FSK调制U22:三路二选一模拟开关4053 ? 2PSK调制U21:八选一模拟开关4051 ?放大器V5:三极管9013 ?射随器V3:三极管9013 将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。 下面重点介绍2PSK、2DPSK。2PSK、2DPSK波形与信息代码的关系如图2-3所示。 图2-3 2PSK、2DPSK波形 图中假设码元宽度等于载波周期的1.5倍。2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180?,相同时2PSK信号相位不变,可简称为“异变同不变”。2DPSK信号的相位与信息代码的关系是:码元为“1”时,2DPSK信号的相位变化180?。码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。 应该说明的是,此处所说的相位变或不变,是指将本码元内信号的初相与上一码元内信号的末相进行比较,而不是将相邻码元信号的初相进行比较。实际工程中,2PSK或2DPSK 信号载波频率与码速率之间可能是整数倍关系也可能是非整数倍关系。但不管是那种关系,上述结论总是成立的。 本单元用码变换——2PSK调制方法产生2DPSK信号,原理框图及波形图如图2-4所示。相对于绝对码AK、2PSK调制器的输出就是2DPSK信号,相对于相对码、2PSK调制器的输出是2PSK信号。图中设码元宽度等于载波周期,已调信号的相位变化与AK、BK的关系当然也是符合上述规律的,即对于AK来说是“1变0不变”关系,对于BK来说是“异变同不变”关系,由AK到BK的变换也符合“1变0不变”规律。 图2-4中调制后的信号波形也可能具有相反的相位,BK也可能具有相反的序列即00100,这取决于载波的参考相位以及异或门电路的初始状态。 2DPSK通信系统可以克服上述2PSK系统的相位模糊现象,故实际通信中采用2DPSK而不用2PSK(多进制下亦如此,采用多进制差分相位调制MDPSK),此问题将在数字解调实验中再详细介绍。

ASKFSKPSK的调制与解调

2ASK的调制与解调 一、实验目的 1.加深理解2ASK调制与解调原理。 2.学会运用SystemView仿真软件搭建2ASK调制与解调仿真电路。 3.通过仿真结果观察2ASK的波形及其功率谱密度。 二、仿真环境 Windows98/2000/XP SystemView5.0 三、2ASK调制解调原理方框图 1.2ASK调制原理 图1 2ASK键控产生 图2 2ASK相乘法产生 2.2ASK解调原理 图3 2ASK相干解调

四、2ASK调制解调仿真电路

1.仿真参数设置 1)信号源参数设置:基带信号码元速率设为101==T R B 波特,2ASK 信号中心载频设为 Hz f s 20=。(说明:中心载频 s f 设得较低,目的主要是为了降低仿真时系统的抽样 率,加快仿真时间。) 2)系统抽样率设置:为得到准确的仿真结果,通常仿真系统的抽样率应大于等于10倍的载频。本次仿真取10 s f ,即200Hz 3)系统时间设置:通常设系统Start time=0。为能够清晰观察每个码元波形及2ASK 信号的功率谱密度,在仿真时对系统Stop time 必须进行两次设置,第一次设置一般取系统Stop time=6T~8T ,这时可以清楚地观察到每个码元波形;第二次设置一般取系统Stop time=1000T~5000T ,这时可以清楚地观察到2ASK 信号的功率谱密度。 2.2ASK 信号调制与解调的仿真电路图 图4 2ASK 信号调制与相干解调仿真电路 图5 2ASK 信号调制与包络检波仿真电路 五、仿真结果参考

S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 500.e -3 1 1.5 2 m T i m e i n S e c o n d s 调制信号波 图6 输入信号波形 S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 -2 -1.5 -1 -500.e -3 500.e -3 1 1.5 2 m T i m e i n S e c o n d s 已调信号波形 图7 2ASK 信号波形 S y s te mV iew 00 500.e -3500.e -3 1 1 1.51.5 2 2 -1 -500.e -3 500.e -3 1 A m T i m e i n S e c on d s 解调输出波形 图8 解调输出波形 图9 已调信号的频谱(载频为50Hz ) 六、自行搭建调试仿真电路,完成设计任务 2FSK 调制与解调 一、实验目的 1. 掌握2FSK 调制与解调原理; 2. 掌握仿真软件Systemview 的使用方法; 3. 完成对2FSK 调制与解调仿真电路设计,观察2FSK 波形及其功率谱密度。

通信原理实验——2PSK调制与解调

贵州大学实验报告 学院:计信学院专业:网络工程班级:101 姓名学号实验组实验时间2013.06.16 指导教师成绩 实验项目名称实验二2PSK调制与解调 实 验目的1、掌握2PSK调制的原理及实现方法。 2、掌握2PSK解调的原理及实现方法。 实验原理 1、2PSK调制 2PSK信号产生的方法有两种:模拟调制法和数字调制法。 码型变换乘法器 NRZ输入双极性NRZ调制输出 载波输入 图16-1 2PSK调制模拟相乘法原理框图 上图16-1是2PSK调制模拟相乘法原理框图。信号源模块提供码速率96K的NRZ 码和384K正弦载波。在2ASK中数字基带信号是单极性的,而在2PSK中数字基带信号是双极性的。故先将单极性NRZ码经码型变换电路转换为双极性NRZ码,然后与384K正弦载波相乘,便得2PSK调制信号。乘法器的调制深度可由“调制深度调节”旋转电位器调节。 载波1 384K 开关电路2 调制输出 NRZ输入 开关电路1 反相器 图16-2 2PSK调制数字键控法原理框图 上图16-2是2PSK调制数字键控法原理框图。为便于实验观测,由信号源模块提供码速率为96Kbit/s的NRZ码数字基带信号和384KHz正弦载波信号,NRZ码为“1”的一个码元对应0相位起始的正弦载波的4个周期,NRZ码为“0”的一个码元对应π相位起始的正弦载波的4个周期。 实验中采用模拟开关作为正弦载波的输出通/断控制门,数字基带信号NRZ码用来

控制门的通/断。当NRZ 码为高电平时,模拟开关1导通,模拟开关2截止,0相位起始的正弦载波通过门1输出;当NRZ 码为低电平时,模拟开关2导通,模拟开关1截止,π相位起始的正弦载波通过门2输出。门的输出即为2FSK 调制信号,如下图16-3所示。 NRZ输入 调制信号 1 1 00 1 PSK 图16-3 2PSK 调制信号波形 2、2PSK 解调 2PSK 信号的解调通常采用相干解调法,原理框图如下图16-4所示。 LPF 相乘器电压判决 抽样判决 调制输入 BS输入 PSK/DPSK 判决电压调节 载波输入相乘输出 滤波输出 解调输出 判压输出 图16-4 2PSK 解调相干解调法原理框图 设已调信号表达式为1()cos(())s t A t t ω?=?+(A 1为调制信号的幅值), 经过模拟乘法器与载波信号A 2cos t ω(A2为载波的幅值)相乘,得 0121 ()[cos(2())cos ()]2 e t A A t t t ω??= ++ 可知,相乘后包括二倍频分量121 cos(2())2 A A t t ω?+和cos ()t ?分量(()t ?为时 间的函数)。因此,需经低通滤波器除去高频成分cos(2())t t ω?+,得到包含基带信号的低频信号。 然后再进行电压判决和抽样判决。此时,“解调类型选择”拨位开关拨到“PSK ”一端。 解调过程中各测试点波形如下图16-5所示。

ASK调制解调

电子电路设计CDIO一级项目 设计说明书 题目:2ASK调制解调matlab仿真设计 专业班级: 学生姓名: 学号: 设计周数: 2周 年月日 1.任务要求 1.1对数字通信系统主要原理和技术进行研究,包括二进制相移键控(2ASK)及解调技术和高斯噪声信道原理等。 1.2建立数字通信系统数学模型; 1.3建立完整的基于2ASK的模拟通信系统模型; 1.4对系统进行仿真、分析。 2.任务目的 通过我们对本学期课程的学习和理解,综合运用课本中所学到的理论知识完成通信系统模型的设计。以及锻炼我们查阅资料的能力,数字信号的MATLAB应用能力。学会简单电路的实验调试和测试方法,增强我们的动手能力。为以后学习和工作打下基础。3.通信系统 3.1通信系统原理 通信系统就是传递信息所需要的一切技术设备和传输媒质的总和,包括信息源、发送设备、信道、接收设备和信宿(受信者) ,它的一般模型如图3-1所示。

通信系统可分为数字通信系统和模拟通信系统。数字通信系统是利用数字信号来传递消息的通信系统,其模型如图3-2所示, 模拟通信系统是利用模拟信号来传递消息的通信系统,其模型如图3-3 所示。 图3-3 模拟通信系统模型 数字通信系统较模拟通信系统而言,具有抗干扰能力强、便于加密、易于实现集成化、便于与计算机连接等优点。因而,数字通信更能适应对通信技术的越来越高的要求。近二十年来,数字通信发展十分迅速,在整个通信领域中所占比重日益增长,在大多数通信系统中已代替模拟通信,成为当代通信系统的主流。 在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。 必须用数字基带信号对载波进行调制,产生各种已调数字信号。 但可以用载波的某些离散状态来表示数字基带信号的离散状态。基本的三种数字调制方式是:振幅键控(ASK)、频移键控(FSK)和相移键控(PSK 或DPSK)。本次重点论述2ASK 数字调制系统的原理及其解调原理。 3.2 2ASK 的调制与解调仿真 3.2.1 二进制振幅键控(2ASK )原理 振幅键控是正弦载波的幅度随数字基带信号而变化的数字调制.当数字基带信号为二 进制时,则为二进制振幅键控. 设发送的二进制符号序列由0,1序列组成,发送0符号的概率为P,发送1符号的概率为1-P,且相互独立.该二进制符号序列可表示为

数字调制与解调 实验报告材料

计算机与信息工程学院实验报告 一、实验目的 1.掌握绝对码、相对码概念及它们之间的变换关系。 2.掌握用键控法产生2FSK信号的方法。 3.掌握2FSK过零检测解调原理。 4.了解2FSK信号的频谱与数字基带信号频谱之间的关系。 二、实验仪器或设备 1.通信原理教学实验系统 TX-6(武汉华科胜达电子有限公司 2011.10) 2.LDS20410示波器(江苏绿扬电子仪器集团有限公司 2011.4.1) 三、总体设计 3.1数字调制 3.1.1实验内容: 1、用示波器观察绝对码波形、相对码波形。 2、用示波器观察2FSK信号波形。 3、用频谱仪观察数字基带信号频谱及2FSK信号的频谱。 3.1.2基本原理: 本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2FSK信号。调制模块内部只用+5V电压。 数字调制单元的原理方框图如图1-1所示。 图1-1 数字调制方框图 本单元有以下测试点及输入输出点:

? CAR 2DPSK 信号载波测试点 ? BK 相对码测试点 ? 2FSK 2FSK 信号测试点/输出点,V P-P >0.5V 用1-1中晶体振荡器与信源共用,位于信源单元,其它各部分与电路板上主要元器件对 应关系如下: ? ÷2(A ) U8:双D 触发器74LS74 ? ÷2(B ) U9:双D 触发器74LS74 ? 滤波器A V6:三极管9013,调谐回路 ? 滤波器B V1:三极管9013,调谐回路 ? 码变换 U18:双D 触发器74LS74;U19:异或门74LS86 ? 2FSK 调制 U22:三路二选一模拟开关4053 ? 放大器 V5:三极管9013 ? 射随器 V3:三极管9013 2FSK 信号的两个载波频率分别为晶振频率的1/2和1/4,通过分频和滤波得到。 2FSK 信号(相位不连续2FSK )可看成是AK 与AK 调制不同载频信号形成的两个2ASK 信号相加。时域表达式为 t t m t t m t S c c 21cos )(cos )()(ωω+= 式中m(t)为NRZ 码。 2FSK 信号功率谱 设码元宽度为T S ,f S =1/T S 在数值上等于码速率, 2FSK 的功率谱密度如图所示。多进制的MFSK 信号的功率谱与二进制信号功率谱类似。 本实验系统中m(t)是一个周期信号,故m(t)有离散谱,因而2FSK 也具有离散谱。 3.2 数字解调 3.2.1 实验内容 1、 用示波器观察2FSK 过零检测解调器各点波形。 3.2.2 基本原理 2FSK 信号的解调方法有:包络括检波法、相干解调法、鉴频法、过零检测法等。

PSK(DPSK)调制与解调

实验题目——PSK(DPSK)调制与解调 一、实验目的 1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。 2、掌握产生PSK(DPSK)信号的方法。 3、掌握PSK(DPSK)信号的频谱特性。 二、实验内容 1、观察绝对码和相对码的波形。 2、观察PSK(DPSK)信号波形。 3、观察PSK(DPSK)信号频谱。 4、观察PSK(DPSK)相干解调器各点波形。 三、实验仪器 1、信号源模块 2、数字调制模块 3、数字解调模块 4、20M双踪示波器 5、导线若干 四、实验原理 1、2PSK(2DPSK)调制原理 2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。 2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK的“倒π”现象,因此,实际中一般

不采用2PSK 方式,而采用差分移相(2DPSK )方式。 2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1数字信息(绝对码)PSK 波形 DPSK 波形 相对码 从图中可以看出,2DPSK 信号波形与2PSK 的不同。2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK 与2DPSK 信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。 2DPSK 的调制原理与2FSK 的调制原理类似,也是用二进制基带信号作为模拟开关的控制信号轮流选通不同相位的载波,完成2DPSK 调制,其调制的基带信号和载波信号分别从“PSK 基带输入”和“PSK 载波输入”输入,差分变换的时钟信号从“PSK-BS 输入”点输入,其原理框图如图所示: 2DPSK 调制原理框图 2、2PSK (2DPSK )解调原理

4ASK载波调制信号的调制解调与性能分析解析

计算机与通信学院 2013年春季学期 通信系统仿真训练课程设计 题目:4ASK载波调制信号的调制解调与性能分析专业班级:通信工程四班 姓名: 学号: 指导教师: 成绩:

本次课程设计四进制振幅键控(4ASK)载波调制信号的调制解调与性能分析。通过对二进制数字信源进行四进制振幅键控(4ASK)数字调制,并画出信号波形及功率谱,分析其性能。课程设计是在MATLAB上完成软件的设计与仿真的,运用MATLAB 语言实现了数字基带信号的4ASK调制的模拟,并得到二进制基带信号和相应得四进制基带信号以及4ASK调制信号的波形显示,给出了整体调制和解调的模块图和仿真波形,通过调试代码,观察2ASK与4ASK 的不同,最后根据二进制振幅键控的原理来设计四进制振幅键控的调制与解调两个过程,从而对其性能进行进一步的分析总结。 关键字:4ASK 相干解调基带信号

一、设计概要 (1) 二、 MATLAB/SIMULINK简介 (2) 三、通信技术的历史和发展 (4) 3.1通信的概念 (4) 3.2 通信的发展史简介 (5) 3.3通信技术的发展现状和趋势 (5) 四、设计原理 (7) 4.1 4ASK信号的原理 (7) 4.2 4ASK调制解调原理 (8) 五、设计步骤 (11) 5.1载波信号的调制 (11) 5.2调制信号的解调 (11) 5.3调试分析 (11) 5.4开发工具和编程语言 (12) 5.5测试结果及图形说明 (13) 总结 (15) 参考文献 (16) 致谢 (17)

一、设计概要 本次课设主要通过研究4ASK信号的调制解调,首先通过对二进制2ASK的分析来研究出四进制4ASK的变化,对2ASK的基带信号和传输的载波信号,以及其波形图进行分析,从而掌握多进制的振幅键控(MASK)调制解调的原理及其实现方法,然后利用MATLAB7.0仿真实现4ASK的调制与解调,并仿真4ASK载波信号在高斯白噪声下的误码率和误比特率的性能,同时给出调制信号、载波信号及已调信号的波形图和频谱图。最后根据仿真的波形图来分析4ASK的性能特点,以及对以后信道的传输有更重要的意义和频带利用率,资源有效充分利用,全方面的来考虑4ASK的用途。

数字调制解调实验

武汉大学教学实验报告 电子信息学院 ** 专业 2016 年 ** 月 ** 日 实验名称数字调制解调实验指导教师 *** 姓名 *** 年级 14级学号 20143012***** 成绩 图1 FSK调制电路原理框图

代表信号载波的恒定偏移。 FSK 的信号频谱如图2 所示。 图2 FSK 的信号频谱 公式给出:,其中B 为数字基带信号的带宽。假设信号带宽限制在主 FSK 的传输带宽变为:。 图3 FSK锁相环解调器原理示意图 锁相解调的工作原理是十分简单的,只要在设计锁相环时, 此时对应的环路滤波器输出电压为零,而对另一载频失锁,则对应的环路滤波器输出电压不为零,那末在锁相环路滤波器输出端就可以获得原基带信号的信息。FSK锁相环解调器原理图如图3所示。FSK 。其中,压控振荡器的频率是由5C2.5R3.5R4.5U3等元件参数确定,中心频率设计在 电位器进行微调。当输入信号为32KHz时,环路锁定,经形成电路后,输出高电平;当输入信号为 失锁,经形成电路后,输出低电平,则在解调器输出端就得到解调的基带信号序列。

图4 PSK、DPSK调制电路原理框图 ,通过4P5和4P6两个铆孔输入到FPGA中,FPGA软件完成 解调器电路采用科斯塔斯环(Constas环)解调,其原理如图5所示。 图5 解调器原理方框图 输入电路由射随器和比较器组成,射随器是为了发送(调制器)和接收(解调器)电路之间的隔离,从而使它们工作互不影响。比较电路是将正弦信号转换为脉冲信号,目的是便于控制科斯塔斯特环中的乘法器。由于跟随器电源电压已调波信号幅度不能太大,一般控制在1.8V左右,否则会产生波形失真。 )科斯塔斯环提取载波原理(原理中标号参见原理图) 采用科斯塔斯特环解调,科斯塔斯特环方框原理如图6所示。 图6 科斯塔斯特环电路方框原理如图 解调输入电路的输出信号被加到模拟门5U6C和5U6D构成的乘法器,前者为正交载波乘法器,相当于图 ,后者为同相载波乘法器,相当于框图中乘法器1。5U7A,5U7B周边电路为低通滤波器。 的作用是将低通滤波后的信号整形,变成方波信号。PSK解调信号从5U8的7脚经5U11B.C ,若5U10A两输入信号分别为A和B,因(A、B同为 5E2用来稳压,以便提高VCO的频率稳定度。VCO信号从7脚经5C21输出至移相90o90o移

PSK调制和解调的基本原理回顾

目录 1.实验要求及开发环境 (3) 2. 二、课程设计软件说明 (7) 三、基本原理 (2) 3.1调制方式简介 (2) 3.2OQPSK的含义 (3) 3.3同相正交环法(科斯塔斯环) (5) 四、实验框图原理说明 (12) 4.1实验总框图介绍 (12) 4.2五个子部分的介绍 (7) 4.2.1串并转换 (7) 4.2.2载波调制 (9) 4.2.3 科斯塔斯环解调 (15) 4.2.4 抽样判决 (17) 4.2.5 并串转换 (17) 五、实验结论 (18) 六、调试报告 (19) 6.1频率调制器F M参数设置 (19) 6.2低通滤波器参数设置 (19) 6.3脉冲串的参数设置 (20) 七、实验心得 (21) 八、参考文献 (22)

一、实验要求及开发环境 实验要求:1. 数字相关器子系统 2. 仿真结果分析 实验目的:1.了解PSK直序扩频通信系统的基本原理 2.掌握Systemview的使用 开发环境:PC机开发软件:Systemview Systemview简介 Systemview是一个用于现代工程与科学系统设计及仿的动态系统分析平台。从滤波器设计、信号处理、完整通信系统的设计与仿真。直到一般系统的数学模型建立等各个领域,systemview在友好且功能齐全的窗口环境下,为用户提供了一个精密的嵌入式分析工具。 利用systemview,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统.可用于各种线性或非线性控制系统的设计和仿真。其特色是,利用它可以从各种不同角度、以不同方式,拉要求设计多种滤波器,并可自动完成滤波器的各种指标一如幅频待件(波特图)、传递函数、根轨迹图等之间的转换。它还

PSK(DPSK)调制与解调资料讲解

P S K(D P S K)调制与解 调

实验题目——PSK(DPSK)调制与解调 一、实验目的 1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。 2、掌握产生PSK(DPSK)信号的方法。 3、掌握PSK(DPSK)信号的频谱特性。 二、实验内容 1、观察绝对码和相对码的波形。 2、观察PSK(DPSK)信号波形。 3、观察PSK(DPSK)信号频谱。 4、观察PSK(DPSK)相干解调器各点波形。 三、实验仪器 1、信号源模块 2、数字调制模块 3、数字解调模块 4、20M双踪示波器 5、导线若干 四、实验原理 1、2PSK(2DPSK)调制原理 2PSK信号是用载波相位的变化表征被传输信息状态的,通常规定0相位载波和π相位载波分别代表传1和传0,其时域波形示意图如图所示。

2PSK 信号是用载波的不同相位直接去表示相应的数字信号而得出的,在这种绝对移相的方式中,由于发送端是以某一个相位作为基准的,因而在接收系统也必须有这样一个固定基准相位作参考。如果这个参考相位发生变化,则恢复的数字信息就会与发送的数字信息完全相反,从而造成错误的恢复。这种现象常称为2PSK 的“倒π”现象,因此,实际中一般不采用2PSK 方式,而采用差分移相(2DPSK )方式。 2DPSK 方式即是利用前后相邻码元的相对载波相位值去表示数字信息的一种方式。如图为对同一组二进制信号调制后的2PSK 与2DPSK 波形。 0 0 0 1 0 1 1 1 0 0 0 1 1 1 0 0 1 数字信息(绝对码)PSK 波形 DPSK 波形 相对码 从图中可以看出,2DPSK 信号波形与2PSK 的不同。2DPSK 波形的同一相位并不对应相同的数字信息符号,而前后码元相对相位的差才唯一决定信息符号。这说明,解调2DPSK 信号时并不依赖于某一固定的载波相位参考值。只要前后码元的相对相位关系不破坏,则鉴别这个关系就可以正确恢复数字信息,这就避免了2PSK 方式中的“倒π”现象发生。同时我们也可以看到,单纯从波形上看,2PSK 与2DPSK 信号是无法分辨的。这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看成是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。

基于MATLAB的ASK调制解调实现

长沙理工大学 《通信原理》课程设计报告 学院专业 班级学号 学生姓名指导教师 课程成绩完成日期2016年1月8日

课程设计成绩评定 学院专业 班级学号 学生姓名指导教师 课程成绩完成日期2016年1月8日指导教师对学生在课程设计中的评价 指导教师对课程设计的评定意见

课程设计任务书 城南学院通信工程专业

基于MATLAB的ASK调制解调实现 学生姓名:指导老师: 摘要MATLAB是美国MathWorks公司生产的一个为科学和工程计算专门设计的交互式大型软件,本课程设计主要内容是利用MATLAB集成环境下的M文件,编写程序来实现ASK的调制解调,要求采样频率为360HZ,并绘制出解调前后的时域和频域波形及叠加噪声时解调前后的时频波形,根据运行结果和波形来分析该解调过程的正确性及信道对信号传输的影响。目的是熟悉MATLAB中M文件的使用方法,并在掌握ASK 调制解调原理的基础上,编写出2ASK调制解调程序,绘制出ASK信号解调前后在时域和频域中的波形,观察解调前后频谱有何变化以及对信号叠加噪声后的变化。最终得到随着输入信号噪声的增加增大,误码越严重的结论,加深对ASK信号解调原理的理解。 关键词ASK调制解调;时域谱;频域谱;高斯白噪声;信噪比 1 引言 通信原理是通信工程专业的一门重要的专业课,是通信工程专业后续专业课的基础,掌握通信原理课程的知识不仅可以打下一个坚实的专业基础,还能提高处理通信系统问题能力和素质。通过本课程设计的ASK振幅键控调制解调,可以进一步理解数字通信的基础理论,有助于加深对通信原理的理解。 1.1课程设计目的 通过设计基于MATLAB的ASK调制解调实现,让我深入理解和掌握二进制ASK 调制解调以及噪声对信号传输的影响[1]。 在通信原理理论知识的基础上加深对ASK调制解调设计原理及实现方法的理解。使我对通信信号波形及频谱有深刻的认识。不仅加强了对课本知识的了解,而且还涉及到了MATLAB编程语言和软件的使用,以及基本的操作常识[2]。 掌握调制解调函数的应用,增强了我动手实践的能力。

通信原理2DPSK调制与解调实验报告

通信原理课程设计报告

一. 2DPSK基本原理 1.2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。 定义?Φ为本码元初相与前一码元初相之差,假设: ?Φ=0→数字信息“0”; ?Φ=π→数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1

DPSK信号相位:0 π π 0 π π 0 π 0 0 π 或:π 0 0 π 0 0 π 0 π π 0 2. 2DPSK信号的调制原理 一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。 图1.2.2 键控法调制原理图 码变换相乘 载波 s(t)e o(t)

4ASK载波调制信号的调制解调与性能分析(1)解析

****************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2014年春季学期 通信系统仿真训练课程设计 题目:4ASK载波调制信号的调制解调与性能分析 专业班级:通信工程四班 姓名:赵天宏 学号: 11250414 指导教师:彭清斌 成绩:

摘要 实际通信中的许多信道都不能直接传送基带信号,必须用基带信号对载波波形的某些参量进行控制,使得载波的这些参量随基带信号的变化而变化,即正弦载波调制。通过MATLAB软件平台,设计并实现了多进制幅移键控(M-ary Amplitude-Shift Keying,MASK)中的四电平调制(4-ary Amplitude Shift Keying,4ASK)的调制系统和解调系统。本文首先介绍了四电平调制和解调的原理,随后介绍载波产生、振幅调制、振幅判别等功能模块的设计,最后给出了整体调制解调的模块图和仿真波形。 关键词:载波调制、数字通信、四电平调制和解调

目录 一、设计目的和要求 (1) 1.1设计目的 (1) 1.2设计要求 (1) 二、设计内容及原理 (2) 2.1 四进制ASK信号的表示式 (2) 2.2产生方法 (3) 2.3 4ASK调制解调原理 (3) 三、运行环境及MATLAB简介 (6) 3.1运行环境 (6) 3.2 MATLAB简介 (6) 四、详细设计 (8) 4.1载波信号的调制 (8) 4.2调制信号的解调 (8) 4.3编程语言 (9) 4.4测试结果 (10) 五、调试分析 (11) 六、参考文献 (12) 总结 (13)

实验九 QPSK调制与解调实验报告

实验九QPSK/OQPSK 调制与解调实验 一、实验目的 1、了解用CPLD 进行电路设计的基本方法。 2、掌握QPSK 调制与解调的原理。 3、通过本实验掌握星座图的概念、星座图的产生原理及方法,了解星座图的作用及工程上的作用。 二、实验内容 1、观察QPSK 调制的各种波形。 2、观察QPSK 解调的各种波形。 三、实验器材 1、信号源模块 一块 2、⑤号模块 一块 3、20M 双踪示波器 一台 4、 连接线 若干 四、实验原理 (一)QPSK 调制解调原理 1、QPSK 调制 QPSK 信号的产生方法可分为调相法和相位选择法。 用调相法产生QPSK 信号的组成方框图如图12-1(a )所示。图中,串/并变换器将输入的二进制序列依次分为两个并行的双极性序列。设两个序列中的二进制数字分别为a 和b ,每一对ab 称为一个双比特码元。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,得到图12-1(b )中虚线矢量。将两路输出叠加,即得如图12-1(b )中实线所示的四相移相信号,其相位编码逻辑关系如表12-1所示。 (a ) a(0)b(0) b(1) a(1) (b ) 图12-1 QPSK 调制 /并变换。串/并变换器将输入的二进制序列分为两个并行的双极性序列110010*********和

111101*********。双极性的a 和b 脉冲通过两个平衡调制器分别对同相载波及正交载波进行二相调制,然后将两路输出叠加,即得到QPSK 调制信号。 2、QPSK 解调 图12-2 QPSK 相干解调器 由于四相绝对移相信号可以看作是两个正交2PSK 信号的合成,故它可以采用与2PSK 信号类似的解调方法进行解调,即由两个2PSK 信号相干解调器构成,其组成方框图如图12-2所示。图中的并/串变换器的作用与调制器中的串/并变换器相反,它是用来将上、下支路所得到的并行数据恢复成串行数据的。 (二)OQPSK 调制解调原理 OQPSK 又叫偏移四相相移键控,它是基于QPSK 的改进型,为了克服QPSK 中过零点的相位跃变特性,以及由此带来的幅度起伏不恒定和频带的展宽(通过带限系统后)等一系列问题。若将QPSK 中并行的I ,Q 两路码元错开时间(如半个码元),称这类QPSK 为偏移QPSK 或OQPSK 。通过I ,Q 路码元错开半个码元调制之后的波形,其载波相位跃变由180°降至90°,避免了过零点,从而大大降低了峰平比和频带的展宽。 下面通过一个具体的例子说明某个带宽波形序列的I 路,Q 路波形,以及经载波调制以后相位变化情况。 若给定基带信号序列为1 -1 -1 1 1 1 1 -1 -1 1 1 -1 对应的QPSK 与OQPSK 发送波形如图12-3所示。 1-1-11111-1-111-1111-11-111-11-1-111-11-1 基基基基I 基基Q P S K ,O Q P S K Q 基基 Q P S K Q 基基O Q P S K -1 图12-3 QPSK,OQPSK 发送信号波形 图12-3中,I 信道为U (t )的奇数数据单元,Q 信道为U (t )的偶数数据单元,而OQPSK 的Q 信道与其I 信道错开(延时)半个码元。 QPSK ,OQPSK 载波相位变化公式为 {}()33arctan ,,,()44 44j i j i Q t I t ππ?ππ? ????? =--???? ?????? ?@ QPSK 数据码元对应的相位变化如图12-4所示,OQPSK 数据码元对应相位变化如图 12-5所示

相关主题