搜档网
当前位置:搜档网 › 武汉大学核医学整理(放射性核素治疗)

武汉大学核医学整理(放射性核素治疗)

武汉大学核医学整理(放射性核素治疗)
武汉大学核医学整理(放射性核素治疗)

核医学

放射性核素治疗

利用放射性核素及其所释放出来的射线治疗疾病的学科,又称为治疗核医学

原理

●放射性药物的靶向:以不同方式引入体内后,利用核素与器官或组织的亲和关系,被机

体所吸收、分布,参与细胞的代谢过程。病变细胞代谢旺盛、血流丰富,摄取放射性药物更高。

●放射性药物的辐射效应:发射γ或β射线直接照射病变组织,从而抑制或破坏病变组织

细胞,达到治疗疾病目的;而正常组织或细胞摄取少,故不会产生破坏作用。

特点

●原理:利用核射线治疗疾病,电离与激发引起一系列的辐射损伤,出现细胞代谢、功能

与结构变化。尤其是增殖旺盛的异常细胞对辐射比较敏感,因此其损伤作用更加明显。

●对病变组织具有选择性:病变组织功能、代谢活性高于正常组织,故比正常组织能更多

选择性摄取某些放射性药物,其副作用小。

●治疗作用持久,方法安全、简便。多数治疗仅需一次口服或注射给药,无创伤,且可

重复治疗。

类型

●外照射与敷贴治疗:90Y或32P敷贴器治疗某些皮肤病、术后瘢痕、眼科疾病等,90Y

前列腺治疗仪治疗前列腺肥大等。

●内照射治疗

①普通治疗:口服131I、32P内照射治疗、转移性骨肿瘤及嗜铬细胞瘤治疗等。

②介入治疗:腔内、动脉血管介入、组织间植入治疗等

③放射性核素导向治疗:抗体介导的放射免疫治疗、受体介导的核素治疗、放射性核素肿瘤基因治疗等。

核素治疗基本原理

利用核素发射出的α、β射线、俄歇电子、或内转换电子在病变组织中产生一系列的电离辐射生物效应,射线作用于组织细胞,将其能量部分或全部移交给组织,通过辐射能的直接和间接作用,使机体生物活性大分子的结构和性质遭到损害,导致细胞繁殖功能丧失、代谢紊乱失调、细胞衰老或凋亡。达到治疗的目的。

常用的治疗用放射性核素

1、α粒子发射体:

●射程50~90 m,约为10个细胞直径的距离。短距离释放巨大能量,内放射治疗中有

巨大潜力。LET(传能线密度)约为 粒子的400倍。

●研究显示:被 射线照射后的细胞无氧耗量增加和无任何辐射损伤的修复反应。

●211At(砹)和212Bi(铋)作为 射线发射体用于治疗受到极大关注。

2、发射β射线的放射性核素:如131I、32P、89Sr、90Y等

碘是用于标记有机物和生物大分子首选核素,可通过体外显像测定药代动力学和在病灶内的滞留时间。

3、电子俘获或内转换发射俄歇电子和内转换电子的核素:

●射程多为10nm,只有当衰变位置靠近DNA时,才产生治疗作用。

●放射性药物在细胞内的定位,是决定治疗效果的决定因素。

●125I用于治疗甲状腺毒症,125I-IUdR(碘脱氧尿苷)可通过俄歇电子打断DNA链,

当125I在胞浆内衰变时,作用于DNA的能量很低,限制治疗作用发挥。用123I标记

IUdR,杀死细胞作用肯定。如生产和价格问题解决,123I的使用可克服131I的毒性问题。

治疗学评价

①疗效

②达到满意疗效的时间

③不良反应与副作用

④治疗费用

⑤复杂程度

甲状腺机能亢进症放射性131碘治疗

甲状腺机能亢进(Graves’病)

●中青年女性多见,发病率逐年增高,低龄化,并发症多。

●ATD仅半数缓解,很少认为是手术适应症。

●放射性碘安全、有效、方便。

●131碘治疗甲亢-最佳选择

131I口服后几乎全部吸收入血,迅速被甲状腺滤泡细胞浓聚、氧化和有机化。

131I衰变产生的β粒子通过电离作用破坏甲状腺细胞。β粒子平均射程1~2mm,一般不会对其周围组织造成辐射损伤。

2~3个月可使甲状腺滤泡细胞发生坏死和血管闭塞,增生的甲状腺组织如同做了一次“不流血的手术”,90%左右的病人在3~6个月内甲亢治愈。

适应症

1)Graves甲亢患者。

2)对抗甲状腺药物过敏,或抗甲状腺药物疗效差,或用抗甲状腺药物治疗后多次复发,或

手术后复发的青少年及儿童甲亢患者。

3)Graves甲亢伴白细胞或血小板减少的患者。

4)Graves甲亢伴房颤的患者。

5)Graves甲亢合并桥本病,内科药物治疗效差,摄碘率增高的患者。

禁忌症

①妊娠或哺乳期患者。

②甲亢伴有近期心肌梗死的患者。

③严重肾功能障碍的患者。

治疗方法

1、病人准备

停止服用影响甲状腺摄取131I的药物和忌食含碘食物。心率过快和精神紧张者,给予β受体阻滞剂

进行常规检查;查血中甲状腺激素和TSH水平;测定甲状腺131I摄取率和有效半衰期;确定甲状腺重量。

2、131I治疗剂量的确定

既能迅速控制甲亢,又尽可能降低甲低的发生率。

131I治疗剂量计算

计算剂量法:

计划量(μCi)×甲状腺重量

131I剂量=

甲状腺最高摄131I率

每g甲状腺组织推荐131I治疗剂量为GD 2.6-3.7MBq(70-100uCi),毒性结节性甲状腺肿4.07-5.55MBq(110-150uCi)。

剂量修正:

●甲状腺较大或质地较硬,适当增加131I剂量;反之,适当减小131I剂量。

●有效半衰期较短者可增加剂量,有效半衰期较长者可减少剂量。

●年老、病程较长、长期用抗甲状腺药物治疗效差者可增加剂量;年轻、病程短、未经抗

甲状腺药物治疗,术后复发,第一次治疗后已明显改善但未痊愈的患者应适当减少剂量。剂量增减因素

①甲状腺结节、重量。

②甲状腺抗体。

③年龄,病程,用药史,临床症状。

④个体敏感性。

⑤有效半衰期。

⑥重复治疗。

给药方法

为保证充分吸收,应空腹口服131I。

当131I剂量小于或等于555MBq (15mCi),宜一次口服。

当131I剂量大于555MBq (15mCi)或者有合并症的患者可采用分次给药法,首次给予总量的1/2~2/3,间隔3~7天再给剩余剂量。

综合治疗措施

a.抗甲状腺药物的应用。

b.β肾上腺素能受体阻断剂应用。

c.甲亢伴突眼病人:糖皮质激素类药物。

d.一旦甲状腺激素水平降至正常即给予甲状腺激素。

疗效评价和随访

●一般2~3周才逐渐出现疗效,症状缓解,甲状腺缩小,体重增加。

●2~3月后症状基本消失,甲状腺明显缩小

●部分病例131I的治疗作用甚至持续到半年。

●二次、第三次治愈率达90%以上。

●有效率95%以上,无效率2%~4%,复发率1%~4%。

甲亢合并症的疗效

1)甲亢合并突眼:治疗后40%患者眼症改善。

2)甲亢合并肌肉疾病:甲亢性肌病、周期性麻痹、重症肌无力。

3)甲亢性心脏病。

4)甲亢合并糖尿病、精神病。

治疗反应及处理

早期反应:治疗2周内出现的反应,一般比较轻微,不

需特殊处理;个别病人发生白细胞降低是暂时性的。

甲亢危象(thyroid storm):

可能原因:1. 甲状腺激素释放入血

2. 机体对儿茶酚胺敏感性增高

3. 对甲状腺激素耐受力低下

4. 应急状态下,交感神经活力增强,如精神刺激、感染、过度劳累,诱发甲亢危象

甲亢危象处理

应以预防为主。

处理:①使用大剂量PTU和无机碘,抑制甲状腺激素的合成和分泌;②β受体阻滞剂和抗交感神经药物,减少体内儿茶酚胺的数量并阻断其作用;③糖皮质激素;④物理降温,给氧,纠正电解质及酸碱平衡,控制感染。

并发症处理-甲低

早发甲低:治疗后一年内发生。主要是由于131I射线对甲状腺细胞的直接破坏所致,所以发生率与剂量成正相关。

晚发甲低:治疗后一年后发生。与剂量大小无关,每年以2%~3%递增,发生机制不十分清楚。

并发症处理-内分泌突眼

与GD有关联而又有别于GD的器官特异性自身免疫性疾病。

131I治疗前:突眼严重的患者,治疗后症状加重的可能性较大;

不伴有突眼的患者,治疗后发生突眼的机率很小

手术、抗甲状腺药物和131I治疗甲亢后,原有眼病恶化的机率为5%~7%,与选择的治疗方式无关。

晚期并发症的认识

①甲状旁腺功能减低

②甲状旁腺功能亢进

③甲状腺癌

④白血病

⑤生育与遗传

⑥甲状腺机能减低

甲状腺机能减低

●甲减可能是甲亢自然病史的一部分。

●TSH分析能十分敏感和特异性地诊断甲减,并能给予替代治疗,故不是一个严重的消

极后果。

●迅速治愈甲亢有利于正常生长发育,提高生活质量。

如何降低甲减的发生率

a.观念的转变

b.低吸收剂量原则

c.治疗剂量的个体化原则

d.剂量增减的多因素原则

甲减治疗

①亚临床甲减:一般不给予治疗,发挥自身代偿功能。

②临床甲减:用甲状腺素制剂。足量:由20mg/日递增至症状明显改善。足时:维持足够时间,切忌过早停药。

③辅助用药:与抗甲药合用。

④随访:一年内每4~6周随访,针对早发甲减;一年后每年随访,针对晚发甲减。

⑤遵循原则:标准化、正规化及规范化。

甲状腺激素及抗体测定

治疗前检查规范:

●甲状腺吸碘率测定

●有效半衰期测定

●甲状腺影像学检查

●其他检查(肝功能、血常规、心电图等)

●个体化:按公式计算,根据敏感性因素增减

功能自主性甲状腺瘤放射性131碘治疗

疾病特点:

①自主性腺瘤可抑制正常甲状腺组织,显像时瘤体为热结节,正常组织受抑制而不显影。

②同时伴甲亢表现。

治疗方法

1)功能自主性甲状腺结节具有自主摄取无机碘、合成和分泌甲状腺激素的功能,而不受下

丘脑-垂体轴的调节。

2)标准剂量法:一次给予较大剂量15-30mCi,因为正常甲状腺组织受热结节抑制而得到

保护。

131I治疗非毒性甲状腺肿

1.治疗后可使甲状腺迅速缩小

2.疗效好、作用快

3.安全、简便、无创伤

甲状腺癌

缘由:动物实验、原子弹灾害地区、核电站事故地区、散发病例。

实际:与自然人群发生率比较无增加,与手术、A TD治疗比较无增加。

131I治疗甲状腺癌转移灶

甲状腺癌原发病灶手术切除后,分化较好的甲状腺癌转移灶(如甲状腺滤泡型癌或乳头状癌)具有摄取、浓聚碘以及合成甲状腺激素的功能。

给予足量131碘后,利用其发射出大量β射线,能有效地杀伤癌细胞而达到治疗目的。

适应证

1)分化型甲状腺癌转移灶;

2)手术后复发或手术残留的转移肿瘤;

3)不能手术切除的转移病灶。

疗效评价

a.其疗效与甲状腺癌转移灶病变范围及病灶的摄131I能力等多种因素有关。

b.对软组织颈淋巴结转移治疗效果较好,肺转移效果次之,骨转移效果最差。

c.病灶范围小、吸碘能力强的转移灶效果最佳。

骨转移肿瘤的核素治疗

●许多晚期的恶性肿瘤如乳腺癌、前列腺癌以及肺癌等常伴发骨转移。

●约有50%的患者有日益加重的剧烈疼痛,临床上主要依赖麻醉药品等止痛,效果欠佳,

且易成瘾。

●应用放射性核素治疗转移性骨骼肿瘤取得了一定效果。

基本原理:

●某些趋骨性放射性药物(如153Sm-EDTMP、89SrCl、186Re-HEDP、32P、90Y等)在

转移性骨肿瘤病灶内有较高浓聚,静脉注射后病灶区摄取浓度明显高于正常组织。

●用其发射的β射线对肿瘤内照射,达到止痛、抑制病灶增长甚至破坏转移肿瘤病灶的目

的。

适应证

●临床、病理、X线或骨显像确诊为骨转移癌的患者,尤其是多发性转移病灶者;

●骨转移引起剧烈的骨痛,且化疗和放疗效果不佳者;

●白细胞>3.5×109 /L,血小板>80×109 /L者。

禁忌证

1)化疗或放疗导致骨髓功能障碍者;

2)骨显像为溶骨性冷区病灶患者;

3)伴有严重的肝肾功能不全者。

治疗方法

①89SrCl 是纯β射线发射体。β射线最大能量1.46MeV,物理半衰期50.5天,注射后迅速被骨骼摄取,在转移灶内的生物半衰期大于50天,是一种有效骨转移肿瘤治疗药物。

②153Sm-EDTMP 物理半衰期为46.3h,平均能量为0.725MeV,发射β及γ射线。β射线对病灶产生内照射,而低能γ射线可于作全身骨显像。

③186Re-HEDP 为新型治疗骨痛的核素,物理半衰期为92h,发射β及γ射线。止痛有效率达80%,用药后1周即可发挥作用,维持7~8周。给药后可行骨显像。

疗效评价

治疗后1~2周左右疼痛可缓解或完全消失,其镇痛作用可持续1~11月,有效率>80%,尤其是对前列腺癌和乳腺癌镇痛有效率可达87%。

89Sr的镇痛效果优于153Sm-EDTMP,且作用更持久。

131I-MIBG治疗恶性嗜铬细胞瘤

131I-MIBG是一种抗神经原阻滞剂,能与肾上腺受体结合,被肾上腺素能囊泡浓集。

恶性嗜铬细胞瘤及其转移灶,交感神经母细胞瘤内高度浓聚。

利用131I释放β射线致组织细胞辐射损伤作用,采用大剂量131I-MIBG,抑制或破坏肿瘤细胞,达到改善临床症状,缩小肿瘤的目的。

32P治疗真性红细胞增多症和原发性血小板增多症

1)32P为发射纯β射线,β射线平均能量0.659MeV,在组织内最大射程8mm,平均3.2mm。

进入机体后主要聚集在骨骼、骨髓、肝脾和淋巴结内。

2)真性红细胞增多症和原发性血小板增多症细胞内核酸代谢旺盛,异常分裂较正常细胞

快,生长周期较正常细胞短,32P进入细胞的数量与细胞分裂速度成正比,其浓聚量较正常高10倍左右。

3)病变组织对32P的β射线很敏感,能阻断或抑制骨髓内异常细胞的增殖,达到有效治

疗。

核医学重点归纳.(精选)

绪论 1定义: 核医学是利用放射性核素诊断、治疗疾病和进行医学研究的学科。 2核医学的内容出来显像外还有器官功能测定、体外分析法、放射性核素治疗 第一章 1、元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I和127I; 2、核素:质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元 素可有多种核素,如131I、127I、3H、99m Tc、99Tc分别为3种元素的5种核素; 3、同质异能素:质子数和中子数都相同,但处于不同的核能状态原子,如99m Tc、99Tc 。 4、同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互 称为该元素的同位素。 5、放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称 为放射性核素 6、放射性衰变:放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上 的射线并转化为另一种原子的过程称为放射性衰变。 7、电子俘获:原子核俘获核外的轨道电子使核内一个质子转变成一个中子和放出一个中微子 的过程 8、放射性衰变基本规律 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变。放射性核素衰变是随机的、自发的按一定的速率进行,各种放射性核素都有自己特有的衰变速度。放射性核素原子随时间而呈指数规律减少,其表达式为: N=N e-λt 指数衰减规律: N = N e-λt N 0: (t = 0)时放射性原子核的数目 N: 经过t时间后未发生衰变的放射性原子核数目 λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快 9、半衰期:放射性原子核数从N 0衰变到N 的1/2所需的时间 10、放射性活度(A) 定义:单位时间内发生衰变的原子核数1Bq=1次× S-1 1Ci=3.7×1010 Bq 1Ci=1000mCi 11、比放射性活度定义:单位质量或体积中放射性核素的放射性活度。 单位: Bq/kg; Bq/m3; Bq/l 12、电离当带电粒子通过物质是和物质原子的核外电子发生静电作用,是电子脱离原子轨道 而发生电离 13、激发如果核外电子获得的能量不足以使其形成自由电子,只能有能量较低的轨道跃迁到 能量较高的轨道 14、散射带电粒子与物质的原子核碰撞而改变运动方向的过程 15、韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低, 多余的能量以x射线的形式辐射出来 16、湮灭辐射正电子衰变产生的正电子具有一定的动能,能在介质中运行一定得距离,当其 能量耗尽是可与物质中的自由电子结合,而转化为 17、光电效应光子同(整个)原子作用把自己的全部能量传递给原子,壳层中某一电子获得动 能克服原子束缚跑出来,成为自由电子,光子本身消失了。

核医学总结

带电粒子与物质的相互作用:电离、激发、散射、韧致、辐射、吸收作用。放射核素显像技术:合成代谢、细胞吞噬、循环通路、选择性浓聚、选择性排泄、通透弥散、化学吸附和离子交换、特异性结合。 脑血流灌注显像原理:静脉注射具有小分子、零电荷、脂溶性高的胺类化合物或四配基络合物能通过完整的血脑屏障 进入脑细胞的显像剂,其进入脑组织的量与局部脑血流量(rCBF)成正比。通过显像,可以获得rCBF的分布,并进 行定量分析。 2.显像剂: 99mTc标记物(99mTc-ECD 99mTc-HMPAO)123I-IMP 惰性气体(133Xe) 13NH3 .Diamox Stress Test(乙酰唑胺)乙酰唑胺负荷显像:乙酰唑胺能 抑制脑内碳酸酐酶的活况下 会反射性地引起脑血管扩张,导致rCBF增加20%~30%,由于病变血管的这种扩张反应很弱,使潜在缺血区和缺血区的rCBF增高不明显,在影像上出现相对放射性减低或缺损区。适应症:缺血性脑血管病的诊断,脑梗死的诊断,痴呆的诊断和分型,癫痫灶的定位诊断,帕金森病的诊断,脑肿瘤术后坏死与复发的鉴别诊断,其它:ru偏头痛、精神病、脑外伤、遗传性舞蹈病、脑动静脉畸形等。5.临床应用1)短暂性脑缺血发作(transient ischemic attack,TIA); 可逆 性缺血性脑疾病(reversible ischemic neurologic deficit, RIND) 大部分TIA患者rCBF异常。对缺血部位、范围、严重程度、早期诊断、随访及疗效观察等具有较高的价值。2)脑梗死( cerebral embolism) 特征:放射性缺损比CT大过度灌注(Luxury Perfusion)交叉性小脑失联络(Crossed Cerebellar diaschisis,CCD)对早期诊断、病情估计、预后判断、复杂定位症状和体征的解释等具有较高的价值3)癫痫(epilepsy)发作期:病灶局部放射性异常浓聚发作间期:病灶局部放射性稀疏或缺损4)Alzheimer病特征:颞叶、顶叶放射性减低,对称性。对诊断、鉴别诊断及临床分期具有重要意义。5)颅脑损伤局部低灌注 Positive rate: 68%-77%6)脑功能研究及精神疾病的研究应用1.精神分裂症 2.抑郁症3.强迫性精神症7)偏头痛(migraine)局部低灌注区 8)震颤麻痹(paralysis agitans);又称帕金森病(parkinson disease)表现为局部放射性稀疏、缺损(大脑皮层、基底神经节、丘脑等) Positive rate:62.5%9)颅内占位性疾变(SOL)SPECT表现为放射性低灌注区,亦可表现为放射性浓聚,较X-CT范围大脑肿瘤手术及放疗后 复发与坏死的鉴别诊断恶性肿瘤的血供丰富,复发灶的rCBF常增高,影像表现为放射性增浓区;而坏死区基本上没有血供,影像上呈放射性减淡或缺损区。必要时可进一步行亲肿瘤显像。脑代谢显像:适应症:癫痫灶的定位诊断,痴呆的早期诊断和鉴别诊断,脑肿瘤的良恶性鉴别、分级、疗效评价、复发或残余肿瘤的检出,帕金森病的早期诊断,脑生理与认知功能的研究,精神疾患的研究。神经递质和神经受体显像原理标记神经递质或配体进入人体后能选择性 的与受体结合。利用SPECT、PET显像显示体的特定结合位 点及其分布、密度和功能,并能定量分析。脑受体显像可显示脑内各种神经体的分布状态,并可观察其在病理情况下的改变。对发病机理、诊断、鉴别诊断、治疗方法选择、疗效观察、预后判断等均具有很高的应用价值。血脑屏障功能肘静脉“弹丸”注射放射性药物,用r照相机置于头颈部1帧/1sec连续采集40帧,即可显示脑血管充盈、灌注和出的情况。从而了解脑血管的形态及血流动力学变化脑静态显像正常情况下,由于存在着“血脑屏障”功能,注入血液中的放射性药物,很难达到脑组织,故脑组织中的放射性浓度很低。当脑部病变(肿瘤、炎症、血管病变等)发生时,血脑屏障功能受损,脑组织中放射性药物浓度增高,病变组织摄取放射性药物增高,呈现放射性浓聚区,据此进行显像,称为脑静态显像。99mTcO4-、99mTc-DTPA、99mTc-GHA3.显像方法 ①肘静脉“弹丸”注射 r照相(1F/1sec×40)②2 ~ 4h 静态显像脑血管动态影像 1.动脉相:双侧颈内动脉、大 脑前动脉及中动脉、颅底Willis环陆续显像,呈两侧对称 的五叉形影像,历时约4 s。2.脑实质相:Imaging agent 进入微血管,放射性弥漫性分布于脑实质,历时约2 s。3.静脉相:上矢状窦等静脉窦显影,脑实质放射性逐渐减少,历时约7 s应用1.估价颈动脉血流状态阻塞、曲折或严重狭窄2.脑血管病3.脑肿瘤4.脑动静脉畸形 5.探测硕膜下血肿6.脑脓肿7.脑死亡 甲状腺功能测定(Tests of Th yroid Function)体内实验:甲状腺摄131碘试验,过氯酸钾释放试验,甲状腺激素抑制试验(50%),TSH兴奋试验(5%-10%)体外测定法:利用体外分析的方法测定甲状腺相关激素和抗体在血中的含量甲状腺摄131碘试验1.原理 131I,127I。碘是甲状腺合成TH的主要原料,其进入人体后能被甲状腺选择性摄取和浓聚,其摄取的速度和数量以及碘在甲状腺内的停留时间与甲状腺功能有关。给予患者口服或静脉注射一定量的Na131I后,在体外用特定的γ射线探测仪探测颈部的放射 性计数,即可了解甲状腺的功能状态。2.适应证、禁忌证:除妊娠期或哺乳期的妇女禁用外,可安全的用于任何人群。 3.应用1)Grare s病的诊断。[符合率] 92% 吸131I率增 高和病情程度无比例关系。2)甲状腺毒症的鉴别诊断。亚 急炎:吸131I率抑制性低下与甲低相鉴别 3)甲状腺功能 减退症(简称甲减)的辅助诊断。各时相吸131I率均明显低下。有些甲低病人是由于碘化偶联障碍所致,吸131I率可正常或升高。(4)甲状腺肿地方性肿 [碘饥饿状态]:各次 吸131I率高于正常,高峰多在24hr,曲线形态类似中、重 度甲亢;单纯性肿 [相对性缺碘]:各次吸131I率均轻度偏高,类似轻度甲亢曲线。(5)甲亢131I治疗剂量的计算及疗效预测。过氯酸钾释放试验应用(1)甲状腺过氧化酶缺 陷的诊断,家族性酶缺陷克汀病、耳聋—甲状腺肿综合征(Pendred 综合征)等(2)慢性淋巴细胞性甲状腺炎的辅助诊断。Th yroid Hormone Su ppres sison Test1. 原理:正常人甲状腺吸碘能力受TSH的控制。血中T3、T4 对TSH有负反馈调节作用,给予外源性T3、T4可抑制TSH 分泌,从而抑制甲状腺吸碘能力。甲亢患者吸碘调控机制 被破坏,其吸碘能力不受外源性T3、T4抑制。2.用途:鉴别轻度甲亢和生理缺碘而引起的吸131I率升高。3.临床应用(1)甲亢的诊断和鉴别诊断。诊断符合率为95%左右。2)功能自主性甲状腺瘤的诊断。3)突眼的鉴别诊断。内分泌 性突眼摄碘率多不受抑制,眼眶肿瘤所致突眼可被抑制。4) 预测甲亢复发。促甲状腺激素兴奋试验(TSH stimulation test);原理:正常生理情况下,垂体分泌的T SH可增强甲 状腺摄碘的能力。甲状腺兴奋试( thyroid sti mulation test ) 通过注射外源性TSH,观察注射前后甲状腺摄131I 率的变化,判断甲状腺轴的功能。用途:甲状腺功能减退症 的鉴别诊断.应用(1)原发性与继发性甲状腺功能减退症 的鉴别诊断 2)了解甲低病人的甲状腺贮备功能 4.注意事 项 1)有过敏史者慎用。 2)重度垂体前叶功能衰竭及心脏 病患者慎用。 甲状腺静态显像1.原理:将一种进入人体后能被甲状腺细胞 选择性摄取的放射性药物(显像剂)如131I-NaI或 99mTcO4- 等引入患者体内。一定时间后用特定的核医学显像仪器,探 测甲状腺内放射性核素衰变时所发出的r射线,即可得到反 映甲状腺部位、形态、大小及功能等信息的甲状腺影像。2. 常用显像剂及特点131I 123I 99mTc 4.临床应用1)观察甲 状腺的位置、形态、大小及功能状态。2)异位甲状腺的诊 断(异位甲状腺多见于:舌根部、舌骨下和胸骨后,偶见于 心包、心内和卵巢等处。3)甲状腺结节功能的判断4)判断 颈部肿块与甲状腺的关系(如颈部肿块能摄取显像剂或甲状 腺形态不完整,或甲状内显像剂分布不均匀,则提示颈部肿 块来自于甲状腺或与甲状腺有关,相反则和甲状腺无关)。 (5)甲状腺癌转移灶的探测6)甲状腺大小及重量的估计7) 甲状腺炎热结节放射性增高单发见于功能自主性甲状腺腺 瘤,多发见于结节性甲状腺肿(结节功能不一致引起)温结 节放射性相似良性甲状腺腺瘤,少见于结节性甲状腺肿和慢 性淋巴细胞性甲状腺炎凉结节放射性减低甲状腺癌、甲状腺 腺瘤、甲状腺囊肿、出血、钙化及局灶性甲状腺炎。(80% 属于良性腺瘤或腺瘤伴出血、囊性变。单发结节癌变发生率 高,多发结节癌变发生率较低。)甲状腺血流显像正常图像: 注药后8 ~ 12s,双侧颈动脉对称显影,12 ~ 14s颈静脉 显像,此时甲状腺区无明显显像剂聚集。10 ~ 18s左右, 甲状腺开始显影,且随时间延长甲状腺摄取显像剂逐渐增 多,影像逐渐清晰。异常图像:因甲状腺整体或局部血流灌 注改变,在图像上可出现甲状腺提前清晰显影、颈动脉-甲 状腺通过时间延长,病灶区显像剂分布增高或灌注不良。 . 应用1)甲亢的辅助诊断。2)甲状腺结节的鉴别:结节部位供 血丰富表现者,提示恶性结节可能性大。甲状腺肿瘤阳性显 像1.显像剂:99mTc-MIBI、201Tl、99mTc-(Ⅴ)-DMSA、 131I-MIBG2.临床应用:甲状腺肿瘤性质的鉴别:甲状腺结节 若在甲状腺显像中表现为“冷”结节或“凉”结节,在肿瘤 阳性显像中表现为浓聚区,高度提示为恶性肿物。甲状腺激 素抑制显像功能自主性甲状腺腺瘤 甲状旁腺显像原理 减影显像:利用201Tl或99m Tc-MIBI显影所得影像 (可得到甲状旁腺和甲状腺两个腺体的合影) 减去99mTcO4-显像所得影像(甲状腺影像) 延迟显像: 99mTc-MI BI双时相显像 早期相:显示甲状腺和甲状旁腺影像 延迟相:甲状腺影消退,功能亢进的甲状旁腺组织影可清 晰显示 2.正常图像 甲状旁腺功能正常时,由于其体积较小通常不显影,因 此减影处理或延迟的影像,甲状腺区无局限性放射性浓聚 影,或仅见较淡的且大致均匀的甲状腺影像。 3.应用1)甲状旁腺功能亢进的诊断2)功能亢进的甲状旁腺 腺瘤和增生、甲状旁腺腺癌的诊断和定位, 异位甲状旁腺的 定位 肾上腺髓质显像 1.原理:间位碘代苄胍(Meta-Iodolemzyl Guanidine; MIBG)能与肾上腺素能受体结合,有高度特异性, 因此用131I或123I标记的MIBG可使富含肾上腺 素能受体的组织和器官,如肾上腺髓质、心肌、肝 脾等显影。显像剂:131I-MIBG 123I-MIB G 3.检查前准备: (1)须封闭甲状腺和清洁肠道。 2)停用能抑制肾上腺髓 质功能的药物(如苯丙胺、可卡因、生物碱、6-羟基多巴胺、 胰岛素以及三环类抗抑郁药等)至少一周。 (3)显像前排尿,以减少膀胱影像的干扰。 4.方法:显像剂: 131I-MIBG (2~3 mCi)静脉注射后 24h、48h、72h显像,常规行后位局部及全身显像。 5.正常显像 正常肾上腺髓质多不显影,只有10~20%的肾上腺髓质在 48h~72h显像时显影,且影像小而模糊。心肌、脾脏、腮 腺常显影,肝脏、肾脏及膀胱影像较浓。 6.应用 1)嗜铬细胞瘤的定位2)恶性嗜铬细胞瘤转移灶的 诊断3)交感神经节细胞瘤和交感神经母细胞瘤 肾上腺皮质显像 1.原理:放射性核素标记的胆固醇可作为合成皮质激素的原 料而被肾上腺皮质细胞摄取并酯化,以此作为显像 剂行肾上腺皮质显像,可以观察肾上腺皮质的位置、 大小、形态和功能状态。 2.临床应用 1)肾上腺皮质增生和腺瘤的诊断与鉴别诊断 2)肾上腺皮质腺癌的辅助诊断 3)异位肾上腺的定位诊断 骨髓显像原理:骨髓由有造血功能的红髓及无造血功能的黄 髓构成。成人四肢骨除近心端1/3外都是黄骨髓。红骨髓主 要由各系造血细胞和单核吞噬细胞构成,在正常情况和大多 数病理情况下,它们的分布是一致的。 1、放射性胶体(99m Tc-硫胶体或99m Tc-植酸钠) 骨髓间质中的单核巨噬细胞能选择性摄取放射性胶体 物质,而单核吞噬细胞在正常情况和大多数病理情况下和造 血细胞分布是一致的,因此它摄取放射性胶体的多少与骨髓 的功能状况密切相关。通过单核巨噬细胞显像可间接观察红 骨髓的分布情况及功能状况。优点:图象质量好。 缺点:间接反映骨髓功能,肝、脾显影的干扰。 2、放射性铁(59Fe或52Fe) 铁是红细胞生成过程中合成血红蛋白的主要元素,在红 细胞生成过程中,放射性铁离子可渗入红细胞系而使骨髓 显像,从而直接反映红细胞生成细胞的功能和分布。优点: 真正反映红细胞的生成与分布。缺点:59Fe 半衰期 45天, 在骨髓聚集慢;高能光子(分别为1.099MeV和1.292 MeV), 图象质量差。52Fe由加速器生产,发射正电子。 3、其他:111In优点:它和铁一样能与输铁蛋白结合,半衰 期 2.8天,光子(173KeV、247 KeV),较适合显像。缺 点:由加速器生产,价格高。 骨髓显像不仅能直接显示全身功能性骨髓分布,而且能 显示身体各部位骨髓造血功能的变化,是研究骨髓功能和诊 治造血系统疾病的辅助手段。 正常影像: 正常成年人放射性胶体骨髓显像见中心骨髓(脊柱、肋骨、 胸骨、骨盆和颅骨)显影,外周骨髓的肱骨和股骨的上端1/3 部位显影清楚。而四肢末端,长股骨干等外周骨髓部位无放 射性分布 儿童除中心骨髓显影外,整个四肢骨髓均可显影。 临床应用1、再生障碍性贫血(aplastic anemia): 骨髓活性: a、全身减低,预后差; b、中心减低,外周扩张或灶状显影,是慢性再障的特征表 现,预后较好; c、少数骨髓分布正常,症状轻、预后好。晚期表现为荒芜 型。 2、白血病(leukae mia): 白血病特点为中心明显抑制,而外周扩张。受抑制 的程度与骨髓内白血病细胞的数量呈正比。外周扩 张是由于黄骨髓重新活化并转变成白血病性骨髓 的结果。它们对化疗不敏感,易复发。骨髓显像是 发现外周骨髓残留白血病病灶的唯一有效方法。部 分患者有脾脏肿大,而脾的大小及变化在白血病治 疗中可作为判断疗效的指标之一。 3、某些骨髓增生性疾病的辅助诊断及疗效观察: 真性红细胞增多症和骨髓增生异常综合征:中心增 强,外周扩张。晚期减低。 4、为骨髓细胞学检查选择最佳穿刺部位 5、骨髓栓塞的诊断: 常见于镰状细胞性贫血,急性期X线检查正常,表现为 局灶性放射性缺损,其周围有放性增高,有时伴外周 扩张。随访。 6、多发性骨髓瘤的辅助诊断: 中心骨髓多处放射性缺损,可伴外周骨髓扩张, 灵敏度较骨显像高。 7、股骨头无菌性坏死:急性期X线检查正常,表现为受累 股骨头放射性稀疏、缺损。 8、其它骨髓疾病: 骨髓纤维化早期,中心性骨髓受抑制,外周扩张。 晚期外周亦受抑制。慢性贫血时整个骨髓活性增 高,慢性溶血性贫血时伴有脾肿大,而缺铁性贫 血不伴脾肿大。 淋巴系统具有吞噬、运输、清除外来物质的功能。常时 20~50nm的放射性胶体颗粒或高分子物质注射到皮下 组织间隙后,不能透过毛细血管基底膜,而主要是进 入毛淋巴管,然后引流到淋巴结,其中一部分被淋巴 窦单核吞细胞摄取或吞噬而留在该站淋巴结内,另一 部分则随淋巴继续引流至下一站淋巴结,还有一部分 最后进入血液循环肝、脾单核吞噬细胞吞噬清除。利 用γ相机等显像仪器可追踪显像剂的输送过程,获得 淋巴结及淋巴液循环的动态像,从而显示淋巴结及淋 巴链的分布、形态、大小及功能态。 1、胶体类99m Tc-硫化锑、99m T c-微胶体 2、蛋白类99m Tc-HAS、131I-M cAb 3、高分子聚合物类99m Tc-脂质体、99m T c-右旋糖 酐 正常淋巴影像的特点:图像清晰,淋巴结影多呈圆形或卵圆 形,放射性分布均匀,左右两侧基本对称,淋巴链影像连贯, 无固定的中断现象,距注射点近的淋巴结放射性分布较浓, 远处淋巴结随着距离的增加影像逐渐变淡。临床应用: 1、 了解局部引流淋巴结的解剖分布及生理功能2、观察恶性肿 瘤有无转移及其转移范围3、了解恶性淋巴瘤的病变范围4、 诊断淋巴阻塞性疾病5、前哨淋巴结探测 6、为放疗布野提供准确位置

核科学百年讲座第六讲核科学技术在医学中的应用

核科学百年讲座 第六讲 核科学技术在医学中的应用 3 刘 军 许甫荣 郑春开 (北京大学物理学院 北京 100871) 摘 要 文章介绍了核医学的发展历史及其在医学中的重大应用,介绍了核医学诊断、治疗的原理、特点以及核医学的几个重要分支学科.通过介绍,展示了核科学技术在人类医疗事业中的重大作用.关键词 核技术,核医学,发展,应用 Nuclear science in the 20th century ———application of nuclear technology in medical science LIU Jun X U Fu 2R ong ZHE NG Chun 2K ai (School o f Physics ,P eking Univer sity ,Beijing 100871,China ) Abstract Nuclear technology has been success fully applied to the medical and biological sciences ,giving birth to a new subject ,nuclear medicine.This field in cludes radiodiagnosis and radiotherapy which play very im portant roles in m odern medicine.W e present a short overview of the development and application of nuclear medicine ,including its development in China. K ey w ords nuclear technology ,nuclear medicine ,development ,application 3 国家自然科学基金(批准号:10075070)资助项目 2002-11-19收到初稿,2003-01-14修回  通讯联系人.E 2mail :frxu @https://www.sodocs.net/doc/0716223591.html, 人类自发现X 射线和放射性,建立核科学以 来,已经走过了一百多年的历史.核技术与医学和生物学结合,产生了放射诊断学、放射治疗学等新型学科.放射诊断学是一门利用X 射线诊断疾病的学 科.放射治疗学则是利用核射线(如X 射线、 γ射线、中子、质子和重离子束流)在体外对疾病进行辐射治疗的学科.核医学是一门利用开放型的放射性核素诊断和治疗疾病的学科,它的主要内容是核技术在临床诊断、治疗及医学研究中的应用.核医学的发展不仅提供了灵敏、特异和快捷的诊断分析手段,而且对于认识生命现象的本质,弄清楚疾病的病因和药物的作用原理都有重要作用.自20世纪30年代开创临床核医学以来,核医学已经得到了很大的发展.现在的核医学不但是一门独立的学科,而且产生了许多分支学科,其中肿瘤核医学、核心脏病学、神经核医学取得了很大的发展.核医学被认为是和平利用核事业中最活跃、应用最广泛和最重要内容之一. 1 核医学的发展 1895年,伦琴(R ?ntgen W C )发现了X 射线,由 于X 射线具有良好的穿透性,人们立即领悟到它将在医学的潜在应用.X 射线用于诊断疾病产生了放 射诊断学,同时它还被应用于治疗疾病,成为放射性治疗的重要方法.1896年,法国物理学家贝克勒尔(Becquerel H )发现了天然铀同位素的放射性,随后,居里夫妇发现“钋”和“镭”两种天然放射性核素.紧接着,贝克勒尔、居里夫妇(Curie M 和Curie P )、卢瑟福(Rutherford E )等一些科学家互相合作、交流,于1899年发现了α,β射线,1900年发现了γ射线,并且逐步获得了三种射线的不同特性[1].1911年,人们就产生了应用放射性同位素示踪,即利用放射性同

核医学重点整理(仅供参考)

核医学考试: 题型:选择题(单选20*1,多选5*2) 名词解释5个*4 问答题4道+ 病例题1道共50分 所给重点混合分布在A,B卷;病例题重点仅此一道,AB卷相同,请重点背下来。 录音已存放至教室电脑,同时上传一份重点(仅供参考)。 所给重点价值80-85分,请自行把握。 注意:试卷答案以上课PPT内容为标准,其次参照课本内容。请认真对照录音复习课件。 选择题内容跟所给重点有关,或分布在所提及重点的相关章节。 放射免疫章节较不重要,可简要看看。 名词解释: 闪烁现象:骨转移癌患者在治疗中定期做全身骨显像时,少数患者在化疗或放疗后近期(2~3个月)内可见病灶显像剂浓集增加,似有恶化,但临床上却属改善,这种不匹配的现象称“闪烁现象”。 超级骨显像:指肾影不明显,全身骨影普遍异常增浓且清晰,软组织本底低,是弥漫性骨转移的一种表现,亦见于甲状旁腺功能亢进和软骨病。肾功能衰竭时肾影也不明显,但血液中存留多量99mTc-MDP致软组织明显而骨影不清晰。 放射性活度:是用来描述放射性物质衰变强弱的物理量,表示单位时间内发生衰变的原子核数。国际单位是贝可(Bq),定义1Bq 等于每秒内发生一次核衰变,可写成1Bq=1s-1。常用单位是居里(Ci)。两者换算关系:1Ci=3.7x1010Bq 1 Bq=2.703X10-11Ci 传能线密度(LET):直接电离粒子在其单位长度径迹上消耗的平均能量,常用单位为KeV/um,其值取决于两个因素:1、粒子所载的能量高低和粒子在组织内的射程。高LET射线的电离能力强,能有效杀伤病变细胞;低LET的射线电离能力弱,不能有效杀伤病变细胞。 SUV(标准化摄取值):是描述病灶放射性摄取量的半定量分析指标,在18F-FDG PET 显像时,SUV对于鉴别病变良恶性具有一定参考价值。SUV=(单位体积病变组织显像剂活度(Bq/ml)/显像剂注射剂量(Bq))x体重(g) 有效半减期及其计算公式:是指生物体内的放射性核素由于从体内排出和物理衰变两个因素作用,减少至原有放射性活度的一半所需要的时间。 T e=(T p xT b)/(T p+T b) 内放射治疗:是将非密封辐射源(放射性核素治疗药物)引入人体内病变的器官或组织,通过射线的辐射生物学效应破坏病变,达到治疗病变的目的,能用于治疗体内各器官和组织病变。 韧致辐射:粒子在介质中受到阻滞而急剧减速时能将部分能量转化为电磁辐射,即X射线。它的发生概率与β-粒子的能量及介质的原子序数成正比。因此在防护上β-粒子的吸收体核屏蔽物应采用低密度材料,如有机玻璃、铝等。 湮没辐射:当β+粒子与物质作用能量耗尽时和物质中的自由电子结合,正负电荷抵消,两个电子的静止质量转化为两个方向相反、能量各为0.511MeV的两个γ光子,这一过程称为湮没辐射或光化辐射。正电子发射CT的探测原理就是利用湮没辐射事件发生两个方向互为相反的γ光子,并通过符合电路对这一事件进行空间定位。 同质异能素书上P4 可逆性心肌缺血(本次未提及):在负荷影像存在缺损,而静息或者延迟显像又出现显像剂分布或充填,应用201TI显像时,这种随时间改善称为“再分布”,常提示心肌可逆性缺血。 问答题: 2、肾上腺髓质显像的正常及异常表现 正常影像:利用131I-MIBG显像时,正常人肾上腺髓质一般不显影。利用123I-MIBG显像时,常于注射后24小时肾上腺髓质对称显影,唾液腺、心肌显影尤其清晰,心肌显影程度也与血浆去甲肾上腺素浓度呈负相关。

13核医学总结

13核医学总结 13核医学总结 13核医学总结本文简介:核医学绪论核医学是一门利用开放型放射性核素诊断和治疗疾病的学科将放射性核素引入拟检查的脏器内,利用放射性核素探测仪器实现脏器和病变显示的方法称作放射性核素显像。是一种独特的功能显像,显示的是器官的血供、功能与代谢活动。凡不将放射性核素引入体内者称体外检查法或体外核医学,最有代表性的是放射免疫分析(R。 13核医学总结 核医学 绪论 核医学是一门利用开放型放射性核素诊断和治疗疾病的学科 将放射性核素引入拟检查的脏器内,利用放射性核素探测仪器实现脏器和病变显示的方法称作放射性核素显像。是一种独特的功能显像,显示的是器官的血供、功能与代谢活动。 凡不将放射性核素引入体内者称体外检查法或 体外核医学,最有代表性的是放射免疫分析(Radioimmunoassay

RIA) 元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同,因而物理性 能不同,如131I和127I 。 核素:质子数相同,中子数也相同,且具有相同能态的原子,称为一种核素。 同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。 每秒钟1次核衰变,称为1贝克 核医学必备的物质条件:放射性药物 放射性试剂 核医学仪器 放射性药物 凡引入体内用作诊疗的放射性核素及其标记化合物。分为:诊断用药(γ射线) 治疗用药(β- 射线 ) 放射性试剂 不需引入体内的放射性核素及其标记化合物。 静态显像(static

imaging) 当显像剂在脏器内或病变处的浓度处于稳定状态时进行显像称为静态显像。 多用作观察脏器和病变的位置、形态、大小和放射性分布。 阳性显像(positive imaging) 又称热区显像(hot spot imaging)指在静态影像上主要以放射性比正常增高为异常的显像 阴性显像(negative imaging) 又称为冷区显像(cold spot imaging)指在静态影像上主要以放射性比正常减低为异常的显像 中枢神经系统 脑血流灌注显像 原理 应用一类能自由通过血脑屏障(BBB Blood

核医学复习重点

核医学复习重点 填空: 1.核医学定义、内容 核医学是利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科,是核科学技术与医学相结合的产物,是现代医学的重要组成部分。 核医学的主要内容就是放射性核素分子水平的靶向显像诊断,放射性核素分子水平的靶向治疗,利用放射性核素靶向、灵敏特点进行医学研究。 2.放射性药物定义,99m Tc、131I及18F的特性(射线,能量,半衰期等) 放射性药物指含有放射性核素供医学诊断和治疗用的一类特殊药物。用于机体内进行医学诊断或治疗的含放射性核素标记的化合物或生物制剂。 3.SPECT,PET中文名称 单光子发射计算机断层成像术SPECT PET 正电子发射型计算机断层显像 4.显像类型 书本P24 5.放射性核素显像特点 P28 6.放射性核素发生器,物理半衰期,放射性活度及国际制、旧单位及换算。 放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re发生器、Sr–Rb发生器、Rb–Kr发生器 7.脑血流灌注显像临床应用 脑血管疾病:脑梗死、短暂性脑缺血发作;癫痫;阿尔兹海默症;帕金森氏病;

脑积水、脑脊液漏、脑脊液分流术后疗效观察;脑肿瘤脑功能研究、脑外伤、脑死亡、颅内感染等 8.甲状腺摄131I率检查适应症,禁忌症,诊断甲亢的重要指标。P74 9.甲状腺显像(冷、凉、温、热结节,甲状腺炎) P76 表8-3、P78 10.外照射的防护措施有那些? 时间、距离、设置屏蔽 P56 11.最常用的心室收缩功能参数及正常值,最常用的心室舒张功能参数? P102~103 12.目前评价心肌活力最可靠的无创性检查方法是( PET心肌代谢显像)。名词解释 1.放射性核素:原子核不稳定,它能自发放射出一种或几种核射线,由一种核素衰变为另一种核素者。 2.物理半衰期:放射性核素因物理衰变减少至原来的一半所需的时间 放射性活度:单位时间内衰变的原子数量等于原子核衰变常数与其核数目之乘积。核医学中反映放射性强弱的常用物理量。国际单位:贝克勒尔(Bq)、旧单位是居里(Ci) 1居里(Ci)=3.7×1010贝可(Bq) 3.放射性核素发生器: 放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。常用的发生器有:Mo–Tc发生器、W–Re 发生器、Sr–Rb发生器、Rb–Kr发生器 4.心肌可逆性缺损:负荷显像出现的灌注缺损于静息显像基本恢复,一般代表负荷诱发的心肌缺血 不可逆性缺损:又称固定性灌注缺损,是指静息和负荷显像比较,灌注缺损在部位、面积和程度上无变化 5.反向运动:又称矛盾运动,指心脏舒张时病变心肌向中心凹陷,收缩时向外膨出,与正常室壁运动方向相反,是诊断室壁瘤的特征影像。 6.超级影像:超级骨显像显像剂在全身骨骼分布呈均匀对称性异常浓聚,软组织分布很少,骨骼影像非常清晰,而肾影常缺失 7.热结节,冷结节,凉结节,温结节 P76

核医学考试 分章重点总结

K L M N 原子核结构: X为元素符号 Z为质子数 N为中子数 A为质量数 元素——具有相同质子数的原子,化学性质相同,但其中子数可以不同,如131I 和127I; 核素——质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。同一元素可有多种核素,如131I、127I、3H、99m Tc、99Tc分别为3种元素的5种核素; 同位素——凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。eg 131i 127i 同质异能素——质子数和中子数都相同,但处于不同的核能状态原子,如99mTc、99Tc .基态:能量处于量低的稳定能级状态称之为基态。

激发态:原子获得能量时,即具有较高的能级状态时称为原子的激发态。 退激:处于激发态时电子不稳定,非常容易将多余的能量以光子的形式辐射释放出来而回到基态的过程称为退激。 一、核衰变方式 1. α衰变:α粒子得到大部分衰变能,α粒子含2个质子,2个中子 α衰变:241Am(镅)→237Np(镎)+4He α衰变:射程短、能量大、破坏力强、屏蔽用低原子序数物质即可 2. β衰变 ?β-衰变:3215P → 3216S + β- + Ue + 1.71MeV(富中子)β-衰变:3H→3He+ β- ? ?正电子衰变:137N → 136C + β++ υ + 1.190MeV(贫中子)正电子衰变:11C→11B+ β+ ? β射线本质是高速运动的电子流 β衰变:射程、能量适中适合治疗、显像、屏蔽首先低原子序数物质再用高原子序数物质 γ衰变 γ衰变往往是继发于α衰变或β衰变后发生,这些衰变后,原子核还处于较高能量状态,由激发态回复到基态时,原子核释放出γ射线。 ?99Mo → 99m Tc + β-→ 99Tc + γ (T : ①66.02d; ②6.02h) 1/2 ?131I → 131Xe + β- +γ :8.04d) (T 1/2 γ衰变:99m Tc→99Tc γ衰变射程长、能力低、适合显像屏蔽用高原子序数物质 γ衰变特点: 1.从原子核中发射出光子 2.常常在α或β衰变后核子从激发态退激时发生 3.产生的射线能量离散 4.可以通过测量光子能量来区分母体的核素类别 P26 对于由大量原子组成的放射源,每个原子核都可能发生衰变,但不是所有原子在同一时刻都发生衰变,某一时刻仅有极少数原子发生衰变,但其衰变数目与原子核数目的比率是固定不变化,这个的概率称之为衰变常数(λ) 带电粒子与物质的作用(α,β) Ionization 电离 Excitation 激发

核医学重点总结

第一张绪论 核医学概念:利用放射性示踪技术探索生命现象、研究疾病机制和诊断疾病的学科;是利用放射性核素及其制品进行内照射治疗和近距离治疗的学科。 第二章核医学物理基础、设备和辐射防护 衰变类型:α衰变(产生α粒子);β–衰变(产生βˉ粒子(电子));β+衰变(正电子衰变)与电子不同的是带有正电荷;电子俘获;γ衰变。韧致辐射带电粒子受到物质原子核电场的影响,运动方向和速度都发生变化,能量减低,多余的能量以x射线的形式辐射出来 电子俘获:质子从核外取得电子变为中子。由于外层电子与内层能量差,形成的新核素的不稳定常产生:特征性X射线-能量转化;俄歇电子:能量 使电子脱离轨道。 衰变规律:放射性核素原子数随时间以指数规律减少。指数衰减规律 e-λt N = N (t = 0)时放射性原子核的数目 N 0: N: 经过t时间后未发生衰变的放射性原子核数目 λ:放射性原子核衰变常数大小只与原子核本身性质有关,与外界条件无关; 数值越大衰变越快 带电粒子与物质的相互作用(电离作用、激发作用) γ射线与物质的相互作用(光电效应、康普顿效应、电子对生成)光电效应:康普顿效应:电子对生成: 辐射防护目的:防止有害的确定性效应, 限制随机效应的发生率,使之达到可以接受的水平。 总之是使一切具有正当理由的照射保持在可以合理做到的最低水平。 非随机效应有阈值正相关; 随机效应无阈值严重程度与剂量无关。 基本原则:实践正当化;防护最优化;个人剂量限制。外照射防护措施:1.时间2.距离3.屏蔽电离辐射生物学效应对机体变化:按效应出现的对象,分为躯体效应(somatic effect)及遗传效应(genetic effect)。按效应出现的时间,分为近期效应(short-term effect)及远期效应( long-term effect)。按效应发生的规律,分为随机效应(stochastic effect)及非随机效应( non-stochastic effect)。 2、正电子显像常用标记核素 11C、13N、15O和18F 18F-FDG半衰期:110分钟 第四章放射性示踪与显像技术 放射性核素制备1.核反应堆制备。 2.医用回旋加速器制备。3.放射性核素发生器(长半衰期核素产生短半衰期核素)。应用最广的是99Mo(钼)66h-99mTc

核医学知识点总结

核医学知识点总结 1.核医学(Nuclear medicine) :是用放射性核素及其标记物进行诊断、治疗疾病和医学研究的医学学科。 2.核医学常用设备: 3.放射性药物含有放射性核素, 用于医学诊断和治疗的一类特殊制剂。 放射性药品获得国家药品监督管理部门批准文号的放射性药物 4.核素(nuclide):是指质子数、中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。 同位素(isotope):凡具有相同质子数但中子数不同的核素互称同位素。 同质异能素:(isomer)是指质子数和中子数都相同,但原子核处于不同能态的原子 放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素。 放射性衰变:放射性核素自发的释放出一种或一种以上的射线并转化为另一种原子的过程。 半衰期:放射性原子核数从N0衰变到N0的1/2所需的时间 5.α衰变:α粒子含2个质子,2个中子,质量大,带电荷,故射程短,穿透力弱。主要用于治疗 β衰变: β-衰变:射线的本质是高速运动的电子流,主要发生于富中子的核素。 特点:穿透力弱,在软组织中的射程仅为厘米水平。可用于治疗。 β+衰变:射线的本质是正电子,主要发生于贫中子的核素。 特点:正电子射程短. 在通常环境中不可能长时间稳定地存在,它碰到电子就会发生湮灭,产生一对能量为511kev、方向相反的γ光子。主要用于正电子发射断层仪显像(PET) 电子俘获原子核俘获一个核外轨道电子使核内一个质子转变成一个中子和放出一个中微子的过程。电子俘获导致核结构的改变伴随放出多种射线。如特征X射线、俄歇电子、γ射线、内转换电子。应用:核医学显像、体外分析、放射性核素治疗 γ衰变:原子核从激发态回复到基态时,以发射光子形式释放过剩的能量。 往往是继发于α衰变或β衰变后发生特点:本质是中性的光子流,不带电荷,运动速度快(光速),穿透力强。适合放射性核素显像(radionuclide imaging)。 6.天然本底辐射:在人类生存的环境中,自然存在的多种射线和放射性物质。包括宇宙射线、宇宙射线感生放射 性核素和地球辐射 7.确定性效应:指辐射损伤的严重程度与所受剂量成正相关,有明显的阈值,剂量未超过阈值不会发生有害效应。 如辐射致眼晶体损伤引发白内障,辐射致皮肤反应(干性或湿性脱皮)、或血液系统疾病如再障等。消化系统反应等。 随机性效应:指效应的发生机率(或发病率而非严重程度)与剂量相关,不存在阈值。如辐射致癌、致畸变的效应。这种效应多是远期效应。 8.辐射防护的目的:防止有害的确定性效应,限制随机效应的发生率,使之得到可以接受的水平。总的是使一切 具有正当理由的照射应保持在可以合理做到的水平。 辐射防护的原则:实践的正当化放射防护最优化个人剂量限值

(完整word版)核医学重点[1]

核医学:采用核技术来诊断、治疗和研究疾病的一门新兴学科。它是核技术、电子技术、计算机技术、化学、物理和生物学等现代科学技术与医学相结合的产物。 核素:质子数中子数相同,原子核处于相同能级状态的原子 同位素:质子数相同,中子数不同的核素互称同位素 同质异能素:质子数和中子数相同,核能状态不同的原子 放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素 放射性衰变:放射性元素自发地释放放射线和能量,最终转化为其他稳定元素的过程 物理半衰期:表示原子核由于自身衰变从N0衰变到N0/2的时间,以1/2T表示,是恒定不变的。 生物半衰期Tb:指生物体内的放射性核素由于机体代谢从体内排出一半所需要时间。 放射性活度:表示为单位时间内原子核的衰变数量 SPECT单光子发射型计算机断层仪 PET(正电子发射型计算机断层仪)的原理:通过化学方式,将发射正电子的核素与生物学相关的特定分子连接而成的正电子放射性药物注入体内后,正电子放射性药物参加相应生物活动,同时发出正电子射线,湮灭后形成的能量相同(511keV)方向相反的两个γ光子 放射性药物:含有放射性核素供医学诊断和治疗用的一类特殊药物 放射性药物的特点:具有放射性,具有特定的物理半衰期和有效期,计量单位和使用量,脱标及辐射自分解 光子量范围100~250keV最为理想,目前使用较多的放射性核素衰变方式是β-衰变组织内的射程在纳米水平,在这样短的射程内释放所有能量,其生物学特性接近于高LET射线,治疗用放射性药物的有效半衰期不能太短,也不宜过长,以数小时或数天比较理想 吸收剂量:单位质量被照射物质吸收任何电离辐射的平均能量。 确定性效应:辐射损伤的严重程度与所受剂量呈正相关,有明显的阈值,剂量未超过阈值不会发生有害效应 随机效应:研究的对象是群体,是辐射效应发生的几率与剂量相关的效应,不存在具体的阈值 辐射防护的原则:1.实践的正当化2.放射防护最优化3.个人剂量限值 外照射防护措施:1.时间2.距离3.设置屏蔽 放射性核素示踪技术的方法特点:1.灵敏度高2.方法相对简便、准确性较好3.合乎生理条件 4.定性、定量与定位的相对研究相结合 5.缺点与局限性方法学原理:1.合成代谢:根据甲状腺内131I分布的影像可判断甲状腺的位置、形态、大小以及甲状腺结节的功能状态2.细胞吞噬3.循环通路4.选择性浓聚5.选择性排泄6.通透弥散7.离子交换和化学吸附8.特异性结合 静态显像:当显像剂在脏器内或病变处的浓度到达高峰且处于较为稳定状态时进行的显像 动态显像:在显像剂引入体内后,迅速以设定的显像速度动态采集脏器的多帧连续影像或系列影像 局部显像:仅限于身体某一部位或某一脏器的显像 全身显像:利用放射性探测器沿体表做匀速移动,从头至足依序采集全身各部位的放射性,将它们合成为一幅完整的影像 平面显像:将放射性显像装置的放射性探测器置于体表的一定位置采集某脏器的放射性影像 断层显像:用可旋转的或环形的放射性探测装置在体表连续或间断采集多体位平面影

核科普知识题库(修订版)

核科普知识题库 一、选择题 1)居里夫人夫妇共同在1898年7月和12月先后发现两种新元素。为了纪念她的祖国波兰,她将一种元素命名为(),另一种元素命名为() A 铀钍 B.镭钋 C.钋镭 2)清洁能源包括(). A,太阳能核能水能风能 B ,太阳能水能风能潮夕能C核能水能风能潮汐能 D,太阳能热能水能风能水能 3)核能的特点是() A 能量高度集中 B 清洁 C 廉价 4)下列哪些不属于人工辐射?() A 电影 B. 岩石 C.透视 D.X光 5)核电站必须始终坚持的原则是 .( ) A 安全第一,预防为主 B 安全第一,效益第一 C 质量第一,安全第一 6)21世纪的主要能源是什么( ) A太阳能 B,潮汐能 C,核能 7)()年,著名科学家()提出了质能转换公式E=mC2(E为能量,m为转换成能量的质量,C为光速)。核能就是通过原子核反应,由质量转换成的巨大能量。 A.1900 居里夫人 B.1905 爱因斯坦 C.1910 卢瑟福 8)目前已探明世界上铀的储量约为多少? A 480万吨 B 550万吨 C 630万吨 9)核电站能量转化情况是怎样的? A核能→内能→机械能→电能B 核能→机械能→内能→电能C核能→机械能→热能→内能→电能 10)“相对论”是由 ____创立的。A、爱因斯坦 B、牛顿 C、法拉第 11)世界上跑得最快的是 ____。 A、光 B、飞机 C、火箭 12)能源可分为常规能源和新能源,请指出发下哪项不属于新能源。 A、核能 B、太阳能 C、天燃气

13)原子核中没有哪种微粒? A、质子 B、中子 C、电子 14)核能发电厂内的核反应堆里发生的是: A 、核聚变 B、核裂变 C、可控核裂变 15)利用核反应堆中核裂变所释放出的热能进行发电的方式与火力发电? A 极其相似 B 不是极其相似,有关 C无关 16)下列哪一个不是核能的特点? A ,能量大 B反应快 C不能控制 17)下列哪一个不是核能的和平用途? A 发电 B 作动力 C作核武器 18)下列哪一个不是核辐射的用途? A 无损探伤 B X光 C 加热 19)我国发展的核电站主要是什么堆型? A 压水堆型 B快中子堆 C聚变堆 20)下列哪一个不是压水堆的三道放射性屏障之一? A 屏障燃料包壳 B, 压力壳 C 变力壳 21)下列哪一个不是人类生活在放射环境中的原因? A宇宙射线 B人体内部的放射性 C 地球自转 22)下列人们的哪些活动放射性较小? A 乘飞机 B 做X光 C骑车 23)就人类总体而言,因核电而增加的辐照剂量有多少 A 1/400 B 1/200 C 1/100 24)下面哪种不是射线? A α B β C X 25)19世纪末英国物理学家----发现了电子 A伦琴 B 汤姆逊 C 贝克勒尔 26)下列哪个不是二战时美国给日本投下的原子弹? A胖子 B 地瓜 C 小男孩 27)下列哪个核素不能用于发电? A铀-235 B 钚-239 C 钠-24 28)下列哪个不是目前人们开发核能的途径? A重元素的裂变 B轻重元素撞击C轻元素的聚合 29)1千克铀235全部裂变释放的能量约 A 8×10^13 B 9×10^13 C 10×10^13 30)1946年,我国物理学家()和()在法国居里实验室发现了铀原子核的“三裂变”、“四裂变”现象。 A.钱三强何泽慧 B.张文裕王承书 C.吴有训王淦昌 31)核能分为核裂变能和核聚变能两种,它是通过()释放出来的能量。

相关主题