搜档网
当前位置:搜档网 › 第七章 材料显维断口分析

第七章 材料显维断口分析

第七章 材料显维断口分析
第七章 材料显维断口分析

第七章材料的显微断口分析

第一节断口学概述

断口学是研究金属断裂面(即断口)的形态特征、形成原因和影响因素等内容的一门科学。按照研究尺度范围的不同,它又可分为宏观断口学和和显微断口学。

宏观断口学是利用肉眼或低倍放大镜,通过分析断口的色泽、粗糙度、各种条纹(例如发射状条纹、贝壳状条纹等)和宏观变形来确定分析裂纹源的位置、裂纹扩展方向、受力状态级可能的环境介质等,并进一步推断断口的性质和断裂的原因等。

显微断口学则是利用光学显微镜、投射电子显微镜和扫描电子显微镜来研究断口的显微形貌特征、形成机制及影响因素等。它和宏观断口学研究结果互相补充及佐证,使人们能对断裂的全部过程有更深入和正确的了解。

第二节金属断口的基本显微形貌及其形成机制

造成金属断裂的外部条件及金属本身的内在因素是多种多样的,但是断裂时的断口的基本显微形貌确实很有限的。这就是说,任何断口都是有一种或几种基本显微形貌或他们的变态,按一定的规律、以不同的比例组合而成的。下面对常见几种基本断口显微形貌做介绍。

一、解理断口

解理断裂是指在一定条件下,金属因受拉应力作用而沿某些特定的结晶学平面发生分离的过程。它是由于原子间结合键的破坏而造成的穿晶断裂。一般体心立方金属和密排六方金属常发生解理断裂、低温、高应变率、三向应力状态的存在、腐蚀环境中有活性介质吸附都有利于解理断裂。

解理断口宏观上常具有放射状、人字纹、小刻面等特征。微观断口形貌主要有以下几种。

1、解理台阶解理可沿解理面、滑移面或孪晶面进行。由于实际晶体内部存在许多缺陷(如位错、析出相、夹杂物等),所以在一个晶粒内的解理并不是只沿一个晶面,而是沿一簇相互平行的晶面。这样不同高度的解理面之间的裂纹相互贯通形成台阶。

解理台阶的形成机制主要为:(1)裂纹与螺位错相互交割而产生;(2)另一种为两个相邻的解理裂纹相互靠近时,他们会批次连接起来形成台阶。如图7-1

2、河流花样由若干个解理台阶相互汇合形成河流花样。如图4-2所示。河流的流向为裂纹扩展方向,沿河流溯流而上可确定断裂源。

解理裂纹从一个晶粒进入另一个晶粒时,由于两个晶粒位向的差异。河流花样的数量发生明显的变化,穿过扭转晶界河流数量激增;穿过倾斜晶界,河流连贯的通过晶界;穿过大角度晶界,河流数目增加,河流台阶高度差增大。图7-3 解理表面的例子。

解理断口表面

a) Armco铁-196℃冲击破坏

b) 焊缝金属(含30wt.%Cr的钢) 由于此单晶体解理面上裂纹扩展的方向不同而导致羽毛

状结构,它含有细小的台阶,勾划出各自的断裂途径,表明扩展的方向。裂纹前进的方向为由底部至顶部。

c) 由于存在大量孪晶,因此能推断在单个平面中不同的裂纹扩展方向。裂纹分成两部分沿

着直的前沿以小的截面从主解理表面倾斜地移动出去,然后又按不规则的曲线途径转回来。当裂纹越入邻近的晶粒时形成许多新的亚裂纹,如在图片底部所见的那样。

d) 含0.5wt.%Mn的钢销钉。在图片的中心处裂纹从右手边倾斜地跨越晶粒边界,其结果

是在图片左手边的晶粒中再次萌生许多新的裂纹。在此晶粒中可以见到一个孪晶,从表面倾斜地向上移动。

3、舌状花样在体心、立方结构的金属和合金的解理断口上,还常可看到一形状像舌头的“舌状花样”。但材料脆性大、温度低、临界切应力增大时,滑移变形困难。晶体变形就容易以形变孪晶方式进行。由于裂纹尖端附近的形变孪晶发生了次级解理,是裂纹从主解理面局部的转移到形变孪晶的面上,从而在断面上遗留下“舌头”状形貌(见图7-4)。

图7-4舌状花样,TEM,24000X

图7-5 解理舌的形成示意图

4、解理断口上一些其它微观特征

1)、扇形花样扇形花样有时也称羽毛状(如图7-4背底有小羽毛状花样。因为在很多材料中,解理面不是等轴的。如裂纹扩展方向与解理伸长方向一致,则可能会形成这种显微特征。

2)、青鱼骨花样在体心立方金属中有时能观察到一种类似鱼骨状的形貌,在金属钨与FeCrAl合金中曾发现。其中部为沿{100}面、<100>方向解理,而两侧为沿{100}面<100>方向或沿{112}面<100>方向解理。见图7-7

图7-7 青鱼骨状花样,SEM,2000X

3)、在珠光体钢中,解理裂纹还可以沿珠光体片层间发生,形成珠光体片层间断裂。

二、准解理断口

准解理断裂,常常在经淬火及随后回火的马氏体组织中出现。在回火马氏体钢中,原始奥氏体晶粒有效解理面的尺寸及取向可能模糊不清,而真正的解理面已被更小的不清晰的解理小刻面所代替。这些小的解理面称为准解理面,并为撕裂棱和浅韧窝相联系。示意图见图7-8。

准解理断口,在宏观上呈现较平整,基本无塑性变形、或变形很小,与解理断口相似也具有小刻面及放射条纹等形貌,但其小刻面和放射条纹均较细小。准解理断口的微观形貌也近似于解理断口,有台阶、河流、舍状、撕裂脊、准解理面等形貌。见图7-9

三、韧性断口

(一)、纯剪切断口

金属材料因其中某些区域的剧烈滑移而最终引起分离而形成的断口成称为韧性断口,这种断裂又称塑性断裂。韧性断口宏观上呈纤维状。韧性断口微观

上一般呈韧窝状。只有当材料为单晶适和纯金属时,才呈现纯剪切断口。对于大单晶材料,因位向不同的晶粒之间相互制约,必然沿许多相互交叉的滑移面滑移,断口特征呈现“蛇形滑移”花样。如图7-10a。

若形变程度加剧,则蛇形滑移花样因变形而平滑化,形成“涟波”花样;若才继续变形,涟波花样也进一步平坦化,在断口上留下没有什么特殊形貌的平坦面,称为“延伸区”或“光滑区”,图7-10b显示了形成蛇形滑动、涟波、延伸区的示意图。

(二)韧窝断口,它是韧性断口的典型微观形貌和特点(见图7-11)。韧窝中间都有一个夹杂物(或第二相粒子)。可以设想,断裂机制是塑变中位错在夹杂物(或第二相粒子)界面塞积,在异相界面形成裂纹源(也可以第二相脆性粒子解理)然后扩大成孔洞,在与邻近孔洞连接,最后顺孔洞边缘撕开。韧窝萌生及扩展机制见图7-12。图7-11是等轴韧窝,图7-13是拉长的抛物线型韧窝。

韧窝的形状:韧窝的形状主要是由所受的应力状态不同而决定的,一般可分为三种,即正交韧窝、剪切韧窝、撕裂韧窝。由对韧窝形状分析可知断裂时的应力状态。见图7-13。

韧窝的大小和深浅:韧窝的大小与深度决定与材料断裂时空穴核心的数量、材料本身的相对塑性和温度。如韧窝的形核位置很多或材料的相对塑性较差,则断口上形成的韧窝尺寸较小、较浅;反之,如韧窝形核位置较少,如大晶粒的单相合金或纯金属中,则形成较大较深的韧窝。所以可以认为韧窝越大,其材料韧性越好。当有夹杂物存在时,则韧窝的尺寸取决于夹杂物的大小与间距,见图4-16。

含韧窝的断口显微照片

(a) 0.1C-0.02Si-0.30Mn-0.032P-0.024S (b) 含SiC夹杂颗粒的碳素钢的焊缝断口

-0.003N的钢的断口试样带有缺口,经弯曲破坏

(c) 剪切韧窝

(d) 撕裂韧窝1040钢的夏比冲击试样的缺口根部的断裂区

(e) 0.02C-0.15Si-0.1Mn-18Ni-9Co-5Mo-0.9Ti (f) 晶间断口的表面韧窝

马氏体时效钢严重冷却硬化后在静截荷

下失效的断口――浅韧窝

(g) 晶粒边界组织对晶间断口表面形貌的影响

图7-13 各种韧窝形态

四、疲劳断口

疲劳断裂是金属材料在交变应力持续作用下发生的断裂现象,在实际工程构件的断裂事故中,疲劳断裂站的百分比最高。疲劳失效的类型也较多,又高周疲劳,低周疲劳、接触疲劳、腐蚀疲劳、热疲劳、微动疲劳等。本节着重介绍疲劳断口的微观断口形貌。

1、疲劳裂纹扩展第I阶段断口微观形貌

疲劳裂纹的形成一般分为三个阶段。裂纹发展的第I阶段为这些裂纹通过滑移面断开,裂纹与应力轴约为45°角向内深入扩展。用扫描电镜观察,很容易找到这个部位。深度不会超过裂源周围2~5个晶粒,并往往观察不到疲劳辉纹,有时也偶尔出现。但在断口上却能观察到一些类似解理特征的脆性形貌裂纹在萌

生时滑移带的挤出和挤入也是按特定的晶体学平面进行的结果。见图7-14

图7-14 疲劳裂纹扩展的两个阶段

2、疲劳裂纹扩展第II阶段断口的形貌

此阶段的疲劳断口具有引人注目的独特形态——疲劳辉纹(见图7-15)。在疲劳第三阶段是由于裂纹扩展到一定长度后,使构件的有效截面减少而造成的一次性快速断裂,断口特征常为韧窝型撕裂。

1)、疲劳辉纹的一般特点

(1)疲劳裂纹是一系列基本上相平行的条纹,略带弯曲成波浪形,并与裂纹局部扩展方向相垂直,其凸弧面指向裂纹扩展方向。

(2)在疲劳裂纹纹稳定扩展阶段,所形成的每一条辉纹相当于一次载荷循环。辉纹确定了裂纹前沿线在前进时的位置。

(3)疲劳辉纹的间距随应力场强度因子而变化,应力越大,间距越宽;反之,应力越小,则间距越窄。

(4)疲劳断口的微观范围内,通常有许多大小不同、高低不一的小断块组成,每一小断块上的疲劳辉纹连续而平行,而相邻小断块上的疲劳辉纹不一定连续和平行。见图7-16。

(5)断口的两匹配面上的辉纹基本对应。

一般说来,面心立方晶格金属如铝合金、奥氏体钢的辉纹比较清晰明显,体心立方晶格金属及米排晶格金属的辉纹远不如前者明显;如普通钢的疲劳辉纹短而不连续,轮廓也不明显。图7-17a、b、c分别为铝合金、镍合金、Ti合金的疲劳断口。图7-18,7-19 为脆性疲劳辉纹。

2)、疲劳辉纹存在的条件

在疲劳断口上有时可能观察不到辉纹存在。可能由下列几方面原因所致。(1)、一般情况下,形成疲劳辉纹的循环的循环周次至少有1000以上,

若周次很低,其断口上观察不到辉纹。

(2)、疲劳裂纹前端必须处于张开型平面应变状态,所以只有当疲劳断口与疲劳载荷张应力相垂直时(即正断型),才能观察到疲劳辉纹。

(3)材料性质对辉纹的影响很复杂。成分、显微组织以及机械性能等都将会对辉纹产生很大的影响。但一般说来,韧性材料形成辉纹较容易,脆性材料较

K越高,辉纹越易形成。另外,晶体结构对辉纹困难。对合金钢来说,材料的Ie

形成也有很大影响。面心立方晶格金属比体心立方晶格金属要明显得多,其原因可能是体心立方金属层错较高,易于交叉滑移,不利于形成辉纹。

(4)、有时因为疲劳辉纹间距太小,以至于使用扫描电镜观察不到,即使用二级复型技术在透射电镜中也不能分辨这些稠密的细条纹,但实际上是存在的。据有关研究报导,辉纹的间距可以小到20nm左右。

3)、疲劳辉纹的类型及其形貌

通常把疲劳辉纹分为韧性疲劳辉纹与脆性疲劳辉纹二类。

我们遇到的大多数是属于韧性辉纹,其微观形态如图7-17所示那样。脆性辉纹只有在特殊条件下形成,通常在腐蚀环境中形成的腐蚀疲劳断口,其上的辉纹为脆性辉纹,图7-19为Ti疲劳断口显微形貌,疲劳辉纹呈脆性疲劳辉纹,微观形貌好像把解理和疲劳两种特征结合一起,疲劳辉纹与脆性解理河流花样相垂直。

图7-20 韧性疲劳辉纹与脆性疲劳辉纹

4)、疲劳辉纹的形成机制

关于疲劳辉纹形成的原因,已提出了几种机制。其中被较多人接受的有两种机制。即“塑形钝化”模型(见图7-21)和裂纹尖端“弱点”凝聚模型。

塑性疲劳辉纹是依靠裂纹前沿塑性变形和裂纹尖端塑性钝化交替进行而形成的,而脆性疲劳辉纹是依靠裂纹前沿解理扩展和裂纹尖端塑性钝化交替进行而形成的。

3、低周疲劳断口的特征

低周疲劳断口比高周疲劳断口的研究要少很多。通常情况下,低周疲劳断口上的辉纹要粗些,间距要宽些。图4-23为不锈钢的低周疲劳断口的扫描电镜图像,其辉纹很粗,间距又大。在许多金属和合金中,特别是超高强度钢和低强度材料中,可能不形成辉纹,而出现准解理或韧窝型断裂。由于低周疲劳断裂所受的应力较大,故在断口上还常看到辉纹与韧窝或辉纹与准解理或解理同时出现的现象。

在低周疲劳断口上还常能观察到一种称为轮胎压痕的形貌,见图7-21。它是由于相匹配的断口上的“突出”或“刀边”(例如断口上的第二相质点、夹杂物)反复碰撞和挤压而引起的压痕。这种压痕虽不是疲劳辉纹,但他们是疲劳断口的可靠标志。这种轮胎压痕偶尔在某些材料的高周疲劳断口上才能发现。

低周疲劳断裂过程中,由于应力较复杂,所以断口形貌也较复杂,随应力幅

(或应变福)的不同,,有很大的不同。有人对HT60这种材料进行研究,当疲劳寿命90≤f N 时,断口均为韧窝;当300≥f N 时,出现轮胎压痕;只有

1000

≥f N 时,才出现疲劳辉纹。

图7-22 疲劳断口上的轮胎压痕花样

4、 热疲劳断口与接触疲劳断口

这两种断口研究较少,热疲劳断口由于受高温环境的影响,断口表面覆盖一层较厚的氧化层,有时虽然在宏观上已判为热疲劳断裂,但微观上也无法看到辉纹,只能看到氧化皮特征。接触疲劳多数情况下发生在高强度钢及超高强度钢中,如轴承滚道表面的接触疲劳剥落,故难以形成辉纹,因而在微观断口形貌上也难以找到辉纹特征,却以准解理特征为主。对于强度级别稍低的钢,其接触疲劳断口上也可以发现有疲劳辉纹存在。

五、应力腐蚀及氢脆断口

1、 应力腐蚀

某些金属和合金,在腐蚀介质中承受拉应力作用,由于电化学腐蚀导致正常的韧性材料迅速开裂而出现早期脆性破坏现象,称为应力腐蚀,其断口为应力腐蚀断口。应力腐蚀开裂在实际构件断裂失效中所占比例仅次于疲劳断裂。

应力腐蚀断口特征较复杂,它与材料的晶体结构、机械性能、合金成分、热处理状态、环境气温、温度以及应力状态有关。

应力腐蚀断口的裂源常产生于构件的表面,常为一腐蚀坑。通常情况下,应力腐蚀是多源的,其断口表面是具有腐蚀产物。

1)、沿晶型应力腐蚀断口的微观形貌,沿晶型应力腐蚀断口具有冰糖状形貌,,还能观察到二次沿晶裂纹特征,同时,在其晶面上能观察到许多腐蚀麻坑。见图7-23。

2)、穿晶型应力腐蚀断口微观形貌,穿晶型应力腐蚀断口上常可观察类似解理断裂的“河流花样”、“羽毛状花样”。其原因也许是应力腐蚀裂纹扩展时与晶体学平面有关。另外在断口上也能看到腐蚀麻坑,有时还能发现一种带有一定几何形状的腐蚀坑特征。

复合材料结构分析总结

复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇 做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran 提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL 语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性和大应变行为; Shell 181——有限应变壳单元,这种单元支持几乎所有的包括大应变在内的材料 的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层合壳或实体结构;

断口分析

故障件的断口分析 在形形色色的故障分析过程中,人们常会瞧到一些损坏零件的断口,但就是人们缺乏“读懂”它的经验,不能从它的断口处判断其损坏的真正原因而贻误了战机。这里结合整改过程中的一些实例作些介绍,希望能对您有所帮助! 对于汽车常用碳素钢与合金钢而言,其常见断口有: 1.韧性(塑性)断口:发生明显塑性变形的断裂统称为塑性断裂。断口形貌为韧性(塑性)断口,断口呈暗灰色没有金属光泽瞧不到颗粒状形貌,断口上有相当大的延伸边缘。 2.疲劳弯曲断口: 2-1 在抗拉极限范围内的疲劳弯曲断口:出现典型的疲劳裂纹源区、裂纹扩展区与瞬时断裂区特征(下面将详 述)。 2-2 超过抗拉极限范围内的弯曲断口:不具有典型的疲劳断口特征,属于不正常的弯曲断裂。其断口特征:沿弯 曲方向上下呈灰褐色无金属光泽的断层;而内层呈银 灰色白亮条状新断口(见图1)。

图1 3.典型的金属疲劳断口 典型的疲劳断口定会出现疲劳裂纹源区、裂纹扩展区与瞬时断裂区三个特征。断口具有典型的“贝壳状”或称“海滩状”。

3-1 疲劳裂纹源区:就是疲劳裂纹萌生的策源地,它处于机件的表面,形状呈平坦、白亮光滑的半圆或椭圆形,这就是因为疲劳裂纹的扩展过程速度缓慢,裂纹经反复挤压摩擦而形成的。它所占有的面积较其她两个区要小很多。疲劳裂纹大多就是因受交变载荷的机件表面有缺陷;譬如裂纹、脱碳、硬伤痕、焊点等缺陷形成应力集中而引起的。疲劳裂纹点在同一个机件上可能有多处,换句话说可能有多处疲劳裂纹源区,这需要我们去仔细解读疲劳断口。 3-2 疲劳裂纹扩展区:就是形成疲劳裂纹后慢速扩展的区域。它就是判断疲劳断裂的最重要的特征区。它以疲劳源区为中心,与裂纹扩展方向垂直呈半圆形或扇形的弧线,也称疲劳弧线呈“贝纹状”。疲劳

金属材料性能知识大汇总(超全)

金属材料性能知识大汇总 1、关于拉伸力-伸长曲线和应力-应变曲线的问题 低碳钢的应力-应变曲线 a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。 b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σ ε;屈服点σS;抗拉强度σb;断裂强度σk。 真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。 c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。

2、关于弹性变形的问题 a、相关概念 弹性:表征材料弹性变形的能力 刚度:表征材料弹性变形的抗力 弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。 弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。 包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。 弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。 金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗 b、相关理论: 弹性变形都是可逆的。 理想弹性变形具有单值性、可逆性,瞬时性。但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。 弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映

金属材料的断裂认识

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析 脆性断裂有以下特征: (1)脆断都是属于低应力破坏,其破坏应力往往远低于材料的屈服极限。(2)一般都发生在较低的温度,通常发生脆断时的材料的温度均在室温以下20℃。(3)脆断发生前,无预兆,开裂速度快,为音速的1/3。(4)发生脆断的裂纹源是构件中的应力集中处。

金属断裂机理完整版

金属断裂机理 1 金属的断裂综述 断裂类型根据断裂的分类方法不同而有很多种,它们是依据一些各不相同的特征来分类的。 根据金属材料断裂前所产生的宏观塑性变形的大小可将断裂分为韧性断裂与脆性断裂。韧性断裂的特征是断裂前发生明显的宏观塑性变形,脆性断裂在断裂前基本上不发生塑性变形,是一种突然发生的断裂,没有明显征兆,因而危害性很大。通常,脆断前也产生微量塑性变形,一般规定光滑拉伸试样的断面收缩率小于5%为脆性断裂;大于5%为韧性断裂。可见,金属材料的韧性与脆性是依据一定条件下的塑性变形量来规定的,随着条件的改变,材料的韧性与脆性行为也将随之变化。 多晶体金属断裂时,裂纹扩展的路径可能是不同的。沿晶断裂一般为脆性断裂,而穿晶断裂既可为脆性断裂(低温下的穿晶断裂),也可以是韧性断裂(如室温下的穿晶断裂)。沿晶断裂是晶界上的一薄层连续或不连续脆性第二相、夹杂物,破坏了晶界的连续性所造成的,也可能是杂质元素向晶界偏聚引起的。应力腐蚀、氢脆、回火脆性、淬火裂纹、磨削裂纹都是沿晶断裂。有时沿晶断裂和穿晶断裂可以混合发生。 按断裂机制又可分为解理断裂与剪切断裂两类。解理断裂是金属材料在一定条件下(如体心立方金属、密排六方金属、合金处于低温或冲击载荷作用),当外加正应力达到一定数值后,以极快速率沿一定晶体学平面的穿晶断裂。解理面一般是低指数或表面能最低的晶面。对于面心立方金属来说(比如铝),在一般情况下不发生解理断裂,但面心立方金属在非常苛刻的环境条件下也可能产生解理破坏。 通常,解理断裂总是脆性断裂,但脆性断裂不一定是解理断裂,两者不是同义词,它们不是一回事。 剪切断裂是金属材料在切应力作用下,沿滑移面分离而造成的滑移面分离断裂,它又分为滑断(又称切离或纯剪切断裂)和微孔聚集型断裂。纯金属尤其是单晶体金属常发生滑断断裂;钢铁等工程材料多发生微孔聚集型断裂,如低碳钢拉伸所致的断裂即为这种断裂,是一种典型的韧性断裂。 根据断裂面取向又可将断裂分为正断型或切断型两类。若断裂面取向垂直于最大正应力,即为正断型断裂;断裂面取向与最大切应力方向相一致而与最大正应力方向约成45°角,为切断型断裂。前者如解理断裂或塑性变形受较大约束下的断裂,后者如塑性变形不受约束或约束较小情况下的断裂。

基于ANSYS的大型复合材料风力机叶片结构分析

国 防 科 技 大 学 学 报 第32卷第2期 JOURNA L OF NA TIONA L UNIVERSITY OF DEFE NSE TECHNO LOGY V ol.32N o.22010文章编号:1001-2486(2010)02-0046-05 基于ANSYS的大型复合材料风力机叶片结构分析Ξ 周鹏展1,2,3,肖加余1,曾竟成1,王 进2,杨 军2 (1.国防科技大学航天与材料工程学院,湖南长沙 410073; 2.株洲时代新材料科技股份有限公司,湖南株洲 412007; 3.长沙理工大学能源与动力工程学院,湖南长沙 410076) 摘 要:基于ANSY S软件,对某款应用于G L3A风场的1500kW大型复合材料风力机叶片进行了结构分析。分析结果表明:该叶片的振型以一阶挥舞和一阶摆振为主,其频率分别为0186H z和1159H z;在极限挥舞 载荷作用下,该叶片有限元模型计算得到的叶尖挠度为81445m,而该叶片全尺寸静力试验得到的极限挥舞载 荷作用下的叶尖挠度为8112m,计算值与试验值的误差只有318%;另外,该叶片的最大计算拉应力和压应力 分别为228MPa和201MPa,而该叶片玻纤Π环氧复合材料实测拉伸强度和实测压缩失稳强度分别为720MPa和 380MPa,其计算最大应力只有对应实测极限强度的3117%和5219%。 关键词:复合材料;风力机叶片;结构分析;极限挥舞载荷 中图分类号:TK8 文献标识码:A Structural Analysis of Large2scale Composite Wind Turbine B lade B ased on ANSYS ZH OU Peng2zhan1,2,3,XI AO Jia2yu1,ZE NGJing2cheng1,W ANGJin2,Y ANGJun2 (1.C ollege of Aerospace and M aterial Engineering,National Univ.of Defense T echnology,Changsha410073,China; 2.Zhuzhou T imes New M aterial T echnology C o.Ltd.,Zhuzhou412007,China; 3.C ollege of Energy and P ower Engineering,Changsha Univ.of Science&T echnology,Changsha410076,China) Abstract:Based on the ANSY S s oftware,the structural analysis of a kind of1500kW large2scale com posite wind turbine blade which applied in G L3A wind farm was carried out.The analysis results show that the vibration m odes of this blade are mainly presented as first flapwise m ode and first edgewise m ode,the frequencies of the vibration are respectively0.86H z and1.59H z.At the action of ultimate flapwise loads,the FE M analysis results show that the blade tip deformation is8.445m,while the blade tip deformation of the full scale blade under static test is8.12m,s o the deviation between the calculated and tested value of the blade tip deformation is only 3.8%.M oreover,the calculated maximum tensile stress and the com pressive stress are228MPa and201MPa,while the tested tensile strength and com pressive buckling strength of the glass2fiberΠepoxy com posite are720MPa and380MPa,respectively.C onsequently,the percentages of the calculated maximum stress and the tested ultimate strength are respectively31.7%and52.9%. K ey w ords:com posite;wind turbine blade;structural analysis;ultimate flapwise load 风力机叶片是风力发电机组的关键部件之一,随着世界风力发电机组向大功率方向发展,风力机叶片的长度越来越长,目前世界最长的复合材料风力机叶片是丹麦LM公司生产的,其长度已达6115m,单片重约18t,从而对叶片结构的强度、刚度、重量等的设计提出了更高的要求[1-3]。复合材料具有比强度高、比刚度高、重量轻、可设计性强、承力性能好等特点[4-5],因而在大型风力机叶片中获得了广泛应用。风力机叶片的结构分析作为风力机叶片结构设计的技术基础之一,开始在大功率风力机叶片结构的校核与优化设计中发挥着日益重要的作用。 由于大型复合材料风力机叶片的外形结构和铺层结构都非常复杂,其外形由不同翼型构建而成,属Ξ收稿日期:2009-09-22 基金项目:国家863计划资助项目(2007AA03Z563);中国博士后科学基金资助项目(20070420832);湖南省科技资助项目(2008RS4033) 作者简介:周鹏展(1973—),男,博士后。

Ansys复合材料结构分析操作指导书

Ansys10.0 复合材料结构分析操作指导书

第一章概述 复合材料是两种或两种以上物理或化学性质不同的材料复合在一起而形成的一种多相固体材料,具有很高的比刚度和比强度(刚度和强度与密度的比值),因而应用相当广泛,其应用即涉及航空、航天等高科技领域,也包括游艇、风电叶片等诸多民用领域。由于复合材料结构复杂,材料性质特殊,对其结构进行分析需要借助数值模拟的方法,众多数值模拟软件中Ansys是个不错的选择。 Ansys软件由美国ANSYS公司开发,是目前世界上唯一一款通过ISO9001质量体系认证的分析设计软件,有着近40年的发展历史,经过多次升级和收购其它CAE(Computer Aided Engineering )软件,目前已经发展成集结构力学、流体力学、电磁学、声学和热学分析于一体的大型通用有限元分析软件,是一款不可多得的工程分析软件。Ansys在做复合材料结构分析方面也有不俗的表现,此书将介绍如何使用该款软件进行复合材料结构分析。在开始之前有以下几点需要说明,希望大家能对有限元法有大体的认识,以及Ansys软件有哪些改进,最后给出一些学习Ansys软件的建议。 1、有限元分析方法应用简介 有限元法(Finite Element Method,简称FEM)是建立在严格数学分析理论上的一种数值分析方法。该方法的基本思想是离散化模型,将求解目标离散成有限个单元(Element),并在每个单元上指定有限个节点(Node),单元通过节点相 连构成整个有限元模型,用该模型代替实际结构进行结构分析。在对结构离散后,要求解的基本未知量就转变为各个节点位移(Ansys中称之为DOF(Degree Of Freedom),试想一下,节点的位移包括沿x,y,z轴的平动和转动,也就是节点的自由度),节点位移通过求解一系列代数方程组得到,在求得节点位移后,利用节点位移和应力、应变之间的关系矩阵就可以求出各个节点上的应力、应变,应用线性插值便可以获得单元内任意位置的位移、应力、应变等信息。 2、Ansys软件的发展近况 Ansys软件目前已发展到Ansys V12版本,从V10开始Ansys加入了一个新的工作环境Workbench,原先的Ansys被称为Ansys (classic),虽然操作界面不同,但两者的求解器是一样的。Ansys (classic)的前处理功能相对较弱(主要是建模方面),因而往往需要借助第三方软件,如CAD软件。也许是迫于另一个有限元分析软件ABQUS的竞争压力,Ansys推出了新的Workbench工作环境,Workbench在建模、划分网格、求解和后处理上都作了改进,尤其在建模和划分

-复合材料结构分析与成形原理

树脂基复合材料缠绕成型工艺的研究与应用 姓名:刘伟萍 (西北工业大学机电学院, 陕西西安710072) 摘要:随着我国航空事业的发展,先进材料方面的需求越来越急迫,复合材料各方面的 优秀性能使得它在飞机上的应用越来越广泛。现阶段我国在复合材料方面虽然取得了一 定进展,但在成型工艺方面与欧美等国家还存在一定差距。复合材料的成型工艺方法很 多,本文主要介绍了树脂复合材料缠绕成型工艺的特点、工艺流程、及现阶段还存在的 一些问题和相应的解决办法。 关键字:树脂基复合材料缠绕成型工艺流程 The Research and Application of Winding And Forming Process of Polymer Composites Abstract:With the development of Chinese aviation industry,the demand in the spects of advanced materials become more urgent.Because of the excellent properties of composites,it is applied more and more widely in the aircraft.Nowadays,China has made some progress in terms of composite materials ,But in terms of composites forming process,there is still a gap between China and westen developed countries like America and UN.There is A lot of methods in c omposites and winding forming process,this paper describes the characteristics、forming process of polimer composites,it also introduces some problems and corresponding solutions. Keyword:Polymer Composites Winding And Forming Process technological process 1 绪论 1.1复合材料的应用与研究 复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料具有质量轻、比强度、比模量高,较好的延展性、抗腐蚀、隔热、隔音、耐高温、性能可设计性等特点,因此被大量用于航空航天等军事领域和民用领域,是制造飞机、火箭、航天飞行器等的理想材料。 在航空工业中,复合材料的应用越来越广泛,而且成为衡量飞机性能的重要参数。复合材料成型技术在应用过程中不断积累应用经验,提高技术水平, 完善

金属断口分析

名词解释 延性断裂:金属材料在过载负荷的作用下,局部发生明显的宏观塑性变形后断裂。 蠕变:金属长时间在恒应力,恒温作用下,慢慢产生塑性变形的现象。 准解理断裂:断口形态与解理断口相似,但具有较大塑性变形(变形量大于解理断裂、小于延性断裂)是一种脆性穿晶断口 沿晶断裂:裂纹沿着晶界扩展的方式发生的断裂。 解理断裂:在正应力作用下沿解理面发生的穿晶脆断。 应力腐蚀断裂:拉应力和腐蚀介质联合作用的低应力脆断 疲劳辉纹:显微观察疲劳断口时,断口上细小的,相互平行的具有规则间距的,与裂纹扩展方向垂直的显微条纹。 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 韧性:材料从变形到断裂过程中吸收能量的大小,是材料强度和塑性的综合反映。 冲击韧性:冲击过程中材料吸收的功除以断的面积。 位向腐蚀坑技术:利用材料腐蚀后的几何形状与晶面指数之间的关系研究晶体取向,分析断 裂机理或断裂过程。 河流花样:解理台阶及局部塑性变形形成的撕裂脊线所组成的条纹。其形状类似地图上的河 流。 断口萃取复型:利用AC 纸将断口上夹杂物或第二相质点萃取下来做电子衍射分析确定这些 质点的晶体结构。 氢脆:金属材料由于受到含氢气氛的作用而引起的低应力脆断。 卵形韧窝:大韧窝在长大过程中与小韧窝交截产生的。 等轴韧窝:拉伸正应力作用下形成的圆形微坑。 均匀分布于断口表面,显微洞孔沿空间三 维方向均匀长大。 第一章 断裂的分类及特点 1.根据宏观现象分:脆性断裂和延伸断裂。 脆性断裂裂纹源:材料表面、内部的缺陷、微裂纹;断口:平齐、与正应力相垂直 ,人字纹或放射花纹。延性断裂裂纹源:孔穴的形成和合并;断口:三区,无光泽的纤维状,剪切面断裂、与拉伸轴线成45o . 2.根据断裂扩展途分:穿晶断裂与沿晶断裂。 穿晶断裂:裂纹穿过晶粒内部、可能为脆性断裂也可 能是延性断裂; 沿晶断裂:裂纹沿着晶界扩展,多属脆断。应力腐蚀断口,氢脆断口。 3根据微观断裂的机制上分:韧窝、解理(及准解理)、沿晶和疲劳断裂 4根据断面的宏观取向与最大正应力的交角分:正断、切断 正断:断面取向与最大正应力相垂直(解理断裂、平面应变条件下的断裂) 切断:断面取向与最大切应力相一致,与最大应力成45o交角(平面应力条件下的撕裂) 根据裂纹尖端应力分布的不同,主要可分为三类裂纹变形: 裂纹张开型、边缘滑开型(正向滑开型)、侧向滑开型(撒开型) 裂纹尺寸与断裂强度的关系 Kic :材料的断裂韧性,反映材料抗脆性断裂的物理常量(不同于应力强度因子,与K 准则 相似) a Y K c c πσ?=1

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法 断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。因此需要严格的科学态度,精心地、有步骤地进行研究分析。 断口分析步骤: (1)所有试样的选择、鉴定、保存以及清洗; (2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象); (3)微观检验和分析; (4)金相剖面的检验和分析以及化学分析; (5)断口定量分析(断裂力学方法); (6)模拟试验。 1 断裂构件的处理及断口的保存 在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。保护和清理断口是断口分析的一个重要前提。对断口和裂纹轨迹进行充分检查后方可进行清洗。 对于不同情况下的断口应该用不同方法处理: (1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。 (2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。 (3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。在这种情况下,需要用综合分析的方法来考虑。因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。通常把带

有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。 去掉腐蚀产物有时可采用干剥法。用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。将一条厚约1mm合适的AC纸,放在丙酮中泡软,然后拿起来放在断口表面上,在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上,干燥后用小镊子把干复型从断口上揭下来。如果断口玷污得很厉害,可将复型操作重复进行,直到获得一个洁净无污染的复型为止。这种方法的一个优点,就是能将从断口上除去的碎屑保存下来,供以后鉴定碎屑使用。还可以用复型法达到长期保存断口的目的。 (4)断口表面不能用酸溶液清洗,以免影响断口分析的准确性。 (5)在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。若用一般有机溶液、超声波洗涤和复型都不能洁净断口表面时,可采用化学清洗。根据不同的金属材料及氧化层情况可采用不同的化学清洗液。 2 断口的宏观分析 用肉眼、放大镜和实体显微镜对断裂零件进行直接观察与分析的方法,称为宏观分析,其放大倍数通常为100倍以下。 宏观分析的优点是:(1)简便、迅速,试样尺寸不十分受限制,不必破坏断裂零件;(2)观察范围大,能够观察与分析断裂全貌,即裂缝和零件形状的关系、断口与变形方向的关系、断口与受力状态(主应力或切应力)的关系;(3)能够初步判断裂起源位置、断裂性质与原因,缩小进一步分析研究的范围,可为确定进一步分析的取样部位和数量提供线索和依据。因此宏观分析是断裂故障分析中最方便、最常用、最主要的不可缺少的步骤和方法,是整个断裂故障分析的基础。 断裂分析的一个主要内容,就是要确定断裂源的位置及裂纹的扩展方向。金属零件若已断裂成多块,则应把所有断块按原来形状拼起来,但要特别小心不能碰合,然后看其密合程度,密合得最差的为最早断裂,即主断口。分析断裂原因时,只需对主断口进行分析。

金属断口分析

《金属断口分析》 第一章金属的断裂 第一节断裂分类 失效形式:过大的弹性变形;塑性形变;断裂;材料变化。其中危害最大的是破裂特别是断裂。通过对断口形貌特征进行分析从而获得金属断裂机理。一,宏观脆性断裂与延伸断裂 从宏观上看,断裂分为脆性断裂和延性断裂 脆性断裂指以材料表面、内部的缺陷或是微裂纹为源,在较低的应力水平下(一般不超过材料的屈服强度),在无塑性变形或只有微小塑性变形下裂纹急速扩展。在多晶体中,断裂时沿着各个晶体的内部解理面产生,由于材料的各个晶体及解理面方向是变化的,因此断裂表面在外观上呈现粒状。脆性断裂主要沿着晶界产生,称为晶间断裂。其断口平齐。 延性断裂是在较大的塑性变形产生的断裂。它是由于断裂缓慢扩展而造成的。其断口表面为无光泽的纤维状。延性断裂经过局部的颈缩,颈缩部位产生分散的空穴,小空穴不断增加和扩大聚合成微裂纹。 二,穿晶断裂和沿晶断裂 依据裂纹扩展途径不同,断裂分为穿晶断裂和沿晶断裂,或二者兼有。 穿晶断裂是指裂纹穿过晶体内部的途径发生的;穿晶断裂可能是延性的,也可能是脆性的。若断裂是穿过晶体沿解理面断开,但无明显塑性变形为脆性断裂。若穿晶断裂时出现塑性变形则为延性断裂。 沿晶断裂指以裂纹沿着晶界扩展的方式进行。沿晶断裂多为脆性断裂,,但也有延性的。应力腐蚀断口,氢脆断口都是沿晶断裂的脆性断裂。三,韧窝、解理、准解理、沿晶和疲劳断裂 这主要是根据微观断裂机制上而言 四,正断和切断 根据断面的宏观取向与最大正应力交角,断裂方式分为正断和切断 正断性断裂是指宏观断面的取向与最大正应力相垂直,如解理断裂 切断性断裂指宏观断面的取向与最大切应力方向相一致,而与最大正应力成45度

Ansys复合材料结构分析操作指导书 - 副本

第四章复合材料计算实例 在有了前几章知识做铺垫,这一章我们来学习两个复合材料分析的例子,加深复合材料分析的理解,也希望读者能从中收获一些经验。在这里将第二章的流程图再次拿出来,进一步熟悉ANSYS有限元分析的基本过程。 图7 Ansys 结构分析流程图 4.1 层合板受压分析 4.1.1 问题描述 层合板指的是仅仅由FRP层叠而成的复合板材,中间不包含芯材,板材的性能不仅与纤维的弹性模量、剪切模量有关,还与纤维的铺层方向有着密切关系。本例中的板材有4层厚度为0.025m的单元板复合而成,单元板的铺层方向为0°、90°、90°、0°,见图13所示。单元板的材料属性见表4.1。 表 4.1 单元板材料属性 图13 复合材料板

4.1.2 求解步骤 根据问题描述,所要分析的问题为壳体结构的复合材料板,可以采用SOLID46单元建立3D有限元模型进行分析。结合图7的一般步骤进行分析。 步骤一:选取单元类型,设置单元实常数 ⑴、在开始一个新分析前,需要指定文件保存路径和文件名。 文件保存路径GUI:【Utility Menu】|【File】|【Change Directory】见图14 指定新的文件名GUI:【Utility Menu】|【File】|【Change Jobname】见图15所示 图14 指定文件保存路径 图15 修改文件名 ⑵、选取单元类型

1)选取单元类型的GUI操作:【Main Menu】|【Preprocessor】|【Element Type】|【Add/Edit/Delete】,执行后弹出Element Types对话框。2)在Element Types对话框点击Add定义新的单元类型,弹出“Library of Element Types”对话框,见图16所示,按图中所示选择,单元 类型参考号输入框中输入数字1。 图16 单元类型对话框 3)点击“OK”,回到“Element Types”对话框见图17所示,从图中可以看到,定义的单元类型参考号为1,单元类型对应为SOLID46。 图17 已经定义好的单元类型 4)接下来,还要对单元类型做一些选项设置,点击“Options”,弹出“SOLID46 element type options”对话框,在“Form of input”下拉 选择列表中有三个选项,分别是各材料层厚度相同、变厚度材料层、 自定义宏观材料本构矩阵,选择不同的选项,会导致后面需要输入 的材料参数不同。由于本例各层厚度相同,选择“Const thk layer” 项,点击“OK”,弹出“More SOLID46 element type options”,在 K8选项中选择“All layers”,然后单击OK,随后单击ElementTypes 对话框上的Close,关闭该对话框,完成单元类型选择,见图18。

ansys 复合材料分析

第五章复合材料 5.1 复合材料的相关概念 复合材料作为结构应用已有相当长的历史。在现代,复合材料构件已被大量应用于飞行器结构、汽车、体育器材及许多消费产品中。 复合材料由一种以上具有不同结构性质的材料构成,它的主要优点是具有很高的比刚度(刚度与重量之比)。在工程应用中,典型复合材料有纤维和叠层型材料,如玻璃纤维、玻璃环氧树脂、石墨环氧树脂、硼环氧树脂等。 ANSYS程序中提供一种特殊单元--层单元来模拟复合材料。利用这些单元就可以作任意的结构分析了(包括非线性如大挠度和应力刚化等问题)。对于热、磁、电场分析,目前尚未提供层单元。 5.2 建立复合材料模型 与铁或钢等各向同性材料相比,建立复合材料的模型要复杂一些。由于各层材料性能为任意正交各向异性,材料性能与材料主轴取向有关,在定义各层材料的材料性能和方向时要特别注意。本节主要探讨如下问题: 选择合适的单元类型; 定义材料层; 确定失效准则; 应遵循的建模和后处理规则。 5.2.1 选择合适的单元类型 用于建立复合材料模型的单元类型有SHELL99、SHELL91、SHELL181、SOLID46和SOLID191 五种单元。但 ANSYS/Professional 只能使用 SHELL99 和SHELL46 单元。具体应选择哪一类单元要根据具体应用和所需计算结果类型等来确定。所有的层单元允许失效准则计算。 1、SHELL99--线性层状结构壳单元 SHELL99 是一种八节点三维壳单元,每个节点有六个自由度。该单元主要适用于薄到中等厚度的板和壳结构,一般要求宽厚比应大于10。对于宽厚比小于10的结构,则应考虑选用 SOLID46 来建立模型。SHELL99 允许有多达 250 层的等厚材料层,或者 125 层厚度在单元面内呈现双线性变化的不等材料层。如果材料层大于 250,用户可通过输入自己的材料矩阵形式来建立模型。还可以通过一个选项将单元节点偏置到结构的表层或底层。 2、SHELL91--非线性层状结构壳单元 SHELL91 与 SHELL99 有些类似,只是它允许复合材料最多只有 100 层,而且用户不能输入自己的材料性能矩阵。但是,SHELL91 支持塑性、大应变行为

(整理)复合材料设计与分析软件的介绍

复合材料设计与分析软件的介绍 1 引言 复合材料以其高强轻质、性能各向异性和结构可设计性等特点,广泛应用于航空航天、汽车、船舶等领域。但复合材料铺层结构设计较为复杂,性能分散性大,这些问题和缺陷使复合材料的进一步推广应用遇到了阻碍。为解决上述问题,多种复合材料设计、分析软件被开发、运用于复合材料的设计和制造中,大大的方便了复合材料的分析、设计过程,本文介绍Larrunate Tools、ESAComp、SYSPLY、FiberSIM四种软件的主要优越性及其在复合材料分析、设计过程中所发挥的作用。 2 Laminate Tools软件(简称LT) Laminate Tools是由英国Anaglyph软件公司推出的独具特色的一教软件,它集复合材料结构设计、分析和制造于一身,Laminate Tools由显示、设计、分析、检查以及制造工艺5个功能模块组成,分别涵盖了三维模型可视化显示、材料铺层等信息建立与编辑、层合板性能生成、商业化有限元软件结果可视化检查以及制造工艺信息及下料图形的输出。 Laminate Tools主要功能: 2.1 显示模块 显示模块的界面如图1所示。 图1 显示模块界面 Laminate Tools可以读取包括:行业标准*.Layup文件,NASTRAN的*.nas、*.bdf及*.fem等输入文件,Ansys 的*.cdb文件,FiberSIM的*.fml数据文件,以及CAD的STL格式文件;以多种模式和多视角显示模型网格,有透视图、剪切视图、拾取视图、印刷视图等;Larrunate Tools的显示模块能够显示材料特征,覆盖和量化使用方法;显示单层覆盖、纤维取向、铺覆图案、平面样板图、边界、材料、物理和铺覆特征和源于每层的铺层;显示偏移定义;显示厚度分布;显示每个有限元层合特性细节。

材料力学论金属的断裂

工程材料力学期中作业 班级成型2班 姓名陶帅 学号20113650

论述金属的断裂 一、基本介绍 概念:金属材料在外力作用下断裂成两部分的现象。 磨损、腐蚀和断裂是机件的三种主要失效形式,其中以断裂的危害最大。在应力作用下(有时还兼有热及介的共同作用),金属材料被分成两个或几个部分,称为完全断裂;内部存在裂纹,则为不完全断裂。实践证明,大多数金属材料的断裂过程都包括裂纹形成与扩展两个阶段。对于不同的断裂类型,这两个阶段的机理与特征并不相同。 二、断裂的基本类型 弹性变形→塑性变形→断裂 1,根据材料断裂前产生的宏观塑性变形量的大小来确定断裂类型,可分为韧性断裂和脆性断裂。 2,多晶体金属断裂时,按裂纹扩展路径可以分为穿晶断裂和沿晶断裂。 3,根据应力类型可分为纯剪切断裂和微孔聚集型断裂、解理断裂。 三、具体分析 1,韧性断裂 韧性断裂是金属材料断裂前产生明显宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量。韧性断裂的断裂面一般平行于最大切应力并与主应力成45o角。用肉眼或放大镜观察时,端口呈纤

维状,灰暗色。纤维状是苏醒变形过程中微裂纹不断扩展和相连造成的,灰暗色则是纤维断口表面对光反射能力很弱所致。 中、低强度钢的光滑圆柱试样在室温下的静拉伸断裂是典型的韧性断裂,其宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。 当光滑圆柱拉伸试样受拉伸力作用,在试验力达到拉伸力-伸长曲线最高点时,便在试样局部区域产生缩颈,同时试样的应力状态也由单向变为三向,且中心轴向应力最大。在中心三向拉应力作用下,塑性变形难于进行,致使试样中心部分的夹杂物或第二相质点本身碎裂,或使夹杂物质点与基体界面脱离而形成微孔。微孔不断长大和聚合就形成显微裂纹。早期形成的显微裂纹,其端部产生较大塑性变形,且集中于极窄的高变形带内。这些剪切变形带从宏观上看大致与径向呈50o~60o角。新的微孔就在变形带内成核、长大和聚合,当其与裂纹连接时,裂纹便向前扩展了一段距离。这样的过程重复进行就形成锯齿形的纤维区。纤维区所在的平面垂直于拉伸应力方向。

Ansys复合材料结构分析总结22页

Ansys复合材料结构分析总结 说明:整理自Simwe论坛,复合材料版块,原创fea_stud,大家要感谢他呀 目录 1# 复合材料结构分析总结(一)——概述篇 5# 复合材料结构分析总结(二)——建模篇 10# 复合材料结构分析总结(三)——分析篇 13# 复合材料结构分析总结(四)——优化篇做了一年多的复合材料压力容器的分析工作,也积累了一些分析经验,到了总结的时候了,回想起来,总最初采用I-deas,到MSC.Patran、Nastran,到最后选定Ansys为自己的分析工具,确实有一些东西值得和大家分享,与从事复合材料结构分析的朋友门共同探讨。 (一)概述篇 复合材料是由一种以上具有不同性质的材料构成,其主要优点是具有优异的材料性能,在工程应用中典型的一种复合材料为纤维增强复合材料,这种材料的特性表现为正交各向异性,对于这种材料的模拟,很多的程序都提供了一些处理方法,在I-Deas、Nastran、Ansys中都有相应的处理方法。笔者最初是用I-Deas下建立各项异性材料结合三维实体结构单元来模拟(由于研究对象是厚壁容器,不宜采用壳单元),分析结果还是非常好的,而且I-Deas强大的建模功能,但由于课题要求要进行压

力容器的优化分析,而且必须要自己写优化程序,I-Deas的二次开发功能开放性不是很强,所以改为MSC.Patran,Patran提供了一种非常好的二次开发编程语言PCL(以后在MSC的版中专门给大家贴出这部分内容),采用Patran结合Nastran的分析环境,建立了基于正交各项异性和各项异性两种分析模型,但最终发现,在得到的最后结果中,复合材料层之间的应力结果始终不合理,而模型是没有问题的(因为在I-Deas中,相同的模型结果是合理的),于是最后转向Ansys,刚开始接触Ansys,真有相见恨晚的感觉,丰富的单元库,开放的二次开发环境(APDL语言),下面就重点写Ansys的内容。 在ANSYS程序中,可以通过各项异性单元(Solid 64)来模拟,另外还专门提供了一类层合单元(Layer Elements)来模拟层合结构(Shell 99, Shell 91, Shell 181, Solid 46 和Solid 191)的复合材料。 采用ANSYS程序对复合材料结构进行处理的主要问题如下: (1)选择单元类型 针对不同的结构和输出结果的要求,选用不同的单元类型。 Shell 99 ——线性结构壳单元,用于较小或中等厚度复合材料板或壳结构,一般长度方向和厚度方向的比值大于10; Shell 91 ——非线性结构壳单元,这种单元支持材料的塑性 和大应变行为; Shell 181——有限应变壳单元,这种单元支持 几乎所有的包括大应变在内的材料的非线性行为; Solid 46 ——三维实体结构单元,用于厚度较大的复合材料层 合壳或实体结构; Solid 191——三维实体结构单元,高精度单

相关主题