搜档网
当前位置:搜档网 › 实验一---金属材料的拉伸实验

实验一---金属材料的拉伸实验

实验一---金属材料的拉伸实验
实验一---金属材料的拉伸实验

实验一 金属材料的拉伸实验

拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的

1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。

2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。

3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。

4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。

二.实验仪器、设备

1.电子万能试验机(或液压万能材料试验机)。

2.钢尺。

3.数显卡尺。

三、实验试样

按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。

对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。

夹持 过渡

(a) (b)

图1-1 试件的截面形式

试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。

四.实验原理

(一)塑性材料弹性模量的测试:

在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。

测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为:

EA PL L ?=

? 若已知载荷ΔF 及试件尺寸,只要测得试件伸长ΔL 或纵向应变即可得出弹性模量E 。 ε

???=???=

1

)(000A P A L PL E

本实验采用引伸计在试样予拉后,弹性阶段初夹持在试样的中部,过弹性阶段或屈服阶段,弹性模量E 测毕取下,其中塑性材料的拉伸实验不间断。

(二)塑性材料的拉伸(低碳钢):

图1-2所示是典型的低碳钢拉伸图。

当试样开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的曲线斜率较小,它并不反映真实的载荷—变形关系;载荷加大后,滑动消失,材料的拉伸

进入弹性阶段。

σ

1-2b 典型的低碳钢拉伸图 低碳钢的屈服阶段通常为较为水平的锯齿状(图中的B’-C 段),与最高载荷B’对应的应力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样,屈服后第一次下降的最低点也不作为材料的强度指标。除此之外的其它最低点中的最小值(B 点)作为屈服强度σs :

σs =

A P SL

当屈服阶段结束后(C 点),继续加载,载荷—变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D 点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D 点,以后的曲线基本与未经卸载的曲线重合。可见经过加载、卸载这一过程后,材料的比例极限和屈服极限提高了,而延伸率降低了,这就是冷作硬化。

随着载荷的继续加大,拉伸曲线上升的幅度逐渐减小,当达到最大值(E 点)Rm 后,试样的某一局部开始出现颈缩,而且发展很快,载荷也随之下降,迅速到达F 点后,试样断裂。材料的强度极限σb 为:

σb =

A P b

当载荷超过弹性极限时,就会产生塑性变形。金属的塑性变形主要是材料晶面产生了滑移,是剪应力引起的。描述材料塑性的指标主要有材料断裂后的延伸率δ和截面收缩率ψ来表示。

伸长率 %1000

1?-=

l l l δ 截面收缩率 %1000

1

?-=A A A ψ 式中l 0、l 1和A 0、A 1分别是断裂前后的试样标距的长度和截面积。 l 1可用下述方法测定:

直接法:如断口到最近的标距端点的距离大于l 0/3,则直接测量两标距端点间的长度为

l 1;

移位法:如断口到最近的标距端点的距离小于l 0/3,如图1-3所示:在较长段上,从断口处O 起取基本短段的格数,得到B 点,所余格数若为偶数,则取其一半,得到C 点;若为奇数,则分别取其加1和减1的一半,得到C 、C 1点,那么移位后的l 1分别为:l 1=AO+OB+2BC , l 1=AO+OB+BC+BC 1

A O

B

C D

(a)

A O

B

C C 1

D

(b)

五.实验步骤

(一)塑性材料的拉伸(圆形截面低碳钢) 1、确定标距

根据表1-1的规定,选择适当的标距(这里以10d 作为标距l 0),并测量l 0的实际值。为了便于测量l 1,将标距均分为若干格,如10格。

2 、试样的测量

用游标卡尺在试样标距的两端和中央的三个截面上测量直径,每个截面在互相垂直的两个方向各测一次,取其平均值,并用三个平均值中最小者作为计算截面积的直径d ,并计算出A 0值。

3 、仪器设备的准备

根据材料的强度极限Rm 和截面积A 0估算最大载荷值P max ,根据P max 选择试验机测试量程,建立试验编号,设置参数,调零。

4、安装试件

试件先安装在试验机的上夹头内,再使用手控盒移动下夹头,使其达到适当的位置,并把试件下端夹紧。

5、按试验开始按钮加载,试验断裂试验结束,卸载。

6、测试样断后尺寸

(二)脆性材料的拉伸(圆形截面铸铁)

铸铁等脆性材料拉伸时的载荷—变形曲线不象低碳钢拉伸那样明显地分为弹性、屈服、颈缩和断裂四个阶段,而是一根接近直线的曲线,且载荷没有下降段。它是在非常小的变形下突然断裂的,断裂后几乎不到残余变形。因此,测试它的s σ、δ、ψ就没有实际意义,只要测定它的强度极限σb 就可以了。

实验前测定铸铁试件的横截面积A 0,然后在试验机上缓慢加载,直到试件断裂,记录其最大载荷P b ,求出其强度极限σb 。

(三)拉伸试验结果的计算精确度

1.强度性能指标(屈服应力s σ和抗拉强度b σ)的计算精度要求为MPa 5.0,即:凡<MPa 25.0的数值舍去,

≥MPa 25.0而<MPa 75.0的数值化为MPa 5.0,≥MPa 75.0的数值者则进为MPa 1。

2.塑性性能指标(伸长率δ和断面收缩率ψ)的计算精度要求为%5.0,即:凡<%25.0的数值舍去,≥%25.0而<%75.0的数值化为%5.0,≥%75.0的数值则进为%1。

五. 讨论与思考

1. 当断口到最近的标距端点的距离小于l 0/3时,为什么要采取移位的方法来计算l 1?

2. 用同样材料制成的长、短比例试件,其拉伸试验的屈服强度、伸长率、截面收缩率和强度极限都相同吗?

3. 观察铸铁和低碳钢在拉伸时的断口位置,为什么铸铁大都断在根部?

4. 比较铸铁和低碳钢在拉伸时的力学性能。

实验一---金属材料的拉伸实验

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 (a) (b) 图1-1 试件的截面形式 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试:

在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。 测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: EA PL L ?= ? 若已知载荷ΔF 及试件尺寸,只要测得试件伸长ΔL 或纵向应变即可得出弹性模量E 。 ε ???=???= 1 )(000A P A L PL E 本实验采用引伸计在试样予拉后,弹性阶段初夹持在试样的中部,过弹性阶段或屈服阶段,弹性模量E 测毕取下,其中塑性材料的拉伸实验不间断。 (二)塑性材料的拉伸(低碳钢): 图1-2所示是典型的低碳钢拉伸图。 当试样开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的曲线斜率较小,它并不反映真实的载荷—变形关系;载荷加大后,滑动消失,材料的拉伸 进入弹性阶段。 σ 1-2b 典型的低碳钢拉伸图 低碳钢的屈服阶段通常为较为水平的锯齿状(图中的B’-C 段),与最高载荷B’对应的应力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样,屈服后第一次下降的最低点也不作为材料的强度指标。除此之外的其它最低点中的最小值(B 点)作为屈服强度σs : σs = A P SL 当屈服阶段结束后(C 点),继续加载,载荷—变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D 点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D 点,以后的曲线基本与未经卸载的曲线重合。可见经过加载、卸载这一过程后,材料的比例极限和屈服极限提高了,而延伸率降低了,这就是冷作硬化。 随着载荷的继续加大,拉伸曲线上升的幅度逐渐减小,当达到最大值(E 点)Rm 后,试样的某一局部开始出现颈缩,而且发展很快,载荷也随之下降,迅速到达F 点后,试样断裂。材料的强度极限σb 为:

《金属材料室温拉伸试验方法》GBT228-2002实施要点

《金属材料室温拉伸试验方法》GBT228-2002实施要点2006-11-04 15:061 引言 国家标准GB/T228-2002《金属材料室温拉伸试验方法》已于2002年颁布实施。这一新国家标准是合并修订国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》三个标准为一个标准,它等效采用了国际标准ISO6892:1998《金属材料室温拉伸试验》,也是GB/T228第三次修订。GB/T228-2002包括的技术内容和要求与原三个标准有较大的不同,尤其在性能名称和符号、抗拉强度定义、试验速率、性能结果数值的修约方面变动较大。而且,新标准中增加了引用标准和关于试验方法准确度方面阐述的内容。为了更好地贯彻实施GB/T228-2002,将该标准的要点和实施中需注意之点说明如下。 2 GB/T228-2002标准的适用范围 标准适用于金属材料(包括黑色和有色金属材料,但不包括金属构件和零件)室温拉伸性能的测定,试样或产品的横截面尺寸≦0.1mm。对于小横截面尺寸的金属产品,例如金属箔、超细丝和毛细管等的拉伸试验需要双方协议。其原因在于:①横截面小的产品,按照标准中建议的量具分辨力要求不能满足附录A和附录C规定横截面测定准确度在±1%和±2%以内的要求。②试样标距采用常规的划细线、打小冲点等方法进行标记不可行。③常用的引伸计不适用于此类型产品试样的试验。试样的夹持方法需要特殊夹头等。 3 室温的温度范围 标准中规定室温的温度范围为10-35℃,超出这一范围不属于室温。对于材料在这一温度范围内性能对温度敏感而采用更严格的温度范围试验时,应采用23±5℃的控制温度。上述10-35℃的温度范围实质是指容许的试样温度范围,只要试样的温度是在这规定的室温范围内便符合标准要求。 4 标准中的引用标准 标准中的第二章引用了6个国家标准,即: GB/T2975-1998钢及钢产品力学性能试验取样位置和试样制备(eqv ISO377:1997) GB/T8170-1987数值修约规则 GB/T12160-2002单轴试验用引伸计的标定(idt ISO9513:1999) GB/T16825-1997拉力试验机的实验(idt ISO7500—1:1986) GB/T17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢(eqv ISO2566—1:1984)GB/T17600.2—1998钢的伸长率换算第2部分:奥氏体钢(eqv ISO2566—2:1984) 标准中通过注日期引用的这6个国家标准是构成GB/T228—2002标准本身不可缺少的部分,应遵照被引用的6个标准中的相关规定和要求,其中被引用的5个标准分别等同和等效相应的国际标准。目前,GB/T8170—1987《数值修约规则》还没有相对应的国际标准。 5 性能和术语定义 5.1性能定义 为了与国际接轨,性能的定义按照国际标准的规定。与原GB/T228—1987相比较,屈服强度与抗拉强度的定义有明显差异,其他性能的定义无实质性差异。 新标准将抗拉强度定义为相应最大力(Fm)的应力,而最大力(Fm)定义为试样在屈服阶段之后所能抵抗的最大力;对于无明显屈服(连续屈服)的金属材料,为试验期间的最大力。按照这一定义,如图1所示的拉伸曲线,最大力应为曲线上的B点,而不是旧标准中的取其A点的力(上屈服力)计算抗拉强度。 新标准中屈服强度这一术语的含义与旧标准中的屈服点有所不同,前者是泛指上、下屈服强度性能;而后者既是泛指屈服点和上、下屈服点性能,也特指单一屈服状态的屈服点性能(ζs)。因为新标准已将旧标准中的屈服点性能ζs归入为下屈服强度ReL(见标准中的图2d)。所以,新标准中不再有与旧标准中的屈服点性能(ζs)相对应的性能定义。也就是说新标

ASTM E8M-09 中文版 金属材料拉伸试验方法E8-09

金属材料拉伸试验的标准试验方法 1范围 1.1 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 1.2 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 1.3 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 1.4 除非另有规定,室温应定为10—38℃。 1.5 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 1.6 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2参考文件 2.1 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法 E6 力学性能试验方法相关术语

E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 3.1 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL U[%])——在试样出现缩颈、断裂或者二者都出现之前,所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)两条直线与横轴的交点: (a)应力—应变曲线的不连续屈服段,通过最后一个零斜率点的水平正切线; (b)应力—应变曲线的均匀应变硬化段的正切线。 若在屈服的地方或附近没有出现斜率为零的点,则材料的的屈服点延伸率为0%。

实验一金属材料的拉伸实验

实验一金属材料的拉伸 实验 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验一 金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数,如弹性模量、强度、塑性等。 一.实验目的 1.测定低碳钢拉伸时的强度性能指标:屈服应力s σ和抗拉强度b σ。 2.测定低碳钢拉伸时的塑性性能指标:伸长率δ和断面收缩率ψ。 3.测定灰铸铁拉伸时的强度性能指标:抗拉强度b σ。 4.绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形式。 二.实验仪器、设备 1.电子万能试验机(或液压万能材料试验机)。 2.钢尺。 3.数显卡尺。 三、实验试样 按照国家标准GB6397—86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、规格以及试验目的的不同而分为圆形截面试样、矩形截面试样、异形截面试样和不经机加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准GB6397—86。 夹持 过渡 夹持 过渡 h 试样分为夹持部分、过渡部分和待测部分(l )。标距(l 0)是待测部分的主体,其截面积为A 0。按标距(l 0)与其截面积(A 0)之间的关系,拉伸试样可分为比例试样和非比例试样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表1-1。 四.实验原理 (一)塑性材料弹性模量的测试: 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。因此金属材料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验。

实验一金属材料的拉伸实验

拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数, 如 弹性模量、强度、塑性等。 一. 实验目的 1. 测定低碳钢拉伸时的强度性能指标:屈服应力 二s 和抗拉强度二b 。 2. 测定低碳钢拉伸时的塑性性能指标:伸长率 和断面收缩率’-:。 3. 测定灰铸铁拉伸时的强度性能指标:抗拉 强度 :「b 。 4. 绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形 式。 二. 实验仪器、设备 1. 电子万能试验机(或液压万能材料试验机)。 2. 钢尺。 3. 数显卡尺。 三. 实验试样 按照国家标准 GB6397 — 86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品 种、规格以及试验目的的不同而分为圆形截面试样、 矩形截面试样、异形截面试样和不经机 加工的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准 GB6397 — 86。 图1-1试件的截面形式 试样分为夹持部分、过渡部分和待测部分( I )。标距(I 0)是待测部分的主体,其截面 积为A 。。按标距(I 。)与其截面积(A o )之间的关系,拉伸试样可分为比例试样和非比例 试样。按国家标准 GB6397-86的规定,比例试样的有关尺寸如下表 1-1。 表1-1 试样 标距 | I 。, (mm) 截面积A 0 ,(mm 2 ) 圆形试样直径 d (mm ) 延伸率 比例 长 11.3 J A 。或 10 d 任意 任意 短 5.65 JA 。或 5 d 四. 实验原理 (一)塑性材料弹性模量的测试: 实验 金属材料的拉伸实验 夹持过渡 (b

实验1_金属材料拉伸实验

实验一金属材料拉伸实验 拉伸试验是检验金属材料力学性能普遍采用的一种极为重要的基本试验。 金属的力学性能可用强度极限σ b 、屈服极限σs、延伸率δ、断面收缩率Ψ 和冲击韧度α k 五个指标来表示。它是机械设计的主要依据。在机械制造和建筑工程等许多领域,有许多机械零件或建筑构件是处于受拉状态,为了保证构件能够正常工作,必须使材料具有足够的抗拉强度,这就需要测定材料的性能指标是否符合要求,其测定方法就是对材料进行拉伸试验,因此,金属材料的拉伸试验及测得的性能指标,是研究金属材料在各种使用条件下,确定其工作可靠性的主要工具之一,是发展新金属材料不可缺少的重要手段,所以拉伸试验是测定材料力学性能的一个基本试验。 一、实验目的 1、测定低碳钢在拉伸过程中的几个力学性能指标:屈服极限σs、强度极限σb、延伸率δ、断面收缩率Ψ。铸铁的σb 。 2、观察低碳钢、铸铁在拉伸过程中的各种现象,绘制拉伸图(P—ΔL图)由此了解试件变形过程中变形随荷载变化规律,以及有关的一些物理现象。 3、观察断口,比较低碳钢和铸铁两种材料的拉伸性能,及断口形貌。 二、实验设备仪器及量具 万能材料实验机,引伸仪,划线台,游标卡尺;小直尺。 三、试件 金属材料拉伸实验常用圆形试件。为了使实验测得数据可以互相比较,试件形状尺寸必须按国家标准GB228—76的规定制造成标准试件。如因材料尺寸限制等特殊情况下不能做成标准试件时,应按规定做成比例试件。图1为圆形截面标准试件和比例试件的国标规定。对于板材可制成矩形截面。园形试件标距L。和 直径之比,长试件为L 0/d =10,以δ 10 表示,短试件为L /d =5以δs表示。 矩形试件截面面积A 0和标距L 之间关系应为

金属材料 室温拉伸试验方法 GB

金属材料室温拉伸试验方法 GB/T 228-2002 金属材料室温拉伸试验方法 GB 中华人民共和国国家标准 GB/T228-2002 eqv ISO 6892:1998 金属材料室温拉伸试验方法 Metallic materials——Tensile testing at ambient temperature 发布 GB/T228-2002 目次 前言Ⅲ ISO前言Ⅳ 1 范围1 2 引用标准1 3 原理1 4 定义1 5 符号和说明5 6 试样6 7 原始横截面积(So)的测定7 8 原始标距(Lo)标记7 9 试验设备的准确度7 10 试验要求8 11 断后伸长率(A)和断裂总伸长率(At)的测定8 12 最大力总伸长率(Agt)和最大力非比例伸长率(Ag)的测定9 13 屈服点延伸率(Ae)的测定9 14 上屈服强度(ReH)和下屈服强度(ReH)和下屈服强度(ReL)的测定10 15 规定非比例延伸强度(Rp)的测定10 16 规定总延伸强度(Rt)的测定11 17 规定残余延伸强度(Rr)的验证方法11 18 抗拉强度(Rm)的测定11 19 断面收缩率(Z)的测定12 20 性能测定结果数值的修约14 21 性能测定结果的准确度14

22 试验结果处理15 23 试验报告15 附录A(标准的附录)厚度0.1mm~<3 mm薄板和薄带使用的试样类型16 附录B(标准的附录)厚度等于或大于3mm板材和扁材以及直径或厚度等于或大于 4mm线材、棒材和型材使用的试样型17 附录C(标准的附表录)直径或厚度小于4mm线材、棒材和型材使作的试 样类型20 附录D(标准的附录)管材使用的试样类型21 附录E(提示的附录)断后伸长率规定值低于5%的测定方法24 附录F(提示的附录)移位方法测定断后伸长率24 附录G(提示的附录)人工方法测定棒材、线材和条材等长产品的最大力总伸长率25 附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(Rp)26 附录I(提示的附录)卸力方法测定规定残余延伸强度(Rr0。2)举例27 附录J(提示的附录)误差累积方法估计拉伸试验的测量不确定度28 附录K(提示的附录)拉伸试验的精密度—根据实验室间试验方案的结果31 附录L(提示的附录)新旧标准性能名称和符号对照34 GB/T228-2002 前言 本标准有效采用国际标准ISO 6892:1998《金属材料室温拉伸试验》。在主要技术内容上与ISO6892:1998相同,但部分技术内容较为详细和具体,编写结构不完全对应。补充性能测定结果数值的修约要求和试验结果处理。增加试样类型。删去附录F(提示的附录)计算矩形横截面试样原始标距用计算图尺;删去附录L(提示的附录)参考文献目录。增加附录H(提示的附录)逐步逼近方法测定规定非比例延伸强度(RP);增加附录L(提示的附录)新旧标准性能名称和符号对照。 本标准合作并修订原国家标准GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。对原标准在以下方面的技术内容进行了较大修改和补充: ——引用标准; ——定义和符号; ——试样; ——试验要求; ——性能测定方法; ——性能测定结果数值修约; ——性能测定结果准确度阐述。 自本标准实施之日起,代替GB/T228-1987《金属拉伸试验方法》、GB/T3076-1982《金属薄板(带)拉伸试验方法》和GB/T6397-1986《金属拉伸试验试样》。 本标准的附录A∽D都是标准的附录。 本标准的附录E∽L都是提示的附录。 本标准由原国家冶金工业局提出。 本标准由全国钢标准化技术委员会归口。

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

ASTM E8M-09 中文版 金属材料拉伸试验方法

金属材料拉伸试验的标准试验方法 1 范围 本方法适用于室温下任何形状的金属材料的拉伸试验。特别是对于屈服强度、屈服点延伸率、抗拉强度、延伸率和断面收缩率的测定。 对于圆形试样,标距长度等于直径的4倍【E8】或5倍【E8M】(对于E8和E8M,试样的标距长度是两个标准的最大区别,其他技术内容是一致的)。用粉末冶金(P/M)材料制成的试样无此要求,以保持工业要求的材料的压力至规定的设计面积和密度。 除本方法规定外,可对特殊材料制定单独的技术规范及试验方法,例如:试验方法和定义A370,试验方法B557,B557M。 除非另有规定,室温应定为10—38℃。 国际单位(SI)和英制单位相互独立,两个单位体系的数值并不完全相等,因此,它们应该独立使用。两个单位体系结合使用得到的数值与标准不符合。 本标准并不涉及所有安全的问题,如果有,也是与它的用途有关。在使用本标准前制定适当的安全和健康规范,确定使用的规章制度是本标准使用者的责任。 2 参考文件 ASTM标准: A 356/A 356M 铸钢、碳素钢、低合金钢、不锈钢、蒸汽锅炉钢的产品规范 A370 钢产品力学性能试验方法及定义 B557 锻、铸铝合金和镁合金产品的拉伸试验方法 B557M锻、铸铝合金和镁合金产品的拉伸试验方法(公制) E4 试验机的力学校验方法

E6 力学性能试验方法相关术语 E29 用标准方法确定性能所得试验数据的有效位数的推荐方法 E83 引伸计的的校验及分级方法 E345 金属箔拉伸试验的测试方法 E691 实验室之间探讨确定试验方法精确度的实施指南 E1012 拉伸载荷下试样对中方法的确定 E1856 试验机计算机数据分析处理系统的使用指导 3 术语 定义——在E6中出现的有关拉伸测试的名词术语均可以用在该拉伸试验方法中。另外需补充以下术语: 3.1.1 不连续屈服——轴向试验中,由于局部屈服,在塑性变形开始的地方观察到力的停滞或起伏(应力-应变曲线不一定出现不连续)。 3.1.2 断后延伸率——由于断裂,使得施加的力突然降低,在此之前测得的延伸率。很多材料并不出现力突然降低的情况,这时断后延伸率通过测量力减小到最大力的10%时的应变值获得。 3.1.3 下屈服强度(LYS[FL-2])——轴向试验中,不考虑瞬时效应的情况,不连续屈服过程中记录的最小应力。 3.1.4 均匀延伸率(EL [%])——在试样出现缩颈、断裂或者二者都出现之前, U 所承受最大力时材料的延伸率为均匀延伸率。 3.1. 4.1 说明:均匀伸长率包括弹性延伸率和塑性延伸率。 3.1.5 上屈服强度(LYS[FL-2])——轴向试验中,伴随不连续屈服首此出现的应力最大值(首次出现零斜率时的应力); 3.1.6 屈服点延伸率(YPE)——轴向试验中,不连续屈服过程中上屈服点(应力斜率为0时的转换/临界点)所对应得应变与均匀应变硬化转折点之间的应变差(用百分比表示)。若均匀应变硬化转折点超出应变范围,则YPE的终点是(a)(b)

有色金属细丝拉伸试验方法

《有色金属细丝拉伸试验方法》国家标准编制说明 (征求意见稿) 国标(北京)检验认证有限公司 二〇一八年十月十八日

《有色金属细丝拉伸试验方法》 编制说明 1工作简况 1.1项目背景和立项意义 随着科学技术的进步与国民经济的发展,对于有色金属材料在数量、品种、质量及成本等方面不断提出新的要求;对其化学成分、物理性能以及产品的可靠性、稳定性等方面的要求也越来越高,这就需要高精度、高可靠性的工艺、装备、控制技术与检测技术。室温拉伸力学性能是有色金属产品的一项基础性能,国内外针对金属材料的室温拉伸力学性能检测方法,制定和实施了很多标准,例如GB/T 228.1-2010《金属材料拉伸试验第1部分:室温试验方法》、GB/T 16865-2013《变形铝、镁及其合金加工制品拉伸试验用试样及方法》、GB/T 34505-2017《铜及铜合金材料室温拉伸试验方法》、ASTM E8/E8M《金属材料拉伸试验方法》、ASTM B557/ B557M《变形及铸造铝、镁拉伸试验方法》、JIS Z 2241《金属材料拉伸试验方法》等,对规范有色金属材料的力学性能检测起到了很大作用。但是,对于有色金属细丝产品来说,由于这些产品的特殊性,不适合采用这些标准方法进行室温拉伸力学性能检测,主要原因有: 1) 横截面积很小的产品,按照标准中建议的量具分辨力测定横截面积,其准确度可能明显超过±2%的要求。例如,直径小于0.05mm的金属细丝,用分辨力0.001mm 的量具测量引起的误差超过±2%,这样,其横截面积测量误差超过±2%。 2) 试样原始标距的标记采用常规的划细线、打小冲点等方法不可行。 3) 试验机的力值范围和分辨力都很小,与常规试验机不同;常规的引伸计也不太可能直接用于这些产品试样的试验。 4) 试样的夹持方法需要特殊的方式等等。 由于上述这些原因,需要针对有色金属细丝产品,制定专门的拉伸试验方法标准,规范有色金属细丝拉伸试验,提高有色金属细丝产品力学性能检测的准确性和可靠性。 国家标准GB 10573-89《有色金属细丝拉伸试验方法》颁布实施二十多年以来,为规范我国有色金属合金丝材的性能检测提供了依据,在有色金属细丝产品的生产贸易以及质量控制方面都起到了巨大的作用。不过,随着我国有色金属合金制造行业的快速发展,有色金属丝材产品的种类也逐渐丰富,我国的有色金属及合金丝、线、条材的标准体系也在发生着不断变化,而且随着现代检测手段和设备的不断更新换代,现行的国家

金属材料的拉伸与压缩实验

实验四金属材料的拉伸实验(二)一.实验目的 1.测定低碳钢材料在常温、静载条件下的屈服极限σ s ,强度极限σ b ,延伸率δ和断面 收缩率ψ。 2.测定铸铁材料在常温静载下的强度极限σ b 。 3.观察低碳钢﹑铸铁在拉伸过程中出现的各种现象,分析P-△L图的特征。 4.比较低碳钢与铸铁力学性能的特点和试件断口情况分析其破坏原因。 5.了解微机控制电子万能材料试验机的构造原理,学习其使用方法。 二.仪器设备 1.微机控制电子万能材料试验机 2.数显游标卡尺 三.试件 在测试某一力学性能参数时,为了避免试件的尺寸和形状对实验结果的影响,便于各种材料力学性能的测试结果的互相比较,采用国家标准规定的比例试件。国家标准规 定比例试件应符合以下关系:L0=K A。对于圆形截面试件,K值通常取5.65或11.3。即直径为d0的圆形截面试件标距长度分别为5d0和10d0。本试验采用L0=10d0的比例试件。 图 3-4-1 四.测试原理

实验时,实验软件能够实时的绘出实验时力与变形的关系曲线,如图3-4-2所示。 图3-4-2 1.低碳钢拉伸 ⑴.弹性阶段 弹性阶段为拉伸曲线中的OB段。在此阶段,试件上的变形为弹性变形。OA段直线为线弹性阶段,表明载荷与变形之间满足正比例关系。接下来的AB段是一非线弹性阶段,但仍满足弹性变形的性质。 ⑵.屈服阶段 过弹性阶段后,试件进入屈服阶段,其力与曲线为锯齿状曲线BC段。此时,材料丧失了抵抗变形的能力。从图形可看出此阶段载荷虽没明显的增加,但变形继续增加;如果试件足够光亮,在试件表面可看到与试件轴线成45°方向的条纹,即滑移线。在此阶段试件上的最小载荷即为屈服载荷P s. ⑶.强化阶段 材料经过屈服后,要使试件继续变形,必须增加拉力,这是因为晶体滑移后增加了抗剪能力,同时散乱的晶体开始变得细长,并以长轴向试件纵向转动,趋于纤维状呈现方向性,从而增加了变形的抵抗力,使材料处于强化状态,我们称此阶段为材料的强化阶段(曲线CD部分)。强化阶段在拉伸图上为一缓慢上升的曲线,若在强化阶段中停止加载并逐步卸载,可以发现一种现象——卸载规律,卸载时载荷与伸长量之间仍遵循直线关系,如果卸载后立即加载,则载荷与变形之间基本上还是遵循卸载时的直线规律沿卸载直线上升至开始卸载时的M点。我们称此现象为冷作硬化现象。从图可知,卸载时试件的伸长不能完全恢复,还残留了OQ一段塑性伸长。 ⑷.颈缩阶段 当试件上的载荷达到最大值后,试件的变形沿长度方向不再是均匀的了,在试件某

JIS-Z-2241:2011金属材料拉伸试验方法

目次 1 适用范围....................................................................................... .................................... . 1 2 规范性引用文件................................................................................................................ .... 1 3术语和定义............................................................................................................................... 1 4 符号和说明 (2) 5原理........................................................................................................................ ............. . (8) 6 试样 (18) 6.1形状及尺寸..................................................................................................... .. (18) 6.2试样种类............................................................................................... ......... . (18) 6.3试样加工..................................................................................................... .. (19) 7 原始横截面积的测定 (21) 8 原始标距的标记 (21) 9 试验设备的准确度 (22) 9.1试验机 (22) 9.2延伸计 (22) 10 试验条件 (22) 10.1试验零点的设定 (22) 10.2试样夹持方法 (22) 10.3试验速度 (23) 11 上屈服强度的测定 (24) 12 下屈服强度的测定 (25) 13 规定塑性延伸强度的测定 (25) 14 规定总延伸强度的测定 (25) 15 规定残余延伸强度的验证和测定 (25) 16 屈服点延伸率的测定 (26) 17 最大力塑性延伸率的测定 (26) 18 最大力总延伸率的测定 (26) 19 断裂总延伸率的测定 (26) 20 断后伸长率的测定 (27) 21 断面收缩率的测定 (28) 22试验报告 (28) 23测量不确定度 (29) 23.1一般 (29) 23.2试验条件 (29) 23.3试验结果 (29) 附录A(参考附录)计算机控制拉伸试验机使用的建议 (30) 附录B(规范性附录)厚度0.1mm~<3mm 薄板和薄带使用的试样类型 (31) 附录C(规范性附录)直径或厚度小于4mm 线材、棒材和型材使用的试样类型 (34) 附录D(规范性附录)厚度等于或大于3mm 板材和扁材以及直径或厚度等于或大于4mm 线材、棒材和型材使用的试样类型 (35) 附录E (规范性附录)管材使用的试样类型 (43) 附录F(参考附录)考虑试验机柔度估计的横梁分离速率 (46)

金属材料拉伸试验方法探讨

龙源期刊网 https://www.sodocs.net/doc/082232106.html, 金属材料拉伸试验方法探讨 作者:侯琳 来源:《科学与信息化》2020年第14期 摘要:金属材料在现代机械中的应用十分广泛,将金属材料应用到机械工程中,要注重技术材料的性能,进而使其可以的满足应用需求。在将金属材料应用到机械中,要注重金属材料的拉伸性能,金属材料的这一性能会对其应用造成直接影响。因此,在对金属材料进行应用时,要通过试验方式对金属材料的拉伸性能进行检验,明确金属材料性能,这对于应用金属材料的应用来说意义重大。 关键词:金属材料;金属性能;拉伸试验;试样 力学性能是金属材料可靠性和性能的一项关键标志,而拉伸性对金属材料的具体应用会造成直接影响。对于金属材料拉伸性能可以采取拉伸性试验进行确定,进而获取到金属材料的各项性能,实现对金属材料的合理应用。 1金属材料拉伸试验 通过拉伸试验对金属材料性能进行检查,这是对金属材料质量,以及生产进行检查的一项重要内容,通过拉伸试验对金属材料性能进行检查,可以获取到金属材料的各项指标参数内容,也是反应金属材料力学性能检测的一项重要因素。但是,从实际情况来看,在进行金属材料拉伸试验期间,拉伸试验会受各项不同因素影响,这会对最终的试验结果,以及各项参数内容造成一定影响。此外,各项影响因素不仅会对影响试验结果,而且也会对金属材料应用造成不良影响,因此,在金属材料拉伸实验室,相关作业人员要从实际情况出发,做好相应分析工作,提高试验结果准确性,确保金属材料能够满足应用需求。 2拉伸性试验的具体要求 金属材料拉伸性试验要在室温环境下完成相应的测定,测定试样的横截面大小的尺寸大小不得小于0.1mm2。而针对横截面较小的试样,例如毛细管、金属箔等各种不同类型的试样,因为横截面小,分辨率无法满足具体要求,在实际施工期间划细线、打小冲点等方法进行作业的,都无法实现对试样的准确标记,同时,在小横截面尺寸试验在进行拉伸试验时,也适合采用引伸计,因此,在具体试验时,要采取单独协议。在室温情况下对金属材料进行拉伸试验,要将室温温度控制在10-35℃以内,若温度低于10℃,或者高于35℃,则不再是室温环境。需要特别注意的是,若材料在10~35℃温度范围内十分敏感,要在更加严格的温度内进行试验,通常要将试验温度控制在18~22℃之间,进而确保最终能够获取到精准试验结果。 3金属材料拉伸性试验具体分析

实验一金属材料的拉伸实验

实验一金属材料的拉伸实验 拉伸是材料力学最基本的实验,通过拉伸可以测定出材料一些基本的力学性能参数, 如 弹性模量、强度、塑性等。 一. 实验目的 1. 测定低碳钢拉伸时的强度性能指标:屈服应力 二s 和抗拉强度二b 。 2. 测定低碳钢拉伸时的塑性性能指标:伸长率 和断面收缩率<。 3. 测定灰铸铁拉伸时的强度性能指标:抗拉强度 ;「b 。 4. 绘制低碳钢和灰铸铁的拉伸图,比较低碳钢与灰铸铁在拉伸时的力学性能和破坏形 式。 二. 实验仪器、设备 1. 电子万能试验机(或液压万能材料试验机)。 2. 钢尺。 3. 数显卡尺。 三. 实验试样 按照国家标准 GB6397— 86《金属拉伸试验试样》,金属拉伸试样的形状随着产品的品种、 规格以及试验目的的不同而分为圆形截面试样、 矩形截面试样、异形截面试样和不经机加工 的全截面形状试样四种。其中最常用的是圆形截面试样和矩形截面试样。 对试样的形状、尺寸和加工的技术要求参见国家标准 GB6397— 86。 (a) (b) 图1-1试件的截面形式 试样分为夹持部分、过渡部分和待测部分( I )。标距(I 0)是待测部分的主体,其截面 积为A o 。按标距(I o )与其截面积(A o )之间的关系,拉伸试样可分为比例试样和非比例试 样。按国家标准GB6397-86的规定,比例试样的有关尺寸如下表 1-1。 试样 标距 I I o , (mm) 截面积A, (mrr ) 圆形试样直径 d (mm ) 延伸率 比例 长 11.3 你0 或 10 d 任意 任意 短 5.65 J A0 或 5 d 夹持过渡

四.实验原理 (一)塑性材料弹性模量的测试: 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的 比例常数就是材料的弹性模量E,也叫杨氏模量。因此金属材料拉伸时弹性模量E地测定是 材料力学最主要最基本的一个实验。 测定材料弹性模量 E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: EA o 若已知载荷△ F及试件尺寸,只要测得试件伸长△ L或纵向应变即可得出弹性模量E。 A PL° A P 1 E 二△(△L)A0 A0也名 本实验采用引伸计在试样予拉后,弹性阶段初夹持在试样的中部,过弹性阶段或屈服阶段,弹性模量E测毕取下,其中塑性材料的拉伸实验不间断。 (二)塑性材料的拉伸(低碳钢):图1-2所示是典型的低碳钢拉伸图。 当试样开始受力时,因夹持力较小,其夹持部分在夹头内有滑动,故图中开始阶段的 力称上屈服极限,由于它受变形速度等因素的影响较大,一般不作为材料的强度指标;同样, 屈服后第一次下降的最低点也不作为材料的强度指标。除此之外的其它最低点中的最小值(B 点)作为屈服强度二s: A o 当屈服阶段结束后(C点),继续加载,载荷一变形曲线开始上升,材料进入强化阶段。若在这一阶段的某一点(如D点)卸载至零,则可以得到一条与比例阶段曲线基本平行的卸载曲线。此时立即再加载,则加载曲线沿原卸载曲线上升到D点,以后的曲线基本与未经卸 载的曲线重合。可见经过加载、卸载这一过程后,材料的比例极限和屈服极限提高了,而延 伸率降低了,这就是冷作硬化。 随着载荷的继续加大,拉伸曲线上升的幅度逐渐减小,当达到最大值(E点)R m后,

金属材料力学性能实验报告

金属材料力学性能实验报告 姓名:班级:学号:成绩: 实验名称实验一金属材料静拉伸试验 实验设备1)电子拉伸材料试验机一台,型号HY-10080 2)位移传感器一个; 3)刻线机一台; 4)游标卡尺一把; 5)铝合金和20#钢。 试样示意图 图1 圆柱形拉伸标准试样示意图 试样宏观断口示意图 图2 铝合金试样常温拉伸断裂图和断口图 (和试样中轴线大约成45°角的纤维状断口,几乎没有颈缩,可以知道为切应力达到极限,发生韧性断裂)

图3 正火态20#钢常温拉伸断裂图和断口图 (可以明显看出,试样在拉断之后在断口附近产生颈缩。断口处可以看出有三个区域:1.试样中心的纤维区,表面有较大的起伏,有较大的塑性变形;2.放射区,表面较光亮平坦,有较细的放射状条纹;3.剪切唇,轴线成45°角左右的倾斜断口) 原始数据记录 表1 正火态20#钢试样的初始直径测量数据(单位:mm ) 左 中 右 平均值 9.90 10.00 10.00 9.97 9.92 10.00 10.00 10.00 10.00 9.92 左 中 右 平均值 8.70 8.72 8.68 8.69 8.68 8.70 8.70 8.64 8.72 8.70 表2 时效铝合金试样的初始直径测量数据(单位:mm ) 两试样的初始标距为050 L mm 。 表3 铝合金拉断后标距测量数据记录(单位:mm ) AB BC AB+2BC 平均 12.32 23.16 58.64 58.79 24.02 17.46 58.94 测量20#钢拉断后的平均标距为u L =69.53 mm ,断口的直径平均值为u d =6.00 mm 。 测量得到铝合金拉断后的断面直径平均值为7.96mm 。

金属室温拉伸力学性能的测定 - 中南大学材料科学与工程学院

金属室温拉伸力学性能的测定 主讲教师:

一、实验目的 1.掌握金属材料屈服强度σs 、抗拉强度σb 、断后伸长率δ和断面收缩率ψ的测 试方法。 2.了解用引伸仪测定金属材料弹性模量E的方法。

二、实验原理 拉伸实验是用拉力拉伸试样,一般拉至断裂,以测定材料的一项或几项力学性能。常温下的拉伸实验是测定材料力学性能的基本实验,可用以测定弹性常数E 和泊松比μ,屈服强度σs (上屈服强度或下屈服强度),规定非比例延伸强度,如σp0.2,抗拉强度σb ,断后伸长率δ和断面收缩率ψ等,这些力学性能指标都是工程设计的重要依据。

二、实验原理 1. 弹性模量E 的测定 弹性模量是应力低于比例极限时应力与应变的比值,即1 0Fl E A l σε==?

为检查载荷与变形的关系是否符合虎克定律,减少测量误差,试验一般用等增量法加载,即把载荷分成若干相等的加载等级ΔF (图1(a)),然后逐级加载。为保证应力不超出比例极限,加载前先估算出试样的屈服载荷,以屈服载荷的70%-80%作为测定弹性模量的最高载荷F n 。此外,为使试验机夹紧试样,消除引伸仪和试验机机构的间隙,以及开始阶段引伸仪刀刃在试样上的可能滑动,对试样应施加一个初始载荷F 0,F 0可取为屈服载荷的10%,从F 0到F n 将载荷分成n 级,且n 不小于5,于是 (n ≥5) 0n F F F n -?=

例如低碳钢的下屈服强度σs =300MPa ,试样直径d =10mm ,则 实验时,从F 0到F n 逐级加载,载荷的每级增量ΔF 。对应着每个载荷F i (i =1,2,…,n ),记录下相应的伸长Δl i ,Δl i +1与Δl i 的差值即为变形增δ(Δl )i ,它是ΔF 引起的伸长增量。在逐级加载中,若得到的各级δ(Δl )i 基本相等,就表明Δl 与F 成线性关系,符合虎克定律。完成一次加载过程,将得到F i 和Δl i 的一组数据,按线性拟合法求得: 2180%188504 n s F d N N πσ=??=2110%23564n s F d N N πσ=??=(取为18KN 或19KN)(取为3KN 或4KN)

相关主题