搜档网
当前位置:搜档网 › 粒化高炉矿渣资源化利用的技术现状_程福安

粒化高炉矿渣资源化利用的技术现状_程福安

粒化高炉矿渣资源化利用的技术现状_程福安
粒化高炉矿渣资源化利用的技术现状_程福安

第42卷第3期2010年6月西安建筑科技大学学报(自然科学版)

J1Xi c an U niv.of Ar ch.&T ech.(N atural Science Edit ion)

V ol.42N o.3

Jun.2010

粒化高炉矿渣资源化利用的技术现状

程福安1,2,魏瑞丽2,李辉1,2

(11西部建筑科技国家重点实验室(筹);21西安建筑科技大学材料科学与工程学院粉体工程研究所,陕西西安710055)

摘要:高炉渣是炼铁过程中产生的副产品,目前我国普遍采用急冷的方法将高炉渣制备成粒化高炉矿渣.基

于不同的性质,对粒化高炉矿渣在建材、肥料及污水处理中的利用技术进行了详细的介绍,最后对其发展进行

了展望.

关键词:高炉渣;建材;肥料;污水处理

中图分类号:X757文献标识码:A文章编号:1006-7930(2010)03-0446-05

高炉渣是生铁冶炼过程中从高炉排出的一种废渣.在高炉冶炼生铁时,从炉顶加入的铁矿石、焦炭、助溶剂等通过热交换发生复杂的化学反应,当炉温达到1300~1500e时,炉料熔融,矿石中的脉石,焦炭中的灰分和助溶剂等非挥发性组分形成以硅酸盐和铝酸盐为主、浮在铁水上面的熔渣,即高炉渣.通常每炼1t生铁产生高炉渣0.3~0.9t[1].2009年我国生铁产量为54374.8万t,以每生产1t生铁产生0.3t高炉渣计算,产生高炉渣1.6312亿t.

高炉渣出炉后在大量水的作用下被急冷成海绵状浮石类物质,即粒化高炉矿渣.其化学成分与硅酸盐水泥熟料相似,具有较高的潜在活性.经适当处理后被大量作为建筑材料的原料使用,不仅降低熟料消耗、节约能源,还可降低由于CO2排放引起的温室效应和废渣堆放产生的环境污染.目前我国80%的高炉渣为粒化高炉矿渣.基于不同的性质,粒化高炉矿渣的具体利用途径也大相径庭.本文将对粒化高炉矿渣在建材、农肥和污水处理领域的资源化利用技术做较深入的介绍与分析.

1在建材领域的应用

1.1作为水泥混合材料

粒化高炉矿渣具有潜在的水硬性,在水泥熟料、石膏等激发剂的作用下可以显示出水化活性,是生产水泥的优质原料,在扩大水泥品种、增加产量、调节标号、改进性能和保证水泥安定性合格方面发挥着重大作用.在前苏联和日本,约有50%的高炉渣被用于生产水泥.我国用于制备矿渣水泥的高炉渣占利用量的78%左右,约有75%的水泥中掺有粒化高炉渣.根据高炉渣用量和激发剂的不同,可将掺加矿渣的水泥分为普通硅酸盐水泥、矿渣硅酸盐水泥、复合硅酸盐水泥、石膏矿渣水泥、石灰矿渣水泥、钢渣矿渣水泥[1-2].其中普通硅酸盐水泥、矿渣硅酸盐水泥和复合硅酸盐有国家标准.其他应用矿渣的水泥产品尚处于研发阶段.

早期人们制备矿渣水泥采用将水泥熟料和矿渣混合粉磨的方法,但因矿渣的易磨性比熟料差,且矿渣水泥中水泥的粒度一般为300~350m2/kg,而矿渣的粒度较细(450~500m2/kg),在水泥细度合格时,矿渣细度无法达到要求,难以发挥其在水泥中的作用.西安建筑科技大学粉体工程研究所于2002年率先在山西长治年产150万t矿渣水泥生产线工程采用将矿渣和水泥熟料分开粉磨的技术,解决了矿渣超细粉磨的技术难题.

1.2作为混凝土掺合料

矿渣微粉除用于配制矿渣水泥,还可作为高活性的掺合料配制高性能矿渣混凝土.矿渣微粉粒度越

*收稿日期:2009-11-30修改稿日期:2010-04-12

基金项目:中国工程院咨询项目(2009-XZ-06);陕西省重点学科建设专项资金资助项目

作者简介:程福安(1966-),男,陕西铜川人,高级工程师,硕士,主要从事工业固体废弃物的的资源化利用研究.

细,活性越大.矿渣微粉的掺入会影响混凝土拌合物和硬化后混凝土的性能.

(1)提高拌合物的工作性[3].由于矿渣微粉的微填充效应、形貌效应、分散效应等使原本填充在水泥颗粒间的水释放出来,从而使体系的自由水增加,混凝土的流动性提高.在细度相同的情况下,混凝土的塌落度随着矿渣微粉掺量的增加而明显增大;当掺量>45%时,塌落度大于不掺矿渣微粉的塌落度;任何掺量的混凝土在矿渣微粉细度为513m 2/kg 时均出现最大值.

(2)提高硬化后混凝土的强度[4].由于高炉矿渣微粉的微填充效应和形貌效应,当矿渣微粉少量取代水泥时,混凝土早期强度略有提高,但随着矿渣微粉掺量的增加,其填充效应和形貌效应不足以补偿因水泥大量减少而对混凝土早期强度的影响,从而降低早期强度.但掺矿渣微粉混凝土的7d 和28d 抗压强度均高于不掺矿渣微粉的混凝土相应龄期的抗压强度.其原因是:水泥中的石膏和水泥水化生成的Ca(OH )2能够激发矿渣微粉的潜在活性,促使其与Ca(OH )2发生二次水化反应,减少Ca(OH )2晶体在集料-水泥石界面的富集,降低Ca(OH )2晶粒尺寸,提高界面的致密性,从而有效地改善了集料-水泥石界面结构所致.

(3)对硬化后混凝土的变形产生影响.混凝土的变形包括短期变形和长期的徐变.导致混凝土发生短期变形的因素主要有两个:一是由于集料与水泥石的收缩率不同造成的收缩变形,二是由于水泥水化放热使混凝土产生内表温差,导致不均匀温度变形和温度应力而产生的裂纹.矿渣微粉可与水泥水化产生的Ca(OH )2及部分游离水发生反应,生成水化硅酸钙,提高混凝土的填充密度,同时降低混凝土的自由水含量,从而减小混凝土的化学体积收缩和由自由水蒸发引起的体积收缩[5].另一方面,掺入矿渣微粉能有效地降低水泥用量,从而降低混凝土的水化热.研究表明[6],在混凝土中掺入70%比表面积为430m 2/kg 的矿渣微粉,混凝土的3d 和7d 水化热分别降低36%和29%.宜用于大体积混凝土中.磨细矿渣掺量在30%~50%时,对混凝土的徐变影响不明显,但当掺量达到80%时抗徐变能力大大降低[7].

(4)改善硬化后混凝土的耐久性[8-9],主要包括抗渗性、抗冻性、抗侵蚀性等.

由于高炉矿渣微粉的火山灰效应和微集料效应,使混凝土孔径细化,连通孔减少,密实度提高,从而大幅度地提高混凝土的抗水渗透性,同时改善混凝土的抗冻能力.若要提高混凝土的抗冻性,关键是控制引气剂的掺入量[6].

矿渣微粉能够提高混凝土的抗硫酸盐侵蚀性能,且随着其掺量的增加而增加.金祖权等人[10]的研

究表明,矿渣掺量为50%和65%的混凝土在硫酸盐溶液中腐蚀280个循环,其抗压强度上升了15.4%和23%.

在混凝土中掺入矿渣微粉能提高其抗氯离子侵蚀性能,掺矿渣微粉混凝土的氯离子扩散系数随着养护时间和矿渣微粉掺量的增加而降低[9].因为矿渣微粉的填充效应及火山灰效应,使水泥基质更加致密、孔径减小;同时矿渣中的Al 2O 3对Cl -也有很强的固化能力,这些作用使矿渣混凝土的抗氯离子渗透性能增加[9,11].D.H igg ins [12]对掺磨细矿渣粉混凝土的耐久性的研究结果表明,掺65%磨细矿渣混凝土的氯离子扩散系数较普通硅酸盐水泥混凝土降低一个数量级.

南非在1958年首先将350m 2/kg 的矿渣微粉作为新拌混凝土的掺合料,随后美国、英国、日本等主要发达国家开始使用并制定相应的标准.20世纪90年代后,矿渣微粉混凝土开始在东南亚及我国的台湾和香港地区大力推广,自此,高性能混凝土的研究与应用进入了新的高潮.我国也制定了/用于水泥和混凝土中的粒化高炉矿渣粉0标准.

1.3 作为制备微晶玻璃的原料

表1对比分析了高炉矿渣和基础玻璃的主要化学成分.由表可知,高炉矿渣的主要化学成分CaO 、Al 2O 3、M gO 、SiO 2同样也是微晶玻璃的重要组成;而其中的R 2O(K 2O+N a 2O)、Fe 2O 3有利于玻璃的熔制,可作为晶核剂使用,因此矿渣可作为制备微晶玻璃的原料[13].蒋伟锋[14]

在高炉渣中掺入石英砂、长石和纯碱采用浇注法生产出以硅灰石为主晶相的琥珀色、玉白色微晶玻璃.当单独使用12%~15%的萤石作为晶核剂时形成琥珀色微晶玻璃,若用1%~3%的二氧化钛和8%~10%的萤石作为晶核剂则形成玉白色微晶玻璃.447第3期 程福安等:粒化高炉矿渣资源化利用的技术现状

448西安建筑科技大学学报(自然科学版)第42卷

表1高炉渣和基础玻璃的成分对比(wt%)

Tab.1Chemical Composition of blast furn ace slag and base glass(W t%)

P roject s CaO SiO2A l2O3M gO R2O Fe2O3 Blast fur nace slag32.5535.3416.3110.76 4.610.43 Basic g lass17~2154~584~73~4 4.5~7.5 1.0~1.3

矿渣微晶玻璃的主晶相为硅灰石(B-CaSiO3)、透辉石和钙长石.因为硅灰石具有抗弯强度、抗压强度较高,热膨胀系数较低的优点,而透辉石的化学稳定性和耐磨性好,机械强度高.因此高炉矿渣微晶玻璃一般选择硅灰石为主晶相,透辉石为副晶相,其组成定在硅灰石相区靠近三元低共熔点附近(稍偏向于透辉石相区).硅灰石类微晶玻璃最有效的晶核剂是硫化物和氟化物,辉石类矿渣微晶玻璃最有效的晶核剂是氧化铬,也常采用复合晶核剂如Cr2O3与Fe2O3、T iO2或氟化物的复合剂[15].矿渣微晶玻璃的主要制备方法有压延法、浇注法、烧结法、浮法等,目前国内以烧结法为主.

矿渣微晶玻璃的工业化应用在前苏联最为成熟,各种矿渣微晶玻璃都投入大规模生产并产生经济效益.日本、英国等国在矿渣微晶玻璃的工业化方面也取得了一定进展.总体而言,我国的矿渣微晶玻璃生产技术尚不成熟,产品常出现色斑、色差、炸裂、气泡或变形等缺陷,成品率极低,难于规模化,从而限制了矿渣微晶玻璃的应用.

2生产农业用肥

粒化高炉矿渣中含有大量的可溶性硅酸盐,容易被植物吸收,磨细后可作为农业肥施用.利用粒化高炉矿渣可以制备硅肥和钙镁磷硅肥.

硅肥是一种以硅酸钙为主的微碱性、枸溶性矿物肥料,不溶于水,可溶于酸.用粒化高炉矿渣生产硅肥的一般方法是:将矿渣磨细到80~100目,然后加入适量硅元素活化剂搅拌混合后制成硅肥.有研究表明,在南方酸性土壤上施用高炉矿渣可提高土壤pH值,增强土壤有效硅含量,促进水稻对硅养分的吸收[16].

钙镁磷硅肥是以含高可溶性硅的粒化高炉矿渣与含17%可被植物有效吸收P2O5的钙镁磷粗肥按1B1搭配混匀后,干燥、粉磨制成,同时兼具硅肥与钙镁磷肥的功效.在南方缺硅的酸性土壤上施用这种钙镁磷硅肥,可产生硅营养元素,活化土壤及磷肥中的磷,并促进磷在植物体内运转,充分发挥磷肥的作用使水稻增产[17].

硅肥在国外的施用已较为广泛.1955年日本政府就以/肥料法0的形式正式批准将硅肥作为一种新型肥料使用.韩国、朝鲜、菲律宾、泰国等国家也相继从日本引进并推广硅肥使用技术.我国长江流域70%的土壤缺硅,黄海、淮海以及辽宁也有约一半以上的土壤缺硅,因此用粒化高炉矿渣生产硅肥在我国具有广阔的应用前景.

3在污水处理方面的应用

高炉矿渣在水淬急冷时形成疏松多孔的结构,比表面积较大,更重要的是形成了几何形态上的各向异性和化学成分上的多成分性,在污水处理方面具有应用价值.

高炉矿渣疏松多孔的结构使其具有吸附效应,其中所含的Ca2+、Fe3+、A l3+能与污水中的磷酸水化产物形成金属磷酸盐沉淀,金属磷酸盐和高炉矿渣颗粒之间还存在着静电吸引,从而能有效去除污水中的磷酸盐[18-20].高炉渣对污水中磷酸盐的去除率可达到99%,在高炉渣中掺入钢渣能使去除率几乎接近100%[19].为了提高高炉矿渣的吸附容量,GONG等人[21]用熟石灰作为高炉渣表面改性的活化剂来提高磷吸附容量,研究表明,用熟石灰活化高炉矿渣表面能产生更多的孔结构和大的表面积,使高炉矿渣的吸附容量增加.

利用高炉渣的吸附特性,还可有效低去除污水中的Pb、Cr等重金属离子,固体悬浮物,COD和色度.因此高炉渣是一种有效的、廉价污水处理剂,可以作为人工湿地的填充介质使用[22-23].Ko rkusuz等人[23]在野外条件下,利用高炉渣作为芦苇湿地的基质,成功地处理了生活污水,且磷的吸附容量高.我

国也对这方面进行了研究,结果表明,高炉渣作为湿地基质能长期除磷,且处理效果优于沙子基质,水质显弱碱性对植物没有明显毒害,通过干湿交替或适当更换新渣可延长湿地使用年限[20,24].

4 展 望

随着高炉矿渣预处理技术的进步,其用途不再局限于建筑材料领域,而是向多途径延伸,利用率也逐步提高.但整体技术水平、尤其在新用途开发方面与欧、美、日等发达国家相比还有一定的差距.作为一种有价值的二次资源,未来的高炉矿渣资源化利用技术应向低成本、大用量、高附加值、低能耗、最大限度提取有价元素的方向发展,重点可从以下几个方面着手:(1)选择合适的激发剂或外加剂生产高性能水泥和混凝土,提高矿渣的掺量;(2)寻找合适的处理方法,提高矿渣肥料中的有效元素含量;(3)加大矿渣微晶玻璃的研究,尽快实现工业化,同时寻找能直接用熔融渣制备微晶玻璃的新工艺;(4)重视高炉渣在污水处理中的应用研究.

参考文献 References

[1] 杨国清,刘康怀.固体废弃物处理工程[M ].北京:科学出版社,2000:91-96.

Y AN G Guo -qing ,L IU K ang -huai.So lid w ast e t reatment Pr oject[M ].Beijing :Science Pr ess,2000:91-96.

[2] 杨慧芬,张 强.固体废物资源化[M ].北京:化学工业出版社,2004:195-201.

Y AN G Hu-i fen,ZH A N G Q iang.Solid waste resour ce[M ].Beijing:Chemical Industry Pr ess,2004:195-201.

[3] 卫蕊艳,刘孟贺,张松虎.矿渣微粉对混凝土性能影响的试验研究[J].洛阳工业高等专科学校学报,2004,14(4):20-

22.

W EI R u-i yan,L IU M eng -he,ZH AN G So ng -hu.Ex perimental Studies the Inf luence of Fine Par ticle Blast Furnace Slag on Some Character o f Co ncr ete[J].Jo ur na l of L uoy ang T echno log y Co lleg e,2004,14(4):20-22.

[4] 梁文泉,王信刚,何 真,等.矿渣微粉掺量对混凝土收缩开裂的影响[J].武汉大学学报:工学版,2004,37(1):78-

81.

L IA NG Wen -quan,WA N G X in -gang,H E Zhen,et al.Influence o f G GBF S content on shrinkag e cracking of con -crete[J].Eng ineering Jo urnal o f Wuhan U niver sity(Eng ineering Science Editio n),2004,37(1):78-81.

[5] 范莲花.矿渣微粉对混凝土收缩性能的影响[J].太原科技,2007(5):80-81.

F AN L ian -hua.Influence of slay micr o -pow der on the shrink perfo rmance o f co ncr ete[J].T aiyuan Science and T echno lo gy ,2007(5):80-81.

[6] 周美茹,李彦昌.矿渣粉对混凝土耐久性的影响[J].混凝土,2007(3):58-62.

ZH OU M e-i ru,L I Y an -chang.Effect on the durability o f co ncrete w ith miner al po wder[J].Concrete,2007(3):58-62.

[7] 赵庆新,孙 伟,缪昌文.磨细矿渣掺量对混凝土徐变性能的影响及其机理[J].硅酸盐学报,2009,37(10):1760-

1766.

ZH A O Q ing -x in,SU N Wei,M IA O Chang -wen.Effect of gr ound g ranulated blast furnace slag propor tio n o n creep characterist ics o f concr ete[J].Jo urnal o f the Chinese Ceramic So ciety,2009,37(10):1760-1766.

[8] CHEN G A,HU AN G R ,W U J K ,et a l.I nfluence of GG BS on dur ability and co rro sion behav ior of reinfo rced con -

crete[J].M ater ials Chemistry and Phy sics,2005,93(2/3):404-411.

[9] Y EAU A K Y,K IM E K.An ex perimental study o n cor rosion r esistance of co ncr ete w ith gr ound g ranulate blast -fur -

nace slag [J].Cement and Concrete R esear ch,2005,35(7):1391-1399.

[10] 金祖权,郭学武,侯保荣,等.矿渣混凝土硫酸盐腐蚀研究[J].青岛理工大学学报,2009,30(4):75-86.

JIN Zu -quan,GU O Xue -wu,H O U Bao -rong ,et a l.Damage o f Concretes w ith G GBS A ttacked by Sulfate Salt[J].Jo ur nal of Q ing dao T echnolog ical U niv ersity ,2009,30(4):75-86.

[11] 杨文武,钱觉时,范英儒.磨细高炉矿渣对海工混凝土抗冻性和氯离子扩散性能的影响[J].硅酸盐学报,2009,37

(1):29-34.

Y A N G W en -w u,QI AN Jue -shi,F AN Y ing -ru.Effect of g round g ranulated blast furnace slag on both fro st -resist -ance and chlor ide ions diffusion pr operties of marine frost -r esistance and chlo ride ions diffusion pro per ties o f mar ine co ncr et e[J].Jo ur nal of the Chinese Ceramic Societ y,2009,37(1):29-34.

[12] H IG GIN S D.T he Effect of G GBS o n t he durability o f co ncr ete[J].Co ncr ete,1991,25(6):17-20.

449第3期 程福安等:粒化高炉矿渣资源化利用的技术现状

450西安建筑科技大学学报(自然科学版)第42卷

[13]刘智伟,孙业新,种振宇,等.利用高炉矿渣生产微晶玻璃的可行性分析[J].山东冶金,2006,28(6):49-51.

L IU Z h-i wei,SU N Ye-x in,ZH O NG Z hen-yu,et al.Feasibility analy sis o f pro ducing nucleated glass fro m blast fur-nace slag[J].Shando ng M etallurg y,2006,28(6):49-51.

[14]蒋伟锋.高炉水渣综合利用[J].中国资源综合利用,2003(3):28-29.

JIA N G W e-i feng.Co mpr ehensive U t ilization of Blast F urnace Slag[J].China Resour ces Co mprehensiv e U tiliza-tion,2003(3):28-29.

[15]张培新,文崎业,刘剑洪,等.矿渣微晶玻璃研究与进展[J].材料导报,2009,17(9):8-47.

Z HA N G P e-i x in,W EN Q-i ye,L IU Jian-hong,et al.Resear ch pr og ress in slag g lass-ceramics[J].M ater ials Re-v iew,2009,17(9):8-47.

[16]李鸿江,刘清,赵由才.冶金过程固体废弃物处理与资源化[M].北京:冶金工业出版社,2007:301-313.

L I H ong-jiang,L IU Q ing,ZH AO Yo u-cai.Disposal and r eso urce of solid w aste in M et allur gica l processing[M].

Beijing:M etallur g y Industry Pr ess,2007:301-313.

[17]翁义遒.钙镁磷硅肥的生产及其在水稻上的增产效应[J].磷肥与复肥,1999(6):70-71.

W EN G Y-i qiu.Pr oductio n o f calcium and mag nesium silico n fertilizer phosphorus and its effect o n rice y ield[J].

Phosphate&Co mpo und Fert ilizer,1999(6):70-71.

[18]O GU Z E.Remov al o f phosphate from aqueo us solut ion w ith blast furnace slag[J].Jo urnal o f H azar do us M ater-i

als,2004,114(1-3):131-137.

[19]L U S G,BAI S Q,SH A N H D.M echanisms of phosphat e remov al from aqueous solution by blast furnace slag

and st eel furnace slag[J].Zhejiang U niv Sci A,2008,9(1):125-132.

[20]李晓东,师晓春,晁雷,等.高炉矿渣基质人工湿地除磷特性研究[J].气象与环境学报,2009,25(1):45-48.

L I X iao-dong,SHI X iao-chun,CH AO Lei,et al.Phospho rus r emoval efficiency o f blast-furnace slag substrate in co nstr ucted wetland[J].JOU R NA L OF M ET EOR OL OG Y A N D EN VI RON M EN T,2009,25(1):45-48. [21]GO NG G Z,YE S F,T I AN Y J,et al.Prepar at ion of a new so rbent w ith hy dr ated lime and blast furnace slag for

phospho rus remov al fr om aqueous solution[J].Jo urnal o f Hazardous M aterials,2009,166(2/3):714-719.

[22]崔玉波,郭智倩,姜廷亮.低温下人工湿地去除营养物的机理与效能[J].西安建筑科技大学学报:自然科学版,

2008,40(1):121-128.

CU I Yu-bo,G U O Zh-i qian,JIA N G T ing-liang.N utrients remov al mechanisms and per for mance of co nstr ucted wet-lands in co ld climate.J.Xi c an U niv.o f A rch.&T ech.(N atural Science Edit ion),2008,40(1):121-128.

[23]KO RK U SU Z E A,BEK LIO GL U M,DEM IR ER G N.U se o f blast furnace g ranulated slag as a substr ate in ver t-i

cal f low reed beds:F ield applicatio n[J].Bio resource T echno log y,2007,98(11):2089-2101.

[24]翟丽华,何连生,席北斗,等.湿地介质高炉矿渣磷吸附与再生能力研究[J].环境科学,2008,29(12):3410-3414.

Z HA I L-i hua,H E Lian-sheng,X I Be-i dou,et al.Phosphorus adso rption and r eg ener atio n o f electric ar c furnace steel slag as w etland medium[J].Envir onmental science,2008,29(12):3410-3414.

Status of recycling technology of blast furnace slag

CH EN G Fu-an1,2,WE I Rui-li2,L i H ui1,2

(11St ate Key Labor ator y o f A rchitectur e Science and T echno lo gy in West China(XA U A T);

21Institute of Pow er Engineer ing,Schoo l o f M aterial Science and Eng ineer ing,

Xi c an U niv ersity of A rchitecture and T echnolog y,X i c an,710055,China)

Abstract:Blast fur nace slag is a kind o f main industrial by-pro duct generated in iron-making,w hich is often chang ed into gr anulat ed slag by w ater quench coo ling in china at pr esent.Based o n its different pro per ties,t he t echniques of utilizing gr anulat ed blast furnace slag(GBFS)w ere analy zed in building mater ials,fertilizer and sw ag e treatment,and the futur e trends of G BF S reutilizat ion w ere for ecasted.

Key words:bl ast f ur nace slag;building mater ials;f er tiliz e;sw age treatment

*Biography:CH ENG Fu-an,S enior engineer,M as ter,Xi c an710055,P.R.Ch ina,Tel:0086-29-85529986,E-mail:chen gfuan@ https://www.sodocs.net/doc/0010162379.html,

矿渣粉基本知识

矿渣粉基本知识 1、什么是矿渣粉? 矿渣,是高炉炼铁产生的水渣,矿渣粉是高炉水渣通过细磨后,达到 相当细度且符合相当活性指数的粉体。 2、矿渣粉国家标准是什么? 目前执行的国家标准是GB/T18046-2008《用于水泥和混凝土中的粒化 高炉矿渣粉》。 3、什么是矿渣粉的活性指数? 简言之:即用50%矿粉和50%水泥拌合制作标准砂浆试件测试的强度,与用100%水泥制作标准砂浆试件测试强度的百分比,就是矿粉的活性指数。 4、矿渣粉分几个等级? 共分为S105、s95、S75三个级别,具体的意义是:如:S105-28天活性指数不小于105%。也就是说:50%矿粉和50%水泥拌合制作试件测试的强度大于100%水泥制作试件测试强度的105%以上的矿粉才符合S105级的要求。其他依此类推。 5、GB/T18046-2008矿渣粉的技术要求有哪几项? 共10项:密度、比表面积、活性指数、流动度比、含水量、三氧化硫 含量、氯离子含量、烧失量、玻璃体含量、放射性等,如下表:

6、矿渣粉的作用及特点? (1)减少坍落度损失;(2)大大提高混凝土耐久性;(3)对混凝土的显著增 强作用;(4)优良的碱骨料抑制剂y(5)增强混凝土的抗腐蚀性;(6)提 高混凝土的可泵性;(7)减少混凝土泌水。(8)改善了混凝土的微现结构 使水泥浆体的空障率明显下降,强化了集料界面的粘结力,使得混凝土的物理力学性能大大提高(8)减少水泥用量节约成本 8、如何确定矿粉(s95级)在混凝土中的掺量? “单掺”矿粉时,可按等量取代原则并根据以下方法确定矿粉的合适掺量 (1)对于地上结构以及有较高早期强度要求的混凝土结构,掺量一般为2030%。 (2)对于地下结构、强度要求中等的混凝土结构,排量一般为30-50%° (3)对于大体积混凝土或有严格温升限制的混凝土结构,掺量一般为50-65%。 (4)对于有较高耐久性能更求的特殊混凝土结构(如海工防腐蚀结构、污水处理设施等),掺量可达50-70%。 9、销售中客广重点关注哪些矿粉质量指标? (1)矿渣粉的7天活性指数:对于矿粉的28天活性指数一般都能够满足要求,而7天活性指标,就不容易达标了7天活性越高,混凝士里就可以 加矿粉,从而为混凝土企业增加利润。s95级7天活性指数一般要大于75%

GBT18046-2000用于水泥和混凝土中的粒化高炉矿渣粉

用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 18046-2000 发布人:jobin 发布时间:2007年6月11日被浏览1836次 用于水泥和混凝土中的粒化高炉矿渣粉GB/T 18046-2000 0. 前言 粒化高炉矿渣粉是优质的混凝土掺合料和水泥混合材,美国、日本和英国等国都制定了相应标准。本标准非等效采用日本JISA6206:1997《混凝土用高炉矿渣粉》标准,根据7、28d活性指数,同时结合我国粒化高炉矿渣粉生产和应用现状,将高炉矿渣粉分为三级,活性指数检验方法采用我国与国际接轨的水泥胶砂强度检验方法(ISO法),其它试验方法采用我国现行的试验方法标准。 1. 范围 本标准规定了高炉矿渣粉的定义、要求、试验方法、检验规则、包装和储存等。 本标准用于作水泥混合材和混凝土掺合料的粒化高炉矿渣粉的生产和检验。 2. 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB175-1999 硅酸盐水泥、普通硅酸盐水泥 GB/T 176-1996 水泥化学分析方法(eqv ISO680:1990) GB/T203-1994 用于水泥中的粒化高炉矿渣 GB/T208-1994 水泥密度测定方法 GB/T2419-1994 水泥胶砂流动度试验方法 GB/T5483-1996 石膏和硬石膏(neqISO1587:1975) GB/T8074-1987 水泥比表面积测定方法(勃氏法)

GB9774-1996 水泥包装袋 GB 12573-1990 水泥取样方法 GB/T 17671-1999 水泥胶砂强度检验方法(ISO法)(idtISO679:1989) JC/T420-1991 水泥原材料中氯的化学分析方法 JC/T667-1997 水泥粉磨用工艺外加剂 3. 定义 粒化高炉矿渣粉(简称矿渣粉):符合GB/T 203标准规定的粒化高炉矿渣经干燥、粉磨(或添加少许石膏一起粉磨)达到相当细度且符合相应活性指数的粉体。矿渣粉磨时允许加入助磨剂,加入量不得大于矿渣粉质量的1%。 注: 1)石膏:应符合GB/T5483中规定的G类或A类二级(含)以上的石膏或硬石膏。 2)助磨剂:应符合JC/T667的规定,但该标准的基准水泥用50%的硅酸盐水泥和50%的矿渣粉组成。 4. 技术要求 矿渣粉技术指标应符合表1的规定。 表1 矿渣粉技术指标要求

粒化高炉矿渣资源化利用的技术现状_程福安

第42卷第3期2010年6月西安建筑科技大学学报(自然科学版) J1Xi c an U niv.of Ar ch.&T ech.(N atural Science Edit ion) V ol.42N o.3 Jun.2010 粒化高炉矿渣资源化利用的技术现状 程福安1,2,魏瑞丽2,李辉1,2 (11西部建筑科技国家重点实验室(筹);21西安建筑科技大学材料科学与工程学院粉体工程研究所,陕西西安710055) 摘要:高炉渣是炼铁过程中产生的副产品,目前我国普遍采用急冷的方法将高炉渣制备成粒化高炉矿渣.基 于不同的性质,对粒化高炉矿渣在建材、肥料及污水处理中的利用技术进行了详细的介绍,最后对其发展进行 了展望. 关键词:高炉渣;建材;肥料;污水处理 中图分类号:X757文献标识码:A文章编号:1006-7930(2010)03-0446-05 高炉渣是生铁冶炼过程中从高炉排出的一种废渣.在高炉冶炼生铁时,从炉顶加入的铁矿石、焦炭、助溶剂等通过热交换发生复杂的化学反应,当炉温达到1300~1500e时,炉料熔融,矿石中的脉石,焦炭中的灰分和助溶剂等非挥发性组分形成以硅酸盐和铝酸盐为主、浮在铁水上面的熔渣,即高炉渣.通常每炼1t生铁产生高炉渣0.3~0.9t[1].2009年我国生铁产量为54374.8万t,以每生产1t生铁产生0.3t高炉渣计算,产生高炉渣1.6312亿t. 高炉渣出炉后在大量水的作用下被急冷成海绵状浮石类物质,即粒化高炉矿渣.其化学成分与硅酸盐水泥熟料相似,具有较高的潜在活性.经适当处理后被大量作为建筑材料的原料使用,不仅降低熟料消耗、节约能源,还可降低由于CO2排放引起的温室效应和废渣堆放产生的环境污染.目前我国80%的高炉渣为粒化高炉矿渣.基于不同的性质,粒化高炉矿渣的具体利用途径也大相径庭.本文将对粒化高炉矿渣在建材、农肥和污水处理领域的资源化利用技术做较深入的介绍与分析. 1在建材领域的应用 1.1作为水泥混合材料 粒化高炉矿渣具有潜在的水硬性,在水泥熟料、石膏等激发剂的作用下可以显示出水化活性,是生产水泥的优质原料,在扩大水泥品种、增加产量、调节标号、改进性能和保证水泥安定性合格方面发挥着重大作用.在前苏联和日本,约有50%的高炉渣被用于生产水泥.我国用于制备矿渣水泥的高炉渣占利用量的78%左右,约有75%的水泥中掺有粒化高炉渣.根据高炉渣用量和激发剂的不同,可将掺加矿渣的水泥分为普通硅酸盐水泥、矿渣硅酸盐水泥、复合硅酸盐水泥、石膏矿渣水泥、石灰矿渣水泥、钢渣矿渣水泥[1-2].其中普通硅酸盐水泥、矿渣硅酸盐水泥和复合硅酸盐有国家标准.其他应用矿渣的水泥产品尚处于研发阶段. 早期人们制备矿渣水泥采用将水泥熟料和矿渣混合粉磨的方法,但因矿渣的易磨性比熟料差,且矿渣水泥中水泥的粒度一般为300~350m2/kg,而矿渣的粒度较细(450~500m2/kg),在水泥细度合格时,矿渣细度无法达到要求,难以发挥其在水泥中的作用.西安建筑科技大学粉体工程研究所于2002年率先在山西长治年产150万t矿渣水泥生产线工程采用将矿渣和水泥熟料分开粉磨的技术,解决了矿渣超细粉磨的技术难题. 1.2作为混凝土掺合料 矿渣微粉除用于配制矿渣水泥,还可作为高活性的掺合料配制高性能矿渣混凝土.矿渣微粉粒度越 *收稿日期:2009-11-30修改稿日期:2010-04-12 基金项目:中国工程院咨询项目(2009-XZ-06);陕西省重点学科建设专项资金资助项目 作者简介:程福安(1966-),男,陕西铜川人,高级工程师,硕士,主要从事工业固体废弃物的的资源化利用研究.

矿渣粉进场检验标准

矿渣粉进场检验标准 2.3.1 本梁场制梁混凝土采用通化金刚冶金渣综合利用有限公司生产的S95(活性指数)磨细矿渣粉。其各项指标均符合《客运专线预应力混凝土预制梁暂行技术条件》(铁科技[2004]120号)、GB/T18046-2008《用于水泥和混凝土中的粒化高炉矿渣粉》、铁科技[2012]249号文的有关规定。每批进场矿渣粉须有质保书或试验报告单,其性能指标见表 2.3。磨细矿渣粉进场必须附有出厂证明书、试验报告单。每批不大于120t同厂家、同批号、同品种、同出厂日期磨细矿渣粉,需要进行进场抽验,任何新选货源或使用同厂家、同批号、同品种、同出场日期产品达3个月者,进场需要全面检验。 表2.3 矿渣粉性能指标及检验频率 序号检验项目标准要求抽验项 目 全检项 目 备注 1 密度, g/m2≥2.8 √ 2 比表面积, m2/kg 400~500 √√ 3 烧失量,%≤3.0 √√ 4 氧化镁含量,%≤14 √ 5 三氧化硫含量,%≤4.0 √ 6 Cl-含量,%≤0.02 √ 7 含水率,%≤1.0 √ 8 流动度比,%≥95 √√

序号检验项目标准要求抽验项 目 全检项 目 备注 9 碱含量,%/ √ 10 活性指 数,% 7d ≥75 √√ 28d ≥95 2.3.2 首批进场的磨细矿渣粉必须进行全项目检验,全检项目为:密度、比表面积、烧失量、氧化镁含量、三氧化硫含量、氯离子含量、含水率、流动度比、碱含量、活性指数,其中碱含量、氯离子含量由制梁场试验室委托铁道部产品质量监督检验中心铁道建筑检验站或桥梁与基础检验站进行检验,随机的抽取不少于20kg矿渣粉作为检验试样。试验室抽检项目为:密度、比表面积、烧失量、需水量比、流动度比、活性指数。 2.3.3 磨细矿渣粉进场后,由设备物资部对进场矿渣粉核查生产厂名、品种、等级、重量、出厂日期、出厂编号等,作好记录,并由设备物资部委托梁场试验室按规定取样做常规检验。经检验确认符合相关技术要求后,由试验室向设备物资部、安质部提交检验报告单后,方可使用。 2.3.4 检验方法符合GB/T18046-2008《用于水泥和混凝土中的粒化高炉矿渣粉》标准中的规定。 2.3.5 检验结果评定 2.3.5.1 符合本细则2.3要求的为合格品。若其中任何一项不

国内矿渣综合利用现状

xx大学xx (250022) 一、国内矿渣综合利用现状 矿渣是黑色冶金工业的主要固体废弃物,2005年我国产钢3.49亿吨,冶炼废渣产生14619万吨,(其中钢渣约为5000万吨,高炉矿渣约9000万吨),综合利用12848万吨,加上历年累积,总贮存量为2亿吨,占地3万亩,这些露天储存的冶炼废渣堆存侵占土地,污染毒化土壤、水体和大气,严重影响生态环境,造成明显或潜在的经济损失和资源浪费。据估算以每吨冶炼废渣堆存的经济损失14.25元计,每年造成经济损失28.5亿元。所以,冶炼废渣的无害化、资源化处理是我国乃至世界各国十分重视的焦点,也是我们推进循环经济的中心内容之一。 矿渣在水泥工业中的综合利用主要经过了三个阶段。 1.第一阶段主要是在1995年以前,粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 2.第二阶段是1995~2000年,学习国外技术,矿渣微粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣微粉比表面积要达到 600m2/kg以上,国内仅有几家粉磨站生产。主要原因是: 进口设备价格昂贵、生产线投资相当大。以年产30万吨矿渣微粉生产线为例,一次性投资至少在5000万元左右。 3.第三阶段是在2000年之后,粉磨设备节能技术和矿渣微粉应用经济技术研究的深入,使广大水泥企业认识到,矿渣微粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣微粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环经济的大力发展,矿渣微粉的产量年年翻番,目前已接近1000万吨/年,建材行业内一个新兴产业正逐步在形成。 二、什么是矿渣

高炉渣处理、回收利用技术的现状

高炉渣处理、回收利用技术的现状与进展 学院:矿业工程学院 班级:矿加10 姓名:范明阳 学号:120103707026

高炉渣处理、回收利用技术的现状与进展 范明阳 (辽宁科技大学矿业工程学院) 摘要:介绍了目前国内外高炉渣处理、回收利用的现状,对比分析了高炉渣各种处理工艺的优点和不足,指出目前的高炉渣处理存在新水消耗大、炉渣物理热无法回收和二氧化硫、硫化氢等污染物排放的问题,提出了解决高炉渣处理和回收利用过程中渣粒化及热量回收问题的新方法,并展望了高炉渣综合利用的发展趋势. 关键词:高炉渣;处理;回收利用;发展趋势 Abstract:The current status of the recovery and utilization of blast furnace slag both at home and abroad a.re described,andthe advantages and the disadvantages of various treatment processes compared in the present discussion.It is indieated thatthe treatment method of blast furnace slag now in use has the shortcomings of large fresh water consumption,impossibility torecover the physical heat of the slag,and emission of contaminants SO2 and H2 S. Key words:blast furnace slag;treatment;recovery and utilization;developing trend 0 .前言 钢铁工业是我国国民经济的重要基础产业.高炉渣是一种性能良好的硅酸盐材料,可作为生产水泥的原料.高炉渣的主要成分是氧化钙、氧化镁、三氧化二铝、二氧化硅,属于硅酸盐质材料,其化学组成与天然矿石、硅酸盐水泥相似.在急冷处理的过程中,熔态炉渣中的绝大部分物质没能形成稳定的化合物晶体,以无定形体或玻璃体的状态将没能释放的热能转化为化学能储存起来,从而具有潜在的化学活性,是优良的水泥原料.据统计,我国冶金企业每年用于处理废弃炉渣资金高达上亿元,尤其是对于高炉渣的显热,国内还没有一家钢铁联合企业将

国内外粒化高炉矿渣粉标准及产业发展概况

国内外粒化高炉矿渣粉标准及产业发展概况近年来我国矿渣粉行业产能过剩严重,产品竞争激烈。国内有些矿渣粉企业为求发展,在深挖国内市场的同时,将眼光聚焦海外。高炉矿渣经不同处理方法形成的几种产物,在世界各国的矿渣市场上分别占有不同的比例。只有掌握当地标准并了解当地的市场行情,才能切实保证企业和用户的利益。本文通过对磨细粒化矿渣粉生产及应用较为活跃的国家和地区的标准、产业发展情况调研,对比中国国标和其他国家标准的异同,研究矿粉走出国门的标准,集中讨论磨细粒化高炉矿渣粉作为混凝土掺合料标准和各国产业发展情况(对钢渣、矿渣骨料等其他产品不做讨论),旨在为国家标准和行业标准与国际标准对接提供技术依据,为准备进军海外市场的厂家提供研究方向和参考依据。 一、总体概念、分类、产出流程及发展 当今世界主流的炼钢方法主要分成两种:一种是高炉、转炉(BOF)炼钢法,另一种是电弧炉(EAF)炼钢法(如图1所示)。目前在世界范围内,高炉、转炉法生产的生钢产量约占总产量的71%,电弧炉炼钢法的产量占29%[1]。高炉矿渣是高炉炼铁时所排出的一种废渣。高炉矿渣的处理方法根据冷却方式不同,主要分为水淬渣、气冷渣和造粒渣三种产品。水淬渣指的是高炉渣经冷水急速冷却形成的5毫米以下粒径的高炉水淬渣颗粒,以高炉水淬渣为主要原料,经干燥、粉磨处理而制成的粉末材料,即为磨细高炉矿渣粉。高炉矿渣粉中玻璃质占80%~90%,具有潜在水硬性,用于混凝土中可增加混凝土强度、提高耐久性,多应用于水泥厂作为混合材料以及混凝土搅拌站作为掺合料。气冷渣指的是高炉渣在空气中慢慢冷却后,经破碎、筛分等处理而形成的块状颗粒,一般用于公路建设或混凝土中取代部分天然砂石。造粒渣是指高炉渣在空气中快速冷却后,经造粒处理形成的20毫米以下粒径的颗粒,较细的颗粒经破碎、粉磨等处理后可

矿渣微粉质量技术标准范文

矿渣微粉质量技术 标准

QB 佳木斯市松江水泥有限公司质量技术标准 QB/ZL 1006- 受控状态 分发号 程序编号: -03-01制订 -04-26实施佳木斯市松江水泥有限公 司化验室制订

QB/SJJC001-- 佳木斯市松江建材有限公司 粒化高炉矿渣粉质量技术标准 1. 范围 本标准规定了粒化高炉矿渣粉的定义、组分与材料、粒化高炉矿渣粉的质量技术要求及试验方法、检验规则、包装标志、运输和贮存等。 本标准适用于佳木斯市松江建材有限公司粒化高炉矿渣粉的生产、检验与销售。 2.规范性引用文件 GB/T 18046 用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 203 用于水泥中的粒化高炉矿渣 3.术语和定义 下列术语和定义适用于本标准 3.1 粒化高炉矿渣 在高炉冶炼生铁时,所得以硅铝酸钙为主要成分的熔融物,经淬冷成粒后,具有潜在水硬性材料,即为粒化高炉矿渣(简称矿渣) 3.2 粒化高炉矿渣粉 以粒化高炉矿渣为主要原料,可掺加少量石膏或粉煤灰制成一定细度的粉体,称作粒化高炉矿渣,简称矿渣粉。

4.组分与材料 4.1 矿渣 符合GB/T 203 规定的粒化高炉矿渣。 4. 1 .1 进厂矿渣水分≤10.0%,烘干矿渣水分≤2.0%, 4.1.2 质量系数K≥1.2 4.1.3 目测矿渣中不得混有外来夹杂物,如含有铁尘泥,未经充分淬冷矿渣等。 4.2 石膏 符合GB/T 5483中规定的G类或M类二级(含)以上的石膏或混合石膏。 4.3 粉煤灰 符合GB/T 1596 中规定的F类或C类粉煤灰。 4.4 助磨剂 符合JC/T 667的规定,其中加入量不应超过矿渣粉质量的0.5%。 5.矿渣粉质量技术标准 矿渣粉应符合下表的技术指标规定 QB/SJJC001--

粒化高炉矿渣知识汇总

粒化高炉矿渣 粒化高炉矿渣是在高炉冶炼生铁时,所得以硅酸盐与硅铝酸盐为主要成分的熔融物,经淬冷后来不及结晶而形成的细颗粒状玻璃态物质。 一、矿渣在水泥工业中的综合利用主要经过了三个阶段: 第一阶段(1995年以前)粒化高炉矿渣主要是作为水泥混合材使用。以混合粉磨为主。矿渣由于难磨,在水泥中的掺量有限,一般不超过30%。 第二阶段(1995~2000年)学习国外技术,矿渣粉作为高性能混凝土的高掺合料,在建筑工程中推广使用。但要求矿渣粉比表面积要达到600m2/kg以上,国内仅有几家粉磨站生产。主要原因是:进口设备价格昂贵、生产线投资相当大。 第三阶段(2000年后)矿渣粉最经济的粉磨细度应控制在400m2/kg左右。这样的矿渣粉,既能直接供给混凝土搅拌站作掺合料,又能与熟料、石膏粉合成高掺量矿渣水泥。随着循环目前已接近一亿吨/经济的大力发展,矿渣粉的产量年年翻番,年,正在国内形成一个生产建材的新兴产业。 二、什么是矿渣 “矿渣”的全称是“粒化高炉矿渣”它是钢铁厂冶炼生铁时产生的废渣。在高炉炼铁过程中,除了铁矿石和燃料(焦炭)之外,为降低冶炼温度,还要加入适当数量的石灰石和白云石作为助熔剂。它们在高炉内分解所得到的氧化钙、氧化镁、和铁矿石中的废矿、以及焦炭中的灰分相熔化,生成了以硅酸盐与硅铝酸盐为主要成分的熔融物,浮在铁水表面,定期从排渣口排出,经空气或水急冷处理,形成粒状颗粒物,这就是矿渣。含有95%以上的玻璃体和硅酸二钙,钙黄长石、硅灰石等矿物,与水泥成份接近。 未经淬水的矿渣,其矿物这些形态呈稳定形的结晶体,结晶体除少部分C2S尚有一些活性外,其它矿物基本上不具有活性。如经淬水急冷,形成了玻璃态结构,就使矿渣处于不稳定的状态。因而具有较大的潜在化学能。出渣温度愈高,冷却速度愈快,则矿渣玻璃化矿渣的潜在化学能程度愈高,愈大,活性也愈高。因此,经水淬急冷的高炉矿渣的潜在活性较好。 每生产1吨生铁,要排出0.3-1吨矿渣。 表1我国部分钢铁厂的高炉矿渣化学成分

高炉炉渣资源化利用研究与现状

高炉炉渣资源化利用研究与现状 摘要:钢铁生产行业在高速发展的同时,高炉炼铁工艺产生的高炉渣不断累积。由于缺乏有效的资源化利用方式,高炉矿渣就地堆积,占用了大量土地资源,并对周边的土壤及水体环境造成了污染。有效利用高炉矿渣等二次资源,减少高炉矿渣对环境的污染,达到高炉矿渣的减量化、无害化、资源化处理,并进一步提高高炉矿渣基产品的附加值,是我国钢铁行业可持续发展的有力保障,对于建立环境友好型、资源节约型社会具有促进意义。 关键词:高炉矿渣;制备方法;陶瓷纤维;资源化 高炉矿渣是在高炉炼铁过程中,铁矿石中含有的SiO},A1}03等杂质与熔剂中的CaO,Mg0等反应生成硅酸盐熔融物,经水淬处理得到含有较多孔隙且无定形、不规则的副产物[y0作为我国国民经济一大支柱的钢铁生产行业,在全行业高速发展的同时,其主要的冶炼工艺—高炉炼铁工艺产生的高炉矿渣不断累积。由于缺乏有效的资源化利用方式,高炉矿渣就地堆积,占用了大量的土地资源,并对周边的土壤及水体环境造成了污染。就普通的炼铁工艺而言,每冶炼It铁矿石会产生0.5一0.9t的矿渣,如不能合理地处理大储存量的高炉矿渣,不仅会造成环境污染,浪费大量能源,且会给我国经济建设带来巨大的压力,不利于钢铁行业的可持续发展。近年来,国内的高炉矿渣主要应用于建筑材料和混凝土掺合料,其附加值较低,大量高炉矿渣等二次资源被浪费。因此,如何对高炉矿渣更好的资源化利用,是当今钢铁行业面临的又一主要问题[0据不完全统计,我国矿业固体废弃物累计超过70亿t,占地6万多h时。高效的开发和利用工业二次资源,变废为宝、化害为利,实现工业的可持续发展显得尤为重要[[3]

2 GBT 18046-2008用于水泥和混凝土中的粒化高炉矿渣粉

用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 18046-2008 标准发布单位:国家技术监督局发布 1范围 本标准规定了粒化高炉矿渣的定义、组分与材料、技术要求、试验方法、检验规则、包装、标志、运输和贮存等。 本标准适用于作水泥活性混合材和混凝土掺合料的粒化高炉矿渣粉。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB 175 通用硅酸盐水泥 GB/T 176 水泥化学分析方法(GB/T 176-1996,eqv ISO 680:1990) GB/T 203 用于水泥中粒化高炉矿渣 GB/T 208 水泥密度测定方法 GB/T 2419 水泥胶砂流动度测定方法 GB/T 5483 石膏和硬石膏(GB/T 5483-1996,neq ISO 1587:1975) GB 6566 建筑材料放射性核素限量 GB/T 8074 水泥比表面积测试方法(勃氏法) GB 9774 水泥包装袋 GB 12573 水泥取样方法 GB/T 17671 水泥胶砂强度检验方法(ISO法)(GB/T 17671-1999,idt ISO 679:1989)》JC/T 420 水泥原材料中氯的化学分析方法 JC/T 667 水泥助磨剂 3术语和定义 下列术语和定义适用于本标准。 粒化高炉矿渣粉:以粒化高炉矿渣为主要原料,可掺加少量石膏磨细制成一定细度的粉体,称作粒化高炉矿渣粉,简称矿渣粉。 4组分与材料 4.1矿渣

矿渣微粉质量技术标准

QB 佳木斯市松江水泥有限公司质量技术标准 QB/ZL 1006-2011 受控状态 分发号 程序编号: 2011-03-01制订2011-04-26实施佳木斯市松江水泥有限公司化验室制订

QB/SJJC001--2010佳木斯市松江建材有限公司 粒化高炉矿渣粉质量技术标准 1. 范围 本标准规定了粒化高炉矿渣粉的定义、组分与材料、粒化高炉矿渣粉的质量技术要求及试验方法、检验规则、包装标志、运输和贮存等。 本标准适用于佳木斯市松江建材有限公司粒化高炉矿渣粉的生产、检验与销售。 2.规范性引用文件 GB/T 18046 用于水泥和混凝土中的粒化高炉矿渣粉 GB/T 203 用于水泥中的粒化高炉矿渣 3.术语和定义 下列术语和定义适用于本标准 3.1 粒化高炉矿渣 在高炉冶炼生铁时,所得以硅铝酸钙为主要成分的熔融物,经淬冷成粒后,具有潜在水硬性材料,即为粒化高炉矿渣(简称矿渣) 3.2 粒化高炉矿渣粉 以粒化高炉矿渣为主要原料,可掺加少量石膏或粉煤灰制成一定细度的粉体,称作粒化高炉矿渣,简称矿渣粉。 4.组分与材料 4.1 矿渣 符合GB/T 203 规定的粒化高炉矿渣。 4. 1 .1 进厂矿渣水分≤10.0%,烘干矿渣水分≤2.0%, 4.1.2 质量系数K≥1.2 4.1.3 目测矿渣中不得混有外来夹杂物,如含有铁尘泥,未经充分淬冷矿渣等。 4.2 石膏 符合GB/T 5483中规定的G类或M类二级(含)以上的石膏或混合石膏。 4.3 粉煤灰 符合GB/T 1596 中规定的F类或C类粉煤灰。 4.4 助磨剂 符合JC/T 667的规定,其中加入量不应超过矿渣粉质量的0.5%。 5.矿渣粉质量技术标准 矿渣粉应符合下表的技术指标规定

钢渣与矿渣的区别

矿渣与钢渣的区别 高炉矿渣 高炉矿渣是冶炼生铁时从高炉中排出的一种废渣。在高炉冶炼生铁时,从高炉加入的原料,除了铁矿石和燃料(焦炭)外,还要加入助熔剂。当炉温达到1400-1600℃时,助熔剂与铁矿石发生高温反应生成生铁和矿渣。 高炉矿渣是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质组成的,是一种易熔混合物。例如采用贫铁矿炼铁时,每吨生铁产出1.0-1.2t高炉渣;用富铁矿炼铁时,每t生铁只产出0.25t高炉渣 按照高炉矿渣化学成分中的碱性氧化物的多少。高炉矿渣又可分为碱性矿渣、中性矿渣和酸性矿渣。高炉熔渣用大量水淬冷后,可制成含玻璃体为主的细粒水渣,有潜在的水硬胶凝性能,在水泥熟料、石灰、石膏等激发剂作用下,显示出水硬胶凝性能,是优质水泥原料。我国生产的水泥有70%-80%掺用了不同数量的水渣。水渣还可作保温材科,湿碾和湿磨矿渣,混凝土和道路工程的细骨料;土壤改良材料等。 钢渣 钢渣是炼钢过程中排出的废渣,按其炼钢炉型区分有平炉渣、转炉渣、电炉渣三大类。大约每炼1t钢,排渣0.25t左右。 炼钢炉出渣往往在出钢前后分几次排出(或扒出)。例如转炉炼钢有前期渣和后期渣;平炉炼钢有初期渣、中期渣、后期渣,还有粘

在钢水包等处的残余渣;电炉炼钢有氧化渣和还原渣。另外用生铁或废铁炼钢,在化铁炉中先熔化成铁水,所产生的废渣称为化铁炉渣。 钢渣的成分一般含有:CaO40%~50%、MgO5%~10%、SiO210%~20%,FeO和Fe2O3 15%~25%,其主要矿物组成为硅酸二钙、硅酸三钙、铁酸钙及RO等,它与水泥熟料的化学成分相似,具有水硬胶凝性,因此被人们称为劣质熟料。 钢渣的处理工艺主要有冷弃法、热泼法、盘泼水冷法、钢渣水淬法。

高炉渣的综合利用。

再生金属冶金学课程论文 高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第

普通高炉炼铁渣的利用现状

普通高炉炼铁渣的利用现状 随着我国钢铁工业的发展,高炉矿渣排量日益增多,我国每年排放高炉渣达数千万吨,而这些炉渣都用到什么地方了呢? 首先,我们先来了解一下什么是高炉渣,高炉矿渣是冶炼生铁时从高炉中排出的一种废渣,是由脉石、灰分、助熔剂和其他不能进入生铁中的杂质所组成的易熔混合物,从其化学组成成分上来看,主要是SiO2、CaO、Al2O3等,这些成分都属于硅酸盐质,便于加工成多品种的建筑材料;除此之外,高炉矿渣还可以用来生产一些用量不大而产品价值高,又有特殊性能的高炉渣产品。 我们通过对相关资料的了解,大体上总结了一下当今普通高炉炼铁渣的利用情况。下面详细介绍一下具体的利用途径。 (一)在建筑材料方面的应用,从《高炉矿渣处理和利用》[1]一文中,我们了解了高炉炼铁渣在建筑方面的利用,例如,水淬成粒状矿渣(简称水渣)是生产水泥、矿渣砖瓦和砌块的好原料;经急冷加工成膨胀矿渣珠或膨胀矿渣,可做轻混凝土骨料;吹制成矿渣棉可制造各种隔热、保温材料;轧制成型可做微晶玻璃。 生产的矿渣水泥包括以下几种:1、矿渣硅酸盐水泥;2、石膏矿渣水泥;3、石灰矿渣水泥。它们都是将矿渣与其他生产水泥的原材料按一定比例配合磨细而成的。这种水泥对其抗拉和抗压强度没什么影响,具有较好的抗硫酸盐侵蚀和抗渗透性,生产成本较低。 矿渣砖是用水渣加入一定量的水泥等胶凝材料,经过搅拌、成型和蒸汽养护而成的,用于普通房屋建筑和地下建筑,这样就节省了普通砖的消耗量。 膨胀矿渣珠主要用作混凝土轻骨料,也用作防火隔热材料,用膨胀矿渣制成的轻质混凝土,不仅可以用于建筑物的围护结构,而且可以用于承重结构。并且具有工艺简单,不用燃料,成本低廉等优点。 矿渣棉是以矿渣为主要原料,在熔化炉中熔化后获得熔融物再加以精制而得到一种白色棉状矿物纤维。它具有保温、隔音、绝冷等性能。 微晶玻璃[2]是综合玻璃和陶瓷技术发展起来的一种新型材料, 微晶玻璃是由结晶相与玻璃相组成,其物理化学性能集中了玻璃和陶瓷的双重优点, 既具有陶瓷的强度, 又具有玻璃的致密性和耐酸、碱、盐的耐蚀性。 (二)上文提及的利用途径在当前的技术已经是十分成熟的了,所以高炉渣的利用必然向一个更高层次发展,经过近几年的研究,又开发出来了高炉渣新的利用途径,从其简单的物理

粒化高炉矿渣粉检测实施细则

粒化高炉矿渣粉检测实施细则 1. 适用范围、检测项目及技术标准 1.1适用范围 用于水泥和混凝土中的粒化高炉矿渣粉(简称矿渣粉)、 1.2检测参数 比表面积、含水量、密度、流动度比、活性指数、烧失量、三氧化硫。 1.3技术标准 1.3.1产品标准(判定标准)及其需引用标准 GB/T 18046-2008 用于水泥和混凝土中的粒化高炉矿渣粉 1.3.2试验方法标准及其需引用标准 a.G B/T 176-2008 水泥化学分析方法 b.GB/T 208-1994 水泥密度测定方法 c.G B/T 2419-2005 水泥胶砂流动度测定方法 d.GB/T 8074-2008 水泥比表面积测定方法(勃氏法) e.G B 12573-2008 水泥取样方法 f.GB/T 17671-1999 水泥胶砂强度检验方法(ISO法) 2. 检测环境条件 a. 试件成型试验室的温度应保持在20℃±2℃、相对湿度不低于50%。 b. 试件养护池水温应保持在20℃±1℃范围内。 3. 检测设备和标准物质 3.1 检测设备

见表1 3.2标准物质 GSB14-1511水泥细度和比表面积标准粉。 表1 4. 取样方法及试样数量 对于同一产家、同一等级、同一品种、连续进场且不超过10d的掺合料为一验收批,但一批的总量不宜超过200t。不足200t者应按一验收批进行验收。 取样按GB 12573-2008规定进行,取样应有代表性,可连续取样,也可以在

20个以上部位取等量样品总量至少

20kg。试样应混合均匀,按四分法缩取出比试验所需量大一倍的试样(称平均样)。 5. 检测方法 5.1 比表面积 5.1.1设备、标准、环境检查 检查核对所需设备正常与否,必要时作记录; 检查核对产品标准和试验方法标准,并记录; 检查核对环境温度,并记录。 5.1.2试样检查 核对和检查试样是否符合要求,并记录。 5.1.3 检测与计算 5.1.3.1检测 检测依据标准:GB/T 8074-2008。 操作步骤、细节,注意事项: 5.1. 3.1.1仪器校准 a.仪器的校准采用GSB 14-1511或相同等级的其他标准物质。有争议时以前者为准。 b.校准周期:至少每年进行一次。仪器设备维修后也要重新标定。 5.1.3.1.2操作步骤 a.测定矿渣粉密度 按GB/T 208测定矿渣粉密度。 b.漏气检查

矿渣知识简介

矿渣知识简介 高炉矿渣是高炉炼铁过程中,由矿石中的脉石,燃料中的灰分和助熔剂(石灰石)等炉料中的非挥发组分形成的废物。主要有高炉水渣和重矿渣之分。高炉水渣是炼铁高炉排渣时,用水急速冷却而形成的散颗粒状物料,其活性较高,目前这类矿渣约占矿渣总量的85%左右。重矿渣是指在空气中自然冷却或极少量水促其冷却形成容重和块度较大的石质物料。 高炉矿渣的主要成分是由CaO、MgO、Al2O3、MgO、SiO2、MnO、Fe2O3等组成的硅酸盐和铝酸盐。SiO2和MnO主要来自矿石中的脉石和焦碳的灰分,CaO 和MgO主要来自熔剂。上述四种主要成分在高炉矿渣中占90%以上。根据铁矿石成分、熔剂质量、焦碳质量以及所炼生铁种类不同,一般每生产1吨生铁,要排出0.3~1.0吨废渣,因此它也是一种量大面广的工业废渣。 粒化高炉矿渣是一种具有良好的潜在活性的材料,它已成为水泥工业活性混合材的重要来源。水泥企业使用粒化高炉矿渣可以扩大水泥品种、改善水泥性能(抗蚀性)。粒化高炉矿渣的活性以质量系数K=(CaO+MgO+Al2O3)/(SiO2+MnO+TiO2)来衡量,系数大则活性高。高炉矿渣的活性与化学成分有关,但更取决于冷却条件。慢冷的矿渣具有相对均衡的结晶结构,主要矿物为钙铝黄长石、镁黄长石、钙长石、硫化钙、硅酸二钙等。除硅酸二钙具有缓慢水硬化性外,其他矿物成分常温下水硬性很差。水淬急冷阻止了矿物结晶,因而形成大量的无定形活性玻璃体结构或网络结构,具有较高的潜在活性。在激发剂的作用下,其活性被激发出来,能起水化硬化作用而产生强度。 在利用高炉矿渣前,需要进行加工处理,根据用途不同,通常是把高炉矿渣加工成水渣、矿渣碎石、膨胀矿渣和膨胀矿渣珠等形式加以利用。其中水渣可用于生产水泥、砖和混凝土制品,而矿渣碎石、膨胀矿渣和膨胀矿渣珠则多用作骨料来制耐热、轻质混凝土。 水渣具有潜在的水硬性胶凝性能,在水泥熟料、石灰、石膏等激发剂作用下,可显示出水硬胶凝性能,是优质的水泥原料。水渣既可以作为水泥混合料使用,也可以制成无熟料水泥。

高炉渣的综合利用。

高炉渣的综合利用 摘要 高炉渣是高炉炼铁过程中排出的固体废弃物,随着弃置量增大,产生的问题也日趋严重。通过分析我国高炉渣的现状及特点,阐述了对其综合利用的重要意义,回顾了高炉渣综合利用的研究进展。系统地介绍了高炉渣在制备混凝土材料、矿渣砖、墙体材料和新型矿棉、微晶玻璃等材料的应用情况。阐述了二次资源综合利用的社会效益、经济效益和环境效益。从资源有效利用和产业化的角度,指出了未来高炉渣的技术开发与综合利用的发展方向。 关键词: 高炉渣;利用途径;综合利用;矿棉;微晶玻璃; 前言 高炉渣是冶金行业产生数量最多的一种副产品,其处理过程中不仅消耗大量的能源,同时也排出大量的有害物质。因此,开展高炉渣回收利用方面的研究十分必要。国内外的生产企业十分注重高炉渣再利用技术的研究,近年来从能源节约和资源综合利用来看,提高炉渣的利用率和再利用价值,寻求高炉渣资源化利用新途径和利用高炉渣开发高附加值产品已成为国内外研究的热点。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 本文阐述了高炉矿渣的分类及主要成分,本着综合利用的原则,详细介绍了各种高炉矿渣的综合利用途径及工艺。积极探索利用量大、附加值高的高炉渣利用新途径以促进经济社会与环境协调发展。 研究背景 我国工业发展长期以来侧重于资源密集型产业,由此造成的大量工业固体废弃物处理问题也随着经济发展而不断突出。工业废物数量庞大,种类繁多,成分复杂,不仅占用大量土地,而且污染环境经过日晒、风吹雨淋,造成二次污染[1]。工业固体废弃物资源的回收再利用产业,是国内外循环经济发展的一个重要链条,发达国家已将其视为继现有三大产业之后的又一个重要产业支柱,又称“第

中国建筑学会标准《混凝土用超细高炉矿渣粉》

中国建筑学会标准 《混凝土用超细高炉矿渣粉》编制说明 《混凝土用超细高炉矿渣粉》 标准编制组 2018年6月

一、工作简况 1. 任务来源 《混凝土用超细高炉矿渣粉》团体标准计划项目是中国建筑学会下达的“关于发布《2017年中国建筑学会标准编研计划(第一批)》的通知”(建会标[2017]3号),该标准的归口单位为中国建筑学会。该标准由中清华大学负责起草,并牵头组织相关单位共同完成。 2. 制定目的 矿物掺合料的活性与其颗粒细度密切相关,近些年,随着粉磨工艺的提高和高效助磨剂的使用,将矿物掺合料进一步磨细的能耗已明显降低,这为开发更高活性的矿物掺合料提供了基础。矿渣的易磨性好,且进一步磨细对其活性的提升效果明显,矿渣粉的生产工艺已较为成熟。通过制定混凝土用超细高炉矿渣粉(以下简称超级矿渣粉)的产品标准,对其性能、规格、质检方法做出技术规定,可以为组织生产、出厂检验和技术交流等提供依据,从而促进超细矿渣粉产业的良性发展。 将超细矿渣粉应用于普通混凝土可以降低水泥用量,且超细矿渣粉是适合制备高强混凝土的掺合料,此外,超细高炉矿渣粉对改善混凝土的抗氯离子侵蚀和抗硫酸盐侵蚀能力的效果明显,因此超细矿渣粉在混凝土中的应用将越来越广泛。随着本标准的推出,超细矿渣粉在生产上更加有序,在应用中更加科学合理,必将明显推动其应用范围和规模的扩大,应用市场大幅增长。 3. 主要的工作过程 为顺利完成标准制定任务,清华大学牵头成立了《混凝土用超细矿渣粉》协会标准编制组。标准编制组由清华大学、四川绵筑新材料有限公司、国家建筑工程质量监督检验中心、中国建筑材料科学研究总院、金泰成环境资源股份有限公司、武汉武新新型建材股份有限公司、新加坡昂国集团、北京交通大学、青岛理工大学、北京东方建宇混凝土科学技术研究院、北京市中超混凝土有限责任公司、中国建筑股份有限公司、济南大学、华南理工大学、中国建筑科学研究院、武汉三源特种建材有限责任公司等16个生产企业、科研单位、施工企业组成,由清华大学王强副教授担任主编。标准编制组涵盖了国内主要的混凝土用超细矿渣粉

GBT18046《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》新旧国家标准的对比及分析

一、前言 新国家标准GB/T 18046-2017《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》于2017年12月29日正式发布,2018年11月1日开始实施。最近,从国内几家权威检测单位了解到,各家正在做新标准检测的相关认证工作,相信很快就会依照新的国家标准对来样进行检测。为了更好地了解修订后的标准,现将GB/T 18046《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》新旧标准中参数的变化及变化原因做初步分析,希望能对矿渣粉行业内的生产单位以及下游应用单位及相关技术人员有一定的参考作用。 二、矿渣粉相关标准的制订和发展 矿渣粉作为混凝土高性能化的重要矿物掺合料,生产规模日益壮大,业已成为独立于水泥的另一个产业板块。为了规范矿渣粉的生产和推广其使用,我国自上个世纪九十年代末开始,陆续颁布了多个地方标准、行业标准和国家标准,对矿渣粉的定义及其相关产品的品质做了相应的规定和要求。据我们的不完全统计,目前我国涉及或引用到高炉矿渣粉和/或GB/T 18046产品的相关标准众多,举例如表1所示。

据此可知,我国目前建筑施工中有大量的标准或规范涉及矿渣粉产品,而直接采用或间接引用国标GB/T 18046中的技术指标要求,是最通用的做法。因此,GB/T 18046作为矿渣粉产品最根本和重要的技术标准。 三、新旧标准变化的原因 1、矿渣粉的行业地位 矿渣是钢铁企业在炼铁过程中产生的最主要的副产品,也是生产优质水泥混合材以及高性能混凝土掺合料的重要原材料。根据发达国家的应用实例,矿渣粉在建筑胶凝材料中的掺合量已达到70%以上,一些欧洲国家甚至允许掺到85-90%,是的重要的资源再生型低碳绿色建筑材料。 我国大型立磨矿渣粉生产和应用虽然起步较晚(1997年建成第一条立磨矿渣粉生产线),但发展十分迅速。根据中国矿渣粉网的统计数据显示,2013年,我国矿渣粉产量已超过 1.2亿吨,位列世界第一。虽然,近几年我国矿渣粉总产量略有下降,但基本徘徊在1亿吨左右。 矿渣粉由于具有“产量大”、“掺量大”以及在水泥混凝土中“性能优”三大特征,决定了矿渣粉具有完全独立于其他混合材的优先地位;矿渣粉行业的生产规模使其成为仅次于水泥行业的一个独立的的行业板块,矿渣粉的行业地位是粉煤灰、硅灰、磷渣粉等其它混合材无法比拟的。 2、矿渣粉行业面临的问题 我国矿渣粉行业也产生了一些新问题,而且越来越突出,急需解决。 1)矿渣粉行业规模大,但缺乏相关规范认证以及监管制度。目前矿渣粉企业较多,

矿渣粉简介

什么是矿渣粉? 矿渣粉是粒化高炉矿渣粉的简称,是一种优质的混凝土掺合料,由符合GB/T203标准的粒化高炉矿渣,经干燥、粉磨,达到相当细度且符合相当活性指数的粉体。 矿渣粉分几个等级? 共分为S105、S95、S75三个级别。 矿渣粉的技术要求有哪几项? 按国标《用于水泥和混凝土中的粒化高炉矿渣粉》(GB/T18046-2000)规定,对矿渣粉有八项技术要求:密度、比表面积、活性指数、流动度比、含水量、三氧化硫含量、氯离子含量、烧失量。具体指标列于下表: 矿渣粉的技术指标(GBT18046-2000) 矿渣粉的作用: 1、减少水泥用量节约成本 2、降低混凝土水化热,提高混凝土强度。 3、善了混凝土的微观结构,使水泥浆体的空隙率明显下降,强化了集料界面的粘结力,使得混凝土的物理力学性能大大提高 矿渣粉的价格: 离岸价:220元人民币 粒化高炉矿渣(GBFS)和粒化高炉矿渣粉(GGBFS)。粒化高炉矿渣粉(简称GGBFS,或GGBFS POWDER), S95级,符合国标GB/T18046-2000标准,具有细度小,比面积适宜,早强快硬,水泥强度与混凝土强度相关性好,抗冻,耐磨,耐侵蚀 等特点,广泛应用于桥梁,隧道,涵渠,高层楼房等工程.供给出口和国内水泥等行

业。产品出口亦符合BS6699-1992英国标准。出口采用2000kg太空袋或50kg 袋... 矿渣品质要求 国家标准(GB/203-94)对粒化高炉矿渣的质量要求规定如下: 1、粒化高炉矿渣的质量系数K应不小于1.2;(企业内控标准不小于1.6) 2、粒化高炉矿渣中锰化合物的含量,以MnO计不得超过4%,锰铁合金粒化高炉矿渣的MnO允许放宽到15%;硫化物含量(以硫计)不得超过3%;氟化物含量(以氟计)不得大于2%; 3、粒化高炉矿渣的松散容量不大于1.2kg/L,最大直径不得超过100mm,大于10mm颗粒含量(以重量计)不大于8%; 4、粒化高炉矿渣不得混有外来夹杂物,如铁尖泥,未经淬冷的块状矿渣等; 5、矿渣在未烘干前,其贮存期限从液冷成粒时算起,不宜3个月。 矿渣粉质量标准 国家标准(GB/T18045-2000)<用于水泥和混凝土中的粒化高炉矿渣粉>有如下规定: 1、粒化高炉矿渣粉(简称矿渣粉)定义;符合GB/T203标准规定的粒化高炉矿渣经干燥,粉磨(或添加少量石膏一起粉磨)达到相当细度,且符合相应活性指数的粉体,矿渣粉粉磨时充许加入助磨剂,加入量不得大于矿渣粉质量的1%; 2、矿渣粉密度不小于2.8g/cm3;比表面积不小于350m2/kg;(企业内控标准:不小于400m2/kg。) 3、矿渣粉共分为三级,S105、S95、S75,他们对应的活性指数7天不小于95%、75%和55%,28天不小于105%、95%和75%,流动度比小于85%、90%和95%。 4、矿渣粉含水量不大于1.0%。 5、三氧化硫不大于4.0%。 6、离子不大于0.02%。 7、烧失量不大于3.0%。 主要特点: ●减少坍落度损失●大大提高混凝土耐久性●对混凝土的显著增强作用 ●优良的碱骨料抑制剂●增强混凝土的抗腐蚀性●提高混凝土的可泵性●减少混凝土泌水 性能: 强度较高、凝结硬化较快、耐冻性好、和易性好。 适用范围:

相关主题