搜档网
当前位置:搜档网 › 嵌入式Linux内核移植详解(顶嵌)

嵌入式Linux内核移植详解(顶嵌)

嵌入式Linux内核移植详解(顶嵌)
嵌入式Linux内核移植详解(顶嵌)

内核移植阶段

内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。直接对硬件操作是非常复杂的,所以内核通常提供一种硬件抽象的方法来完成这些操作。硬件抽象隐藏了复杂性,为应用软件和硬件提供了一套简洁,统一的接口,使程序设计更为简单。

内核和用户界面共同为用户提供了操作计算机的方便方式。也就是我们在windows下看到的操作系统了。由于内核的源码提供了非常广泛的硬件支持,通用性很好,所以移植起来就方便了许多,我们需要做的就是针对我们要移植的对象,对内核源码进行相应的配置,如果出现内核源码中不支持的硬件这时就需要我们自己添加相应的驱动程序了。

一.移植准备

1. 目标板

我们还是选用之前bootloader移植选用的开发板参数请参考上文的地址:

https://www.sodocs.net/doc/0810227882.html,/thread-80832-5-1.html。bootloader移植准备。

2. 内核源码

这里我们选用比较新的内核源码版本linux-2.6.25.8,他的下载地址是

ftp://https://www.sodocs.net/doc/0810227882.html,/pub/linux/kernel/v2.6/linux-2.6.25.8.tar.bz2。

3. 烧写工具

我们选用网口进行烧写这就需要内核在才裁剪的时候要对网卡进行支持

4. 知识储备

要进行内核裁剪不可缺少的是要对内核源码的目录结构有一定的了解这里进

行简单介绍。

(1)arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子

目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体

系结构的子目录。PC机一般都基于此目录。

(2)block/:部分块设备驱动程序。

(3)crypto:常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验

算法。

(4) documentation/:文档目录,没有内核代码,只是一套有用的文档。

(5) drivers/:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目

录:如,/block 下为块设备驱动程序,比如ide(ide.c)。

(6)fs/:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持

一个文件系统, 例如fat和ext2。

(7)include/: include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在include/linux子目录下,与intel cpu相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关scsi设备的头文件目录。

(8) init/:这个目录包含核心的初始化代码(注:不是系统的引导代码),主要包含两个文件main.c和Version.c,这是研究核心如何工作的好的起点之一。

(9)ipc/:这个目录包含核心的进程间通讯的代码。

(10)kernel/: 主要的核心代码,此目录下的文件实现了大多数linux系统的内核函数,其中最重要的文件当属sched.c。

(11)lib/:放置核心的库代码。

(12) mm/:这个目录包括所有独立于 cpu 体系结构的内存管理代码,如页式存储管理内存的分配和释放等

(13)net/:核心与网络相关的代码。

(14)scripts/:描述文件,脚本,用于对核心的配置。

(15)security:主要是一个SELinux的模块。

(16)sound:常用音频设备的驱动程序等;

(17)usr:实现了一个cpio。

(18)COPYING: GPL版权申明;

(19)CREDITS:光荣榜;

(20) Kbuild:一个包含了某些通用规则的编译文件;

(21)MAINTAINERS:维护人员列表,对当前版本的内核各部分都有谁负责;

(22) Makefile: 第一个Makefile文件。用来组织内核的各模块,记录了个模块间的相互这间的联系和依托关系,编译时使用;仔细阅读各子目录下的Makefile文件对弄清各个文件这间的联系和依托关系很有帮助;

(23)ReadMe: 核心及其编译配置方法简单介绍;

(24)REPORTING-BUGS:有关报告Bug 的一些内容;

一般在每个目录下都有一个.depend文件和一个Makefile文件。这两个文件都是编译时使用的辅助文件。仔细阅读这两个文件对弄清各个文件之间的联系和依托关系很有帮助。另外有的目录下还有Readme文件,它是对该目录下文件的一些说明,同样有利于对内核源码的理解。

二.内核源码修改

1.解压内核

解压内核源码到计算机的工作环境中,我们下载的内核源码是.bz2格式压缩包

使用解压命令:#tar xvfj linux-2.6.25.8.tar.bz2 解压到当前目录。

2.添加arm支持

进如解压好的内核源码文件夹中,#cd linux-2.6.25.8修改“Makefile”文件,

在大概193行“ARCH ?=(SUBARCH)”和194行“CROSS_COMPILE ?=”,将其修

改为“ARCH ?=arm”和“CROSS_COMPILE ?=arm-linux-”(根据自己的实际情

况添加自己的交叉编译工具的路径),然后保存。如下图:

3.修改平台时钟

修改平台的时钟频率,以满足开发板的工作频率。修改内核源码“arch/arm/mach-s3c2440/mach-s3c2440.c”文件的162行,把16.9344MHz改为12MHz,因为我们选用的开发板使用的就是12MHz的外部时钟源输入。

如下图所示:

5.制作开发板配置文件

我们选用的是比较通用配置的开发板,所以用内核中自带的配置文件,进行修改是比较方便的做法。该配置单在内核源码的“arch/arm/configs/”目录下面,名为:“s3c2410_defconfig”,该配置文件里面选择了几乎所有的和S3C24XX系列CPU相关的配置选项,我们完全可以在该配置单的基础上进行配置。首先将该文件考到根目录命名为.config 指令为:# cp arch/arm/configs/s3c2410default_config .config然后返回到配置界面,进入到内核配置单输入指令为:#make menuconfig出现如图所示的配置界面:

选择“System Type”选项,然后配置各个平台如下所示:

System Type --->

S3C2410 Machines --->

[*] SMDK2410/A9M2410

[ ] IPAQ H1940

[ ] Acer N30

[ ] Simtec Electronics BAST (EB2410ITX)

[ ] NexVision OTOM Board

[ ] AML M5900 Series

[ ] Thorcom VR1000

[ ] QT2410

S3C2412 Machines --->

[ ] SMDK2413

[ ] SMDK2412

[ ] VMSTMS

S3C2440 Machines --->

[ ] Simtec Electronics ANUBIS

[ ] Simtec IM2440D20 (OSIRIS) module

[ ] HP iPAQ rx3715

[*] SMDK2440

[ ] NexVision NEXCODER 2440 Light Board

[*] SMDK2440 with S3C2440 CPU module

S3C2442 Machines --->

[ ] SMDM2440 with S3C2442 CPU module

S3C2443 Machines --->

[ ] SMDK2443

配置完毕这个地方后,退回到最初的配置单。然后选择选项:“Save an Alternate Configuration File”,将其保存为:“.config”文件,因为编译系统时会调用该文件。如下面的图所示:

保存为“.config”文件后,退出配置单。

6.修改机器码

在我们之前移植的uboot的机器码是168,这里需要修改机器码,否则会出现不能启动的情况。机器码保存在内核源码的“arch/arm/tools/mach-types”文件中,在大概379行,把原来的362改为168保存即可。如下图:

7.修改nandflash分区

修改内核源码中的“arch/arm/liat-s3c24xx/common-smdk.c”文件,在109行附近会有名为smdk_nand_part[]的结构体将其修改为:

static struct mtd_partition smdk_default_nand_part[] = {

[0] = {

.name = "Top-E:u-boot",

.size = 0x40000,

.offset = 0,

},

[1] = {

.name = "Top-E:kernel",

.offset = 0x40000,

.size = 0x4c0000,

},

[2] = {

.name = "Top-E:fs",

.offset = 0x500000,

.size = 0x3b00000,

}

};

其中name为内核启动时的标注,内容可根据自己需要填写,便于自己他人识别。

offset为分区的起始地址,size为分区的大小。如下图所示:

三.制作镜像

然后输入:#make zImage,就可以进行编译了,编译完毕后,会在内核源码的“arch/arm/boot/”目录下面生成名为“zImage”的镜像,利用mkimage工具把生成的zImage转换成uIamge,(可以直接烧写zImage启动,我比较习惯用uImage)使用命令:#./mkimage –A arm –O linux –T kernel –C none –a 30008000 –e 30008040 –n “linux kernel” –d arch/arm/boot/zImage uImage

参数说明:

-A 指定CPU 的体系结构:

取值表示的体系结构

alpha Alpha

arm A RM

x86 Intel x86

ia64 IA64

mips MIPS

mips64 MIPS 64 Bit

ppc PowerPC

s390 IBM S390

sh SuperH

sparc SPARC

sparc64 SPARC 64 Bit

m68k MC68000

我们选arm

-O 指定操作系统类型,可以取以下值:

openbsd、netbsd、freebsd、4_4bsd、linux、svr4、esix、

solaris、irix、sco、dell、ncr、lynxos、vxworks、psos、

qnx、u-boot、rtems、artos

我们选linux。

-T 指定映象类型,可以取以下值:

standalone、kernel、ramdisk、multi、firmware、script、filesystem

我们制作的是内核映象,所以选kernel。

-C 指定映象压缩方式,可以取以下值:

none 不压缩

gzip 用gzip 的压缩方式

bzip2 用bzip2 的压缩方式

我们用的是非压缩方式,所以是none。

-a 指定映象在内存中的加载地址,映象下载到内存中时,要按照用

mkimage 制作映象时,这个参数所指定的地址值来下载这里指定为

30008000,使用时要把内核映象加载到内存的30008000 处。不要使

用其他的地址。

-e 指定映象运行的入口点地址,这个地址就是-a 参数指定的值加上

0x40(因为前面有个mkimage 添加的0x40 个字节的头)uImage 其实

就是mkimage 在zImage 前面加了个文件头。

-n 指定映象名

-d 指定制作映象的源文件

四.内核镜像的烧写

内核的烧写我们采用tftp方式,用网线将目标板和pc机连接起来,配置好目标板的网络参数,主要是serverip、ipaddr。

首先将uImage下载到内存中:

#tftp 30008000 uImage

按照之前内核的nandflash分区进行烧写,将内存中的内核镜像烧到flash 中:

#nand erase 40000 4c0000

#nand write 30008000 40000 4c0000

重启uboot使其加载内核。

串口打印启动信息,部分信息如下图:

下图是打印的分区信息:

注意:

由于目前还没有烧写文件系统,所以内核运行到加载文件系统时会出现问题,提示信息如下:Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(31,2)

这将是下一阶段的内容。

实验四Linux内核移植实验

合肥学院 嵌入式系统设计实验报告 (2013- 2014第二学期) 专业: 实验项目:实验四 Linux内核移植实验 实验时间: 2014 年 5 月 12 实验成员: _____ 指导老师:干开峰 电子信息与电气工程系 2014年4月制

一、实验目的 1、熟悉嵌入式Linux的内核相关代码分布情况。 2、掌握Linux内核移植过程。 3、学会编译和测试Linux内核。 二、实验内容 本实验了解Linux2.6.32代码结构,基于S3C2440处理器,完成Linux2.6.32内核移植,并完成编译和在目标开发板上测试通过。 三、实验步骤 1、使用光盘自带源码默认配置Linux内核 ⑴在光盘linux文件夹中找到linux-2.6.32.2-mini2440.tar.gz源码文件。 输入命令:#tar –jxvf linux-2.6.32.2-mini2440-20110413.tar对其进行解压。 ⑵执行以下命令来使用缺省配置文件config_x35 输入命令#cp config_mini2440_x35 .config;(注意:x35后面有个空格,然后有个“.”开头的 config ) 然后执行“make menuconfig”命令,但是会出现出现缺少ncurses libraries的错误,如下图所示: 解决办法:输入sudo apt-get install libncurses5-dev 命令进行在线安装ncurses libraries服务。

安装好之后在make menuconfig一下就会出现如下图所示。 ⑶配置内核界面,不用做任何更改,在主菜单里选择退出,并选“Yes”保存设置返回到刚命令行界面,生成相应配置的头文件。 编译内核: #make clean #make zImage 在执行#make zImage命令时会出现如下错误: 错误:arch/arm/mach-s3c2440/mach-mini2440.c:156: error: unknown field 'sets' specified in initializer 通过网上查找资料 于是在自己的mach-mini2440.c中加入 #include

基于32位ARM920T内核的微处理器的嵌入式Linux系统构建详解

基于32位ARM920T内核的微处理器的嵌入式Linux系统构建详解目前,在嵌入式系统中基于ARM微核的嵌入式处理器已经成为市场主流。随着ARM技术的广泛应用,建立面向ARM构架的嵌入式操作系统成为当前研究的热点问题。 已经涌现出许多嵌入式操作系统,如VxWork,windows-CE,PalmOS,Linux等。在众多的嵌入式操作系统中,Linux以其开源代码及免费使用倍受开发人员的喜爱。本文选用的微处理器S3C2410是基于32位ARM920T内核的微处理器,基于此处理器构造一Linux 嵌入式操作系统,将其移植到基于32位的ARM920T内核的系统中,在此基础上进行应用程序开发。 l、开发环境介绍 1.1、基于S3C2410ARM920T的硬件平台 该系统的硬件平台为深圳旋极公司提供,硬件的核心部件为三星$3C2410ARM920T芯片,外围还包括:64MNANDFLASH和RAM外围存储芯片;串口、网口和USB外围接口;CSTNLCD和触摸屏外围显示设备;UDAl34lTS的外围音频设备。S3C2410处理器和外围设备共同构成了基于ARM920T的开发板。 1.2、嵌入式Limlx软件系统 该嵌入式Linux的软件系统包括以下4个部分:引导加载程序vivi;Linux2.6.14内核;YAFFS2文件系统以及用户程序。他们的可执行映像依次存放在系统存储设备上. 与通常的嵌入式系统布局有所不同,本系统在引导加载程序和内核映像之间还增加了一个启动参数区,在这个区里存放着系统启动参数。引导加载程序通过调用这些参数来决定启动模式、启动等待时间等,这些启动参数的增加加强了系统的灵活性。本系统采用64MNANDFLASH的存储设备。 2、嵌入式Linux系统设计与实现 2.1、引导加载程序vivi

LInux 嵌入式操作系统期末试题

1.简答题:请简单概括什么是嵌入式系统、并举出嵌入式系统的特点;(6分) 答: 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可剪裁,适用于应用系统,对功能、可靠性、成本、体积、功耗等方面有特殊要求的专用计算机系统; 其特点如下: (1)嵌入式系统是面向特定系统应用的。 (2)嵌入式系统涉及计算机技术、微电子技术、电子技术、通信和软件等各个行业; 是一个技术密集、资金密集、高度分散、不断创新的知识集成系统; (3)嵌入式系统的硬件和软件都必须具有高度可定制性;只有这样才能适应嵌入式系 统应用的需要,在产品价格和性能方面具备竞争力; (4)嵌入式系统的生命周期相当长。 (5)嵌入式系统不具备本地系统开发能力,通常需要有一套专门的开发工具和环境。 2.嵌入式操作系统的优势:1.低成本开发系统 2.可应用多种硬件平台 3.可定制内核 4. 性能优异 5.良好的网络支持 3.linux文件类型:1.普通文件 2.目录文件 3.链接文件 4.设备文件 a.块设备文件(硬 盘:/dev/hda1)b.字符设备(串行端口接口设备) 4.linux文件属性:访问权限:r:可读w:可写x:可执行用户级别:u:文件拥有者g:所 属用户组 o:其他用户第一个字符显示文件类型:-普通d目录 l 链接… 5.简答题:(6分) linux目录结构:/bin 存放linux常用操作命令的执行文件(二进制文件) /boot 操作系统启动时所需要的程序 /dev Linux系统中使用的外部设备 /etc 系统管理时所需要的各种配置文件和子目录 /etc/rc.d Linux启动和关闭时要用到的脚本 /etc/rc.d/init Linux默认服务的启动脚本 /home 系统中默认用户工作根目录 /lib 存放系统动态链接共享库 /mnt软驱、光驱、硬盘的挂载点 /proc存放系统核心与执行程序所需信息、 /root超级用户登陆时的主目录 /sbin 存放管理员常用系统管理程序 /usr存放用户应用程序和文件 /var存放日志信息(答六点即可) 6.编写一个shell文件:创建studen01 –student30这30个用户,用户组为class1,之 后编写shell文件,删除所有用户

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

嵌入式Linux内核移植详解(顶嵌)

内核移植阶段 内核是操作系统最基本的部分。它是为众多应用程序提供对计算机硬件的安全访问的一部分软件,这种访问是有限的,并且内核决定一个程序在什么时候对某部分硬件操作多长时间。直接对硬件操作是非常复杂的,所以内核通常提供一种硬件抽象的方法来完成这些操作。硬件抽象隐藏了复杂性,为应用软件和硬件提供了一套简洁,统一的接口,使程序设计更为简单。 内核和用户界面共同为用户提供了操作计算机的方便方式。也就是我们在windows下看到的操作系统了。由于内核的源码提供了非常广泛的硬件支持,通用性很好,所以移植起来就方便了许多,我们需要做的就是针对我们要移植的对象,对内核源码进行相应的配置,如果出现内核源码中不支持的硬件这时就需要我们自己添加相应的驱动程序了。 一.移植准备 1. 目标板 我们还是选用之前bootloader移植选用的开发板参数请参考上文的地址: https://www.sodocs.net/doc/0810227882.html,/thread-80832-5-1.html。bootloader移植准备。 2. 内核源码 这里我们选用比较新的内核源码版本linux-2.6.25.8,他的下载地址是 ftp://https://www.sodocs.net/doc/0810227882.html,/pub/linux/kernel/v2.6/linux-2.6.25.8.tar.bz2。 3. 烧写工具 我们选用网口进行烧写这就需要内核在才裁剪的时候要对网卡进行支持 4. 知识储备 要进行内核裁剪不可缺少的是要对内核源码的目录结构有一定的了解这里进 行简单介绍。 (1)arch/: arch子目录包括了所有和体系结构相关的核心代码。它的每一个子 目录都代表一种支持的体系结构,例如i386就是关于intel cpu及与之相兼容体 系结构的子目录。PC机一般都基于此目录。 (2)block/:部分块设备驱动程序。 (3)crypto:常用加密和散列算法(如AES、SHA等),还有一些压缩和CRC校验 算法。 (4) documentation/:文档目录,没有内核代码,只是一套有用的文档。 (5) drivers/:放置系统所有的设备驱动程序;每种驱动程序又各占用一个子目 录:如,/block 下为块设备驱动程序,比如ide(ide.c)。 (6)fs/:所有的文件系统代码和各种类型的文件操作代码,它的每一个子目录支持 一个文件系统, 例如fat和ext2。

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.sodocs.net/doc/0810227882.html, 来源: https://www.sodocs.net/doc/0810227882.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

02--基于ARM9的Linux2.6内核移植

基于ARM9的Linux2.6内核移植 姓名 系别、专业 导师姓名、职称 完成时间

目录 摘要................................................... I ABSTARCT................................................ II 1 绪论.. (1) 1.1课题研究的背景、目的和意义 (1) 1.2嵌入式系统现状及发展趋势 (1) 1.3论文的主要工作 (4) 2 嵌入式 Linux系统构成和软件开发环境 (5) 2.1嵌入式Linux系统的体系结构 (5) 2.2嵌入式Linux系统硬件平台 (5) 2.3嵌入式Linux开发软件平台建立 (7) 2.4本章小结 (11) 3 嵌入式Linux的引导BootLoader程序 (12) 3.1 BootLoader概述 (12) 3.2 NAND Flash和NOR Flash的区别 (13) 3.3本章小结 (19) 4 Linux内核的编译、移植 (20) 4.1 Linux2.6内核的新特性简介 (20) 4.2 Linux内核启动流程 (20) 4.3内核移植的实现 (21) 4.4 MTD内核分区 (23) 4.5配置、编译内核 (24) 4.6本章小结 (26) 5 文件系统制作 (27) 5.1 yaffs文件系统简介 (27) 5.2 内核支持YAFFS文件系统 (27) 5.3本章小结 (30) 6测试 (31) 6.1简单测试方法的介绍 (31) 6.2编写简单C程序测试移植的系统 (31) 6.3在开发板执行测试程序 (32)

LInux嵌入式操作系统期末试题

简答题:请简单概括什么是嵌入式系统、并举出嵌入式系统的特点;(6分) 答: 嵌入式系统是以应用为中心,以计算机技术为基础,软硬件可剪裁,适用于应用系统,对功能、可靠性、成本、体积、功耗等方面有特殊要求的专用计算机系统; 其特点如下: (1)嵌入式系统是面向特定系统应用的。 (2)嵌入式系统涉及计算机技术、微电子技术、电子技术、通信和软件等各个行业; 是一个技术密集、资金密集、高度分散、不断创新的知识集成系统; (3)嵌入式系统的硬件和软件都必须具有高度可定制性;只有这样才能适应嵌入式系统应用的需要,在产 品价格和性能方面具备竞争力; (4)嵌入式系统的生命周期相当长。 (5)嵌入式系统不具备本地系统开发能力,通常需要有一套专门的开发工具和环境。 嵌入式操作系统的优势:1.低成本开发系统 2.可应用多种硬件平台 3.可定制内核 4.性能优异 5.良好的网络支持 linux文件类型:1.普通文件2.目录文件3.链接文件4.设备文件a.块设备文件(硬盘:/dev/hda1)b.字符设备(串行端口接口设备) linux文件属性:访问权限:r:可读w:可写x:可执行用户级别:u:文件拥有者g:所属用户组o:其他用户第一个字符显示文件类型:- 普通 d 目录 l 链接… 简答题:(6分) linux目录结构:/bin 存放linux常用操作命令的执行文件(二进制文件) /boot 操作系统启动时所需要的程序 /dev Linux系统中使用的外部设备 /etc 系统管理时所需要的各种配置文件和子目录 /etc/rc.d Linux启动和关闭时要用到的脚本 /etc/rc.d/init Linux默认服务的启动脚本 /home 系统中默认用户工作根目录 /lib 存放系统动态链接共享库 /mnt软驱、光驱、硬盘的挂载点 /proc存放系统核心与执行程序所需信息、 /root超级用户登陆时的主目录 /sbin 存放管理员常用系统管理程序 /usr存放用户应用程序和文件 /var存放日志信息(答六点即可) 编写一个shell文件:创建studen01 –student30这30个用户,用户组为class1,之后编写shell文件,删除所有用户 操作步骤:1.打开Terminal(终端): 2.输入vi shell 3.输入i 进入编辑模式 4.输入 #!/bin/bash groupadd class1 for((i=1;i<10;i++)) do username=student0$i

Linux内核结构详解教程

Linux内核结构详解教程 ─────Linux内核教程 linux内核就像人的心脏,灵魂,指挥中心。 内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等. 严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux. 一个Linux内核很少1.2M左右,一张软盘就能放下. 内容基础,语言简短简洁 红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。 红联Linux门户: https://www.sodocs.net/doc/0810227882.html, 红联Linux论坛: https://www.sodocs.net/doc/0810227882.html,/bbs 红联Linux 论坛大全,所有致力点都体现在这 https://www.sodocs.net/doc/0810227882.html,/bbs/rf/linux/07.htm

目录 Linux内核结构详解 Linux内核主要五个子系统详解 各个子系统之间的依赖关系 系统数据结构 Linux的具体结构 Linux内核源代码 Linux 内核源代码的结构 从何处开始阅读源代码 海量Linux技术文章

Linux内核结构详解 发布时间:2006-11-16 19:05:29 Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解 发布时间:2006-11-16 19:05:54 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

Linux内核移植开发手册

江苏中科龙梦科技有限公司 Linux内核移植开发手册 修 订 记 录 项 次 修订日期 版 本修订內容修订者审 核 1 2009‐02‐04 0.1 初版发行陶宏亮, 胡洪兵 2 2009‐11‐20 0.2 删除一些 多余文字 陶宏亮, 胡洪兵

DISCLAIMER THIS DOCUMENTATION IS PROVIDED FOR USE WITH LEMOTE PRODUCTS. NO LICENSE TO LEMOTE PROPERTY RIGHTS IS GRANTED. LEMOTE ASSUMES NO LIABILITY, PROVIDES NO WARRANTY EITHER EXPRESSED OR IMPLIED RELATING TO THE USAGE, OR INTELLECTUAL PROPERTY RIGHT INFRINGEMENT EXCEPT AS PROVIDED FOR BY LEMOTE TERMS AND CONDITIONS OF SALE. LEMOTE PRODUCTS ARE NOT DESIGNED FOR AND SHOULD NOT BE USED IN ANY MEDICAL OR LIFE SUSTAINING OR SUPPORTING EQUIPMENT. ALL INFORMATION IN THIS DOCUMENT SHOULD BE TREATED AS PRELIMINARY. LEMOTE MAY MAKE CHANGES TO THIS DOCUMENT WITHOUT NOTICE. ANYONE RELYING ON THIS DOCUMENTATION SHOULD CONTACT LEMOTE FOR THE CURRENT DOCUMENTATION AND ERRATA. JIANGSU LEMOTE TECHNOLOGY CORPORATION LIMITED MENGLAN INDUSTRIAL PARK,YUSHAN,CHANGSHU CITY,JIANGSU PROVINCE,CHINA Tel: 0512‐52308661 Fax: 0512‐52308688 Http: //https://www.sodocs.net/doc/0810227882.html,

linux内核启动 Android系统启动过程详解

linux内核启动+Android系统启动过程详解 第一部分:汇编部分 Linux启动之 linux-rk3288-tchip/kernel/arch/arm/boot/compressed/ head.S分析这段代码是linux boot后执行的第一个程序,完成的主要工作是解压内核,然后跳转到相关执行地址。这部分代码在做驱动开发时不需要改动,但分析其执行流程对是理解android的第一步 开头有一段宏定义这是gnu arm汇编的宏定义。关于GUN 的汇编和其他编译器,在指令语法上有很大差别,具体可查询相关GUN汇编语法了解 另外此段代码必须不能包括重定位部分。因为这时一开始必须要立即运行的。所谓重定位,比如当编译时某个文件用到外部符号是用动态链接库的方式,那么该文件生成的目标文件将包含重定位信息,在加载时需要重定位该符号,否则执行时将因找不到地址而出错 #ifdef DEBUG//开始是调试用,主要是一些打印输出函数,不用关心 #if defined(CONFIG_DEBUG_ICEDCC)

……具体代码略 #endif 宏定义结束之后定义了一个段, .section ".start", #alloc, #execinstr 这个段的段名是 .start,#alloc表示Section contains allocated data, #execinstr表示Section contains executable instructions. 生成最终映像时,这段代码会放在最开头 .align start: .type start,#function /*.type指定start这个符号是函数类型*/ .rept 8 mov r0, r0 //将此命令重复8次,相当于nop,这里是为中断向量保存空间 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader

Linux内核分析-网络[五]:网桥

看完了路由表,重新回到netif_receive_skb ()函数,在提交给上层协议处理前,会执行下面一句,这就是网桥的相关操作,也是这篇要讲解的容。 view plaincopy to clipboardprint? 1. s kb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 网桥可以简单理解为交换机,以下图为例,一台linux机器可以看作网桥和路由的结合,网桥将物理上的两个局域网LAN1、LAN2当作一个局域网处理,路由连接了两个子网1.0和2.0。从eth0和eth1网卡收到的报文在Bridge模块中会被处理成是由Bridge收到的,因此Bridge也相当于一个虚拟网卡。 STP五种状态 DISABLED BLOCKING LISTENING LEARNING FORWARDING 创建新的网桥br_add_bridge [net\bridge\br_if.c] 当使用SIOCBRADDBR调用ioctl时,会创建新的网桥br_add_bridge。 首先是创建新的网桥: view plaincopy to clipboardprint?

1. d ev = new_bridge_dev(net, name); 然后设置dev->dev.type为br_type,而br_type是个全局变量,只初始化了一个名字变量 view plaincopy to clipboardprint? 1. S ET_NETDEV_DEVTYPE(dev, &br_type); 2. s tatic struct device_type br_type = { 3. .name = "bridge", 4. }; 然后注册新创建的设备dev,网桥就相当一个虚拟网卡设备,注册过的设备用ifconfig 就可查看到: view plaincopy to clipboardprint? 1. r et = register_netdevice(dev); 最后在sysfs文件系统中也创建相应项,便于查看和管理: view plaincopy to clipboardprint? 1. r et = br_sysfs_addbr(dev); 将端口加入网桥br_add_if() [net\bridge\br_if.c] 当使用SIOCBRADDIF调用ioctl时,会向网卡加入新的端口br_add_if。 创建新的net_bridge_port p,会从br->port_list中分配一个未用的port_no,p->br会指向br,p->state设为BR_STATE_DISABLED。这里的p实际代表的就是网卡设备。 view plaincopy to clipboardprint? 1. p = new_nbp(br, dev); 将新创建的p加入CAM表中,CAM表是用来记录mac地址与物理端口的对应关系;而刚刚创建了p,因此也要加入CAM表中,并且该表项应是local的[关系如下图],可以看到,CAM表在实现中作为net_bridge的hash表,以addr作为hash值,链入 net_bridge_fdb_entry,再由它的dst指向net_bridge_port。

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

基于ARM的嵌入式linux内核的裁剪与移植.

基于ARM的嵌入式linux内核的裁剪与 移植 0引言微处理器的产生为价格低廉、结构小巧的CPU和外设的连接提供了稳定可靠的硬件架构,这样,限制嵌入式系统发展的瓶颈就突出表现在了软件方面。尽管从八十年代末开始,已经陆续出现了一些嵌入式操作系统(比较著名的有Vxwork、pSOS、Neculeus和WindowsCE)。但这些专用操作系统都是商业化产品,其高昂的价格使许多低端产品的小公司望而却步;而且,源代码封闭性也大大限制了开发者的积极性。而Linux的开放性,使得许多人都认为Linu 0 引言 微处理器的产生为价格低廉、结构小巧的CPU和外设的连接提供了稳定可靠的硬件架构,这样,限制嵌入式系统发展的瓶颈就突出表现在了软件方面。尽管从八十年代末开始,已经陆续出现了一些嵌入式操作系统(比较著名的有Vxwork、pSOS、Nec uleus和Windows CE)。但这些专用操作系统都是商业化产品,其高昂的价格使许多低端产品的小公司望而却步;而且,源代码封闭性也大大限制了开发者的积极性。而Linux的开放性,使得许多人都认为Linux 非常适合多数Intemet设备。Linux操作系统可以支持不同的设备和不同的配置。Linux对厂商不偏不倚,而且成本极低,因而很快成为用于各种设备的操作系统。嵌入式linux是大势所趋,其巨大的市场潜力与酝酿的无限商机必然会吸引众多的厂商进入这一领域。 1 嵌入式linux操作系统 Linux为嵌入操作系统提供了一个极有吸引力的选择,它是个和Unix 相似、以核心为基础、全内存保护、多任务、多进程的操作系统。可以支持广泛的计算机硬件,包括X86、Alpha、Sparc、MIPS、PPC、ARM、NEC、MOTOROLA 等现有的大部分芯片。Linux的程序源码全部公开,任何人都可以根据自己的需要裁剪内核,以适应自己的系统。文章以将linux移植到ARM920T内核的 s3c2410处理器芯片为例,介绍了嵌入式linux内核的裁剪以及移植过程,文中介绍的基本原理与方法技巧也可用于其它芯片。 2 内核移植过程 2.1 建立交叉编译环境 交叉编译的任务主要是在一个平台上生成可以在另一个平台上执行的程序代码。不同的CPU需要有不同的编译器,交叉编译如同翻译一样,它可以把相同的程序代码翻译成不同的CPU对应语言。 交叉编译器完整的安装涉及到多个软件安装,最重要的有binutils、gcc、glibc三个。其中,binutils主要用于生成一些辅助工具;gcc则用来生成交叉编译器,主要生成arm—linux—gcc交叉编译工具;glibc主要是提供用户程序所使用的一些基本的函数库。 自行搭建交叉编译环境通常比较复杂,而且很容易出错。本文使用的是

实例解析linux内核I2C体系结构(2)

实例解析linux内核I2C体系结构(2) 华清远见刘洪涛四、在内核里写i2c设备驱动的两种方式 前文介绍了利用/dev/i2c-0在应用层完成对i2c设备的操作,但很多时候我们还是习惯为i2c设备在内核层编写驱动程序。目前内核支持两种编写i2c驱动程序的方式。下面分别介绍这两种方式的实现。这里分别称这两种方式为“Adapter方式(LEGACY)”和“Probe方式(new style)”。 (1)Adapter方式(LEGACY) (下面的实例代码是在2.6.27内核的pca953x.c基础上修改的,原始代码采用的是本文将要讨论的第2种方式,即Probe方式) ●构建i2c_driver static struct i2c_driver pca953x_driver = { .driver = { .name= "pca953x", //名称 }, .id= ID_PCA9555,//id号 .attach_adapter= pca953x_attach_adapter, //调用适配器连接设备 .detach_client= pca953x_detach_client,//让设备脱离适配器 }; ●注册i2c_driver static int __init pca953x_init(void) { return i2c_add_driver(&pca953x_driver); } module_init(pca953x_init); ●attach_adapter动作 执行i2c_add_driver(&pca953x_driver)后会,如果内核中已经注册了i2c适配器,则顺序调用这些适配器来连接我们的i2c设备。此过程是通过调用i2c_driver中的attach_adapter方法完成的。具体实现形式如下: static int pca953x_attach_adapter(struct i2c_adapter *adapter) { return i2c_probe(adapter, &addr_data, pca953x_detect); /* adapter:适配器 addr_data:地址信息 pca953x_detect:探测到设备后调用的函数 */ } 地址信息addr_data是由下面代码指定的。 /* Addresses to scan */ static unsigned short normal_i2c[] = {0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,I2C_CLIENT_END}; I2C_CLIENT_INSMOD;

我来说linux移植过程

我对linux移植过程的整体理解 首先,要开始移植一个操作系统,我们要明白为什么要移植。因为我们要在另外一个平台上用到操作系统,为什么要用操作系统,不用行不行?这个问题的答案不是行或不行来回答。单片机,ARM7都没有操作系统,我们直接对寄存器进行操作进而实现我们需要的功能也是可以。但是,一些大型的项目设计牵涉很多到工程的创建,单纯对裸机进行操作会显得杂乱庞大这时候需要一个操作系统。 操作系统的功能能。我们用到操作系统,一方面可以控制我们的硬件和维护我们的硬件,另一方面可以为我们得应用程序提供服务。呵呵,这样说还是很抽象,具体到项目中就可以感受到操作系统的好处。 Linux操作系统的移植说白了总共三大部分:一,内核的重新编译。二,bootloader的重新编译。三,文件系统的制作。在这里要解释这些名词也很不好说的明白,首先,一个完整的操作系统是包括这三大部分的,内核、Bootloader、文件系统。我们知道Linux有很多版本,不同的版本只是文件系统不一样而内核的本质都是一样的。 那么,我们开始进行移植。首先是内核。1.我们需要下载一个内核源码,这个在网上很好下载,下载后,保存下。2.把这个压缩包复制到ubuntu(我用的版本)里,一般复制到/home/dong/SoftEmbed(我的目录,呵呵),然后呢,我们需要对这个内核进行修改重新编译,为什么要这样做,因为我们要让内核为我们的ARM服务,所以需要修改一些东西的。至于具体如何修改,我已经写在另外一个文档里了。3.修改的内容主要是 Makefile(设置体系架构为arm,设置交叉编译器)、时钟频率(我们板子的频率)、内核配置(进入内核配置主要是设置一些选项以适合我们的开发板)。具体设置步骤我会另加说明。4.设置好后我们需要重新编译内核,用的是make zImage命令。编译后就生成了我们自己编译好的内核,呵呵。 接下来,进行文件系统的移植。我们需要一个Yaffs2文件系统压缩包。1.复制这个压缩包到/home/dong/SoftEmede(我自己在ubuntu里建的目录,呵呵),2.解压,会生成一个文件夹。3.给内核打补丁,通过执行 ./patsh-ker.sh c /内核目录。呵呵4.进入 make menuconfig中配置选项,要选择对yaffs2的支持,具体怎么设置我写在另一个文档。 接下来,我们进行根文件制作,需要一个制作工具 mkyaffs2image.taz.还是复制到我自己的目录下,解压,安装。接着,我们需要对Busybox的移植、配置,具体移植、配置步骤我另写,呵呵。最后是构建我们自己的文件系统,到此我们已经完成了内核移植和文件系统的制作。准备移植,呵呵。今天先写到这里,累了。

Linux内核启动流程分析(一)

很久以前分析的,一直在电脑的一个角落,今天发现贴出来和大家分享下。由于是word直接粘过来的有点乱,敬请谅解! S3C2410 Linux 2.6.35.7启动分析(第一阶段) arm linux 内核生成过程 1. 依据arch/arm/kernel/vmlinux.lds 生成linux内核源码根目录下的vmlinux,这个vmlinux属于未压缩, 带调试信息、符号表的最初的内核,大小约23MB; 命令:arm-linux-gnu-ld -o vmlinux -T arch/arm/kernel/vmlinux.lds arch/arm/kernel/head.o init/built-in.o --start-group arch/arm/mach-s3c2410/built-in.o kernel/built-in.o mm/built-in.o fs/built-in.o ipc/built-in.o drivers/built-in.o net/built-in.o --end-group .tmp_kallsyms2.o 2. 将上面的vmlinux去除调试信息、注释、符号表等内容,生成arch/arm/boot/Image,这是不带多余信息的linux内核,Image的大小约 3.2MB; 命令:arm-linux-gnu-objcopy -O binary -S vmlinux arch/arm/boot/Image 3.将 arch/arm/boot/Image 用gzip -9 压缩生成arch/arm/boot/compressed/piggy.gz大小约 1.5MB;命令:gzip -f -9 < arch/arm/boot/compressed/../Image > arch/arm/boot/compressed/piggy.gz 4. 编译arch/arm/boot/compressed/piggy.S 生成arch/arm/boot/compressed/piggy.o大小约1.5MB,这里实 际上是将piggy.gz通过piggy.S编译进piggy.o文件中。而piggy.S文件仅有6行,只是包含了文件piggy.gz; 命令:arm-linux-gnu-gcc -o arch/arm/boot/compressed/piggy.o arch/arm/boot/compressed/piggy.S 5. 依据arch/arm/boot/compressed/vmlinux.lds 将arch/arm/boot/compressed/目录下的文件head.o 、piggy.o 、misc.o链接生成arch/arm/boot/compressed/vmlinux,这个vmlinux是经过压缩且含有自解压代码的内核, 大小约1.5MB; 命 令:arm-linux-gnu-ld zreladdr=0x30008000 params_phys=0x30000100 -T arch/arm/boot/compressed/vmlinux.lds a rch/arm/boot/compressed/head.o arch/arm/boot/compressed/piggy.o arch/arm/boot/compressed/misc.o -o arch/arm /boot/compressed/vmlinux

相关主题