搜档网
当前位置:搜档网 › Tobacco stems as a low cost adsorbent for the removal of Pb(II)Equilibrium and kinetic studies

Tobacco stems as a low cost adsorbent for the removal of Pb(II)Equilibrium and kinetic studies

Tobacco stems as a low cost adsorbent for the removal of Pb(II)Equilibrium and kinetic studies
Tobacco stems as a low cost adsorbent for the removal of Pb(II)Equilibrium and kinetic studies

i n d u s t r i a l c r o p s a n d p r o d u c t s28(2008)294–302

Tobacco stems as a low cost adsorbent for the removal of

Pb(II)from wastewater:Equilibrium and kinetic studies

Wei Li a,b,Libo Zhang a,Jinhui Peng a,?,Ning Li a,Shimin Zhang a,Shenghui Guo a

a Faculty of Materials and Metallurgical Engineering,Kunming University of Science and Technology,Kunming650093,PR China

b Faculty of Science,Kunming University of Science and Technology,Kunming650093,PR China

a r t i c l e i n f o

Article history:

Received5December2007

Received in revised form

17February2008

Accepted22March2008

Keywords:

Tobacco stems

Adsorption

Lead ions(II)

Isotherm

Kinetics

a b s t r a c t

Adsorption of Pb(II)ions from aqueous solution onto tobacco stems has been investigated to

evaluate the effects of initial lead ion concentration,adsorbent dosage,contact time,pH and

temperature on the removal of Pb(II)systematically.The optimal pH value for Pb(II)adsorp-

tion onto the tobacco stems was found to be5.0.The removal of lead ions for concentrations

10,30and50mg L?1using0.8g adsorbent at contact time of120min and at temperature of

299K were94.37%,92.10%and90.43%,respectively.Thermodynamic parameters such as

standard Gibbs free energy( G?),standard enthalpy( H?),and standard entropy( S?)were

evaluated by applying the Van’t Hoff equation,which describes the dependence of equilib-

rium constant on temperature.The thermodynamics of Pb(II)adsorption onto the tobacco

stems indicated that the adsorption was spontaneous and https://www.sodocs.net/doc/0610464393.html,ngmuir and Fre-

undlich isotherms were used to analyze the equilibrium data at different temperatures and

the equilibrium data were found to?t Freundlich isotherm equation better than Langmuir

isotherm.The adsorption was analyzed using pseudo-second-order kinetic equation.

?2008Elsevier B.V.All rights reserved.

1.Introduction

Many industries such as electroplating,metal-processing,

paint,plastics alloy,batteries,ammunition and the ceramic

glass industries and so on generate large quantities of wastew-

ater containing various types and concentration of heavy

metals.Although many heavy metals are necessary in small

amounts for the normal development of the biological cycles,

most of them become toxic at high concentrations.The heavy

metal pollution is of greatest concern among the kinds of

environmental pollution because of heavy metals’high tox-

icity and mobility.It is well documented that lead is one

of contaminants of industrial wastewaters and its pollution

exists in the wastewater of many industries(Sekar et al.,

2004).Unlike most organic pollutants,heavy metals do not

?Corresponding author at:Faculty of Materials and Metallurgical Engineering,Kunming University of Science and Technology,Kunming 650093,PR China.Tel.:+868715192076;fax:+868715191046.

E-mail address:jhpeng ok@https://www.sodocs.net/doc/0610464393.html,(J.Peng).

undergo biological degradation and tend to accumulate in

the organisms,thereby eventually entering the food chains

(Qin et al.,2006).All the chemicals/compounds containing

lead are considered as cumulative poisons(Nadeema et al.,

2006).Lead poisoning in human causes severe damage to

the kidney,nervous system,reproductive system,liver and

brain.Severe exposure to lead has been associated with steril-

ity,abortion,stillbirths and neonatal deaths(Bhattacharjee

et al.,2003;Goyer and Chisolon,1972;T unali et al.,2006).

In industrial wastewaters,lead ion concentrations approach

200–500mg L?1;this value is very high in relation to water

quality standards,and Pb(II)concentration of wastewaters

should be reduced to a value of0.1–0.05mg L?1.The permis-

sible level for lead in drinking water is0.05mg L?1according

to the World Health Organization(1984).Therefore,a very low

0926-6690/$–see front matter?2008Elsevier B.V.All rights reserved.

doi:10.1016/j.indcrop.2008.03.007

i n d u s t r i a l c r o p s a n d p r o d u c t s28(2008)294–302295

concentration of lead in water is very toxic.Hence,the safe and effective disposal of wastewater containing heavy metals is always a challenge to industrialists and environmentalists (Bhattacharjee et al.,2003).

In wastewater treatment technology,various techniques have been used for lead ions removal.An effective method for lead ions removal is chemical precipitation with lime or alkali hydroxide.However,disposal of large quantities of sludge is dif?cult.The commonly used traditional methods for the removal of heavy metal ions from aqueous solu-tions include ion exchange,electro-?otation,reverse osmosis, membrane?ltration,electrochemical treatment,and evapo-rative recovery.These conventional techniques are costly and have signi?cant disadvantages such as generation of metal-bearing sludge or wastes,incomplete metal removal,the disposal of secondary waste.For these reasons,there is a need for developing economic and eco-friendly methods for waste minimization and?ne-tuning of the wastewater(Ayyappan et al.,2005).Adsorption is an attractive process,in view of its ef?-ciency and the ease with which it can apply to the treatment of wastewater containing heavy metals.Over last few decades adsorption has gained importance as an effective puri?ca-tion and separation technique used in wastewater treatment. The economics of this process depends mainly on the cost of the adsorbent materials.Although commercial activated carbon,with high surface area,microporous character and high adsorption capacity,has made its potential adsorbent for the removal of heavy metals from industrial wastewater,it is expensive,has relatively high operation costs.Thus,low cost adsorbents are becoming the focus of many investigations on the removal of heavy metals from aqueous solutions.In recent years,various adsorbents have been used for the removal of Pb(II)from aqueous solution(Ayyappan et al.,2005;Bereket et al.,1997;Bhattacharjee et al.,2003;Demirbas et al.,2005; Doyurum and Celik,2006;Feng et al.,2004;Li et al.,2007;Liu et al.,2006;Sari et al.,2007;Sekar et al.,2004;T unali et al.,2006). However,new adsorbents with locally available,high adsorp-tion capacity and economic materials are still needed.Low cost adsorbents could be produced from many raw materials such as agricultural byproducts and industrial wastes.

Tobacco is a kind of important crop and has special eco-nomical value.According to statistical yearbook of China (2004),the output of tobacco leaf in the year2003was2.2 million tons in Yunnan province,which was65.5%of whole national output.Its output of tobacco stems reached about 1.5million tons which equals to that of tobacco leaf.Unfortu-nately,the agricultural and industrial activities derived from such crop generate waste that constitutes a serious environ-mental problem.At the present time,tobacco stems almost became waste after tobacco leaf reaped.Most of tobacco stems were discarded as solid waste or burned off in stacks or used as mulch.Generally speaking,it breaks the balance of ecological environment and produced the environmental contamination and air pollution.On the other hand,the useful and renewable resources are wasted.So,it is very signi?cant to explore multi-purpose utilization technologies to dispose tobacco stems. In our group,we have prepared high surface area activated carbons(Li et al.,2008a)and woodceramics(Li et al.,2008b) successfully using tobacco stems as raw materials.To our knowledge,compared with other adsorbents no information exists on the use of tobacco stems,as an adsorbent for the removal of lead(II)ions and also needs to research.For this purpose,in the present study,adsorption of lead(II)ions onto tobacco stems,a typical agricultural byproduct,was investi-gated systematically with the variation in the parameters of pH,dosage,contact time,the initial concentration of adsor-bate,and https://www.sodocs.net/doc/0610464393.html,ngmuir and Freundlich isotherms were used to analyze the equilibrium data at different tem-peratures.The kinetics of Pb(II)adsorption system has been studied based on the assumption of a pseudo-second-order law.

2.Experimental and methods

2.1.Materials and chemicals

All chemicals used were of analytical reagent grade;anhy-drous lead nitrate(Acros,Corp.)was used without any further puri?cation.Stock lead solution was prepared using anhydrous lead nitrate dissolved in distilled water.Working standards were prepared by progressive dilution of stock lead solution using deionized water.

Tobacco stems,a typical agricultural waste,were collected from Yuxi city,Yunnan Province,P.R.China.The raw materi-als were washed thoroughly with deionized water,and dried at100?C,crushed and sieved to particles with size range of 40–60mesh for use as adsorbent.

2.2.Instrumentation

The concentration of lead ions was determined by AAS method.The difference in concentrations was taken as the amount of lead adsorbed by the tobacco stems.An atomic adsorption spectrometer(Solaar M6,USA),with lead hallow cathode lamp and air acetylene?ame,was used for determin-ing lead concentration.A digital pH meter(PHS-29A,Shanghai, China)was used for pH measurements.The pH meter was standardized using buffer solutions(sodium tetraborate and mixed phosphate)of pH values9.18and6.86.An electrically thermostatic reciprocating shaker(HQ45Z,Wuhan,China) was used for agitating the samples.

2.3.Batch adsorption studies

Batch adsorption experiments were conducted at desired pH value,contact time and adsorbent dosage level using neces-sary adsorbents in a150mL capped conical?ask containing 50mL of test solution on an electrically thermostatic recipro-cating shaker.Weighed the different amount of adsorbents, tobacco stems(0.1,0.3,0.5,0.8,1.2,1.5and2.0g)into the con-ical?asks,and thoroughly mixed with Pb2+solutions(50mL) of the different initial concentrations(10,30,50mg L?1). Adjusted the pH of solution with HNO3(0.1,0.01mol/L)and NaOH(0.1,0.01mol/L)to the desired initial values(pH5.0), then put the conical?asks onto the vibrator to shake120min to reach adsorption equilibrium at the?xed shaking speed (184rpm)and different temperatures(26,30,35,40?C).After reaching equilibrium,the mixture was?ltered through What-man?lter paper and determined the concentrations of lead

296i n d u s t r i a l c r o p s a n d p r o d u c t s28(2008)294–302

ions in?ltrate by AAS.Control experiments were conducted under the same experimental conditions using deionized water without Pb2+.All of the batch experiments were car-ried out in duplicate and the values reported are average of two readings.Based upon initial and?nal concentrations of Pb(II)solution,we could calculate the adsorption constant of Pb(II)on tobacco stems.The residual metal concentration was obtained by calculating the difference between the initial and ?nal metal concentration in solution.Percentage removal of Pb2+was calculated as removal(%)=(1?C t/C0)×100,and the amount of solute adsorbed per unit weight of the adsorbent at different times,or the adsorption capacity,was calculated by equation q t=(C0?C t)V/M,where q t(mg g?1)represented the adsorption capacity;C0and C t(mg L?1)were the aqueous phase solute concentrations(mg L?1)initially and at time t, respectively;V(L)was the volume of solution taken for the adsorption experiment;M(g)was the weight of adsorbent.

2.4.Adsorption kinetics

The prediction of kinetics is necessary for the design of adsorption systems.The kinetic parameter,which is help-ful for the prediction of adsorption rate,gives important information for designing and modeling the processes.Thus, the effects of initial concentration,contact time,and adsor-bent dosage were analyzed from the kinetic point of view. Throughout the study,the effects of initial lead ion concen-trations(10–50mg L?1),contact time(5–240min),pH(2.0–6.0) and dosage of adsorbent(0.1–2.0g)on the removal of Pb(II) were investigated systematically.The apparatus used in the kinetics experiments were similar to those used in the batch experiments.

3.Results and discussion

3.1.Effects of contact time on adsorption

Effects of contact time on the removal of lead were illustrated in Fig.1.Experimental studies were carried out at temper-ature299K with varying initial metal ion concentrations of lead10,30,50mg L?1using dosage of0.8g adsorbent at pH 5.0.It was observed that the lead removal increased with con-tact time and was rapid for the?rst50min and thereafter it proceeded at a lower rate and?nally attained saturation.Equi-librium adsorption was established within120min for metal ions at initial concentration of10,30and50mg L?1.It was very clear from the results that the contact time required for maxi-mum uptake of metal ions by tobacco stems was dependent on the initial metal ion concentration.Lead removal was highly concentration dependent.In fact,the more concentrated the solution,the better the adsorption.This result is important because equilibrium time is one of the parameters for eco-nomical wastewater treatment plant application(Kadirvelu and Namasivayam,2003).Above behavior suggests that at the initial stage,adsorption takes place rapidly on the external surface of the adsorbent followed by a slower internal diffu-sion process,which may be the rate-determining step.The trend in adsorption of Pb(II)suggests that the binding may be through the interactions with functional groups located on

the Fig.1–Effects of contact time on lead ions removal at various concentrations(adsorbent dosage:0.8g;pH:5.0; temperature:299K).

surface of the tobacco stems.According to these results,the contact time was?xed at120min for the batch experiments to make sure that equilibrium was attained.The removal of lead ions for concentrations10,30and50mg L?1at contact time 120min were94.37%,92.10%and90.43%,respectively.

The results demonstrated that at a?xed adsorbent dosage, the amount adsorbed increased with increasing concentra-tion of solution,but the percentage of adsorption decreased. At lower concentrations,the ratio of number of metal ions to the available adsorption sites is low and subsequently the fractional adsorption becomes independent of initial concen-tration.At higher concentrations,however,the available sites of adsorption become fewer and subsequently the removal of metals depends on the initial concentrations.Hence,the removal of lead depends on the initial lead ion concentrations and decreases with increase in initial lead ion concentra-tion.

3.2.Effects of dosage of adsorbent on adsorption

Effects of dosage on the removal of lead ions were presented in Fig.2.Experimental studies were carried out at tempera-ture299K with varying initial metal ion concentrations of lead 10,30,50mg L?1using contact time120min at pH5.0.It was shown that the removal of lead increased rapidly with increas-ing dosage from0to0.5g,after certain adsorbent dosage the removal ef?ciency was not increased signi?cantly and reached the maximum at dosage of0.8g.The removal of lead for10, 30and50mg L?1using0.8g adsorbent was94.37%,92.10% and90.43%,respectively.The variation in adsorption capac-ities between the various adsorbent dosages could be related to the type of surface group responsible for the adsorption of metal ions from solution.With increasing adsorbent dosage more surface area is available for the adsorption due to an increase in active sites on the adsorbent and its availability for adsorption,making easier penetration of lead(II)ions to the adsorption sites and that increasing this number had no effect after equilibrium was reached.

i n d u s t r i a l c r o p s a n d p r o d u c t s 28(2008)294–302

297

Fig.2–Effects of dosage on lead ions removal at various concentrations (contact time:120min;pH:5.0;temperature:299K).

3.3.

Effects of pH on adsorption

The pH of the aqueous solution is an important control-ling parameter in the adsorption process.Earlier studies have shown that the most critical parameter in the treatment of heavy metal by adsorbents is the initial pH of the adsorp-tion medium.Since the pH of aqueous solutions in?uences the solution chemistry of the heavy metals (i.e.,hydrolysis,complexation,redox reactions,and precipitation),and the solution chemistry of the heavy metals also strongly in?u-ences the speciation and the adsorption availability of the heavy metals,the binding of metal ions by surface functional groups is strongly pH-dependent (Lee and Davis,2001).This is partly because hydrogen ions themselves are strongly com-peting with metal ions.The effect of pH on the lead removal (absorbent dosage 0.80g,contact time 120min,temperature 299K)was shown in Fig.3.It was observed that the solution pH affected the amount of lead adsorbed.The lead uptake

was

Fig.3–Effects of pH on lead ions removal at various concentrations (absorbent dosage:0.80g;contact time:120min;temperature:299K).

found to increase with increasing pH,and it increased rapidly for an increase in pH from 2to 3.For three solutions of different initial Pb(II)concentrations (10,30,50mg L ?1),the maximum removal of lead appeared at pH 5.0.The increase in metal removal as pH increases could be explained on the basis of a decrease in competition between hydronium ions and metal species for the surface sites and also by the decrease in posi-tive surface charge on the adsorbent,which resulted in a lower electrostatic repulsion between the surface and the metal ions and hence uptake of metal ions increased.A similar theory was proposed by several earlier workers for metal adsorp-tion on different adsorbent (Acar and Eren,2006;Bhattacharya et al.,2006;Srivastava et al.,2006).In alkaline medium,lead tends to hydrolyze and precipitate instead of adsorption and adsorbent was deteriorated with accumulation of metal ions,making true adsorption studies impossible (T unali et al.,2006;Sari et al.,2007;Bereket et al.,1997;Doyurum and Celik,2006;Liu et al.,2006).Therefore,pH 5was selected to be the opti-mum pH for all further studies.

3.4.

Effects of temperature on adsorption

The temperature is an important parameter in the context of adsorption on solid phase and has two major effects on the adsorption process.Increasing the temperature is known to increase the rate of diffusion of the adsorbate molecules across the external boundary layer and in the internal pores of the adsorbent particle,owing to decrease in the viscos-ity of the solution.In addition,changing temperature will change the equilibrium capacity of the adsorbent for a par-ticular adsorbate (Al-Qodah,2000;Dogan et al.,2004).In the present case,effects of temperature on the extent of solute adsorption were investigated systematically at different tem-peratures (26,30,35,40?C)under the selected agitation time (120min)and dose of adsorbents (0.8g).Adsorption reactions are normally exothermic (Sarkar and Acharya,2006a ).As the temperature increases the percentage adsorption decreases in accordance with Le Chatelier’s principle.The decrease in percentage uptake may be due to a decreased equilibrium constant for adsorption at higher temperature.The equilib-rium extent or capacity of adsorption in a given system is thus found to decrease with the increase of temperature.In the present case,the removal rate increased as temper-ature increased,indicating that the adsorption of lead onto tobacco stems was an endothermic process ( H ?was positive value).

3.4.1.Thermodynamics parameters

A study of the temperature dependence of adsorption reac-tions gives valuable knowledge about the enthalpy and entropy changes during adsorption.The standard Gibbs free energy change ( G ?)is the fundamental criterion of spon-taneity of a process and can be determined using equilibrium constant (K c )by equation: G ?=?RT ln K c

(1)

where R is the universal gas constant (1.987cal K ?1mol ?1,or 8.314J mol ?1K ?1)and T is the temperature in Kelvin (K).The equilibrium constant,K c ,the Langmuir adsorption constant,

298

i n d u s t r i a l c r o p s a n d p r o d u c t s 28(2008)

294–302

Fig.4–Van’t Hoff plot for Pb ions adsorption onto tobacco stems.

can be calculated as K c =

C ae

C e

,(2)

where C ae and C e represent the equilibrium solute concen-tration on the adsorbent and in the solution,respectively.The standard enthalpy change ( H ?)and standard entropy change ( S ?)were given by Van’t Hoff equation that showed the dependence of equilibrium constant of the adsorption pro-cess on the temperature. G ?= H ??T S ?,(3)ln K c =

S ?R ? H ?

RT

.(4)

The plot of ln K c against 1/T was found to be linear;hence

the H ?and S ?could be calculated from the intercept and slope of the plot ln K c versus 1/T ,shown in Fig.4(adsorbent dosage 0.8g,contact time 120min,pH 5.0,initial concentra-tion 30mg L ?1,temperature 299K)and the thermodynamic parameters ( G ?, H ?, S ?)at four temperatures (299,303,308,313K)were listed in Table 1.The standard Gibbs free energy change G ?at all temperatures was negative value,con?rming that the adsorption of lead onto tobacco stems was spontaneous and thermodynamically favorable.The more negative the G ?,the stronger the driving force of adsorption reaction.The standard enthalpy change H ?(1.124kJ mol ?1)was positive value,so the adsorption of lead onto tobacco stems was an endothermic process.The positive adsorption

Table 1–Thermodynamic parameters for Pb(II)

adsorption onto tobacco stems at various temperatures T (K)

G ?(kJ mol ?1) H ?(kJ mol ?1) S ?(J mol ?1K ?1)

294?6.1054 1.124024.1855

303?6.2079308?6.3245313

?6.4454

standard entropy change S ?(24.1855J mol ?1K ?1)may be interrelated to the increased randomness at the solid–liquid interface.

3.5.Adsorption isotherms

Adsorption isotherm is a functional expression that corre-lates the amount of solute adsorbed per unit weight of the adsorbent and the concentration of an adsorbate in bulk solu-tion at a given temperature under equilibrium conditions.It is important to establish the most appropriate correlations for the batch equilibrium data using empirical or theoretical equations as it plays a functional role in predictive model-ing procedures for analysis and design of adsorption systems.The adsorption isotherms are one of the most useful data to understand the mechanism of the adsorption and the char-acteristics of isotherms are needed before the interpretation of the kinetics of the adsorption process.Many models have been proposed to explain adsorption equilibrium,however,no general model has been found to ?t the experimental data accurately under any given condition.A particular one that ?ts the data under one set of conditions may completely mis-?t under another.The most widely used isotherm models for solid–liquid adsorption are the Langmuir and Freundlich isotherms.They can be used to describe the equilibrium adsorbed metal ions and metal ions in solution.In the present investigation,the experimental data were tested with respect to both these isotherms.

The Langmuir model was originally developed to represent chemisorption on a set of well-de?ned localized adsorption sites having the same adsorption energy,independent of the surface coverage and with no interaction between adsorbed molecules (Langmuir,1918).The Langmuir isotherm further based on the assumption that all the adsorption sites are energetically identical (monolayer adsorption)and adsorp-tion occurs on a structurally homogeneous adsorbent.So this model is also called the ideal localized monolayer model.For solid–liquid systems,the Langmuir isotherm is given as:q e =

K L C e

1+a L C e

.

(5)

The linear form of the Langmuir isotherm is given by equa-tion

C e e =1L +a L C e

L

(6)

where K L (dm 3g ?1)and a L (dm 3mg ?1)represent Langmuir constants;the K L /a L values provide a measure of the maxi-mum adsorption capacity q max (mg g ?1)in the system;q e is the amount of solute adsorbed per unit weight of adsorbent (mg g ?1)at equilibrium,C e is the equilibrium solute concen-tration in solution (mg dm ?3).

The essential characteristics of the Langmuir isotherm can also be expressed in terms of a dimensionless constant sepa-ration factor or equilibrium parameter,R L ,which is de?ned as (Weber and Chakravorti,1974).R L =

1

(1+a L 0)

,

(7)

i n d u s t r i a l c r o p s a n d p r o d u c t s28(2008)294–302299

where a L(dm3mg?1)is the Langmuir constant and C0

(mg dm?3)is the initial concentration of adsorbate.The R L

value indicates the shape of the isotherm as follows.

R L value T ype of isotherm

R L>1Unfavorable

R L=1Linear

0

R L=0Irreversible

According to Mckay et al.(1982),R L values between0and1

indicate favorable adsorption.In the present study,for initial

concentration of Pb(II)30mg L?1,the R L was0.136,0.157,0.172

and0.171at different temperatures,respectively,indicating

that the adsorption of lead ions onto the tobacco stems was

favorable.The results were in agreement with the results of

thermodynamics data,which had shown the adsorption was

endothermic and spontaneous.

The Freundlich adsorption isotherm usually?ts the exper-

imental data over a wide range of concentrations(Freundlich,

1906).Freundlich isotherm gives the relationship between

equilibrium liquid and solid phase capacity based on the mul-

tilayer adsorption(heterogeneous surface).This isotherm is

derived from the assumption that the adsorption sites are dis-

tributed exponentially with respect to the heat of adsorption

and is given by:

q e=a f C b f e(8)

and linearized as:

ln q e=ln a f+b f ln C e(9)

where a f(mg g?1)indicates the multilayer adsorption capac-

ity and b f an empirical parameter related to the intensity of

adsorption,which varies with the heterogeneity of the adsor-

bent.For values in the range0.1

The greater the values of b f better is the favorability of adsorp-

tion.

The adsorption studies were conducted at a?xed adsorbent

dosage by changing initial lead ion concentration.The equi-

librium data were analyzed using Langmuir and Freundlich

equilibrium models(Eqs.(6)and(9))in order to obtain the

best-?t isotherm.

https://www.sodocs.net/doc/0610464393.html,ngmuir isotherm

The plot of C e/q e versus C e was shown in Fig.5.The slope and

intercept represented the a L/K L and1/K L,respectively,so the

K L and a L could be calculated from the slope and intercept

of plot.The Langmuir equilibrium adsorption curves relating

solid and liquid phase concentrations for lead onto the tobacco

stems at different temperatures are given as follows:

299K q e=

1.1747C e

(1+0.2119C e)

(10)

303K q e=

1.1810C e

(1+0.2120C e)

(11)

Fig.5–Langmuir isotherm pro?les for the adsorption of

lead(II)ions onto tobacco stems at various temperatures.

308K q e=

1.1215C e

(1+0.1943C e)

(12)

313K q e=

1.1270C e

(1+0.1946C e)

.(13)

3.5.2.Freundlich isotherm

The plot of ln q e versus ln C e was illustrated in Fig.6.The slope

and intercept represented the b f and ln a f,,respectively,so the

b f and a f could be calculated from the slope and intercept

of plot.The equilibrium curves given by Freundlich isotherm

were given as follows:

299K q e=0.9474C0.7233

e

(14)

303K q e=0.9474C0.7233

e

(15)

308K q e=0.9606C0.7285

e

(16)

313K q e=0.9522C0.7234

e

.(17)

3.5.3.Evaluation of isotherm models

The adsorption capacity predicted by the two isotherms were

compared and the corresponding Langmuir and Freundlich

isotherm parameters,along with the regression

coef?cients

Fig.6–Freundlich isotherm pro?les for the adsorption of

lead(II)ions onto tobacco stems at various temperatures.

300i n d u s t r i a l c r o p s a n d p r o d u c t s28(2008)294–302

Table2–Langmuir and Freundlich parameters for the adsorption of Pb(II)onto the tobacco stems at various temperatures T(K)Langmuir constants Freundlich constants

q max(mg g?1)a L(L/mg)R a f(mg g?1)b f R

299 5.54350.21190.98300.94740.72330.9951 303 5.57100.21200.98890.94740.72330.9999 308 5.77070.19430.98370.96060.72850.9995 313 5.79210.19460.98360.95220.72340.9971

(q max,a L,a f,b f and R)at different temperatures were summa-rized in Table2.The values of q max indicate good adsorption ef?ciency.This demonstrates that the tobacco stems adsor-bent has good adsorption ef?ciency for Pb removal.It is observed from isotherms and regression coef?cients that the ?t is better with the Freundlich model than with the Lang-muir model.The Langmuir and the Freundlich models could be used to describe the adsorption data well,showing the fact that both monolayer and heterogeneous surface conditions exist under the experimental condition used,implying that the adsorption of Pb2+ions onto the tobacco stems is thus complex and involve more than one mechanism.

The validity of the Langmuir model suggests the adsorp-tion process is monolayer and adsorption of each molecule has equal activation energy.The magnitude of Langmuir con-stant a L is largely determined by the heat of adsorption.The a L values change from0.2119to0.1946L/mg.Further,the energy of the process at all temperatures was negative and increased with increasing the temperature,which indicated that the pro-cess was spontaneous in nature and the spontaneity increased with the rise of temperature.This further supported the mech-anism above.Thus,the Langmuir model reduces to Henry’s law at low concentration;i.e.,as C e becomes lower,the a L C e (Eq.(5))tends to a value less than unity and follows Henry’s law,whereas the Freundlich model does not reduce to the lin-ear isotherm at low surface coverage.Freundlich values of b f between0.7233and0.7234(0.1

3.6.Adsorption kinetics

The kinetics of adsorption describes the rate of metal ions uptake on tobacco stems and this rate controls the equilibrium time.The kinetics of adsorbate uptake is required for selecting optimum operating conditions for the full-scale batch process, so these models are important in water treatment process design.The kinetic parameter,which is helpful for the pre-diction of adsorption rate,gives important information for designing and modeling the process.Thus,the effects of ini-tial concentration,contact time,and adsorbent dosage were analyzed from the kinetic point of view.

Adsorption kinetics are generally controlled by different mechanisms,of which the most limiting are the diffusion mechanisms,including the initial curved portion,attributed to rapid external diffusion or boundary layer diffusion and sur-face adsorption,and the linear portion,a gradual adsorption stage due to the intraparticle diffusion,followed by a plateau to the equilibrium where the intraparticle diffusion starts to decrease due to the low concentration in solution phase as well as fewer available adsorption sites(Guibal et al.,2003). Previously several researchers used different kinetic models, such as Lagergren’s pseudo-?rst-order,pseudo-second-order, Elovich kinetic equation,and parabolic diffusion model,to represent the mechanism of the adsorption process(Hoda et al.,2006;Sarkar et al.,2006b;Weber and Morris,1963). Currently the pseudo-second-order model has been widely used for adsorption systems due to its good representation of the experimental data for most of the adsorbent–adsorbate systems(Ho and McKay,1999).The pseudo-second-order equation has following advantages:it does not have the problem of assigning an effective adsorption capacity,the adsorption capacity,rate constant of pseudo-second-order and the initial adsorption rate all can be determined from the equation without knowing any parameter beforehand.So,in the present study,the applicability of pseudo-second-order model has been tested for the adsorption of lead onto the tobacco stems.

Adsorption kinetics was explained by the pseudo-second-order

model given by Ho and McKay(1998a)as follows:

d q

d t

=k2(q e?q)2.(18)

Integrating Eq.(3)for the boundary conditions q=0to q=qt at t=0to t=t is simpli?ed as

t

q t

=1

k2q2e

+1

q e

t(19) h=k2q2e(20)

Fig.7–Pseudo-second-order kinetics plots for the adsorption of lead(II)ions onto tobacco stems.

i n d u s t r i a l c r o p s a n d p r o d u c t s28(2008)294–302301

Table3–Comparisons of the pseudo-second-order adsorption rate constants for different initial concentrations

C0(mg L?1)Pseudo-second-order adsorption rate constants

k2(g mg?1min?1)h(mg g?1min?1)R q e(cal)(mg g?1)

10 1.86160.65370.99990.5926 300.6767 2.03770.9999 1.7353 500.3851 3.11150.9999 2.8424

where h is the initial sorption rate(mg g?1min?1);k2 (mg g?1min?1)is the second-order rate constant.k2and q e can be obtained from the intercept and slope of plotting t/q t versus t.

This model is more likely to predict the kinetic behavior of adsorption with chemical adsorption being the rate-controlling step.The pseudo-second-order reaction is greatly in?uenced by the amount of metal on the adsorbent’s sur-face and the amount of metal adsorbed at equilibrium(Ho and McKay,1999).

Preliminary studies on the adsorption rate showed that the removal increased with increasing Pb(II)concentration.The maximum amount of lead ions was adsorbed within the?rst 30min(80–90%of total metal ions adsorbed)and thereafter the adsorption proceeded at a slower rate until equilibrium reached.The equilibrium time was found to be at120min for the initial Pb(II)concentration range studied.This might be attributed to extremely slow diffusion of the metal ions from the surface?lm into the micropores which were the least accessible sites for adsorption(Warhurst et al.,1997).The kinetics of the adsorption data was analyzed using pseudo-second-order model.

3.6.1.Pseudo-second-order model

Ho presented a pseudo-second-order rate law expression, which demonstrated how the rate depended on the adsorption equilibrium capacity but not the concentration of the adsor-bate(Ho and McKay,1999).The initial adsorption rate(h),the equilibrium adsorption capacity(q e)and the pseudo-order rate constants k2were obtained from the slope and intercept of the plots of t/q t against t.The plot t/q t versus t for various lead concentrations(adsorbent dosage8g/L,pH5.0,and tempera-ture299K)was shown in Fig.7and the pseudo-second-order adsorption rate constants for different initial concentrations were summarized in Table3.

From Table3,it was observed that the pseudo-second-order rate constant(k2)decreased,while the initial adsorption rate (h)increased with increased initial Pb(II)concentration.The equilibrium adsorption capacities determined q e(cal)using the pseudo-second-order plots by the method of Ho and Wang (2004)are in good agreement with the experimental values. The correlation coef?cients for the second-order kinetic model indicate that the system under study is more appropriately described by the pseudo-second-order model.The regres-sion coef?cient of above0.9999shows that the model can be applied for the entire adsorption process and con?rmed the chemisorption of Pb(II)onto the tobacco stems.The con-?rmation of pseudo-second-order kinetics indicates that in the adsorption process,concentrations of both adsorbate and adsorbent are involved in rate-determining step,which may be a chemical adsorption or chemisorption(Ho and Mckay, 1998b).

4.Conclusions

The present investigation showed that tobacco stems could be used as an adsorbent for the effective removal of lead ions from wastewater.Lead adsorption was found to be pH-dependent and maximum removal was observed at pH 5.0.The removal of lead ions for concentrations10,30and 50mg L?1using0.8g adsorbent at contact time120min and at temperature299K were94.37%,92.10%and90.43%,respec-tively.The thermodynamics of Pb(II)adsorption onto the tobacco stems indicated that the adsorption was sponta-neous and endothermic.Adsorption followed the Freundlich isotherm and obeyed a pseudo-second-order model.The rela-tively high values of average Freundlich adsorption constants showed also that tobacco stems could be used as an effective material to remove low concentrations Pb(II)from aqueous solutions.Various thermodynamic and kinetic parameters were evaluated.

Acknowledgments

Financial support for this work from Specialized Research Fund for the Doctoral Program of Higher Education of China and Nature Sciences Foundations of Yunnan Province of China are gratefully acknowledged.

r e f e r e n c e s

Acar,F.N.,Eren,Z.,2006.Removal of Cu(II)ions by activated poplar sawdust(Samsun Clone)from aqueous solutions.J.

Hazard.Mater.137,909–914.

Al-Qodah,Z.,2000.Adsorption of dyes using shale oil ash.Water Res.34,4295–4303.

Ayyappan,R.,Carmallin Sophia,A.,Swaminathan,K.,Sandhya, S.,2005.Removal of Pb(II)from aqueous solution using carbon derived from agricultural wastes.Process Biochem.40,

1293–1299.

Bereket,G.,Aroguz,A.Z.,¨Ozel,M.Z.,1997.Removal of Pb(II),Cd(II), Cu(II),and Zn(II)from aqueous solutions by adsorption on

bentonite.J.Colloid Interface Sci.187,338–343. Bhattacharjee,S.,Chakrabarty,S.,Maity,S.,Kar,S.,Thakur,P., Bhattacharyya,G.,2003.Removal of lead from contaminated water bodies using sea nodule as an adsorbent.Water Res.37, 3954–3966.

Bhattacharya,A.K.,Mandal,S.N.,Das,S.K.,2006.Adsorption of Zn(II)from aqueous solution by using different adsorbents.

Chem.Eng.J.123,43–51.

302i n d u s t r i a l c r o p s a n d p r o d u c t s28(2008)294–302

Demirbas,A.,Pehlivan,E.,Gode,F.,Altun,T.,Arslan,G.,2005.

Adsorption of Cu(II),Zn(II),Ni(II),Pb(II),and Cd(II)from

aqueous solution on Amberlite IR120synthetic resin.J.

Colloid Interface Sci.282,20–25.

Dogan,M.,Alkan,M.,T¨urkyilmaz,A.,¨Ozdemir,Y.,2004.Kinetics and mechanism of removal of methylene blue by adsorption onto perlite.J.Hazard.Mater.109,141–148.

Doyurum,S.,Celik,A.,2006.Pb(II)and Cd(II)removal from aqueous solutions by olive cake.J.Hazard.Mater.B138,22–28. Feng,Q.,Lin,Q.,Gong,F.,Sugita,S.,Shoya,M.,2004.Adsorption of lead and mercury by rice husk ash.J.Colloid Interface Sci.

278,1–8.

Freundlich,H.M.F.,1906.¨Uber die adsorption in l¨osungen.Z.

Phys.Chem.(Leipzig)57A,385–470.

Goyer,R.A.,Chisolon,I.J.,1972.In:Lee,D.H.K.(Ed.),Lead:In Metallic Contamination and Human Health.Academic Press, New York/London,p.57.

Guibal,E.,McCarrick,P.,Tobin,J.M.,https://www.sodocs.net/doc/0610464393.html,parison of the sorption of anionic dyes on activated carbon and chitosan

derivatives from dilute solutions.Sep.Sci.Technol.38,

3049–3073.

Ho,Y.S.,McKay,G.,1998a.Sorption of dye from aqueous solution by peat.Chem.Eng.J.70,115–124.

Ho,Y.S.,Mckay,G.,https://www.sodocs.net/doc/0610464393.html,parisons of chemisorption kinetic models applied to pollutant removal on various sorbents.

Trans.Inst.Chem.Eng.76B,332–340.

Ho,Y.S.,McKay,G.,1999.Pseudo-second order model for sorption processes.Process Biochem.34,451–465.

Ho,Y.S.,Wang,C.C.,2004.Pseudo-isotherms for the sorption of cadmium ion onto tree fem.Process Biochem.39,761–765. Hoda,N.,Bayram,E.,Ayranci,E.,2006.Kinetic and equilibrium studies on the removal of acid dyes from aqueous solutions by adsorption onto activated carbon cloth.J.Hazard.Mater.B137, 344–351.

Kadirvelu,K.,Namasivayam,C.,2003.Activated carbon from coconut coirpith as metal adsorbent:adsorption of Cd(II)from aqueous solution.Adv.Environ.Res.7,471–478.

Langmuir,I.,1918.The adsorption of gases on plane surfaces of glass,mica and platinum.J.Am.Chem.Soc.40,1361–1403. Lee,S.M.,Davis,A.P.,2001.Removal of Cu(II)and Cd(II)from aqueous solution by seafood processing waste sludge.Water Res.35,534–540.

Li,Q.,Zhai,J.,Zhang,W.,Wang,M.,Zhou,J.,2007.Kinetics studies of adsorption of Pb(II),Cr(III)and Cu(II)from aqueous solution by sawdust and modi?ed peanut husk.J.Hazard.

Mater.B141,163–167.

Li,W.,Zhang,L.B.,Peng,J.H.,Li,N.,Zhu,X.Y.,2008a.Preparation of high surface area activated carbons from tobacco stems

with K2CO3activation using microwave radiation.Ind.Crops Prod.92,79–85.Li,W.,Zhang,L.B.,Peng,J.H.,Li,N.,Zhang,S.M.,Guo,S.H.,2008b.

Effects of microwave irradiation on the basic properties of

woodceramics made from carbonized tobacco stems

impregnated with phenolic resin.Ind.Crops Prod.28,143–154. Liu,Y.,Shen,X.,Xian,Q.,Chen,H.,Zhou,H.,Gao,S.,2006.

Adsorption of copper and lead in aqueous solution onto

bentonite modi?ed by4 -methylbenzo-15-crown-5.J.Hazard.

Mater.B137,1149–1155.

Mckay,G.,Blair,H.S.,Gardener,J.R.,1982.Adsorption of dyes on chitin.I.Equilibrium studies.J.Appl.Poly.Sci.27,

3043–3057.

Nadeema,M.,Mahmood,A.,Shahid,S.A.,Shah,S.S.,Khalid,A.M., McKay,G.,2006.Sorption of lead from aqueous solution by

chemically modi?ed carbon adsorbents.J.Hazard.Mater.138, 604–613.

Qin,F.,Wen,B.,Shan,X.Q.,Xie,Y.N.,Liu,T.,Zhang,S.Z.,Khan Shahamat,U.,2006.Mechanisms of competitive adsorption of Pb,Cu,and Cd on peat.Environ.Pollut.144,669–680.

Sari,A.,T uzen,M.,Soylak,M.,2007.Adsorption of Pb(II)and Cr(III)from aqueous solution on Celtek clay.J.Hazard.Mater.

144,41–46.

Sarkar,M.,Acharya,P.K.,https://www.sodocs.net/doc/0610464393.html,e of?y ash for the removal of phenol and its analogues from contaminated water.Waste

Manage.26,559–570.

Sarkar,M.,Banerjee,A.,Pramanick,P.P.,Sarkar,A.R.,https://www.sodocs.net/doc/0610464393.html,e of laterite for the removal of?uoride from contaminated

drinking water.J.Colloid Interface Sci.302,432–441.

Sekar,M.,Sakthi,V.,Rengaraj,S.,2004.Kinetics and equilibrium adsorption study of lead(II)onto activated carbon prepared from coconut shell.J.Colloid Interface Sci.279,307–

313.

Srivastava,V.C.,Mall,I.D.,Mishra,I.M.,2006.Characterization of mesoporous rice husk ash(RHA)and adsorption kinetics of metal ions from aqueous solution onto RHA.J.Hazard.Mater.

B134,257–267.

T unali,S.,Akar,T.,¨Ozcan,S.A.,Kiran,I.,¨Ozcan,A.,2006.

Equilibrium and kinetics of biosorption of lead(II)from

aqueous solutions by Cephalosporium aphidicola.Sep.Purif.

Technol.47,105–112.

Warhurst,A.M.,Fowler,G.D.,McConnachie,G.L.,1997.Pore structure and adsorption characteristics of steam pyrolysis carbons from Moringa oleifera.Carbon35,1039–1045.

Weber Jr.,T.W.,Chakravorti,R.K.,1974.Pore and solid diffusion models for?xed bed adsorbers.J.Am.Inst.Chem.Eng.20,

228–238.

Weber Jr.,W.J.,Morris,J.C.,1963.Kinetics of adsorption on carbon from solution.J.Sanitary Eng.Div.Am.Soc.Civ.Eng.89,31–60. World Health Organization,1984.Guidelines for drinking water quality,vol.1and2,Geneva.

国际贸易实务2010通则 11种贸易术语对照表

《2010年通则》11种贸易术语对照表 标准代码中文 名称交货 地点 责任费用 风险划分 界限 出口清 关责任 与费用 进口报 关责任 与费用 适用的运输方 式办 理 租 船 订 舱 办 理 保 险 支 付 费 用 支 付 保 险 费 ex works EXW 工厂交货(指 定地点) 出口商 所在地 买 方 买 方 买 方 买 方 买方受领货物买方买方任何运输方式 free carrier FCA 货交承运人 (指定交货地 点) 出口国 内地或 港口 买 方 买 方 买 方 买 方 货交承运人监管卖方买方任何运输方式 carriage paid to CPT 运费付至(指 定目的地) 出口国 内地或 港口 卖 方 买 方 卖 方 买 方 货交承运人监管卖方买方任何运输方式 carriage & insurance paid to CIP 运费、保险费 付至(指定目 的地) 出口国 内地或 港口 卖 方 卖 方 卖 方 卖 方 货交承运人监管卖方买方任何运输方式 Delivered At Terminal DAT 运输终端交货 (指定港口或 目的地的运输 终端) 进口国 指定运 输终端 卖 方 卖 方 卖 方 卖 方 货物交买方处置卖方买方任何运输方式 Delivered At Place DAP 目的地交货 (指定目的 地) 进口国 指定目 的地 卖 方 卖 方 卖 方 卖 方 货物交买方处置卖方买方任何运输方式 delivered duty paid DDP 完税后交货 (指定目的 地) 进口国 指定目 的地 卖 方 卖 方 卖 方 卖 方 货物交买方处置卖方卖方任何运输方式 free alongside ship FAS 装运港船边交 货(指定装运 船) 装运港买 方 买 方 买 方 买 方 货交装运港船边卖方买方海运或内河水 运 free on board FOB 船上交货(指 定装运港) 装运港买 方 买 方 买 方 买 方 货物装上船卖方买方海运或内河水 运 cost & freight CFR 成本加运费 (指定目的 港) 装运港卖 方 买 方 卖 方 买 方 货物装上船卖方买方海运或内河水 运 cost insurance and freight CIF 成本、保险费 加运费(指定 目的港) 装运港卖 方 卖 方 卖 方 卖 方 货物装上船卖方买方海运或内河水 运

三种贸易术语(FOB、CNF、CIF)简介和区别

三种贸易术语(FOB、CNF、CIF)简介和区别 一、基本概念 贸易术语(TRADE TERMS又称贸易条件,价格术语( PRICE TERMS,它是一个简短的概念(SHORTHAND EXPRESSION它确定了买卖双方相关费用、风险及责任的划分,以及买卖双 方在交货和接货过程中应尽的义务,是贸易中价格的重要组成部分。 二、有关贸易术语的主要国际惯例主要惯例有三种 A.1932 年华沙牛津规则( WARSAW-OXFORD RULES 19,32简称 W.O.RULES 1932) B.1941 年美国对外贸易定义修订本( REVISED AMERICAN FOREIGN TRADE DEFINITIONS 1)941 C. 国际商会制定的《2000年通则》英文为INCOTERMS 2000 (ICC UBLICATION NO.56)国际商会简称ICC 是INTERNATIONAL CHAMBER OF COMMERCE个单词第一个字母大写 . INCOTERMS来源于 INTERNATIONAL COMMERICAL TERM S个单词合并而成。 三、当前国际贸易中广泛采用的贸易术语惯例 ①是国际商会制定的《 INCOTERMS 1990》或《 INCOTERMS 2000》 ②国际商会于 1919 年成立,会员分布在 140 多个国家和地区,是全球具有重要影响的世界性民间商业组织,它是联合国的一个高级咨询机构,设立的目的是在经济和法律领域里,以有效的行动促进国际贸易和投资的发展。 ③中国于 1994 年 11 月获得国际商会成员国地位。 ④《INCOTERMS1990/2000 在世界上已得到广泛的承认,广泛运用于国际贸易合同及L/C 中。 四、FOB 贸易术语 1、定义:FOB是FREEON BOARD三个单词第一个字母的大写,中文意思为装运港船上交货,指定具体装运港名。 2、适用运输方式:海运和内河运输。 3、关键点:风险划分点,交货点,费用划分点均在装运港买方指定的轮船舷(实际操作中为装到船舱内)。 4、卖方的主要义务 A、负责在合同规定的日期或期限内,在指定装运港将符合合同的货物按港口惯常方式交至买方指定的船上,并给予买方充分的装船通知。 B、负责取得出口许可证或其他核准证书(商检证,原产地证等)办理货物出口手续(报关、出口订仓等)。 C、负担货物在装运港越过船舷为止的一切费用和风险(实际为到船舱内为止)。 D、负责提供商业发票和证明货物已交至船上的通常单据(已装船海运提单)。 5、买方的主要义务 A、负责按合同规定支付货物价款。 B、负责订舱或租船、支付运费(海运费),并给予卖方关于船名,装船地点和要求交货时 间的充分通知,(实际业务中买方告知卖方其在装运港的货运代理,并要求卖方向其订船,海运费为到付,由买方支付,通常买方支付的海运费较卖方自己订船要便宜10-20%)。 C、自负风险和费用取得进口许可证(配额在进口国同样由买方向国内行政机构申领)或其他核准证书,并办理货物进口以及必要时,经由另一国过境运输的一切海关手续。 D、负担货物在装运港越过船舷后的一切费用和风险(实际为装运港船舱内以后的) E、收取卖方按合同规定交付的货物,接受与合同相符的单据。 6、实际业务中的注意点

2010通则的11个贸易术语

2010通则的11个贸易术语 术语 说明 跟随 交货地点 风险划分 运费承担 保费承担 出口 通关 进口 通关 运输 方式 合同 性质 术语变形 EXW Ex Works 工厂交货 启运地 启运地 卖方营业场、工厂或仓库等指定地点 启运地 货物处于买方处置下,不负责装上运输工具

买方 买方 买方 买方 任何运输启运合同 术语 说明 跟随 交货 地点 风险 划分 运费 承担 保费 承担 出口 通关 进口 通关 适合 运输 方式 合同 性质

贸易术语变形 FOB Free on Board 装运港船上交货装运港 装运港船上 装运港船上 买方 买方 卖方 买方 海运和内陆水路 装运合同 解决装船费用 FOB Liner terms(班轮条件)买方 FOB Under Tackle(吊钩下交货)买方FOB Stowed(理舱费在内)卖方 FOB Trimmed(平舱费在内)卖方 CFR Cost and Freight 成本加运费 目的港 装运港船上 装运港船上 注意装运通知

卖方 买方 卖方 买方 海运和内陆水路 装运合同 关于卸货用的负担 CFR Liner Terms(班轮条件)卖方 CFR Landed(卸到岸上)卖方 CFR Ex Ship’s Hold(舱底交货)买方 CFR EX Tackle(吊钩下交货)卖方 CIF Cost Insurance and Freight 成本加保险费运费目的港 装运港船上 装运穿船上 卖方 卖方 卖方 买方 海运和内陆水路 装运合同 关于卸货用的负担 CIF Liner Terms(班轮条件)卖方 CIF Landed(卸到岸上)卖方

国际贸易术语的含义和实践操作技巧

国际贸易实务操作及法律风险防范 ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ 【培训时间】2010年08月07-08日北京 2010年08月14-15日上海2010年08月21- 22日深圳 【培训对象】进出口,国贸等部门,企业经理、采购部、物流部、销售经理、市场部、财务部、销售等 【培训费用】¥2800元/人(含课程费、饮用水、午餐、参考资料等) 【会务组织】上海智瑾企业管理咨询有限公司 世博特惠:世博期间来上海参加公开课学习的学员均可获赠世博门票一张;特惠课程除外! ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ 【课程背景】 在当今全球化采购的大潮中,专业的采购人士掌握全面的国际贸易知识、操作流程和技巧及国际采购中的风险规避、降低成本等方面对组织来说是非常必要的。目前由美国次贷危机所引发的金融危机,使国际间合作的运行速度和运作模式都正在并将继续发生着深刻本质性的变化。面对这些深刻而快速变化,我们应该更进一步规范国际采购中国际贸易的操作,以及迅速掌握市场行情及政策变化,及时做采购策略的调整。另外,对新兴的跨国采购企业来说,挑战更大,掌握相关知识更为重要。企业学习网课程研发团队经过缜密分析和研究采购在国际贸易活动中所出现的问题,设计有针对性的解决方案,规避政策风险,以及在金融危机下如何规避风险的技巧,帮助企业实现利益的最大化。 ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ 【课程目标】 系统掌握国际贸易术语的含义和实践操作技巧! 掌握各种常用结算技巧与方法及单证,对进出口操作流程有充分的掌握,规避风险!降 低进出口成本! 设计国际供应链方案,设计最佳运输方式和承运人以及报关地点,降低运做成本和运输风险! 掌握最新国际与国内贸易方面的法律法规,从而设计合同条款,防范法律风险! 掌握各类进出口各种单证的填制与使用技巧,规避贸易单证风险! 理顺企业进出口的业务流程,预先完成各种文件的报关的准备!降低进出口操作的成本! 规范产品进出口时产品的检验检疫的报检流程,规避进出口及海关事务处理的意外风险!≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡ 【课程大纲】 一.国际贸易理论与实践特点 1.国际贸易理论体系 案例分析:国家贸易政策与公司赢利的契机。 2. WTO 下的国际贸易常见的三种争端

2010年版贸易术语介绍

其实和2000版是一样的,唯一区别就是删去了4个术语,添加了2个术语,且有些其他新的变化,见下文: 《2010年国际贸易术语解释通则》(International Rules for the Interpretation of Trade Terms 2010, 缩写Incoterms? 2010) 是国际商会根据国际货物贸易的发展,对《2000年国际贸易术语解释通则》的修订,2010年9月27日公布,于2011年1月1日实施。 《2010年国际贸易术语解释通则》删去了《2000年国际贸易术语解释通则》4个术语:DAF (Delivered at Frontier)边境交货、DES (Delivered Ex Ship) 目的港船上交货、DEQ (Delivered Ex Quay)目的港码头交货、DDU (Delivered Duty Unpaid)未完税交货,新增了2个术语:DAT(delivered at terminal)在指定目的地或目的港的集散站交货、DAP(delivered at place)在指定目的地交货。即用DAP取代了DAF、DES和DDU三个术语,DAT取代了DEQ,且扩展至适用于一切运输方式。 DAT(delivered at terminal)目的地或目的港的集散站交货 类似于取代了的DEQ术语,指卖方在指定的目的地或目的港的集散站卸货后将货物交给买方处置即完成交货,术语所指目的地包括港口。卖方应承担将货物运至指定的目的地或目的港的集散站的一切风险和费用(除进口费用外)。本术语适用于任何运输方式或多式联运。 DAP(delivered at place)目的地交货 类似于取代了的DAF、DES和DDU三个术语,指卖方在指定的目的地交货,只需做好卸货准备无需卸货即完成交货。术语所指的到达车辆包括船舶,目的地包括港口。卖方应承担将货物运至指定的目的地的一切风险和费用(除进口费用外)。本术语适用于任何运输方式、多式联运方式及海运。 修订后的《2010年国际贸易术语解释通则》取消了“船舷”的概念,卖方承担货物装上船为止的一切风险,买方承担货物自装运港装上船后的一切风险。在FAS,FOB,CFR和CIF 等术语中加入了货物在运输期间被多次买卖(连环贸易)的责任义务的划分。考虑到对于一些大的区域贸易集团内部贸易的特点,规定,Incoterms? 2010不仅适用于国际销售合同,也适用于国内销售合同。 《2010年国际贸易术语解释通则》共有11种贸易术语,按照所适用的运输方式划分为两大类: 第一组:适用于任何运输方式的术语七种:EXW、FCA、CPT、CIP、DAT、DAP、DDP。 EXW(ex works)工厂交货 FCA(free carrier)货交承运人 CPT(carriage paid to)运费付至目的地

13种贸易术语的比较归纳-贸易术语的归纳总结

13种贸易术语归纳对比

FOB、CIF、CFR异同比较: 共同点: 1、三种价格术语都适用于海运和内河运输,其承运人一般只限于船公司。 2、三种价格术语交货点均为装运港船舷风险点均以在装运港越过船舷即从卖方转移至买方。 3、费用点:卖方均要承担货物在装运港越过船舷为止的一切费用。 4、提单:卖方均需向买方提交已装船清洁提单。 5、装船通知:装运前后卖方均应及时向买方发出装船通知。 6、风险点:卖方在装运港将货物装船后的风险即转移到买方。

7、目的港的进口清关,费用等均由买方负责办理;装运港的装船,陆运,出口报关,办理许可证等均由卖方办理。 8、卖方都有在装运港安排订舱、配船的义务。 不同点: 1、价格术语后港口性质不一样,FOB后的港口指卖方所在国的港口,而CFR与CIF 后的港口指买方所在国的港口 2、费用构成不一样,报价不一样。FOB价格是考虑货物从原料购进、生产直到出口报关货物装到买方指定船舱同的一切费用和利润为止,而CFR是在FOB价格的基础上再加上海运费,CIF则是在FOB价格的基础上再加上海运费和保险费。 3、码头作业费的支付对象不同。按照谁支付海运费谁支付THC费用的原则,FOB价格条款中THC费用应由买方承担,CFR与CIF中THC应由卖方承担,现行国内THC标准为20‘柜370元,大柜40’为560元,THC费用应在贸易合同中明确注明由谁支付。 4、保险费支付、办理不同:FOB、CFR 保险由买方办理,卖方应于装船前通知买方;CIF 保险由卖方办理并支付保险费,卖方按合同条款,保险条款办理保险并将保险单交给买方。 5、装船通知告知买方时间不同:FOB价格和CFR在装船前告知买方,装船内容、装船细节以便买方有充足的时间办理货物海上保险而CIF是由卖方投保可在装船后几天内告知买方装船通知。 FCA、CPT、CIP异同比较: 共同点: 1、适用于任何运输方式,包括多式联运,也包括海运。在船舷无实际意义

三种贸易术语fob,cif,f区别

三种贸易术语(FO B、CN F、CIF)简介和区别 一、基本概念 贸易术语(TRADE TERMS)又称贸易条件,价格术语(PRICE TERMS),它是一个简短的概念(SHORTHAND EXPRESSION),它确定了买卖双方相关费用、风险及责任的划分,以及买卖双方在交货和接货过程中应尽的义务,是贸易中价格的重要组成部分。 二、有关贸易术语的主要国际惯例 主要惯例有三种 A.1932年华沙牛津规则(WARSAW-OXFORD RULES 1932,简称W.O.RULES 1932) B.1941年美国对外贸易定义修订本(REVISED AMERICAN FOREIGN TRADE DEFINITIONS 1941) C.国际商会制定的《2000年通则》英文为INCOTERMS 2000,(ICC PUBLICATION NO.560) 国际商会简称ICC是INTERNATIONAL CHAMBER OF COMMERCE三个单词第一个字母大写. INCOTERMS来源于INTERNATIONAL COMMERICAL TERMS三个单词合并而成。 三、当前国际贸易中广泛采用的贸易术语惯例 ③ xx于 1994年11月获得国际商会成员国地位。

④ 《在世界上已得到广泛的承认,广泛运用于国际贸易合同及L/C中。 四、FOB 贸易术语 1、定义: FOB是FREE ON BOARD三个单词第一个字母的大写,中文意思为装运港船上交货,指定具体装运港名。 2、适用运输方式: 海运和内河运输。 3、关键点: 风险划分点,交货点,费用划分点均在装运港买方指定的轮船舷(实际操作中为装到船舱内)。 4、卖方的主要义务 A、负责在合同规定的日期或期限内,在指定装运港将符合合同的货物按港口惯常方式交至买方指定的船上,并给予买方充分的装船通知。 B、负责取得出口许可证或其他核准证书(商检证,原产地证等)办理货物出口手续(报关、出口订仓等)。 C、负担货物在装运港越过船舷为止的一切费用和风险(实际为到船舱内为止)。 D、负责提供商业发票和证明货物已交至船上的通常单据(已装船海运提单)。 5、买方的主要义务 A、负责按合同规定支付货物价款。 B、负责订舱或租船、支付运费(海运费),并给予卖方关于船名,装船地点和要求交货时间的充分通知,(实际业务中买方告知卖方其在装运港的货运

2010国际贸易术语解释通则与2000比较

《2010国际贸易术语解释通则》与2000版的比较分析发表时间:2011-5-23 来源:《对外经贸实务》2011年第5期供稿作者:朱念 [导读] 贸易术语结构上的变化。贸易术语由13种减少为11种,贸易术语根据运输方式分为2组。 朱念钦州学院 2010年9月国际商会已经完成了《2010国际贸易术语解释通则》(以下简称《2010年通则》),已于2011年1月1日发布生效。与《2000年通则》相比,《2010年通则》更准确地标明了各方承担货 物运输风险和费用的责任条款。 一、《2010年通则》的实质性的主要修改 《2010年通则》在以下两大方面进行了六个方面实质性的修改: 1. 贸易术语结构上的变化。贸易术语由13种减少为11种,贸易术语根据运输方式分为2组。《2010年通则》删掉了4个D组术语:DAF、DES、DEQ和DDU,新增2个D组术语:DAT(Delivered At Terminal,终端交货)和DAP(Delivered At Place,指定地点交货)。 2. 术语义务项目上的变化。《2010年通则》中每种术语项下卖方在每一项目中的具体义务不再“对应”买方在同一项目中相应的义务,而是改为分别描述,并且各项目内容也有所调整。其中, 第一项和第十项改动较大,尤其是第十项要求卖方和买方分别要帮助对方提供包括与安全有关的信息和单据,并因此而向受助方索偿因此而发生的费用。 3. 新增DA T和DAP两个术语。《2010年通则》增加了DAT和DAP两个全新的术语,DA T下卖方需要承担把货物由目的地(港)运输工具上卸下的费用,DAP下卖方只需在指定目的地把货物处于买方控 制之下,而无须承担卸货费。这有助船舶管理公司理解货物买卖双方支付各种收费时的角色,弄清码头处理费的责任方,有助避免现时经常出现的码头处理费(THC)纠纷。 4. “船舷”的变化。《2010年通则》取消了“船舷”的概念,不再设定“船舷”的界限,只强调卖方承担货物装上船为止的一切风险,买方承担货物自装运港装上船开始起的一切风险。此次修 订最终删除了“船舷”的规定,强调在FOB,CFR和CIF下买卖双方的风险以货物在装运港口被装上船时为界,而不再规定一个明确的风险临界点。 5. 关于连环贸易的补充。大宗货物买卖中,货物常在一笔连环贸易下的运输期间被多次买卖,即“String Sales”(连环贸易)。着眼于贸易术语在这种贸易中的应用,《2010年通则》对此连 环贸易模式下卖方的交付义务做了细分,在相关术语中同时规定了“设法获取已装船货物”和将货物装船的义务,弥补了以前版本中在此问题上未能反映的不足。 6. 术语的内外贸适用的兼容性。考虑到对于一些大的区域贸易集团,如欧洲单一市场而言,国与国之间的边界手续已不那么重要了,《2010年通则》首次正式明确这些术语

13种贸易术语的详细介绍

13种贸易术语的详细介绍 (一)工厂交货(EXW) 本术语英文为"EX Works(https://www.sodocs.net/doc/0610464393.html,d place)",即"工厂交货(......指定地点)"。 它指卖方负有在其所在地即车间、工厂、仓库等把备妥的货物交付给买方的责任,但通常不负责将货物装上买方准备的车辆上或办理货物结关。买方承担自卖方的所在地将货物运至预期的目的地的全部费用和风险。 (二)货交承运人(FCA) 本术语英文为“Free Carrier(https://www.sodocs.net/doc/0610464393.html,d place)”,即“货物交承运人(......指定地点)”。 它指卖方应负责将其移交的货物,办理出关后,在指定的地点交付给买方指定的承运入照管。根据商业惯例,当卖方被要求与承运人通过签订合同进行协作时,在买方承担风险和费用的情况下,卖方可以照此办理。本术语适用于任何运输方式。 (三)船边交货(FAS) 本术语英文为“Free Alongside ship(https://www.sodocs.net/doc/0610464393.html,d port of shipment)”即“船边交货(......指定装运港)”。 它指卖方在指定的装运港码头或驳船上把货物交至船边,从这时起买方须承

担货物灭失或损坏的全部费用和风险,另外买方须办理出口结关手续。本术语适用于海运或内河运输。 (四)船上交货(FOB) 本术语英文为“Free on Boaro(https://www.sodocs.net/doc/0610464393.html,d port of shipment)”,即“船上交货(......指定装运港)”。 它指卖方在指定的装运港把货物送过船舷后交付,货过船舷后买方须承担货物的全部费用、风险、灭失或损坏,另外要求卖方办理货物的出口结关手续。本术语适用于海运或内河运输。 (五)成本加运费(CFR或c&F) 本术语英文为“Cost and Freight(named port of shipment)”,即“成本加运费(......指定目的港)”。 它指卖方必须支付把货物运至指定目的港所需的开支和运费,但从货物交至船上甲板后,货物的风险、灭失或损坏以及发生事故后造成的额外开支,在货物越过指定港的船舷后,就由卖方转向买方负担.另外要求卖方办理货物的出口结关手续。本术语适用于海运或内河运输。 (六)成本、保险费加运费(CIF) 本术语英文为“Cost,Insurance and Freight(https://www.sodocs.net/doc/0610464393.html,d port of

11个贸易术语归纳表 刘晶晶

EXW: 卖方责任最小(出口报关卖方负责) DDP :买方责任最小(进口报关买方负责) 风险划分点(交货点)与费用的划分点: E 、F 、D 组贸易术语,两点重合 C 组贸易术语:两点分离 象征性象征性交货与实质性交货 象征性交货:F 、C 组贸易术语 (交单=完成交货义务)(交给承运人) 实质性交货:E 、D 组贸易术语 (交货=完成交货义务)(交给买方) 象征性 贸易术语 全称 交货点 风险划分点 出口报关 运输费用 保险费用 进口报关 运输方式 船边交货 FAS FREE ALONGSIDE SHIP 装运港船边 货交船边后 买 买 买 买 各种 装运港船上交货 FOB FREE ON BOARD 装运港船上 货交船上后 卖 买 买 买 各种 成本加运费 CFR CARRIAGE AND FREIGHT 装运港船上 货交船上后 卖 买 买 买 海运、内陆水运 成本加保险费运费 CIF COST INSURANCE AND FREIGHT 装运港船上 货交船上后 卖 买 买 买 海运、内陆水运 工厂交货 EXW EX WORKS 卖方工厂 货交买方处置 卖 卖 买 买 海运、内陆水运 货交承运人 FCA FREE CARRIER 出口国指定地点 货交承运人后 卖 卖 卖 买 海运、内陆水运 运费付至 CPT CARRIAGE PAID TO 出口国指定地点 货交承运人后 卖 卖 买 买 各种 运费、保险费付至 CIP CARRIAGE AND INSURANCE PAID TO 出口国指定地点 货交承运人后 卖 卖 卖 买 各种 终点站交货 DAT DELIEVERED AT TERMINAL 进口国指定终点 货交买方处置 卖 卖 卖 买 各种 目的地交货 DAP DELIVERED AT PLACE 进口国指定目的地 货交买方处置 卖 卖 卖 买 各种 完税后交货 DDP DELIVERED DUTY PAID 进口国指定目的地 货交买方处置 卖 卖 卖 卖 各种

国际贸易术语解释通则简介

BRIEF INTRODUCTION 全球化经济赋予商业以空前宽广途径通往世界各地市场。货物得以在更多的国家、大量且种类愈繁地销售。然而随着全球贸易数额的增加与贸易复杂性的提升,因销售合同不恰当起草引致误解与高代价争端可能性也提高了。不同国家对贸易术语的多种解释引起的误解阻碍着国际贸易的发展,基于便利商人们使用,在进行涉外买卖合同所共同使用的贸易术语的不同国家,有一个准确的贸易术语解释出版物是很有必要的。鉴于此,国际商会于1921年在伦敦举行的第一次大会时就授权搜集各国所理解的贸易术语的摘要。准备摘要的工作是在一个叫做“贸易术语委员会”的主持下进行的,并且得到各国家委员会的积极协助,同时广泛征求了出口商、进口商、代理人、船东、保险公司和银行等各行各业的意见,以便对主要的贸易术语做出合理的解释,使各方能够共同适用。1999年,国际商会广泛征求世界各国从事国际贸易的各方面人士和有关专家的意见,通过调查、研究和讨论,对实行60多年的《通则》进行了全面的回顾与总结。为使贸易术语更进一步适应世界上无关税区的发展、交易中使用电子信息的增多以及运输方式的变化,国际商会再次对《国际贸易术语解释通则》进行修订,并于1999年7月公布《2000年国际贸易术语解通则》(简称《INCOTERMS 2000》或《2000年通则》),于2000年1月1日起生效。2010年9月27日,国际商会正式推出《2010国际贸易术语解释通则》(Incoterms2010),与Incoterms2000并用,新版本于2011年1月1日正式生效。国际贸易术语解释通则这一用于国内与国际贸易事项的国际商会规则使得全球贸易行为更便捷。在销售合同中参引国际贸易术语解释通则2010可清晰界定各方义务并降低法律纠纷的风险。 使用贸易术语,有利于买卖双方明确各自的权利和义务,有利于买卖双方洽商交易和订立合同;有利于买卖双方核算价格和成本。国际贸易术语的形成对国际贸易的发展起着重要作用,使国际贸易中复杂的价格构成条理化、规范化、标准化,使买卖双方就复杂的价格问题有了共同语言,简化了交易手续,节省磋商的时间和费用,明确了买卖双方的责任。国际贸易术语的作用主要表现在下列几个方面:①有利于买卖双方洽商交易和订立合同②有利于买卖双方核算价格和成本③有利于解决履行当中争议。 abbr.(abbreviation) 《国际贸易术语解释通则》(International Rules for the Interpretation of Trade Terms, 缩写INCOTERMS)

三种贸易术语FOBCNFCIF简介和区别

三种贸易术语(F O B、C N F、C I F)简介和区别 一、基本概念 贸易术语(TRADE TERMS)又称贸易条件,价格术语(PRICE TERMS),它是一个简短的概念(SHORTHAND EXPRESSION),它确定了买卖双方相关费用、风险及责任的划分,以及买卖双方在交货和接货过程中应尽的义务,是贸易中价格的重要组成部分。 二、有关贸易术语的主要国际惯例 主要惯例有三种 A.1932年华沙牛津规则(WARSAW-OXFORD RULES 1932,简称) B.1941年美国对外贸易定义修订本(REVISED AMERICAN FOREIGN TRADE DEFINITIONS 1941)C.国际商会制定的《2000年通则》英文为INCOTERMS 2000,(ICC UBLICATION NO.560)国际商会简称ICC是INTERNATIONAL CHAMBER OF COMMERCE三个单词第一个字母大写. INCOTERMS来源于INTERNATIONAL COMMERICAL TERMS三个单词合并而成。 三、当前国际贸易中广泛采用的贸易术语惯例 ①是国际商会制定的《INCOTERMS 1990》或《INCOTERMS 2000》 ②国际商会于1919年成立,会员分布在140多个国家和地区,是全球具有重要影响的世界性民间商业组织,它是联合国的一个高级咨询机构,设立的目的是在经济和法律领域里,以有效的行动促进国际贸易和投资的发展。 ③中国于1994年11月获得国际商会成员国地位。 ④《INCOTERMS 1990/2000在世界上已得到广泛的承认,广泛运用于国际贸易合同及L/C 中。 四、FOB 贸易术语 1、定义:FOB是FREE ON BOARD三个单词第一个字母的大写,中文意思为装运港船上交货,指定具体装运港名。 2、适用运输方式:海运和内河运输。 3、关键点:风险划分点,交货点,费用划分点均在装运港买方指定的轮船舷(实际操作中为装到船舱内)。 4、卖方的主要义务 A、负责在合同规定的日期或期限内,在指定装运港将符合合同的货物按港口惯常方式交至买方指定的船上,并给予买方充分的装船通知。 B、负责取得出口许可证或其他核准证书(商检证,原产地证等)办理货物出口手续(报关、出口订仓等)。 C、负担货物在装运港越过船舷为止的一切费用和风险(实际为到船舱内为止)。 D、负责提供商业发票和证明货物已交至船上的通常单据(已装船海运提单)。 5、买方的主要义务 A、负责按合同规定支付货物价款。 B、负责订舱或租船、支付运费(海运费),并给予卖方关于船名,装船地点和要求交货时间的充分通知,(实际业务中买方告知卖方其在装运港的货运代理,并要求卖方向其订船,海运费为到付,由买方支付,通常买方支付的海运费较卖方自己订船要便宜10-20%)。 C、自负风险和费用取得进口许可证(配额在进口国同样由买方向国内行政机构申领)或其他核准证书,并办理货物进口以及必要时,经由另一国过境运输的一切海关手续。 D、负担货物在装运港越过船舷后的一切费用和风险(实际为装运港船舱内以后的) E、收取卖方按合同规定交付的货物,接受与合同相符的单据。 6、实际业务中的注意点

六种主要贸易术语的异同点比较

六种主要贸易术语的异同点比较 一、FOB、CFR、CIF的异同点 1.1.相同点 ⑴交货方式:FOB、CFR、CIF合同均属于象征性交货,即单据买卖。 ⑵运输方式:水上运输,包括海运及内河水运。 ⑶交货地点:装运港船上交货。 ⑷风险界点:装运港船舷为界,卖方承担货物越过装运港船舷之前的风险,买方承担货物越过装运港船舷之后的风险。 ⑸卖方的权利和义务:①提供货物及商业发票;②将货物交至船上并及时通知买方;③办理出口手续。 ⑹买方的权利和义务:①付款、接单、提货;②办理进口手续。 1.2.异同点 ⑴办理运输的责任的规定不同,CFR和CIF下由卖方办理运输,FOB合同下由买方办理。 ⑵办理保险的责任不同,CIF合同下由卖方办理保险,FOB和CFR下由买方办理保险。 ⑶术语后跟的地点不同,FOB后为指定装运港,CFR和CIF后为指定目的港。 ⑷价格构成不同,CFR=FOB+F;CIF=CFR+I。 二、FCA、CPT、CIP的异同点 2.1.相同点 ⑴交货方式:FCA、CPT、CIP合同均属于象征性交货,即单据买卖。 ⑵运输方式:任何方式(水上运输、航空运输、铁路运输、公路运输),包括多式联运。 ⑶交货地点:因运输方式不同时情况而定。 ⑷风险界点:货交第一承运人为界,卖方承担货物交到承运人之前的风险,买方承担货交承运人之后的风险。 ⑸卖方的权利和义务:①提供货物及商业发票;②将货物交至承运人;③办理出口手续。

⑹买方的权利和义务:①付款、接单、提货;②办理进口手续。 2.2.不同点 ⑴办理运输的责任的规定不同,CPT和CIP下由卖方办理运输,FCA合同下由买方办理。 ⑵办理保险的责任不同,CIP合同下由卖方办理保险,FCA和CPT下由买方办理保险。 ⑶术语后跟的地点不同,FCA后为指定地点,CPT和CIP后为指定目的地,因运输方式不同,视情况而定。 ⑷价格构成不同,CPT=FCA+F;CIP=CPT+I。 三、FOB和FCA、CFR和CPT、CIF和CIP的异同点 3.1.FOB和FCA的异同点 3.1.1.相同点 在交货方式、办理运输和保险的责任归谁、货物在运输途中的风险划分、货价构成、按术语签订的合同类型方面都相同。 3.1.2.不同点 ①适用的运输方式:FOB仅适合水上运输,因此交货地点只能在装运港;而FCA则适用于包括多式联运方式在内的任何运输方式,交货地点依运输方式的不同由双方加以约定; ②在风险及费用划分的具体界限方面也存在差距,FOB是以越过装运港船舷为界,FCA是以货交承运人为界。 3.2.CFR和CPT的异同点 3.2.1.相同点 ①都是由买方负责安排运输、将货物运往指定目的地、货物在运输过程中的风险都由买方承担、货价构成因素中都包括运费; ②它们都属于装运地交货的术语,签订的合同都属于装运合同,卖方只需保证按时交货,并不保证按时到货。 3.2.2.不同点 ①适用的运输方式:CFR仅适合水上运输,因此交货地点只能在装运港;而CPT则适用于包括多式联运方式在内的任何运输方式,交货地点依运输方式的不同由双方加以约定;

贸易术语简介和区别

贸易术语(FOB、CNF、CIF)简介和区别 一、基本概念 贸易术语(TRADE TERMS)又称贸易条件,价格术语(PRICE TERMS),它是一个简短的概念(SHORTHAND EXPRESSION),它确定了买卖双方相关费用、风险及责任的划分,以及买卖双方在交货和接货过程中应尽的义务,是贸易中价格的重要组成部分。 二、有关贸易术语的主要国际惯例 主要惯例有三种 A.1932年华沙牛津规则(WARSAW-OXFORD RULES 1932,简称W.O.RULES 1932) B.1941年美国对外贸易定义修订本 (REVISED AMERICAN FOREIGN TRADE DEFINITIONS 1941) C.国际商会制定的《2000年通则》英文为INCOTERMS 2000,(ICC PUBLICATION NO.560)国际商会简称ICC是INTERNATIONAL CHAMBER OF COMMERCE三个单词第一个字母大写. INCOTERMS来源于INTERNATIONAL COMMERICAL TERMS三个单词合并而成。 三、当前国际贸易中广泛采用的贸易术语惯例 ①是国际商会制定的《INCOTERMS 1990》或《INCOTERMS 2000》 ②国际商会于1919年成立,会员分布在140多个国家和地区,是全球具有重要影响的世界性民间商业组织,它是联合国的一个高级咨询机构,设立的目的是在经济和法律领域里,以有效的行动促进国际贸易和投资的发展。 ③中国于1994年11月获得国际商会成员国地位。 ④《INCOTERMS 1990/2000在世界上已得到广泛的承认,广泛运用于国际贸易合同及L/C 中。 四、 FOB 贸易术语 1、定义:FOB是FREE ON BOARD三个单词第一个字母的大写,中文意思为装运港船上交货,指定具体装运港名。 2、适用运输方式:海运和内河运输。 3、关键点:风险划分点,交货点,费用划分点均在装运港买方指定的轮船舷(实际操作中为装到船舱内)。 4、卖方的主要义务 A、负责在合同规定的日期或期限内,在指定装运港将符合合同的货物按港口惯常方式交至买方指定的船上,并给予买方充分的装船通知。 B、负责取得出口许可证或其他核准证书(商检证,原产地证等)办理货物出口手续(报关、出口订仓等)。 C、负担货物在装运港越过船舷为止的一切费用和风险(实际为到船舱内为止)。 D、负责提供商业发票和证明货物已交至船上的通常单据(已装船海运提单)。 5、买方的主要义务 A、负责按合同规定支付货物价款。 B、负责订舱或租船、支付运费(海运费),并给予卖方关于船名,装船地点和要求交货时间的充分通知,(实际业务中买方告知卖方其在装运港的货运代理,并要求卖方向其订船,

六种主要贸易术语的异同点比较资料

六种主要贸易术语的 异同点比较 六种主要贸易术语的异同点比较 一、FOB、CFR、CIF 的异同点 1.1.相同点 ⑴交货方式:FOB、CFR、CIF合同均属于象征性交货,即单据买卖。 ⑵运输方式:水上运输,包括海运及内河水运。 ⑶交货地点:装运港船上交货。 ⑷风险界点:装运港船舷为界,卖方承担货物越过装运港船舷之前的风险,买方承担货物越过装运港船舷之后的风险。 ⑸卖方的权利和义务:①提供货物及商业发票;②将货物交至船上并及时通知买方;③办理出口手续。 ⑹买方的权利和义务:①付款、接单、提货:②办理进口手续。 1.2.异同点 ⑴办理运输的责任的规左不同,CFR和CIF下由卖方办理运输,FOB合同下由买方办理。 ⑵办理保险的责任不同,CIF合同下由卖方办理保险,FOB和CFR下由买方办理保险。

⑶术语后跟的地点不同,FOB后为指定装运港,CFR和CIF后为指龙目的港。 ⑷价格构成不同,CFR二FOB+F: CIF二CFR+I。 二、FCA、CPT、CIP 的异同点 2.1.相同点 ⑴交货方式:FCA、CPT、CIP合同均属于象征性交货,即单据买卖。 ⑵运输方式:任何方式(水上运输、航空运输、铁路运输、公路运输),包括多式联运。 ⑶交货地点:因运输方式不同时情况而泄。 ⑷风险界点:货交第一承运人为界,卖方承担货物交到承运人之前的风险,买方承担货交承运人之后的风险。 ⑸卖方的权利和义务:①提供货物及商业发票;②将货物交至承运人:③亦理出口手续。 ⑹买方的权利和义务:①付款、接单、提货:②办理进口手续。 2.2.不同点 ⑴办理运输的责任的规迫不同,CPT和CIP下由卖方办理运输,FCA合同下由买方办理。 ⑵办理保险的责任不同,CIP合同下由卖方办理保险,FCA和CPT下由买方办理保险。 ⑶术语后跟的地点不同,FCA后为指定地点,CPT和CIP后为指泄目的地,因运输方式不同,视情况而泄。 ⑷价格构成不同,CPT二FCA+F: CIP二CPT+I。 三、FOB和FCA、CFR和CPT、CIF和CIP的异同点 3.1.FOB和FCA的异同点 3.1.1.相同点 在交货方式、办理运输和保险的责任归谁、货物在运输途中的风险划分、货价构成、按术语签订的合同类型方面都相同。 3.1.2.不同点

十三种国际贸易术语的比较

十三种贸易术语的比较 (一)工厂交货(EXW) 本术语英文为“EX Works (…named place)”,即“工厂交货(……指定地点)”。它指卖方负有在其所在地即车间、工厂、仓库等把备妥的货物交付给买方的责任,但通常不负责将货物装上买方准备的车辆上或办理货物结关。买方承担自卖方的所在地将货物运至预期的目的地的全部费用和风险。采用EXW条件成交时,卖方的风险、责任、费用都是最小的。 F组:主要运费未付 (二)货交承运人(FCA) 本术语英文为“Free Carrier (…named place )”,即“货物交承运人(……指定地点)”。它指卖方应负责将其移交的货物,办理出关后,在指定的地点交付给买方指定的承运人照管。根据商业惯例,当卖方被要求与承运人通过签订合同进行协作

时,在买方承担风险和费用的情况下,卖方可以照此办理。本术语适用于任何运输方式。采用这一交货条件时,买方要自费订立从指定地点启运的运输契约,并及时通知卖方。《2000通则》规定,若双方约定的交货地点是卖方所在地,卖方负责把货物装上买方制定的承运人的运输工具即可,若交货地是其它地点,卖方在自己的运输工具上完成交货,无需卸货。 (三)船边交货(FAS) 本术语英文为“Free Alongside ship(…named port of shipment)”即“船边交货(……指定装运港)”。它指卖方在指定的装运港码头或驳船上把货物交至船边,从这时起买方须承担货物灭失或损坏的全部费用和风险,另外买方须办理出口结关手续。本术语适用于海运或内河运输。与《90通则》不同的是,《2000通则》规定,办理货物出口报关的风险、责任、费用改由买方承担。 (四)船上交货(FOB) 本术语英文为“Free on Board(…named port of shipment )”,即“船上交货(……指定装运港)”。它指卖方在指定的装运港把货物送过船舷后交付,货过船舷后买方须承担货物的全部费用、风险、灭失或损坏,另外要求卖方办理货物的出口结关手续。本术语适用于海运或内河运输。 【FOB】术语变形 1 FOB liner term,叫做班轮条件,指装船费用就象班轮装运那样,由支付运费的一方负担 2 FOB under tackle term ,叫做吊钩下交货,指卖方将货物放置于轮船吊钩下可及之处,从货物起吊开始发生的装船费用由买方负担。 3 FOB stowed,叫做并理舱,指卖方担负将货物装入船舱并支付包括理舱费用在内的装船费 4 FOB trimmed,叫做并平舱,指卖方负担将货物装入船舱并支付包括平舱在内的装船费用 5 FOB stowed and trimmed,叫做并理舱和平舱,指卖方负担将货物装入船舱并支付包括理舱费和平舱费在内的装船费用 6 指定装运港船上交货”FOB.VESSEL(named port of shipment)按此术语,卖方所报价格包括在指定装运港将货物交到由买方提供或为买方提供的海洋轮船上的全部费用。 (1)FOB Liner Terms (FOB班轮条件):卖方不必承担装货费用;

十三种贸易术语的比较

十三种贸易术语的比较 应用德语61332 仝童 国际贸易通常包括很多程序,所有这些程序必须由出口商或进口商来履行。比如,谁应该负责投保海上货物运输保险;谁应该租船运舱;谁负责申请进出口许可证等等。如果进出口商就每笔业务进行商务谈判时都要协商进出口每个步骤的费用和责任由谁来负担,就会浪费太多时间。为了简明国际贸易的谈判,贸易术语永运而生。 贸易术语时一整套解释贸易术语的统一规则,一般由三个字母的缩写来表示,用来解释价格的构成和有关方的权利的义务,如EXW。贸易术语的使用大大简化了商务洽谈,从而节省时间和成本。为适应国际贸易实践的不断发展,国际商会正式出版了它的第六次修订本,即Incoterms 2000.它的内容为十三个贸易术语。分别为FOB、CIF、CFR、FCA、CPT、CIP、EXW、FAS、DAF、DES、DEQ、DDU和DDP. 其中FOB、CIF、CFR称为老三样贸易术语。FOB即free on board 的简称,它的含义为“船上交货”是指当货物在指定的装运港越过船舷,卖方即完成交货。它是最古老的海运术语,一直在进出口交易中广受欢迎。其买卖双方的义务总结为:卖方的义务为交货并通知买方,办理出口手续,负责货物越过船舷前的一切费用和风险。同时,如需要的话,提供合同所需的一切提单;而买方的主要义务为付款、租船\订舱、付运费并通知卖方、负责进口手续及过境运输、负担货物越过船舷后的一切费用和风险,同时收货和接受提单。FOB风险的转移点位装运港的船舷。同时,它还有一些简单的变形分别为FOB班轮条件(FOB Liner Terms)、FOB吊钩下交货(FOB Under Tackle)、FOB包括理舱(FOB Stowed )、FOB包括平舱(FOB Tirmmed)和FOB包括平舱和理舱(FOB Stowed and Tirmmed)。需注意的是这些变形只变费用不变风险划分点。CIF英文全称为cost,insurance and freight.即成本、保险费加运费。它是指在装运港当货物越过船舷时卖方即完成交货。卖方必须支付将货物运至指定的目的港所需的运费和其他费用,但交货后货物灭失或毁坏的风险及由于各种事件造成的任何额外费用即由卖方转移到买方。但是,在CIF条件下,卖方还必须办理买方货物在运输途中灭失或损坏风险的海运保险。同时,CIF术语要求卖方办理货物出口报关手续。CIF