搜档网
当前位置:搜档网 › 运筹学II习题解答

运筹学II习题解答

运筹学II习题解答
运筹学II习题解答

第七章决策论

1.某厂有一新产品,其面临的市场状况有三种情况,可供其选择的营销策略也是

三种,每一钟策略在每一种状态下的损益值如下表所示,要求分别用非确定型

(1)悲观法:根据“小中取大”原则,应选取的经营策略为s3;

(2)乐观法:根据“大中取大”原则,应选取的经营策略为s1;

(3)折中法(α=0.6):计算折中收益值如下:

S1折中收益值=0.6?50+0.4?(-5)=28

S2折中收益值=0.6?30+0.4?0=18

S3折中收益值=0.6?10+0.4?10=10

显然,应选取经营策略s1为决策方案。

(4)平均法:计算平均收益如下:

S1:x_1=(50+10-5)/3=55/3

S2:x_2=(30+25)/3=55/3

S3:x_3=(10+10)/3=10

故选择策略s1,s2为决策方案。

(5)最小遗憾法:分三步

第一,定各种自然状态下的最大收益值,如方括号中所示;

第二,确定每一方案在不同状态下的最小遗憾值,并找出每一方案的最大遗憾值如圆括号中所示;

第三,大中取小,进行决策。故选取S1作为决策方案。

2.如上题中三种状态的概率分别为: 0.3, 0.4, 0.3, 试用期望值方法和决策树方法决策。

(1)用期望值方法决策:计算各经营策略下的期望收益值如下:

故选取决策S2时目标收益最大。

(2)用决策树方法,画决策树如下:

3. 某石油公司拟在某地钻井,可能的结果有三:无油(θ1),贫油(θ2)和富油(θ3),

估计可能的概率为:P (θ1) =0.5, P (θ2)=0.3,P (θ3)=0.2。已知钻井费为7万元,若贫油可收入12万元,若富油可收入27万元。为了科学决策拟先进行勘探,勘探的可能结果是:地质构造差(I1)、构造一般(I2)和构造好(I3)。根据过去的经验,地质构造与出油量间的关系如下表所示:

P (I j|θi) 构造差(I1) 构造一般(I2) 构造好(I3)

无油(θ1) 0.6 0.3 0.1

贫油(θ2) 0.3 0.4 0.3

富油(θ3) 0.1 0.4 0.5

假定勘探费用为1万元, 试确定:

(1)是否值得先勘探再钻井?

(2)根据勘探结果是否值得钻井?

【解】第一步

第二步,画出决策树如下:

第三步,计算后验概率

首先,知,各种地质构造的可能概率是:

再由得到,每一种构造条件下每一状态发生的概率:

E(s 1)=-7?0.7313+5?0.2195+20?0.0488=-3.0484

若勘探得到结果为“构造一般”,则有:

E(s 2)=-7?0.4286+5?0.3429+20?0.2286=3.2863

若勘探得到结果为“构造好”,则有:

E(s 3)=-7*0.2083+5*0.3750+20*0.4167=8.7509

E(勘探)=∑=n

i 1E(s i )P(I i )=-3.0484?0.41+3.2863?0.35+8.7509?0.24=2.0006

已知,勘探成本为1万元,所以值得先勘探后钻井;同时,由于不钻井的期望收益为0,勘探后的结果为值得钻井。

4. 某企业拟从3名干部中选拔一人担任总经理助理,选拔的标准包括健康状况、业务知识、写作能力、口才、政策水平和工作作风6个方面。这6个方面经过比较后得出的判断矩阵如下:

?????????? ??=1132221133/1113/13/115/14/14/12/13512/112/1142112/11

4111A 经过对三个对象按每一标准权衡,得到的判断矩阵依次是:

试应用AHP 方法,对三个候选人ABC 排出优先顺序。 ????? ??13/123142/14/11????? ??1252/1145/14/11????? ??113113/13/131????? ??17/15/171353/11????? ??17/17/1711711????

? ??15/19/1517/1971

【解】

对于C1矩阵:C1 P1P2P3

P1 1 1/4 1/2 V1=0.5 W1=0.1365

P2 4 1 3 V2=2.2894 W2=0.625

P3 2 1/3 1 V3=0.8736 W3=0.2385

∑V=3.663

对于C2矩阵:C2 P1 P2P3

P1 1 1/4 1/5 V1=0.3684 W1=0.0974

P2 4 1 1/2 V2=1.2599 W2=0.3331

P3 5 2 1 V3=2.1544 W3=0.570

∑V=3.7827

对于C3矩阵:C3P1P2P3

P1 1 3 1/3 V1=1 W1=0.3189

P21/3 1 1 V2=0.6934 W2=0.2211

P3 5 2 1 V3=1.4422 W3=0.46

∑V=3.1356

对于C4矩阵:C4P1P2P3

P1 1 1/3 5 V1=1.1856 W1=0.279

P2 3 1 7 V2=2.7589 W2=0.6491

P31/5 1/7 1 V3=0.3057 W3=0.0719

∑V=4.2502

对于C5矩阵:C5P1P2P3

P1 1 1 7 V1=1.9129 W1=0.4667

P2 1 1 7 V2=1.9129 W2=0.4667

P31/7 1/7 1 V3=0.2733 W3=0.0667

∑V=4.0991

对于C6矩阵:C6P1P2P3

P1 1 7 9 V1=3.9791 W1=0.772

P21/7 1 5 V2=0.8939 W2=0.1734

P31/9 1/5 1 V3=0.2811 W3=0.0545

∑V=5.1541

对于A矩阵:

1 1 1 4 1 1/

2 V1=1.1225 W1=0.1685

1 1

2 4 1 1/2 V2=1.2599 W2=0.1891

1 1/

2 1 5

3 1/2 V3=1.246

4 W3=0.1871

1/4 1/4 1/5 1 1/3 1/3 V4=0.334 W4=0.0501

1 1 1/3 3 1 1 V5=1 W5=0.1501

2 2 2

3 1 1 V 6=1.698

4 W 6=0.255

∑V=6.6612

第八章 对策论

1. 求解下列的矩阵对策,并明确回答它们分别是不是既约矩阵?有没有鞍点?

(1) ??????????---3258414122 (2) ????

??????612443122 (3) ?????

???????6132445343221272 (4) ???????

?????????4532312265833427645608139 【解】(1) -2 12 -4 第二行优超于第三行

1 4 8 第1列优超于第2列

-5 2 3 不是既约矩阵

这个矩阵对策有鞍点为a 21=1

(2) 2 2 1 第二行优超于第一行

3 4 4 不是既约矩阵,

2 1 6 这个矩阵鞍点为a 21=3

(3) 2 7 2 1 第三行优超于第二行

2 2

3

4 第1列优超于第2列

3 5

4 4 不是既约矩阵

2 3 1 6 该矩阵对策有鞍点为a 31=3

(4) 9 3 1 8 0 第二行优超于第五行

6 5 4 6

7 第3列优超于第4列

2 4

3 3 8 不是既约矩阵

5 6 2 2 1 该矩阵对策有鞍点为a 23=4

3 2 3 5 4

2. 试证明在矩阵对策:??

????=22211211

a a a a A 中,不存在鞍点的充要条件是有一条对角线的每一元素大于另一条对角线上的每一元素。

3. 先处理下列矩阵对策中的优超现象,再利用公式法求解:

A =?????

??

?????????3880667864959379520503043 【解】对矩阵A 观察可知:

3 4 0 3 0 第三行优超于第二行

5 0 2 5 9 第四行优超于第一行

7 3 9 5 9 故可划去第一行和第二行

4 6 8 7 6 第1,2,4,5列都优超于第3列

6 0 8 8 3 第2列优超于第4,5列

故可划去第3,4,5列,得到:

7 3

4 6 第一行优超于第三行,可划去第三行

6 0

7 3

4 6

解之:e=7+6-(4+3)=6 p 3=d-c/e=1/3 p 4=a-b/e=2/3

q 1=d-b/e=1/2 q 2=a-c/e=1/2

V G =ad-bc/e=5

所以 p*=(0,0,1/3,2/3,0) q*=(1/2,1/2,0,0,0)T

4. 利用图解法求解下列矩阵对策:

(1)A =????

??????2114672 (2)A =??????2581031 【解】(1) 假定局中人Ⅱ取混合策略(q ,1-q )局中人I 随机地取纯策略a 1,a 2,a 3于是根据公式E(a i ,q)=∑j

a ij q j 有:

E(a 1 ,q)=a 11q+a 12(1-q)=a 12+(a 11-a 12)q=7-5q

E(a 2 ,q)=a 21q+a 22(1-q)=a 22+(a 21-a 22)q=4+2q

E(a 3 ,q)=a 31q+a 32(1-q)=a 32+(a 31-a 32)q=2+9q

于是,可得到如下图示:

按照大中取小准则,应有:

7529E q E q =-??=+?得5/143514

q E =???=??所以局中人Ⅱ的最优混合策略q *=5/149/14?????? 由图可知,当局中人I 出a2时,期望收益小于均衡收益E*,故令p2=0 同时,因为q1>0,q2>0,所以有:

2111373/14712373/14131p p p p p p ?+?=???+?=??+=?

得19/1435/14p p =??=? 所以p*=(9/14,0,5/14) 【解】(2)

E(p ,b 1)=a 11p+a 21(1-p)=a 21+(a 11-a 21)p=8-7p

E(p ,b 2)=a 12p+a 22(1-p)=a 22+(a 12-a 22)p=5-2p

E(p ,b 3)=a 13p+a 23(1-p)=a 23+(a 13-a 23)p=2+8p

于是,有如下图示:

按照小中取大准则,有:

5228E p E p =-??=+?得3/10245p E =???=??

所以p*=( 3/10,7/10) 由图可知,当局中人II 出b1时,期望收益大于均衡收益E*,故令q 1*=0

又因为 p 1*=3/10﹥0 ,p 2*=7/10﹥0

3210322/5522322/5231q q q q q q +=??+=??+=?

解得:24/531/5q q =??=? q*=(0 , 4/5 ,1/5)T

5. 已知矩阵对策:

A =????

??????060800004 的解为:x*=(6/13,3/13,4/13),y*=(6/13,4/13,3/13)T ,对策值为24/13,求下列矩阵

对策的解:

(1)??????????2821022226 (2)????

??????------242226222 (3)????

??????203820442020202032 【解】(1)对于(1),根据定理8.6,因为A 1=A +2

所以,对策的值V G1=V G +k=24/13+2=50/13

解为:X*=(6/13 ,3/13 ,4/13 )

Y*=(6/13 ,4/13 ,3/13)T

(2)因为

对????

??????------242226222的第一列和第三列换位,得到:??????????------242622222=2060800004-????

?????? 所以,T(G B ) = T(G A ) 所以V GB V GA -2= V GB =24/13-26/13=-2/13

但由于列换了位,所以解应为:

X*=(6/13 ,3/13 ,4/13) Y*=(3/13 ,4/13 , 6/13)T

(3)

6. 用行列式解法求解下列矩阵对策:

(1)?????

???????-1140322210414301 (2)??????????032104321 【解】(1) 1 0 3 4 第四行优超于第二行

-1 4 0 1 第1列优超于第4列

2 2 2

3 划去第二行和第4列

0 4 1 1

得到: 1 0 3 第1列优超于第3列

2 2 2 第二行优超于第一行

0 4 1 划去第一行和第3列

得到: 2 2

0 4 故鞍点为a 31=2

(2) 1 2 3

4 0 1

2 3 0 此矩阵为既约矩阵

先求局中人Ⅰ的混合策略:第1列减第2列,第2列减第3列得

-1 -1 a 1:12-1=11 , a 2:-3-1=--4 , a 3:1+4=5

4 -1 策略的混合比为 11:4:5

-1 3 所以p*=(11/20 ,4/20 ,5/20)=(11/20 ,1/5 ,1/4)

再求局中人Ⅱ的混合策略:第一行减第二行,第二行减第三行得

-3 2 2 b 1:2+6=8 , b 2:-3-4=-7 , b 3:9-4=5

2 -

3 1 策略的混合比为 8:7:5

所以q*=(8/20,7/20,5/20)T

=(2/5,7/20,1/4)T

7. 试用线性规划方法求解下列矩阵对策:

(1)??????????446662428 (2)????

??????121130202 【解】(1)(P )?????????≥≥++≥++≥++++03,2,1134261413426121362218)321min(x x x x x x x x x x x x x x x (D)?????????≥≤++≤++≤++++0

3,2,1134241613626121342218)321max(y y y y y y y y y y y y y y y

解之,X=(0 ,1/14 ,1/7) Y=(1/14 ,1/14 ,1/14) V G =1/∑Xi =14/3

所以,p*=V G X=(0 ,1/3 ,2/3), q*=V G Y=(1/3 ,1/3 ,1/3)T

(P)?????????≥≥++≥++≥++++03,2,1132121322310132012)321min(x x x x x x x x x x x x x x x (D)?????????≥≤++≤++≤++++0

3,2,1132211323101322012)321max(y y y y y y y y y y y y y y y

解之,得到:X=(1/4 ,0 ,1/2) Y=(1/2 ,1/4 ,0) V G =1/∑Xi =4/3

所以,p*=V G X=(1/3 ,0 ,2/3),q*=V G Y =(2/3 ,1/3 ,0)T

8. 试写出“石头·剪刀·布”两碰吃游戏的赢得矩阵并求解双方的最优策略。

【解】“石头·剪刀·布”两碰吃游戏的赢得矩阵为:

此矩阵为既约矩阵。

先求局中人Ⅰ的混合策略:第1列减第2列,第2列减第3列,得到:

a 1:1+2=3 a 2:1-4=-3 a 3:1+2=3

各策略的混合比为 1:1:1 所以p*=(1/3,1/3,1/3)

再求局中人Ⅱ的混合策略:第一行减第二行,第二行减第三行,得到:

b 1:1+2=3 b 2:1-4=-3 b 3:1+2=3

各策略的混合比为 1:1:1 所以q*=(1/3,1/3,1/3)T

第九章 存储论

1.设某工厂每年需要某种原材料1800吨,无需每日供应,但不得缺货,设每吨的月保管费为60元,每次的订货费为200元,试求最佳订货量。

【解】已知:D =1800吨,c1=60×12,c2=200

则,Q 0

31.62==(吨) 答:最佳订货量为31.62吨。

2.某工厂生产某种零部件,年需要量已知为18000个,每月可生产3000个,每次的生产装配费用为500元,每个零件的月存储费为3元,试确定最佳生产批量和批次。

【解】已知:D =18000个,c1=3×12,c2=500

则,Q 0

==707.11(件) N 0=18000707.11

=25.5(次) 即大约每月生产两次,两次的产量不超过月生产能力。

3.某企业对某零件的月需求量为2000件,单位定购价为150元,年存储费为存货成本的16%,一次的定购费为100元,试确定经济订货量和最低总费用。如果允许缺货,假定缺货费c3=200元,试确定最佳库存量和缺货量。

【解】设一次的定购量为Q ,在不允许缺货条件下,年存储费应为:

Q c 121,已知年存货成本为:150×Q 2

1元,于是有: 16.02

15021=Q Q c ,即c 1=24,于是 Q 0=

122c D c =2.44720100241220001002==???(件) 107332024001220001002422210==????==D c c TC (元) 在允许缺货的条件下,已知:

945.0200

24200313=+=+c c c 所以,最佳库存量 6.422945.02.447*1=?=Q (件)

最佳缺货量

7.50718010224

200241220001002231132*2==?????=???? ??+=c c c c D c Q (件) 4.试证明一个允许缺货的EOQ 模型的总相关费用决不超过一个具有相同的存储费、订购费但不允许缺货的EOQ 模型的总相关费用。

5.某企业对某原料需求的概率如表9.4所示,已知存储费c 1=50元/吨,订货费c 2=500元/次,缺货费c 3=600元/吨,试确定最佳订货量。

923.0600

50600313=+=+c c c 而 ∑==500

9.0)(x x P ,所以,订货量50吨为最佳。

第十章 排队论

1.某摩托车修理店只有一个修理工,来修理的顾客到达过程为泊松流,平均每小时2人,修理时间服从负指数分布,完成服务平均需要15分钟,试求:

(1)修理店空闲的概率;

(2)店内有3个顾客的概率;

(3)店内至少有一个顾客的概率;

(4)店内顾客的平均数;

(5)等待服务的平均顾客数;

(6)平均等待修理的时间;

(7)一个顾客在店内逗留时间超过半小时的概率。

【解】问题(1)至(6)直接使用公式计算即可。

(7)一个顾客在店内逗留时间超过半小时,应该是店内至少有一个顾客和一个顾客的服务时间超过15分钟的交事件。于是有:

店内至少有一个顾客的概率:P n ≥1=1-P 0=λ/μ=0.5

一个顾客的服务时间超过15分钟的概率:

P(s >15)=1-P(s ≤15)=e -4×0.25=0.368

所以,一个顾客在店内逗留时间超过半小时的概率为:

0.5×0.368=0.184=18.4%

2.设有一个单人理发店,顾客到达过程为泊松流,平均到达时间间隔为20 分钟,立法时间服从负指数分布,完成服务的平均时间为30分钟,试求:

(1)顾客一来就能立法的概率;

(2)理发店内的平均顾客数;

(3)顾客在理发店内的平均逗留时间;

(4)如果顾客在店内的平均逗留时间超过1.25小时,店主将考虑增加设备

和理发员,问,顾客的平均到达率为多少时,店主才会考虑这么做?

3.汽车按每小时90辆的泊松流通过某高速公路上的一个收费站,过站的平均时间为38秒。由于司乘人员常常抱怨等待时间太长,因此主管部门拟采用新装置,想争取使车辆过站的平均时间减少到30秒。但新装置要求原系统中平均等待的车辆数应在5辆以上且新系统的空闲时间应部超过10%时才是合算的。试分析收费站采用新装置是否合算?

4.某企业的工具仓库设有一个库管,平均每小时有4人来领工具,到达过程为泊松流,领工具的时间服从负指数分布,办理零用手续的平均时间为6分钟,由于场地限制,库内领工具的人最多不能超过3人,试求:

(1)库内没有人领工具的概率;

(2)库内领工具的平均人数;

(3)排队等待的平均人数;

(4)领工具者平均化费的时间;

(5)领工具者的平均排队时间。

5.在习题1中,如果顾客的平均到达率怎家到每次小时6人,服务时间不变,这时增加一个修理工,试分析:

(1)增加修理工的合理性(依据λ/μ);

(2)增加修理工后店内空闲的概率以及店内至少有2个顾客的概率;

(3)L、Lq、W及Wq的变化。

6.某纺织厂织布车间织机正常运转时间服从平均数为120分钟的负指数分布,工人看管一台织机的时间服从平均数为12分钟的负指数分布,企业要求每台织机的正常运转时间应不少于87.5%。问在这种要求条件下,每个工人最多能看管几台织机?

7.某企业为职工设立了一个昼夜24小时随时都能看病的医疗室,假定只有1个医生,已知兵刃平均到达的时间间隔为15分钟,平均看病时间为12分钟,且服从负指数分布,因职工看病每小时给企业造成的损失为30元,试分析:(1)企业每天损失的期望值;

如果想要使这种损失减少一半,平均服务率应该提高多少?

运筹学试题及答案

运筹学A卷) 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。每小题1分,共10分) 1.线性规划具有唯一最优解就是指 A.最优表中存在常数项为零 B.最优表中非基变量检验数全部非零 C.最优表中存在非基变量的检验数为零 D.可行解集合有界 2.设线性规划的约束条件为 则基本可行解为 A.(0, 0, 4, 3) B.(3, 4, 0, 0) C.(2, 0, 1, 0) D.(3, 0, 4, 0) 3.则 A.无可行解 B.有唯一最优解medn C.有多重最优解 D.有无界解 4.互为对偶的两个线性规划, 对任意可行解X 与Y,存在关系 A.Z > W B.Z = W C.Z≥W D.Z≤W 5.有6 个产地4个销地的平衡运输问题模型具有特征 A.有10个变量24个约束

B.有24个变量10个约束 C.有24个变量9个约束 D.有9个基变量10个非基变量 6、下例错误的说法就是 A.标准型的目标函数就是求最大值 B.标准型的目标函数就是求最小值 C.标准型的常数项非正 D.标准型的变量一定要非负 7、m+n-1个变量构成一组基变量的充要条件就是 A.m+n-1个变量恰好构成一个闭回路 B.m+n-1个变量不包含任何闭回路 C.m+n-1个变量中部分变量构成一个闭回路 D.m+n-1个变量对应的系数列向量线性相关 8.互为对偶的两个线性规划问题的解存在关系 A.原问题无可行解,对偶问题也无可行解 B.对偶问题有可行解,原问题可能无可行解 C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解 9、有m个产地n个销地的平衡运输问题模型具有特征 A.有mn个变量m+n个约束…m+n-1个基变量 B.有m+n个变量mn个约束 C.有mn个变量m+n-1约束 D.有m+n-1个基变量,mn-m-n-1个非基变量 10.要求不超过第一目标值、恰好完成第二目标值,目标函数就是

运筹学习题精选

运筹学习题精选

运筹学习题精选 第一章线性规划及单纯形法 选择 1.在线性规划模型中,没有非负约束的变量称为……………………………………………………( C ) A.多余变量 B.松弛变量 C.自由变量 D.人工变量 2.约束条件为0 AX的线性规划问题的可行解集 b ,≥ =X 是………………………………………( B ) A.补集 B.凸集 C.交集 D.凹集 3.线性规划问题若有最优解,则一定可以在可行域的( C)上达到。 A.内点 B.外点 C.顶点 D.几何点 4.线性规划标准型中bi(i=1,2,……m)必须是…………………………………………………( B) A.正数 B.非负数 C.无约束 D.非零的 5.线性规划问题的基本可行解X对应于可行域D 的………………………………………………( D) A.外点 B.所有点 C.内点 D.极点 6.基本可行解中的非零变量的个数小于约束条件数时,该问题可求得……………………………( B ) A.基本解 B.退化解 C.多重解 D.无解 7.满足线性规划问题全部约束条件的解称为…………………………………………………( C ) A.最优解 B.基本解 C.可行解 D.多重解 8.线性规划一般模型中,自由变量可以用两个非负变量的(B )代换。 A.和 B.差 C.积 D.商 9.当满足最优检验,且检验数为零的变量的个数大于基变量的个数时,可求得………………………( A ) 第 2 页共 30 页

第 3 页 共 30 页 A .多重解 B .无解 C .正则解 D .退化解 10.若线性规划问题有最优解,则必定存在一个( D )是最优解。 A .无穷多解 B. 基解 C. 可行解 D. 基可行解 填空 计算 1. 某厂生产甲、乙、丙三种产品,已知有关数据如下表所示,求使该厂获利最大的生产计划。 2. 目标函数为max Z =28x4+x5+2x6,约束形式为“≤”,且x1,x2,x3为松弛变量, 表中的解代入目标函数中得Z=14,求出a~g 的值,并判断→j c 0 0 0 28 1 2 B C 基 b 1x 2x 3x 4x 5x 6x 2 6x A 3 0 -14/3 0 1 1 0 2x 5 6 D 2 0 5/2 0 28 4x 0 0 E F 1 0 0 j j z c - B C 0 0 -1 G

运筹学例题

例9 分析在原计划中是否应该安排一种新产品。以第一章例1为例。设该厂除了生产产品Ⅰ、Ⅱ外,现有一种新产品Ⅲ。已知生产产品Ⅲ,每件需要消耗原材料A ,B 各为6kg ,3kg ,使用设备2台时;每件可获利5元。问改产是否应生产该产品和生产多少?若能以10个单位的价格再买进15单位的原材料A ,这样做是否有利? ()()T B P B C c 3,6,20,125.0,5.153133-='-'='-σ =1.25>0 21max x x z += ?????? ?≥≤+-≤+为整数 21212 121,0,13651914x x x x x x x x ()T n X ??? ??=310,23 ()629=*z 2,111≥≤x x 21max x x z += 21max x x z = (IP1)?????????≥≤≤+-≤+为整数212112121,0,113651914x x x x x x x x x (IP2)????? ????≥≥≤+-≤+为整数 212112121,0,21 3651914x x x x x x x x x 继续解(IP1)和(IP2),得最优解分别为: ()()()()941,923,2310,37,12211= ?? ? ??== ??? ??=z X z X T T ()9410≤≤*z 3,221≥≤x x 21max x x z = 21max x x z +=

(IP3)??????????≥≤≥≤--为整数2121212121,0,22136x x x x x x x x (IP3)??????????≥≥≥≤+-为整数 2121212121,0,32 1 36x x x x x x x x ()()1461,2,143333=?? ? ??=z X T IP4无可行解 21max x x z += 21max x x z = (IP5)???????????≥≤≤≤+-≤+为整数2121212121,0,2113651914x x x x x x x x x x (IP6)???????????≥≤≤≤+-≤+为整数 2121212121,0,31 1 3651914x x x x x x x x x x ()()()3,2,155==z X T IP6无可行解 14613≤≤*z ()T 2,1433=不为整数 3,211≥≤x x 分别加入问题(IP3)形成两个子问题 21max x x z += 21max x x z =

运筹学典型考试试题及答案

二、计算题(60分) 1、已知线性规划(20分) MaxZ=3X1+4X2 X1+X2≤5 2X1+4X2≤12 3X1+2X2≤8 X1,X2≥0 其最优解为: 基变量X1X2X3X4X5 X33/2 0 0 1 -1/8 -1/4 X25/2 0 1 0 3/8 -1/4 X1 1 1 0 0 -1/4 1/2 σj 0 0 0 -3/4 -1/2 1)写出该线性规划的对偶问题。 2)若C2从4变成5,最优解是否会发生改变,为什么? 3)若b2的量从12上升到15,最优解是否会发生变化,为什么? 4)如果增加一种产品X6,其P6=(2,3,1)T,C6=4该产品是否应该投产?为什么?解: 1)对偶问题为 Minw=5y1+12y2+8y3 y1+2y2+3y3≥3 y1+4y2+2y3≥4 y1,y2≥0 2)当C2从4变成5时, σ4=-9/8 σ5=-1/4 由于非基变量的检验数仍然都是小于0的,所以最优解不变。 3)当若b2的量从12上升到15 X=9/8 29/8 1/4 由于基变量的值仍然都是大于0的,所以最优解的基变量不会发生变化。 4)如果增加一种新的产品,则 P6’=(11/8,7/8,-1/4)T σ6=3/8>0 所以对最优解有影响,该种产品应该生产 2、已知运输问题的调运和运价表如下,求最优调运方案和最小总费用。(共15分)。 B1B2B3产量销地 产地 A1 5 9 2 15 A2 3 1 7 11 A3 6 2 8 20 销量18 12 16 解:初始解为

计算检验数 由于存在非基变量的检验数小于0,所以不是最优解,需调整 调整为: 重新计算检验数 所有的检验数都大于等于0,所以得到最优解 3、某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者,规定每个承包商只能且必须承包一个项目,试在总费用最小的条件下确定各个项目的承包者,总费用为多少?各承包商对工程的报价如表2所示: (15分) 项目 投标者 A B C D 甲 15 18 21 24 乙 19 23 22 18 丙 26 17 16 19 丁 19 21 23 17 答最优解为: X= 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 总费用为50 4. 考虑如下线性规划问题(24分) B 1 B 2 B 3 产量/t A 1 15 15 A 2 11 11 A 3 18 1 1 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 5 13 0 15 A 2 -2 0 0 11 A 3 0 0 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 15 15 A 2 11 11 A 3 7 12 1 20 销量/t 18 12 16 B 1 B 2 B 3 产量/t A 1 5 13 0 15 A 2 0 2 2 11 A 3 0 0 0 20 销量/t 18 12 16

运筹学试题

运筹学试题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

运筹学试题 一、填空题(本大题共8小题,每空2分,共20分) 1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。 2.线性规划模型有三种参数,其名称分别为价值系数、___和___。 3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。 4.求最小生成树问题,常用的方法有:避圈法和 ___。 5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。 6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。 7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。 8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。 二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。多选无分。 9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】 A.有唯一的最优解 B.有无穷多最优解 C.为无界解 D.无可行解 10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】 A.b列元素不小于零 B.检验数都大于零 C.检验数都不小于零 D.检验数都不大于零

11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】 A.3 B.2 C.1 D.以上三种情况均有可能 12.如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足【】 13.在运输方案中出现退化现象,是指数字格的数目【】 A.等于 m+n B.等于m+n-1 C.小于m+n-1 D.大于m+n-1 14.关于矩阵对策,下列说法错误的是【】 A.矩阵对策的解可以不是唯一的 C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失 D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值 【】 A.2 8.—l C.—3 D.1 16.关于线性规划的原问题和对偶问题,下列说法正确的是【】 A.若原问题为元界解,则对偶问题也为无界解

运筹学试卷及答案.doc

运 筹 学 考 卷 1 / 51 / 5

考试时间: 第十六周 题号一二三四五六七八九十总分 评卷得分 : 名 一、单项选择题。下列每题给出的四个答案中只有一个是正确的,将表示正确 姓 答案的字母写这答题纸上。(10 分, 每小题2 分) 1、使用人工变量法求解极大化线性规划问题时,当所有的检验数j 0 ,在 线 基变量中仍含有非零的人工变量,表明该线性规划问题() A. 有唯一的最优解; B. 有无穷多个最优解; C. 无可行解; D. 为无界解 2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中(): 号 A.b 列元素不小于零B.检验数都大于零 学 C.检验数都不小于零D.检验数都不大于零 3、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可行解中非 零变量的个数() 订 A. 不能大于(m+n-1); B. 不能小于(m+n-1); C. 等于(m+n-1); D. 不确定。 4、如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足() A. d 0 B. d 0 C. d 0 D. d 0,d 0 5、下列说法正确的为() : 业 A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解 专 B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解 装 C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原 问题可行解的目标函数值都一定不超过其对偶问题可行解的目标函数 D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解 : 院

学 2 / 52 / 5

二、判断下列说法是否正确。正确的在括号内打“√”,错误的打“×”。(18 分,每 小题2 分) 1、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。() 2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一 个基变量的值为负。() 3、任何线性规划问题存在并具有惟一的对偶问题。() 4、若线性规划的原问题有无穷多最优解,则其最偶问题也一定具有无穷多最优解。 ()5、运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之 一:有惟一最优解,有无穷多最优解,无界解,无可行解。() 6、如果运输问题的单位运价表的某一行(或某一列)元素再乘上那个一个常数k , 最有调运方案将不会发生变化。() 7、目标规划模型中,应同时包含绝对约束与目标约束。() 8、线性规划问题是目标规划问题的一种特殊形式。() 9、指派问题效率矩阵的每个元素都乘上同一常数k,将不影响最优指派方案。() 三、解答题。(72 分) max z 3x 3x 1 2 1、(20分)用单纯形法求解 x x 1 2 x x 1 2 4 2 ;并对以下情况作灵敏度分析:(1)求 6x 2 x 18 1 2 x 0, x 0 1 2 5 c 的变化范围;(2)若右边常数向量变为2 b ,分析最优解的变化。 2 20 2、(15 分)已知线性规划问题: max z x 2x 3x 4x 1 2 3 4 s. t. x 2x 2x 3x 20 1 2 3 4 2x x 3x 2x 20 1 2 3 4 x x x x , , , 0 1 2 3 4 其对偶问题最优解为y1 1.2, y2 0.2 ,试根据对偶理论来求出原问题的最优解。

运筹学例题解析

(一)线性规划建模与求解 B.样题:活力公司准备在5小时内生产甲、乙两种产品。甲、乙两种产品每生产1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量的3倍。已知甲、乙两种产品每销售1单位的利润分别为3百元和1百元。请问:在5小时内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值,并写出解的判断依据。如果不存在最优解,也请说明理由。 解:1、(1)设定决策变量: 设甲、乙两种产品分别生产x 1 、x 2 单位 。 (2)目标函数: max z=2 x 1+x 2 (3)约束条件如下:1221 12 25..3,0+≤??≥??≥?x x s t x x x x 2、该问题中约束条件、目标函数、可行域和顶点见图1所示,其中可行域用阴影部分标记,不等式约束条件及变量约束要标出成立的方向,目标函数只须画出其中一条等值线, 结论:本题解的情形是: 无穷多最优解 ,理由: 目标函数等值线z=2 x 1 +x 2 与 约束条件2 x 1+x 2≤5的边界平行 。甲、乙两种产品的最优产量分别为 (5,0)或(1,3)单位;最大销售利润值等于 5 百元。 (二)图论问题的建模与求解样题 A.正考样题(最短路问题的建模与求解,清华运筹学教材编写组第三版267-268页例 13)某企业使用一台设备,每年年初,企业都要做出决定,如果继续使用旧的,要付维修费;若购买一台新设备,要付购买费。但是变卖旧设备可以获得残值收入,连续使用1年、2年、3年、4年以上卖掉的设备残值分别为8万元、6万元、3万元和0万元。试制定一个5年的更新计划,使总支出最少。已知设备在各年的购买费与维修费如表2所示。要求:(1)建立某种图论模型;(2)求出最少总支出金额。

运筹学试题及答案汇总

3)若问题中 x2 列的系数变为(3,2)T,问最优解是否有变化; 4)c2 由 1 变为 2,是否影响最优解,如有影响,将新的解求出。 Cj CB 0 0 Cj-Zj 0 4 Cj-Zj 3 4 Cj-Zj 最优解为 X1=1/3,X3=7/5,Z=33/5 2对偶问题为Minw=9y1+8y2 6y1+3y2≥3 3y1+4y2≥1 5y1+5y2≥4 y1,y2≥0 对偶问题最优解为 y1=1/5,y2=3/5 3 若问题中 x2 列的系数变为(3,2)T 则P2’=(1/3,1/5σ2=-4/5<0 所以对最优解没有影响 4)c2 由 1 变为2 σ2=-1<0 所以对最优解没有影响 7. 求如图所示的网络的最大流和最小截集(割集,每弧旁的数字是(cij , fij )。(10 分) V1 (9,5 (4,4 V3 (6,3 T 3 XB X4 X5 b 9 8 X1 6 3 3 X4 X3 1 8/5 3 3/5 3/5 X1 X3 1/3 7/5 1 0 0 1 X2 3 4 1 -1 4/5 -11/5 -1/3 1 - 2 4 X 3 5 5 4 0 1 0 0 1 0 0 X4 1 0 0 1 0 0 1/3 -1/ 5 -1/5 0 X5 0 1 0 -1 1/5 -4/5 -1/3 2/5 -3/5 VS (3,1 (3,0 (4,1 Vt (5,3 V2 解: (5,4 (7,5 V4 V1 (9,7 (4,4 V3 (6,4 (3,2 Vs (5,4 (4,0 Vt (7,7 6/9 V2 最大流=11 (5,5 V4 8. 某厂Ⅰ、Ⅱ、Ⅲ三种产品分别经过 A、B、C 三种设备加工。已知生产单位各种产品所需的设备台时,设备的现有加工能力及每件产品的预期利润见表:ⅠⅡⅢ设备能力(台.h A 1 1 1 100 B 10 4 5 600 C 2 2 6 300 单

运筹学例题

某昼夜服务的公交线路 解:设x i 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 s.t. x1 + x6≥60 x1 + x2≥70 x2 + x3≥60 x3 + x4≥50 x4 + x5≥20 x5 + x6≥30 x1,x2,x3,x4,x5,x6 ≥0 解得50,20,50,0,20,10(x1到x6)一共需要150人 一家中型的百货商场 解:设x i ( i = 1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。目标函数:Min x1 + x2 + x3 + x4 + x5 + x6 + x7 s.t. x1 + x2 + x3 + x4 + x5 ≥28 x2 + x3 + x4 + x5 + x6≥15 x3 + x4 + x5 + x6 + x7≥24 x4 + x5 + x6 + x7 + x1≥25 x5 + x6 + x7 + x1 + x2≥19 x6 + x7 + x1 + x2 + x3≥31 x7 + x1 + x2 + x3 + x4≥28 x1,x2,x3,x4,x5,x6,x7 ≥0 解得12.0.11.5.0.8.0(x1到x7) 最小值36 某工厂要做100套钢架 设x1,x2,x3,x4,x5 分别为5 种方案下料的原材料根数。这样我们建立如下的数学模型。 目标函数:Min x1 + x2 + x3 + x4 + x5 s.t. x1 + 2x2 +x4≥100 2x3+2x4 +x5≥100 3x1+x2+2x3+3x5≥100 x1,x2,x3,x4,x5≥0 解得30,10,0,50,0 只需要90根原料造100钢架某工厂要用三种原料1、2、3 设设x ij 表示第i 种(甲、乙、丙)产品中原料j 的含量。 目标函数:Max z = -15x11+25x12+15x13-30x21+10x22-40x31-10x33 s.t. 0.5 x11-0.5 x12 -0.5 x13≥0 -0.25x11+0.75x12 -0.25x13≤0 0.75x21-0.25x22 -0.25x23≥0 -0.5 x21+0.5 x22 -0.5 x23≤0 x11+x21 +x31≤100 x12+x22 +x32≤100 x13+x23+x33≤60 x ij≥0 , i = 1,2,3; j = 1,2,3 解得x11=100,x12=50,x13=50原料分别为第1种100 第2种50 第3种50 资源分配 解:将问题按工厂分为三个阶段,甲、乙、丙三个厂分别编号为1、2、3厂。设sk= 分配给第k个厂至第3个厂的设备台数(k=1、2、3)。xk=分配给第k个工厂的设备台数。 已知s1=5, 并有S2=T1(s1,x1)=s1-x1,S3=T2(s2,x2)=s2-x2从Sk与Xk的定义,可知s3=x3 以下我们从第三阶段开始计算。Maxr3(s3,x3)=r3(s3,x3)即F3(s3)= Maxr3(s3,x3)=r3(s3,x3). 第二阶段F2(s2)=max[r2(s2,x2)+f3(s3)]第一阶段当s1=5时最大盈利为f1(5)=max[r1(5,x1)+f2(5-x1)] 得出2个方案⑴分配给甲0台乙0台丙3台⑵分配甲2台乙2台丙1台,他们的总盈利值都是21. 背包 设Sk=分配给第k种咨询项目到第四种咨询项目的所有客户的总工作日Xk=在第k种咨询项目中处理客户的数量已知s1=10,有S2=T1(s1,x1)=s1-x1. S3=T2(s2,x2)=s2-3x2. S4=T3(s3,x3)=s3-4x3,第四阶段F4(s4)=maxr4(s4,x4)=r4(s4,[s4/7])第三阶段F3(s3)=max[r3(s3,x3)+f4(s3-4x3)]第二阶段F2(s2)=max[r2(s2,x2)+f3(s2-3x2)]第一阶段已知s1=10,又因s2=s1-x1有F1(10)=max[r1(10,x1)+f2(10-x1)] 综上当x1*=0,x2*=1,x3*=0,x4*=1,最大盈利为28 京城畜产品 解:设:0--1变量xi = 1 (Ai 点被选用)或0 (Ai 点没被选用)。这样我们可建立如下的数学模型:Max z =36x1+40x2+50x3+22x4+20x5+30x6+25x7+48x8+58x9+61x10 s.t. 100x1+120x2+150x3+80x4+70x5+90x6+80x7+140x8+160x9+180x10 ≤720 x1 + x2 + x3 ≤2 x4 + x5 ≥1 x6 + x7 ≥1 x8 + x9 + x10 ≥2 xi≥0 且xi为0--1变量,i = 1,2,3,……,10 函数值245 最优解1,1,0,0,1,1,0,0,1,1(x1到x10的解) 高压容器公司

运筹学复习题目加答案

一、单选题 1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规划问题求解,原问题的目标函数值等于( )。 A. maxZ B. max(-Z) C. –max(-Z) D.-maxZ 2.下列说法中正确的是( )。 A .基本解一定是可行解 B .基本可行解的每个分量一定非负 C .若B 是基,则B 一定是可逆 D .非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( ) A.多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( )。 A .多重解 B .无解 C .正则解 D .退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( )。 A .等式约束 B .“≤”型约束 C .“≥”约束 D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( )。 A .多余变量 B .自由变量 C .松弛变量 D .非负变量 7.在运输方案中出现退化现象,是指数字格的数目( )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 二、判断题 1.线性规划问题的一般模型中不能有等式约束。 2.对偶问题的对偶一定是原问题。 3.产地数与销地数相等的运输问题是产销平衡运输问题。 4.对于一个动态规划问题,应用顺推或逆解法可能会得出不同的最优解。 5.线性规划问题的每一个基本可行解对应可行域上的一个顶点。 6.线性规划问题的基本解就是基本可行解。 三、填空题 1.如果某一整数规划:MaxZ=X 1+X 2 X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数 所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 和 。 2.如希望I 的2 倍产量21x 恰好等于II 的产量2x ,用目标规划约束可表为: 3. 线性规划解的情形有 4. 求解指派问题的方法是 。 5.美国的R.Bellman 根据动态规划的原理提出了求解动态规划的最优化原理为 6. 在用逆向解法求动态规划时,f k (s k )的含义是:

运筹学习题答案

第一章习题 1.思考题 (1)微分学求极值的方法为什么不适用于线性规划的求解? (2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点? (4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用? (5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数? (6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算? (8)大M法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。 (10)如何判定线性规划有唯一最优解,无穷多最优解和无最优解?为什么? 2.建立下列问题的线性规划模型: (1)某厂生产A,B,C三种产品,每件产品消耗的原料和设备台时如表1-18所示: 润最大的模型。 (2)某公司打算利用具有下列成分(见表1-19)的合金配制一种新型合金100公斤,新合金含铅,锌,锡的比例为3:2:5。 如何安排配方,使成本最低? (3)某医院每天各时间段至少需要配备护理人员数量见表1-20。

表1-20 假定每人上班后连续工作8小时,试建立使总人数最少的计划安排模型。能否利用初等数学的视察法,求出它的最优解? (4)某工地需要30套三角架,其结构尺寸如图1-6所示。仓库现有长6.5米的钢材。如何下料,使消耗的钢材最少? 图1-6 3. 用图解法求下列线性规划的最优解: ?????? ?≥≤+-≥+≥++=0 ,425.134 1 2 64 min )1(21212 12121x x x x x x x x x x z ?????? ?≥≤+≥+-≤++=0 ,82 5 1032 44 max )2(21212 12121x x x x x x x x x x z ????? ????≥≤≤-≤+-≤++=0 ,6 054 4 22232 96 max )3(2122 1212121x x x x x x x x x x x z ??? ??≥≤+-≥+ +=0,1 12 34 3 max )4(2 12 12121x x x x x x x x z

《管理运筹学》复习题及参考答案

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示: 根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?

1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数 最少? 五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行 域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x 1+3x 2,约束形式为“≤”,X 3,X 4为松驰变量.表中解代入目标函数后得Z=10 (1)求表中a ~g 的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解 第四章 线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x 1+2x 2+4x 3 六、已知线性规划问题 应用对偶理论证明该问题最优解的目标函数值不大于25

运筹学练习题分析

第1题单选 题 A、决策变量 B、松弛变量 C、偏差变量 D、人工变量 2.第2题单选题若用图解法求解线性规划问题,则该问题所含决策变量的数目应为( ) A、二个 B、五个以下 C、三个以上 D、无限制 3.第3题单选题用单纯形法求解目标函数为极大值的线性规划问题,当所有非基变量的检验数均小于零时,表明该问题( ) A、有无穷多最优解 B、无可行解 C、有且仅有一个最优解 D、有无界解 4.第4题单选题 A、1个

B、4个 C、6个 D、9个 5.第5题单选题线性规划问题中基可行解与基解的区别在于( ) A、基解都不是可行解 B、 C、基解是凸集的边界 D、 6.第6题判断题如果线性规划问题问题存在最优解,则最优解一定对应可行域边界上的一个点 标准答案:正确 7.第7题判断题若线性规划问题有两个最优解 , 则它一定有无穷多个最优解 标准答案:正确 8.第8题判断题任何线性规划问题存在并具有唯一的对偶问题 标准答案:正确 9.第9题判断 题 标准答案:正确 10.第10题判断题对偶问题的对偶问题一定是原问题 标准答案:正确 11.第11题判断题线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域范围一般将扩大 标准答案:正确 12.第12题判断题线性规划问题的基解对应可行域的顶点

标准答案:错误 13.第13题判断题若线性规划的原问题有无穷多个最优解,则其对偶问题也一定具有无穷多最优解 标准答案:错误 第1题单选题对于 m 个发点、n 个收点的运输问题,叙述错误的是 ( ) A、该问题的系数矩阵有m × n 列 B、该问题的系数矩阵有 m n 行 C、该问题的系数矩阵的秩必为 m n-1 D、该问题的最优解必唯一 2.第2题单选题在解运输问题时,若已求得各个空格的改进路线和判别数,则选择调整格的原则是( ) A、在所有空格中,挑选绝对值最大的正判别数所在的空格作为调整格 B、在所有空格中,挑选绝对值最小的正判别数所在的空格作为调整格 C、在所有空格中,挑选绝对值最大的负判别数所在的空格作为调整格 D、在所有空格中,挑选绝对值最小的负判别数所在的空格作为调整格 3.第3题单选题在运输方案中出现退化现象,是指数字格的数目( ) A、等于m n B、大于m n-1 C、小于m n-1 D、等于m n-1 4.第4题单选题求最初运输方案可采用( ) A、大M法 B、位势法 C、西北角法 D、闭合回路法 5.第5题单选题 A、使诸供应点的供应总量减少G-Q B、使诸需求点的需求总量增加G-Q

《运筹学》题库

运筹学习题库 数学建模题(5) 1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示: 试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则 max z =70x 1+120x 2 s.t. ????? ??≥≤+≤ +≤+0 300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。 解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z= 4x 1+3x 2 s.t. ???????≥≤≤+≤+ ,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:

建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。 解:建立线性规划数学模型: 设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则 max z =10x 1+6x 2+4x 3 s.t. ???????≥≤++≤++≤++0 3006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通 信器材等。每种物品的重量合重要性系数如表所示。设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。 解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I ?? ?==≤++++++++++++=7 ,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或 5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。 解:设每月生产A 、B 、C 数量为321,,x x x 。 321121410x x x MaxZ ++= 250042.15.321≤++x x x

管理运筹学模拟试题及答案

四 川 大 学 网 络 教 育 学 院 模 拟 试 题( A ) 《管理运筹学》 一、 单选题(每题2分,共20分。) 1.目标函数取极小(minZ )的线性规划问题可以转化为目标函数取极大的线性规 划问题求解,原问题的目标函数值等于( C )。 A. maxZ B. max(-Z) C. –max(-Z) D.-maxZ 2. 下列说法中正确的是( B )。 A.基本解一定是可行解 B.基本可行解的每个分量一定非负 C.若B 是基,则B 一定是可逆D.非基变量的系数列向量一定是线性相关的 3.在线性规划模型中,没有非负约束的变量称为 ( D ) 多余变量 B .松弛变量 C .人工变量 D .自由变量 4. 当满足最优解,且检验数为零的变量的个数大于基变量的个数时,可求得( A )。 A.多重解 B.无解 C.正则解 D.退化解 5.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足 ( D )。 A .等式约束 B .“≤”型约束 C .“≥”约束 D .非负约束 6. 原问题的第i个约束方程是“=”型,则对偶问题的变量i y 是( B )。 A.多余变量 B.自由变量 C.松弛变量 D.非负变量 7.在运输方案中出现退化现象,是指数字格的数目( C )。 A.等于m+n B.大于m+n-1 C.小于m+n-1 D.等于m+n-1 8. 树T的任意两个顶点间恰好有一条( B )。 A.边 B.初等链 C.欧拉圈 D.回路 9.若G 中不存在流f 增流链,则f 为G 的 ( B )。 A .最小流 B .最大流 C .最小费用流 D .无法确定 10.对偶单纯型法与标准单纯型法的主要区别是每次迭代的基变量都满足最优检验但不完全满足( D ) A.等式约束 B.“≤”型约束 C.“≥”型约束 D.非负约束 二、多项选择题(每小题4分,共20分) 1.化一般规划模型为标准型时,可能引入的变量有 ( ) A .松弛变量 B .剩余变量 C .非负变量 D .非正变量 E .自由变量 2.图解法求解线性规划问题的主要过程有 ( ) A .画出可行域 B .求出顶点坐标 C .求最优目标值 D .选基本解 E .选最优解 3.表上作业法中确定换出变量的过程有 ( ) A .判断检验数是否都非负 B .选最大检验数 C .确定换出变量 D .选最小检验数 E .确定换入变量 4.求解约束条件为“≥”型的线性规划、构造基本矩阵时,可用的变量有 ( ) A .人工变量 B .松弛变量 C. 负变量 D .剩余变量 E .稳态 变量 5.线性规划问题的主要特征有 ( ) A .目标是线性的 B .约束是线性的 C .求目标最大值 D .求目标最小值 E .非线性 三、 计算题(共60分) 1. 下列线性规划问题化为标准型。(10分)

运筹学例题解析word精品

(一)线性规划建模与求解 B.样题: 活力公司准备在 5小时内生产甲、乙两种产品。甲、乙两种产品每生产 1 单位分别消耗2小时、1小时。又根据市场需求信息,乙产品的产量应该至少是甲产品产量 的3倍。已知甲、乙两种产品每销售 1单位的利润分别为 3百元和1百元。请问:在5小时 内,甲、乙两种产品各生产多少单位,才能够使得总销售利润最大? 要求:1、建立该问题的线性规划模型。 2、用图解法求出最优解和最大销售利润值, 并写出解的判断依据。如果不存在最优解, 也请说明理由。 解: 1、(1)设定决策变量: 设甲、乙两种产品分别生产 X]、X 2单位 _____________ max z=2 X 1+X 2 _________________________________ 12X 1 亠X 2 乞5 s.t X 2 _3X ! X,X 2 _0 1所示,其中可行域用阴影部分 目标函数只须画出其中一条等值线, 求解过程如下: 1?各个约束条件的边界及其方向如图 1中直线和箭头所示,其中阴影部分为可 行域,由直线相交可得其顶点 A(5,0)、 B(1,3)和 0(0,0)。 2. 画出目标函数的一条等值线 CD : 2x 什X 2=0,它沿法线向上平移,目标函数 值z 越来越大。 3. 当目标函数平移到线段 AB 时时,z ⑵目标函数:. (3)约束条件如下: 2、该问题中约束条件、目标函数、可行域和顶点见图 标记,不等式约束条件及变量约束要标出成立的方向, 顶点用大写英文字母标记。 -2 -1 X 2> 3 X 4 B(1,3) 3 图1 X2 5; A(5,O) T Max z 。 1 MaX 2

运筹学例题及解答

运筹学例题及解答 一、市场对I、II两种产品的需求量为:产品I在1-4月每月需10000件,5-9月每月需30000件,10-12月每月需100000件;产品II在3-9月每月需15000件,其它月份每月需50000件。某厂生产这两种产品成本为:产品I在1-5月内生产每件5元,6-12月内生产每件4.50元;产品II在1-5月内生产每件8元,6-12月内生产每件7元。该厂每月生产两种产品能力总和应不超过120000件。产品I容积每件0.2立方米,产品II容积每件0.4立方米,而该厂仓库容积为15000立方米,要求:(a)说明上述问题无可行解;(b)若该厂仓库不足时,可从外厂借。若占用本厂每月每平方米库容需1元,而租用外厂仓库时上述费用增加为1.5元,试问在满足市场需求情况下,该厂应如何安排生产,使总的生产加库存费用为最少。 解:(a) 10-12月份需求总计:100000X3+50000X3=450000件,这三个月最多生产120000X3=360000件,所以10月初需要(450000-360000=90000件)的库存,超过该厂最大库存容量,所以无解。 ? ?(b)考虑到生产成本,库存费用和生产费用和生产能力,该厂10-12月份需求的不足只需在7-9月份生产出来库存就行, 则设xi第i个月生产的产品1的数量,yi第i个月生产的产品2 的数量,zi,wi分别为第i个月末1,2的库存数s1i,s2i分别

为用于第i+1个月库存的原有及租借的仓库容量m3,可建立模型: Lingo 程序为 MODEL: sets: row/1..16/:; !这里n 为控制参数; col/1..7/:; AZ(row,col):b,x; endsets 1211 127777778 7887898998910910109101110111110111211min (4.57)( 1.5) 30000150003000015000300001500030000150003000015000.i i i i i i z x y s s x z y w x z z y w w x z z y w w x z z y w w x z z y w w st x z ===+++-=→-=+-=→+-=+-=→+-=+-=→+-=+-=→+-=+∑∑1211121100005000 120000(712)0.20.415000(712)0i i i i i i i y w x z i z w s s s i ?????????=→+=??+≤≤≤?+=+??≤≤≤???变量都大于等于

相关主题